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We explore the spin density and charge currents arising on the surface of a topological insulator and in a two-
dimensional Rashba metal due to magnetization gradients. For topological insulators a single interconversion
coefficient controls the generation of both quantities. This coefficient is quantized to a value proportional to
the vorticity of the Dirac point which constitutes a hallmark of parity anomaly at finite density. As such, it
also unveils a robust route to disentangle and detect the protected states of a topological insulator on a given
surface. In stark contrast, Rashba metals do not exhibit such anomalies since they contain an even number of
helical branches. Nonetheless, also these are governed by quantized responses which, however, are not protected
against weak disorder. Furthermore, we find that for Rashba metals the interconversion coefficients demonstrate
discontinuities and a nontrivial interplay upon varying the chemical potential, the strength of the spin-orbit
coupling, and a pairing gap. Our results have implications for the binding between magnetic skyrmions and
superconducting vortices, the emergence of Majorana zero modes, and pave the way for superconducting diode
effects mediated by out-of-plane magnetization gradients.
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I. INTRODUCTION

The breaking of parity (P) and time-reversal (T ) symme-
tries unlocks a plethora of unconventional phenomena [1,2].
The inherent violation of parity is associated with the gen-
eration of a nonzero electric polarization P [3,4]. Upon its
presence, a spin density S ∝ P × J can be induced by in-
jecting an electric charge current J into the system. This
relation is also key for the so-called Edelstein effect [5], which
constitutes one of the most well-established charge-to-spin
interconversion mechanisms. Reciprocity also allows for an
inverse magnetoelectric effect where, due to a nonzero P, the
exchange (Zeeman) coupling of the electrons to a homoge-
neous magnetization M (magnetic field B) leads to a charge
current J. Aside from spintronics [6], P-T violation is also
responsible for various anomalies and fractionalization effects
in topological insulators (TIs) [4,7–11]. An equally rich phe-
nomenology emerges in superconductors (SCs) experiencing
P-T violation [2,12]. For example, charge transport in non-
centrosymmetric SCs [13–17] in the presence of a magnetic
field B is nonreciprocal [18–20]. This is due to additional
current contributions, with the simplest being proportional
to P × B [21–23]. The B dependence of the critical current
forms the basis for the so-called superconducting diode effect,
which was recently experimentally detected in various SCs
[24–26].

In the majority of the above situations B or M are homoge-
neous, while the violation of P symmetry typically manifests
itself in the presence of an odd-under-inversion spin-orbit cou-
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pling (SOC). Notably, however, inhomogeneous magnetism is
capable of simultaneously violating both P and T symmetries
[27,28], without requiring any kind of SOC. This two-in-one
effect appears particularly useful for engineering topological
SCs in one (1D) [29–38] and two dimensions (2D) [34,39–
46]. Coupling (un)conventional SCs to periodically repeat-
ing magnetic textures forming crystals is known to lead to
a rich variety of topological phases [44] and nonstandard
transport effects [47–49]. On the other hand, when isolated
magnetic textures such as magnetic skyrmions are superim-
posed on conventional SCs, they can trap superconducting
vortices [50–55] and Majorana zero modes [56–62]. Even
more, such textured magnetic defects are also predicted to
induce Yu-Shiba-Rusinov states [63,64], circulating currents
[65–68], and Friedel oscillations [69,70] in SCs. The above ef-
fects stem from an inhomogeneous M and thus can be viewed
as Edelstein effects induced by magnetization gradients.

In this paper, motivated by the wide range of applica-
tions of inhomogeneous magnetism, we investigate inter-
conversion effects mediated by magnetization gradients on
(non)superconducting TI surfaces and in 2D Rashba metals.
We are primarily interested in these two classes of experimen-
tally accessible Rashba-type systems because they constitute
two of the most prominent candidates for a vast range of
applications in nanoelectronics.

We first study the induced electric current and spin den-
sities due to magnetization gradients in the absence of
superconductivity. We reveal that in the case of a TI surface
with a pristine Dirac cone, the respective zero-temperature
interconversion coefficient is quantized since it constitutes a
topological invariant. In particular, it is proportional to the
vorticity of the topologically protected touching point of the
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helical surface energy dispersion. Hence, inferring this coeffi-
cient in experiments can be harnessed to detect the protected
states on a given TI surface, which is otherwise challenging
to achieve with Hall transport [4,10,11]. On the other hand,
adding a pairing gap always spoils the quantization of the
interconversion coefficient due to nonuniversal Cooper pair
contributions, which tend to suppress the effect. Quite remark-
ably, we find that the coefficient “jumps” by a quantized value
even by switching on an infinitesimally weak pairing gap, as
a result of quantum anomalies [1,2].

The topological nature of the TI interconversion coefficient
allows us to make direct predictions for a 2D Rashba metal.
This is because, in certain limits, the latter can be effectively
described as a collection of two decoupled TI helical Dirac
surface states. Since systems with an even number of helical
Dirac electrons are anomaly free [1,2], this distinction un-
derlines the importance of comparing the TI results to those
obtained for Rashba metals. In fact, our analysis immediately
reveals an important difference compared to TIs, that is, in
Rashba metals the coefficients for spin and current generation
are generally distinct. Moreover, by restricting to the quasi-
classical regime, we find that they are both zero in the absence
of superconductivity. However, they both get switched on
even when an infinitesimally weak pairing gap is introduced.
Notably, the coefficient associated with current generation
shows a discontinuous jump equal to a universal value across
this transition. The latter coefficient is also here sensitive to
disorder [6], which is a situation reminiscent of the intrinsic
spin Hall effect (SHE) [71].

The remainder of our paper is organized in the following
fashion. Section II provides a symmetry-based phenomeno-
logical description of the magnetoelectric effects which
become accessible in a system with Rashba-type SOC when
magnetization gradients are present. In Sec. III we present
the formalism for deriving the coefficients which control the
various interconversion phenomena from a microscopic elec-
tronic Hamiltonian. Section IV discusses the arising effects on
the surface of a three-dimensional (3D) TI. There, we show
that spin and current generation are both controlled by the
same interconversion coefficient, which becomes quantized.
In the same section, we demonstrate the topological origin
behind this macroscopic quantization and investigate its sta-
bility against deviations away from the pristine Dirac cone
picture, Zeeman corrections, and the influence of a pairing
gap. In Sec. V we proceed by examining the case of a 2D
Rashba metal, which is not expected to exhibit the anomalous
effects encountered in the TI case. Nevertheless, quantization
phenomena of a different origin appear also here. Moreover,
the interconversion coefficients are substantially affected by
the presence of a pairing gap and the Zeeman effect. Potential
applications are discussed in Sec. VI, while we summarize
our findings in Sec. VII. Finally, details on our calculations
are given in Appendixes A–D.

II. INSIGHTS FROM SYMMETRY

To expose the key aspects of our work, we first rely on the
predictive power of a symmetry analysis, in order to highlight
the key mechanisms which underly the spin and current gen-
eration. Our symmetry analysis is carried out in terms of the

in-plane components Ax,y(r) of the vector potential and all the
components Mx,y,z(r) of the magnetization. These are defined
in the 2D coordinate space r = (x, y). In the remainder, we
restrict our study to layered systems with C4v × T symmetry,
where C4v is the tetragonal point group. We remark that this
choice does not restrict the generality of our approach, which
can be also extended to other point groups.

A. Symmetry classification

The backbone of our symmetry classification program re-
lies on the identification of the transformation properties of
the various fields under the operations of the ensuing point
group. For the C4v point group of interest here, we find that
(Ax(r), Ay(r)) and (My(r),−Mx (r)) transform according to
the same 2D irreducible representation of C4v . Therefore,
the term Ax(r)My(r) − Ay(r)Mx(r) belongs to the trivial ir-
reducible representation of the group C4v × T . In fact, the
above symmetry-invariant term is responsible for the standard
Edelstein effect [5].

One observes similarities in the structure of the symmetry-
invariant term Ax(r)My(r) − Ay(r)Mx(r) and the Rashba SOC
term p̂xσy − p̂yσx. Indeed, the construction of the two terms
relies on the symmetry equivalences (Ax, Ay) ∼ ( p̂x, p̂y) and
(Mx, My) ∼ (σx, σy). Notably, also the two-component vector
(∂yMz(r),−∂xMz(r)) belongs to the same representation as
(Ax(r), Ay(r)) does, thus enabling a number of new intercon-
version phenomena that we bring forward in this work.

B. Phenomenological energy density and equations of motion

Throughout this work, the effects of interest mainly con-
cern the generation of spin density S(r) and electrical current
J(r), which are here viewed as conjugate fields of M(r) and
A(r). The quantities S(r) = 〈Ŝ(r)〉 and J(r) = 〈Ĵ(r)〉 are de-
fined as the expectation values of the respective microscopic
operators Ô(r) = �†(r)Ô�(r) where �(r) denotes the elec-
tronic spinor.

The source fields enter in the Hamiltonian through the term
− 1

2

´
dr �†(r)[A(r) · Ĵ(r) + M(r) · σ]�(r), where σ are the

spin Pauli matrices and Ĵ(r) is the respective current operator
represented in coordinate space. More details on the micro-
scopic approach and evaluation of the various coefficients are
provided in Sec. III and Appendixes A–D.

At zero temperature the equilibrium spin and current den-
sities are obtained from the functional derivatives

S(r) = − δE (r)

δM(r)
and J(r) = −δE (r)

δA(r)
(1)

of the energy density E (r). According to our symmetry anal-
ysis, the latter obtains the form

E (r) =
[

Mz(r) − gμBBz(r)

2

]
[χBz(r) + gsoc∇ · M(r)]

− χ
spin
⊥

[Mz(r) − gμBBz(r)/2]2

2
− χ

spin
‖

∑
a=x,y

M2
a (r)

2
,

(2)

where we also included the Zeeman coupling to the elec-
trons, which enters by shifting the out-of-plane magnetization
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according to Mz(r) �→ Mz(r) − gμBBz(r)/2. Here, g denotes
the gyromagnetic Landé factor, μB the Bohr magneton, and
χ

spin
⊥,‖ define the out-of- and in-plane spin susceptibilities of

the Rashba system, respectively.
A few comments are in place regarding the energy density

above. First of all, we remark that it is not crucial to shift
the in-plane magnetization components in a similar fashion to
Mz since the orbital coupling to the in-plane magnetic field
components Bx,y is considered to be identically zero due to
the planar nature of the system. Hence, Zeeman effects due to
Bx,y can be fully absorbed in Mx,y. Further, it is also important
to emphasize that the energy density of Eq. (2) discards the
standard Edelstein term Ax(r)My(r) − Ay(r)Mx(r) which is
also generally permitted. This is only because here we restrict
to responses solely emerging from magnetization gradients.

Variation of the energy density with respect to the source
fields reveals two categories of reciprocal interconversion re-
lations:

Sz(r) = −XBz(r) ↔ J(r) = −X∇ × ẑMz(r), (3)

S(r) = gsoc∇Mz(r) ↔ Sz(r) = −gsoc∇ · M(r). (4)

In the above, ẑ stands for the unit vector in the out-of-plane z
direction, while the quantities r, A, J, and ∇ are understood
as 2D vectors defined in the xy plane. We need to remark that
when the system is superconducting, the current of Eq. (3) is
observable only as long as the London penetration depth of
the SC is sufficiently long to render the Meissner screening
ineffective in the region where the magnetization varies spa-
tially.

We observe that the current interconversion phenomena are
controlled by the coefficients

X = χ + χZ and χZ = gμBχ
spin
⊥

2
. (5)

Notably, the coefficient X arises from both the Rashba and
Zeeman effects with contributions χ and χZ , respectively,
and relates magnetization and magnetic field. While more
quantitative details regarding the magnitude of the Zeeman
contribution to the coefficient X are discussed in Secs. IV E
and V, here, we wish to remark that for a material with a suf-
ficiently strong Rashba SOC the electron spin is expected to
be predominantly confined in the plane. Under this condition,
χ

spin
⊥ is suppressed and, in turn, also renders χZ negligible

compared to χ , which is the primary case of interest. Fi-
nally, note that Eq. (4) stems from the symmetry equivalences
(Mx, My, Mz ) ∼ (Ay,−Ax, Bz ), and dictates the nonstandard
interconversion between an in-plane magnetization (spin den-
sity) and an out-of-plane spin density (magnetization) which
are governed by the coefficient gsoc.

C. Implications for magnetic impurities

The above analysis applies to inhomogeneous magnetism
stemming from a variety of sources which are effectively
described by a classical magnetization field M(r). For a mag-
netization polarized along the z spin axis with a rotationally
symmetric spatial profile Mz(r) = Mz(|r|), Eqs. (3) and (4)
lead to the following type of circulating currents and in-plane

FIG. 1. Cartoon of an extended magnetic impurity embedded in
a quasi-2D system dictated by a Rashba-type SOC. The magnetic
moment of the impurity “island” depicted with blue arrows is here
assumed to be polarized out of the plane of the Rashba SOC host.
Near its boundary, the magnetic impurity induces circulating electric
currents accompanied by a radially oriented in-plane magnetization
which is shown with magenta arrows.

spin density:

J(ρ) = X dMz(ρ)

dρ
θ̂ and S(r) = −gsoc

dMz(ρ)

dρ
ρ̂, (6)

where (ρ, θ ) are the polar coordinates ρ =
√

x2 + y2 and
tan θ = y/x. ρ̂ and θ̂ define the respective unit vectors.

The currents circulate about the impurity and generate a
nonzero vorticity. Instead, the in-plane magnetic moments
point along the radial direction and extend uniformly along
the circumference, thus giving rise to a profile which is topo-
logically equivalent to a magnetic vortex. See Fig. 1 for a
sketch. Our symmetry approach recovers the profiles of the
current [65,66,68] and spin densities [69,70] obtained previ-
ously. However, in contrast to those works, which primarily
relied on numerical methods, here we pursue exact analytical
expressions for the interconversion coefficients, relevant for
systems and parameter regimes that have remained so far
unexplored.

III. MICROSCOPIC FORMULATION OF LINEAR
RESPONSE

We now proceed by focusing on the responses of concrete
Rashba SOC material systems. Specifically, we consider ho-
mogeneous 2D Rashba SCs under the influence of the in-plane
components Ax,y(r) of the vector potential and all the compo-
nents Mx,y,z(r) of the magnetization. Such systems are here
modeled using the Hamiltonian

H = 1

2

ˆ
dr{�†(r)[Ĥ0(π̂) − M(r) · σ]�(r)}, (7)

with the spinor �†(r) = (ψ†
↑(r), ψ

†
↓(r), ψ↓(r), −ψ↑(r)).

ψσ (r) [ψ†
σ (r)] annihilates (creates) an electron at position r

with spin projection σ =↑,↓. We also introduced the gauge-
invariant momentum π̂ = p̂ + eτzA(r), where e > 0 denotes
the electric charge unit, p̂ = −ih̄∇ the momentum operator,
and h̄ the reduced Planck constant. Equation (7) is expressed
in terms of the bare Hamiltonian:

Ĥ0( p̂) = τz

[
p̂2

2m
− μ + υ( p̂xσy − p̂yσx )

]
+ �τx. (8)
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Any Hamiltonian matrix, such as the above, is expressed with
Kronecker products which are constructed using the Pauli ma-
trices τ and σ, along with their respective unit matrices 1τ,σ .
These are defined in Nambu and spin spaces, respectively.
Note that we omit writing the Kronecker product symbol ⊗
and unit matrices throughout.

In Eq. (8), υ > 0 is the strength of the Rashba SOC,
m > 0 the effective mass, and μ the chemical potential. The
pairing gap � � 0 is treated non-self-consistently, i.e., we
neglect the possible feedback effects from the magnetization
on �. This also justifies why we have not included in π̂

the contribution of the superconducting phase φ(r), which
would enter by means of the minimal coupling substitution
A(r) �→ A(r) + h̄∇φ(r)/2e.

Our model allows us to discuss in a unified manner a
Rashba metal and the surface of a TI. To obtain the response
coefficients χ and gsoc in either case, we carry out a pertur-
bative analysis in terms of A(r) and M(r), which is described
in detail in Appendixes A–D. Expanding the energy density
of the system E (r) yields that the coefficients are obtained by
evaluating the expressions

gsoc = 1

2i

ˆ
d3K

(2π )3

1

2
Tr

[
Ĝ0(K )σz

∂Ĝ0(K )

∂ka
σa

]
, (9)

gorb = 1

2i

ˆ
d3K

(2π )3

1

2
Tr

[
Ĝ0(K )σzεzab

ka

kF

∂Ĝ0(K )

∂kb

]
, (10)

χ = χorb + χsoc, (11)

where we introduced

χorb = eυF gorb and χsoc = eυgsoc. (12)

The above are further expressed in terms of the Fermi
velocity υF = h̄kF /m and the Fermi wave number kF =√

2m|μ|/h̄. In addition, repeated index summation (a, b =
x, y) is implied and we made use of the Levi-Civita symbol
εzab. In the definition of the coefficients gsoc and gorb, we
also employed the compact notation K = (k, ε) and

´
d3K ≡´

dk
´ +∞

−∞ dε. The bare Green function Ĝ0(K ) is defined in
terms of the translationally invariant bare Hamiltonian Ĥ0( p̂)
through the relation

Ĝ−1
0 (K ) = iε − Ĥ0(k), (13)

where we used the Fourier transform p̂ �→ h̄k, with k denoting
the wave vector.

IV. TOPOLOGICAL INSULATOR

We first investigate the above-mentioned interconversion
effects for a single helical Dirac cone on the surface of a 3D
TI. To describe this situation, we take the limit m → ∞ in
Eq. (8) and then find that χ = eυgsoc. Interestingly, in this
case, χTI can be rewritten as

χTI = eεzab

4π h̄

ˆ
d3K

(2π )2
Tr

[
τzĜ0(K )σz

2i

∂Ĝ0(K )

∂ka

∂Ĝ−1
0 (K )

∂kb

]
.

(14)

We proceed by parametrizing the Green function as

Ĝ0(K ) = Û (k)Ĝ0(k, ε)Û†(k) (15)

with Û (k) = exp[iϑ (k)σz/2], where we defined the angle
tan ϑ (k) = −kx/ky, the modulus k = |k|, and the rotated
frame Green function

Ĝ−1
0 (k, ε) = iε − τz(υ h̄kσx − μ) − �τx. (16)

Using the above formulation, we find that χTI consists of two
contributions, i.e., χTI = χTI,I + χTI,II, where

χTI,s = − e

4π h̄

ˆ kc

0
dk

ˆ +∞

−∞

dε

2π

1

2
Tr

[
F̂ s(k, ε)

∂Ĝ0(k, ε)

∂k

]
.

(17)

The two matrix functions appearing for s = I, II read as

F̂ I(k, ε) = τz and F̂ II(k, ε) = D(k, ε) + σzD(k, ε)σz,

where we introduced the quantity:

D(k, ε) = Ĝ−1
0 (k, ε)[τz, Ĝ0(k, ε)]/2.

We observe that, in contrast to χTI,I, the contribution χTI,II is
nonzero only in the superconductive phase. In the following
subsections we precisely obtain the quantity χTI by means
of analytical methods, and explore its behavior under various
conditions.

A. Quantization effects for a pristine Dirac cone in the
nonsuperconductive regime

At zero temperature and pairing gap value, i.e., � = 0, the
outcome for χTI takes the transparent form

χTI(� = 0) = sgn(μ)
e

4π h̄

‰
C

dϑ

2π
, (18)

where the closed loop C encloses the Dirac point. From the
above we conclude that χ is proportional to the vorticity of
the Dirac point and, as a result, it becomes quantized. For the
present model

�
C dϑ/2π = 1 and we find

χTI(� = 0) = χTI,I(� = 0) = sgn(μ)
e

4π h̄
. (19)

Notably, the above result is generalizable to the wider class of
T -invariant semimetals (SMs) with an odd-parity SOC of the
form dx(k)σy − dy(k)σx. In this case, ϑ (k) has to be redefined
as tan[ϑ (k)] = −dy(k)/dx(k). Hence, for a SM band structure
with touching points, we have

χSM(� = 0) = e

4π h̄

∑
s

ωssgn(μs), (20)

where ωs is the vorticity of the sth touching point and μs the
respective chemical potential value which controls its occupa-
tion.

At this point, we also note that for a zero pairing gap �,
Eq. (14) can be rewritten in an alternative and more trans-
parent form, which further highlights the topological origin
and robustness of χTI(� = 0). By making use of the relation
∂Ĝ0 = −Ĝ0(∂Ĝ−1

0 )Ĝ0 and the property [τz, Ĝ0(K )] = 0, which
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is a consequence of the electric charge conservation which
holds for � = 0, we find that

χTI = eεzab

4π h̄

ˆ
d3K

(2π )2
Tr

[
τzσz

2

∂Ĝ−1
0

∂ε
Ĝ0

∂Ĝ−1
0

∂ka
Ĝ0

∂Ĝ−1
0

∂kb
Ĝ0

]
,

(21)

where we omitted the argument K from the matrix Green
function Ĝ0(K ) for compactness.

Noteworthy, the expression of the interconversion coeffi-
cient in Eq. (21) has a similar structure to the coefficients
controlling topological spin transport in 3He [72]. Despite
the fact that also in the latter case the spin current is driven
by magnetization gradients, the phenomena discussed in
Ref. [72] are not mediated by Rashba SOC as in the cases
that we study here. Nonetheless, the similarities regarding the
structure of the transport coefficients further corroborate the
topological nature of the effect also in the present context. At
this stage, it is also important to stress that for � = 0 and
μ = 0, the matrix τzσz leads to a chiral symmetry since in this
case τzσzĜ0(K )τzσz = −Ĝ∗

0 (K ). This property also implies the
relation χTI(� = 0, μ) = −χTI(� = 0,−μ) which ensures
that χTI(� = μ = 0) = 0 as found in Eq. (19).

B. Orbital magnetization picture and realization of parity
anomaly at finite density

In this section, we show that the result of Eq. (19) is also
derivable using the modern theory of orbital magnetization
[73,74], which is here denoted Mz(r). The latter is read out
by expressing the energy density as

E (r) = −Mz(r)Bz(r) (22)

which further implies the following alternative defining rela-
tion for the interconversion coefficient:

χ = − δMz(r)

δMz(r)

∣∣∣∣
Mz (r)=0

. (23)

It is more convenient to calculate χ by means of considering
a uniform Mz which, in turn, also yields a uniform orbital
magnetization. In this case, the functional derivative in the
above definition simplifies to a standard partial derivative, i.e.,
δMz(r)/δMz(r) �→ ∂Mz/∂Mz.

Since in the normal phase of the Rashba systems of interest
the band structure consists of two bands, the expression for the
corresponding uniform orbital magnetization at T = 0 is well
known [74], and reads as

Mz = e

4π h̄

∑
ν=±1

2μν

ˆ
dk
2π

�(k)�[μ + νE (k)], (24)

where � denotes the Heaviside unit step function. The above
is obtained by focusing on the electron part of the respective
bare Hamiltonian:

Ĥ�=0,Mz

0;τz=1 (k) = υ h̄(kxσy − kyσx ) − Mzσz − μ, (25)

which we parametrize according to the following compact
manner: Ĥ�=0,Mz

0;τz=1 (k) ≡ d(k) · σ − μ, where

d(k) = (−υ h̄ky, υ h̄kx,−Mz ). (26)

The above vector possesses the modulus E (k) ≡ |d(k)|.
In addition, �(k) corresponds to the Berry curvature of the
valence band, and is given as

�(k) = 1

2
d̂(k) ·

[
∂ d̂(k)

∂kx
× ∂ d̂(k)

∂ky

]
= − (υ h̄)2Mz

2E3(k)
, (27)

where d̂(k) = d(k)/E (k).
The desired coefficient is thus obtained via the expression

χTI(� = 0) = −∂Mz/∂Mz|Mz=0. In agreement with the re-
sults obtained in Refs. [75,76], and more recently in Ref. [46],
we find the orbital magnetization

Mz = − e

4π h̄

[
�(|Mz| − |μ|)

|Mz| + �
(|μ| − |Mz|

)
|μ|

]
μMz.

From the above result, we conclude that for |μ| < |Mz| we ob-
tain Mz = −sgn(Mz )eμ/4π h̄, which reflects the realization
of the phenomenon of parity anomaly which is characteristic
of a Dirac electron defined in two spatial dimensions with a
mass Mz (cf. Ref. [77]). In this regime, the system lies in
its insulating phase and parity anomaly can be understood
in terms of the fractional quantization of the anomalous Hall
conductance which is defined through the expression [74]

σH = −e
∂Mz

∂μ
= sgn(Mz )

e2

4π h̄
= sgn(Mz )

G0

2
, (28)

where G0 = e2/h is the unit of conductance and h is the
Planck constant. The effect is termed anomalous because σH

depends only on the sign of the Dirac mass Mz and not its
magnitude.

In this work, we are instead interested in the limit |μ| >

|Mz| since Mz is considered to be a weak perturbation. In
this regime, the theory of orbital magnetization reproduces
as expected the expression in Eq. (19). Remarkably, we
demonstrate that even in the metallic phase one can define
a quantized quantity which plays an analogous role to σH in
the insulating phase. Indeed, the quantized quantity here is
given by

χ = −∂Mz

∂Mz

∣∣∣∣
Mz=0

, (29)

i.e., the derivative of the orbital magnetization with respect to
the Dirac mass. Hence, our central result is that massive and
massless Dirac electrons exhibit a quantized response even
in the metallic phase, which is now anomalous in the sense
that the quantized quantity (interconversion coefficient in our
context) satisfies χ ∝ sgn(μ).

C. Landau-level picture for uniform magnetization gradients

In the special case of uniform magnetization gradients, the
arising spin and current responses can be understood through
the emergence of gapful and gapless Landau level bands.

1. In-plane magnetization gradients

We first consider a spatial gradient for the in-plane magne-
tization of the form My(y) = By. Without loss of generality,
we consider that the slope of the above-mentioned spatial pro-
file is positive, i.e., B = ∂yMy > 0. In addition, we introduce
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FIG. 2. In (a) [(b)] we depict the energy dispersions obtained when the nonsuperconducting surface states of the 3D TI are under the
influence of a uniform magnetization gradient in the My (Mz) component, which becomes inhomogeneous along the y axis. The chemical
potential is set to zero for convenience. The system is additionally coupled to a uniform magnetization component Mz (My) which is employed
to evaluate the induced uniform spin density Sz (Sy). For a uniform gradient of the in-plane magnetization, the induced spin density Sz solely
results from the n = 0 Landau level when Mz → 0. Similarly, in the limit My → 0 and a uniform gradient in the out-of-plane magnetization, the
induced spin density Sy stems only from the n = 0 energy band which is now dispersive. For the plots we used My = Mz = 0.5h̄ωB, h̄ωB = 1,
μ = 0, and υ h̄kx ∈ [−1, 1].

an auxiliary uniform out-of-plane magnetization component
Mz. The latter will allow us to calculate the induced out-
of-plane spin density Sz and, in turn, the coefficient gTI

soc =
χTI/eυ. The respective Hamiltonian takes the following form:

Ĥ�=0,Mz
0;τz=1 ( p̂y, y, kx ) = (υ h̄kx − By)σy − υ p̂yσx − Mzσz − μ.

(30)

Following standard methods which are detailed in Ap-
pendix B 2, we find the energy dispersions of the system:

E0(kx, Mz ) = Mz − μ and (31)

En,±(kx, Mz ) = ±En(Mz ) − μ (32)

with n ∈ N+. In the above, we introduced the energy levels
for n � 1:

En(Mz ) =
√

(h̄ωB )2n + M2
z (33)

with the frequency ωB = √
2υ/�B and the length scale �B =√

υ h̄/B. The arising Landau-level band structure is depicted
in Fig. 2(a). As we explain in Appendix B 2, the generation
of the out-of-plane spin density Sz, according to Eq. (4),
solely results from the presence of the zeroth Landau level
corresponding to the quantum number with value n = 0.

2. Out-of-plane magnetization gradients

We now proceed with examining the other possible
scenario, that is, to have a spatially varying out-of-plane mag-
netization. In the following, we consider the concrete profile
Mz(y) = By, where now B = ∂yMz. Without any loss of gen-
erality, B is considered positive in the analysis below. Since
for such a magnetization profile we expect the generation of
a uniform spin density Sy, we also consider the presence of
a uniform in-plane magnetization My. Thus, the Hamiltonian
describing this situation now becomes

Ĥ�=0,My

0;τz=1 ( p̂y, y, kx ) = (υ h̄kx − My)σy − υ p̂yσx − Byσz − μ.

(34)

Similar to the previous case, also here, the Hamiltonian
is described by a spectrum of the form E0(kx, My) and
En,±(kx, My) with n ∈ N+. However, as we discuss in more
detail in Appendix B 2, the dispersions here have a different
structure as one observes from the expressions shown below:

E0(kx, My) = υ h̄kx − My − μ and (35)

En,±(kx, My) = ±En(kx, My) − μ, (36)

in which we introduced the energies for n � 1:

En(kx, My) =
√

(h̄ωB )2n + (υ h̄kx − My)2. (37)

Indeed, we observe that significant differences arise be-
tween the spectra of the two different types of magnetization
gradients. See for a comparison Figs. 2(a) and 2(b). The most
notable difference is that for the in-plane case we obtained
a collection of flat bands, while in the out-of-plane situation
the resulting bands are dispersive. Since the eigenenergies are
even under kx ↔ −kx for My = μ = 0, one finds that similar
to the previous paragraph, also here, it is the mode associ-
ated with the n = 0 level which contributes to the response
of the system. In the present case, the n = 0 corresponds
to a chiral mode that appears at the boundary of a quan-
tum anomalous Hall insulator described by the Hamiltonian
∝υ h̄(kxσy − kyσx ) − Mzσz − μ. This boundary is defined as
the line across which Mz changes sign.

Concluding this paragraph, we remark that for uniform gra-
dients of the out-of-plane magnetization alternative adiabatic
approaches also apply. These are discussed in Appendix B 3.

D. Deviations away from a pristine Dirac cone

We now consider deviations from the ideal Dirac cone
structure of the TI surface states in the nonsuperconducting
case since it is crucial to assert the degree of robustness of the
quantization of the interconversion coefficient. Specifically,
we now allow for the effective mass m to be finite, but yet
set it to be sufficiently large so not to lead to an additional
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helical branch. Even more, we add possible warping terms
(cf. Ref. [40] and references therein), which enter in the TI
surface states Hamiltonian through the term γ kx(k2

x − 3k2
y )σz.

The latter is expressed in the basis which does not include
pairing. In the presence of these two terms, χTI and gTI

soc are
no longer expected to be proportional, i.e., χTI �= eυgTI

soc.
It is thus interesting to explore whether the quantization

effects at � = 0 persist when 1/m and γ are small and their
effects can be examined perturbatively. We perform related
calculations in Appendixes B 4 and B 5, using the methods
of linear response and the orbital magnetization approach,
respectively.

We indeed show that including a quadratic kinetic energy
(h̄k)2/2m and a warping term γ kx(k2

x − 3k2
y )σz leads to χTI �=

eυgTI
soc. In more detail, a perturbative expansion in γ and 1/m

yields that gTI
soc(� = 0) is affected by these only at second

order or higher. Specifically, up to second order we obtain the
following expression:

gTI
soc(� = 0) = sgn(μ)

4πυ h̄

{
1 + 1

2

( μ

mυ2

)2
− 3

2

[
γμ2

(υ h̄)3

]2
}

.

(38)

In stark contrast, χTI(� = 0) becomes already modified
at first order in 1/m by an amount of χTI(� = 0)μ/mυ2. In
particular, by retaining up to second-order terms in γ and 1/m,
we find

χTI(� = 0) = eυgTI
soc(� = 0) + e

4π h̄

|μ|
mυ2

(
1 − μ

mυ2

)
.

(39)

Notably, aside from the part of χTI(� = 0) which is propor-
tional to the modified gTI

soc(� = 0), the additional term affects
χTI(� = 0) at first order with respect to 1/m, due to the vertex
correction ∝k/m. See Appendix B 4 for additional related
details.

In conclusion, the dichotomy emerging from the above
results reveals that the interconversion coefficient gTI

soc(� = 0)
is better protected than the coefficient χTI(� = 0). Hence,
measuring the arising spin density appears as a more robust
route in order to experimentally identify these phenomena.

E. Accounting for the Zeeman effect

Up to now, we have fully neglected the consequences of
the Zeeman effect. As we showed in Sec. II, the interconver-
sion coefficient χ becomes already modified for an arbitrarily
weak value of the Landé factor g, therefore implying that
it is important to examine the robustness of the quantized
phenomena found here. Notably, however, gsoc is not affected
by the Zeeman coupling.

In order to infer the degree of the quantization of χTI(� =
0) for a pristine Dirac cone against the deviations introduced
by the Zeeman coupling to the external field, it is required
to calculate the out-of-plane static spin susceptibility χ

spin
⊥ ,

which is given by the expression

χ
spin
⊥ = −

ˆ
d3K

(2π )3

1

2
Tr[σzĜ0(K )]2 = � − |μ|

2π (υ h̄)2
.

Notably, the term ∝� is spurious and needs to be dropped
since it contains unphysical contributions from regions far
away from the Fermi level. A similar argument was previously
invoked in Ref. [78] for the calculation of the superfluid stiff-
ness of superconducting Dirac electrons. Hence, the properly
regularized out-of-plane spin susceptibility is of diamagnetic
nature and reads as

χ
spin
⊥ = − |μ|

2π (υ h̄)2
. (40)

As consequence, taking into account the Zeeman effect
leads to the contribution χZ = −gμB|μ|/[4π (υ h̄)2]. Consid-
ering for simplicity g = 2, and by replacing the magneton
Bohr μB by its defining expression, we find that

χZ = − e

4π h̄

|μ|
meυ2

, (41)

where me denotes the electron’s mass. From the above, we
immediately observe that the correction due to the Zeeman
coupling is of the same form as the one induced by the
quadratic kinetic energy at lowest order in 1/m, but for a mass
given by me. See Eq. (39) for a comparison. We thus conclude
that as long as the system is tuned near the Dirac point and the
strength of the SOC is sufficiently strong, the correction due
to the Zeeman effects is negligible. Even more, for m = me

the Zeeman contribution to X becomes canceled out by the
linear order term in μ appearing in χTI, thus rendering the spin
and current responses equally protected against these types of
perturbations.

F. Effect of a superconducting gap

The remarkable quantization encountered above for
χTI(� = 0) is always spoiled upon introducing the pairing
term. Aside from the fact that χTI,II is rendered nonzero,
corrections are also introduced to χTI,I of Eq. (19), which now
becomes

χTI,I(�)

χTI(� = 0)
= 1√

1 + λ2
≡ 1

fλ
, (42)

where fz = √
1 + z2 and λ = �/|μ|. On top of the above,

one now finds the following additional contribution stemming
solely from the presence of a pairing gap:

χTI,II(�)

χTI(� = 0)
= −1

2

1

fλ
+ λ2

2

[
1

fλ
+ ln

(
λ

1 + fλ

)]
. (43)

Notably, we find that the above term does not vanish in
the limit � → 0+, but instead it becomes quantized ac-
cording to χTI,II(� → 0+) = −χTI(� = 0)/2. The arising
discontinuous behavior of χTI across � = 0 implies that su-
perconductivity leads to nonperturbative effects, and hints
towards the involvement of a quantum anomaly [1,2,77]. The
latter can be attributed to the emergence of additional Dirac
cones upon adding superconductivity, as sketched in the inset
of Fig. 3. There, we further show the precise dependence of
χTI on λ, and find that χTI is suppressed upon increasing its
strength.
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FIG. 3. Dependence of the interconversion coefficients for a 2D
TI surface harboring a single pristine Dirac cone. The coefficient
χTI = eυgTI

soc consists of the parts χTI,I/II which exhibit quantum
anomalies. First, χTI,I is independent of υ and persists in the limit
υ → 0. Second, χTI,II remains nonzero in the limit � → 0+. The
latter leads to the jumps observed and can be attributed to the addi-
tional Dirac cones formed away from k = 0 shown in the inset.

V. RASHBA METAL

We now proceed with the case of a Rashba metal (M)
which is one of the most widely and routinely used systems
in nanoelectronics and spintronics. The consideration of a
Rashba metal is here important for one more reason. Since
the nonsuperconducting band structure of a Rashba metal con-
sists of two helical branches, it can be viewed under certain
conditions as a system which effectively hosts two pristine
Dirac cones. This, in fact, becomes especially important when
examining its topological properties and responses. As a result
of this property, we anticipate that anomalies such as the ones
arising for the TI are not relevant for a Rashba metal, due to
the even number of Dirac fermions, and it is therefore crucial
to explore what type of new physics appears in the present
context for such metallic systems.

Based on the above discussion, our main expectation is to
find gM

soc = 0 when the temperature and pairing gap are zero.
Notably, this holds only as long as the mismatch in the occu-
pation of the two helical branches is negligible. This condition
is automatically satisfied in the so-called quasiclassical limit,
where the chemical potential is positive and much larger than
the SOC energy scale Esoc = υ h̄kF and the pairing gap �.

Since for a Rashba metal we do not expect quantization
effects analogous to the ones encountered in Sec. IV for TI
surface states, we mainly examine the impact of a pairing
gap and the Zeeman effect on the interconversion coefficient.
Straightforward calculations using linear response in the qua-
siclassical limit, which we detail in Appendixes C and D, lead
to a set of results that we append and discuss below.

A. Zero pairing gap

In the nonsuperconducting phase we find that

gM
soc(� = 0) = 0. (44)

The above indeed confirms that possible anomalous contri-
butions from the two occupied helical branches cancel each
other out. On the other hand, we find the following two con-

tributions:

gM,intra
orb (� = 0) = −gM,inter

orb (� = 0) = 1

4π h̄υF
. (45)

Hence, the above cancel each other out, further imply-
ing that χM(� = 0) = 0. Therefore, within the quasiclassical
limit adopted here, and by not considering the Zeeman effect,
both spin and current densities are negligible. Notably, the
above result holds even in the presence of weak disorder,
i.e., with a strength which leads to a level broadening much
smaller than the spin splitting induced by the Rashba SOC.
See Appendix C for additional details.

B. Nonzero pairing gap

We now we carry out linear response in the presence of a
nonzero pairing gap. Related details are once again discussed
in Appendix C. First, we find the following analytical result:

gM
soc(δ) = − 1

4π h̄υ

(
δ

fδ

)2
[

1 + ( fδ + f −1
δ

)
ln

(
δ

1 + fδ

)]
,

(46)

where δ = �/Esoc. The above is well behaved in the limit
δ → 0, where we find gM

soc(δ → 0) = 0. Therefore, gM
soc(δ) is

continuous upon varying δ.
The evaluation of χM requires obtaining the contribution

associated with gorb. Here, this coefficient retains both intra-
band and interband contributions, which read as

gM,intra
orb (δ) = + 1

4π h̄υF

∑
s=±

1

2

�s√
�2

s + δ2
, (47)

gM,inter
orb (δ) = − 1

4π h̄υF

[
1 + δ2

fδ
ln

(
δ

1 + fδ

)]
, (48)

where we phenomenologically included the broadenings �±
as we describe in Appendix C. Note that we consider broaden-
ing effects only for the intraband term, in order to emphasize
that this contribution is sensitive even to the slightest pres-
ence of disorder and deviations away from zero temperature.
Interestingly, an analogous behavior dictates the intrinsic SHE
[6,71].

From Eq. (47), we infer that gM,intra
orb is discontinuous across

� = 0 for a clean system. Indeed, for δ �= 0 the limit �s → 0
yields

gM,intra
orb, clean(δ → 0+) = 0 and gM, clean

orb (δ) = − 1

4π h̄υF
.

(49)

The above implies that now gM
orb(δ → 0) = gM,inter

orb and, thus, it
becomes nonzero already in the presence of an infinitesimally
weak pairing gap.

We remind the reader that in the nonsuperconducting
regime (δ = 0) we obtained that gM,intra

orb is nonzero and, in fact,
it attained a value which fully canceled gM,inter

orb out. Therefore,
we conclude that in the quasiclassical clean case, a nonzero
pairing gap unlocks both interconversion channels, with coef-
ficients whose dependence on δ is shown in Fig. 4.
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FIG. 4. Dependence of the interconversion coefficients for a
Rashba metal. The coefficients here do not exhibit anomalies since
the Rashba metal contains two helical branches. See inset. χM is con-
tinuous in the presence of disorder, while it becomes discontinuous
across � = 0 in the clean case. We used �± = �.

C. Impact of the Zeeman effect

In order to fully infer the dependence of X , our results need
to be supplemented with the Zeeman contribution. For this
purpose, we first obtain the out-of-plane spin susceptibility
for a Rashba metal:

χ
spin
⊥ (v) = 2νF

[
1 − ln(v + √

1 + v2)

v
√

1 + v2

]
, (50)

where νF = m/2π h̄2 defines the normal phase density of
states per spin evaluated at the Fermi level. The susceptibil-
ity is more conveniently parametrized in terms of the ratio
v = 1/δ = Esoc/�.

One finds that for v = 0 the susceptibility vanishes since
the spin degree of freedom becomes fully quenched for a
conventional s-wave superconductor at zero temperature. In-
troducing instead a nonzero Rashba SOC lifts χ

spin
⊥ from zero.

When v → ∞ the susceptibility becomes equal to 2νF , i.e.,
reaches the normal phase value under the condition EF �
Esoc. Given the above, we now obtain the Zeeman contri-
bution χZ . For a system with g = 2 and m = me, where me

defines the electron mass, we find the following expression
χZ = μBχ

spin
⊥ . The most interesting limit is when Esoc � �

since, there, also the coefficient χ is substantial. In this case,
we find

χZ (Esoc � �) = eh̄

2me

2me

2π h̄2 = 2
e

4π h̄
. (51)

Quite interestingly, we find that the contribution of the Zee-
man effect is not only non-negligible for the present system,
but it is even twice as that of χ . We provide a comparison
of the relative strengths of χ and χZ in Fig. 5. Therefore,
accounting for the Zeeman effect is crucial for a Rashba metal.

To this end, it is important to mention that the Zeeman
effect may be negligible or strongly dominant for a Rashba
2D electron gas (2DEG), where the Fermi energy EF is com-
parable or even smaller to Esoc and �. Based, on the results
obtained for the helical surface states of a 3D TI in Sec. IV E,
we expect the Zeeman effect to be negligible for a low-doped
Rashba 2DEG with g ∼ 2.

FIG. 5. Comparison of the interconversion coefficients χ and χZ

for a Rashba metal, upon varying the ratio �/Esoc. Here, the inclu-
sion of the Zeeman contribution χZ to the interconversion coefficient
X is crucial since the former is comparable to and even larger than
χ . We observe that the Zeeman effect renders X positive in the entire
parameter regime. For the numerical evaluation we used �± = �.

VI. EXPERIMENTAL RELEVANCE

The findings that we put forward in the preceding sec-
tions find application in a broad range of phenomena and
systems. Among others, the spin and current generation stem-
ming from magnetization gradients discussed here appear
particularly prominent for topological spintronics, tailoring
and utilizing magnetic textures, providing alternative routes to
nonreciprocal transport and superconducting diodes, and for
engineering Majorana zero modes.

A. Single-surface detection of topological helical surface states

First, the measurement of gTI
soc enables the detection of the

helical Dirac states appearing on a given TI surface since
this interconversion coefficient is ultimately linked to the
fractionally quantized anomalous Hall conductance, which is
considered to be their hallmark signature. Notably, the frac-
tional Hall conductance cannot be isolated in quantum Hall
measurements since these probe pairs of surfaces [79,80].
However, theoretical works [81,82] and recent experiments
[83] have shown that other experimental signatures, such as,
the Faraday and Kerr effects, may be equally capable of cap-
turing the presence of these modes on a single surface.

Our analysis provides a prominent route for unequivocally
detecting helical surface states on a given surface. In par-
ticular, this becomes possible by detecting a quantized gTI

soc
coefficient, which is expected to be an experimentally observ-
able phenomenon when the Fermi level is tuned near the Dirac
touching point of the surface band structure. Our analysis also
predicts the emergence of a quantized gTI

soc in semimagnetic
TIs [83] and thus opens an alternative detection path for parity
anomaly.

B. Skyrmion-vortex composite pairs

Our results also underline the need to revisit the condi-
tions for stabilizing Bloch skyrmion-superconducting vortex
excitations since the emergence of such composite objects is
governed by the value of χ [50]. A previous work [65] has
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FIG. 6. Cartoon of an experimental setup for observing the su-
perconducting diode effect in the x axis, i.e., a nonreciprocal current
Jx due to a gradient of the out-of-plane magnetization along the y
axis. The magnetization profile can be induced by the fringing field
of an array of nanomagnets.

shown that χM ∝ (Esoc/EF )
2
, under the assumptions � → 0

and a non-negligible ratio Esoc/EF .
In contrast, here we take EF → ∞, which we believe is

a limit that better captures the situation realized in typical
metals. In this regime, we show that χM exhibits a nonmono-
tonic trend with �/Esoc. Hence, the value of �/Esoc is crucial
and needs to be optimized for achieving a substantial Bloch
skyrmion-vortex coupling. Furthermore, we reveal that in a
TI this coupling always gets suppressed upon increasing the
pairing gap. This undesired property can be detrimental for
engineering Majorana zero modes.

Skyrmion-vortex excitations have been recently experi-
mentally achieved [84] without, however, using a magne-
toelectric mechanism [50]. Instead, the stray field of the
skyrmions was harnessed to induce (anti)vortices [52]. Thus,
our results reveal the previously unexplored influence of su-
perconductivity on the coupling, and promise to guide the
search for new platforms which can enable Bloch skyrmion-
vortex excitations [50].

C. Superconducting diode effects

Our analysis also opens up nonstandard pathways to induce
nonreciprocal currents in Rashba SCs. According to previous
theoretical works [85–87], the diode effects in Refs. [24–26]
can be possibly reconciled in terms of a Rashba SOC and
a parallel Zeeman field, which induce a finite-momentum
helical Cooper pairing [88–92].

Here, we predict that the diode effect can be also generated
in the materials of Refs. [24–26] by alternatively imposing
a constant gradient on an out-of-plane exchange field Mz(r)
[93]. The latter magnetization can be engineered using, for
instance, the fringing fields of a nearby array of nanomagnets
[30,38]. See Fig. 6 for a cartoon depiction of the proposed
setup.

D. Majorana zero modes pinned by ferromagnetic impurities

Finally, our proposed effects bring forward an alternative
route to pin superconducting vortices from an out-of-plane
magnetization Mz(r). In the presence of Rashba SOC, Mz(r)
is converted into an in-plane magnetization ∝∇Mz(r). This,
in turn, induces an out-of-plane magnetic flux ∝∇2Mz(r),

which promotes vortices [94]. Based on results of previous
works [59,61,62], we infer that the arising magnetization
(gsoc∂xMz(r), gsoc∂yMz(r), Mz(r)) is of the meron type and
traps a Majorana zero mode [94].

VII. SUMMARY

In this work, we investigate the spin and current gener-
ation of systems with Rashba type of spin-orbit coupling
due to magnetization gradients. The latter can arise due to
arrays of nanomagnets, magnetic impurities, magnetic tex-
tures, and others. Our fully analytical approach covers all the
above-mentioned scenarios. Specifically, we infer the inter-
conversion coefficients which control the emergence of spin
and current densities in the case of 2D Rashba metals and
surfaces of 3D topological insulators.

Our study reveals that for helical surface states on a topo-
logical insulator which are dictated by a pristine Dirac cone
energy spectrum, the generation of spin and current are both
governed by the same interconversion coefficient. Remark-
ably, the latter is a topological invariant quantity, and this
is reflected in the fact that it is proportional to the vorticity
of the Dirac point. As we discuss, such a phenomenon is a
manifestation of parity anomaly at finite density and, there-
fore, unveils a different class of topological effects for Dirac
systems which take place in their metallic, instead of their
insulating, regime.

The topological nature of the interconversion coefficient
further guarantees that this is robust against the addition of
various types of weak perturbations. In particular, we first
demonstrate that the inclusion of a superconducting gap al-
ways suppresses the above interconversion phenomena, which
can be an obstacle for applications in the direction of topolog-
ical superconductivity. Further, we additionally consider the
effects of the presence of a quadratic kinetic energy term and
a hexagonal warping term. We find that in this case the spin
and current generation are controlled by different coefficients,
with the generation of spin being a more robust phenomenon
that the induction of electrical currents. Therefore, measuring
the spin density induced by a ferromagnetic insulator placed
in proximity to a single surface, promises to provide an al-
ternative route to detect parity anomaly at finite density [76],
which appears feasible to observe in the so-called semimag-
netic topological insulators [83]. Notably, pathways to detect
the protected helical states on a given surface of a topological
insulator are long sought after since observing the fractionally
quantized anomalous Hall effect is practically not possible.

Aside from topological insulator surfaces, our work dis-
cusses a closely related system, i.e., the 2D Rashba metal.
Within a continuum description, the latter contains two
Kramers degenerate points in its band structure, which in
certain limits can be viewed as two Dirac touching points
of opposite vorticity. Hence, the single-branch Dirac fermion
anomalies encountered for a single topological insulator sur-
face do not appear for a Rashba metal. Nonetheless, a rich
variety of quantization phenomena and discontinuous inter-
conversion coefficients emerge also in the present case but
exhibit different behaviors. One of the key results is that
spin and current responses to magnetization gradients are
in general controlled by different coefficients, which exhibit
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discontinuous when superconductivity is introduced to the
system. Moreover, the coefficient χ controlling current gener-
ation exhibits a nonmonotonic behavior with the pairing gap,
which is a property that can guide the design of hybrid systems
targeted for engineering Majorana zero modes using magnetic
texture defects [56–62].

The last part of our work focuses on the experimental
relevance of our results. Aside from the potential applications
in detecting parity anomaly in alternative systems using dif-
ferent routes, our work is strongly relevant for situations in
which magnetic textures are employed as an ingredient for
engineering Majorana zero modes. As a matter of fact, our
work provides analytical expressions for coefficients which
control the coupling between magnetic textures and super-
conductivity, thus enabling the improved experimental control
on such systems. Even more, our study unearths possibilities
for superconducting diode effects, which reside on magneti-
zation gradients introduced in the out-of-plane magnetization
of 2D Rashba superconductors. This possibility stems from
the Rashba spin-orbit coupling instead of the usual Zeeman
effect. Interestingly, such a magnetization-gradient-diode ef-
fect is in principle detectable in a number of superconductors
where the diode effect has been already experimentally but in
the presence of an in-plane magnetic field [24–26]. Further
investigations of the engineering of Majorana zero modes and
the type of diode effects proposed here will appear soon in
Refs. [93,94].
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APPENDIX A: MICROSCOPIC FORMALISM FOR
DERIVING THE INTERCONVERSION COEFFICIENTS

We start from Eq. (7) of the main text and carry out a
perturbative expansion of the energy per area of the system
in terms of Mx,y,z(r) and Ax,y(r). In most cases, we consider
the zero-temperature matrix Green function framework [1,2],
which can be obtained from the Matsubara formalism [95]
after taking the limit T → 0. T is the temperature in en-
ergy units. The bare Matsubara Green function is given by
Ĝ−1

0 (k, ikn) = ikn − Ĥ0(k), where kn correspond to fermionic
Matsubara frequencies [95]. In the limit T → 0, the Matsub-
ara summation T

∑
ikn

is replaced by the integral
´ +∞

−∞ dε/2π ,
where ε ∈ (−∞,+∞).

Starting from the Matsubara formalism, we first obtain the
free energy per area F up to second order in the single-particle
Hamiltonian operator V̂ which contains the perturbation. Text-
book result yields that at second order the free energy acquires
the contribution F (2) = 1

2 tr(Ĝ0V̂ )
2
, where Ĝ0 corresponds to

the operator form of the bare Matsubara Green function, and
tr denotes trace over all possible degree of freedom [1].

At this point, we obtain the form of the perturbation
term V̂ . For this purpose, we introduce the plane-wave ba-
sis for the spinor in Eq. (7) of the main text, i.e., �(r) =

1
2π

´
dk eik·r�(k). We also define the Fourier transform of the

vector potential and magnetization according to the general
definition a(r) = 1

(2π )2

´
dq eiq·ra(q). The above procedure al-

lows us to rewrite Eq. (7) of the main text in momentum space:

H = 1

2

ˆ
dq

(2π )2
�†(k + q)[Ĥ0(k)(2π )2δ(q) + 〈k + q

∣∣V̂ ∣∣k〉]
× �(k),

where we introduced the matrix elements 〈k + q|V̂ |k〉 of the
perturbation term. After dropping the diamagnetic coupling
to the vector potential, and neglecting at this stage possible
Landau-level quantization effects, we have

〈k + q|V̂ |k〉 =
[

eh̄

m

(
k + q

2

)
+ eυ(σy,−σx )

]
· A(q)

− M(q) · σ.

With the help of the above, we now obtain the quadratic
contribution of the above perturbation to the free energy per
area, which reads as

F (2) = 1

2

ˆ
dq

(2π )2

ˆ
dk

(2π )2
T
∑
ikn

1

2
Tr[〈k|V̂ |k + q〉

× Ĝ0(k + q, ikn)〈k + q|V̂ |k〉Ĝ0(k, ikn)]. (A1)

Note that the factor of 1
2 appearing in front of the trace oper-

ation Tr is introduced to avoid double counting the electronic
degrees of freedom.

The desired coefficients χ and gorb,soc are read out from
the above expression. Specifically, χ is obtained from the
following contribution to the free energy:

F (2)
Mz ;A = −

ˆ
dq

(2π )2
Mz(−q)

ˆ
dk

(2π )2
T

×
∑
ikn

1

2
Tr

{
σzĜ0(k + q, ikn)

[
eh̄

m

(
k + q

2

)

+ eυ(σy,−σx )

]
Ĝ0(k, ikn)

}
· A(q)

≡ −
ˆ

dq
(2π )2

Mz(−q)�MzAa (q)Aa(q),

where repeated index summation is above implied with a =
x, y and we introduced the polarization tensor

�MzAa (q) =
ˆ

dk
(2π )2

T
∑
ikn

1

2
Tr

{
σzĜ0(k + q, ikn)

×
[

eh̄

m

(
ka + qa

2

)
+ eυεzabσb

]
Ĝ0(k, ikn)

}
.

Next, we express F (2)
Mz ;A according to

F (2)
Mz ;A = χ

ˆ
dr Mz(r)Bz(r)

= χ

ˆ
dr Mz(r)[∂xAy(r) − ∂yAx(r)]

≡ χ

ˆ
dq

(2π )2
Mz(−q)[iqxAy(q) − iqyAx(q)]
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and we find that

χ = 1

2i

[
∂�MzAx (q)

∂qy
− ∂�MzAy (q)

∂qx

]
q=0

. (A2)

The above expression directly leads to Eqs. (9)–(11) of the
main text. A couple of related comments are in place. We first
note that the component ∝q/2 of the vertex eh̄(k + q/2)/m
does not contribute to χ . Second, to obtain the expressions in
the main text, we take the zero-temperature limit and replace
the Matsubara frequencies ikn by iε, and the respective sum-
mations by suitable integrations.

Following a similar procedure one obtains the coefficient
gsoc. To transparently demonstrate this, we focus on the fol-
lowing contribution appearing in F (2):

F (2)
Mz ;Mx,y

=
ˆ

dq
(2π )2

Mz(−q)
ˆ

dk
(2π )2

T

×
∑
ikn

1

2
Tr{σzĜ0(k + q, ikn)

× [Mx(q)σx + My(q)σy]Ĝ0(k, ikn)}

≡ −
ˆ

dq
(2π )2

Mz(−q)χ spin
MzMa

(q)Ma(q),

where we introduced the spin susceptibility:

χ
spin
MzMa

(q) = −
ˆ

dk
(2π )2

T
∑
ikn

1

2
Tr[σzĜ0(k + q, ikn)

× σaĜ0(k, ikn)].

Next, we express F (2)
Mz ;Mx,y

according to

F (2)
Mz ;Mx,y

= gsoc

ˆ
dr Mz(r)∇ · M(r)

≡ gsoc

ˆ
dq

(2π )2
Mz(−q)[iqxMx(q) + iqyMy(q)]

and obtain the expression for gsoc:

gsoc = − 1

2i

⎡
⎣∂χ

spin
MzMx

(q)

∂qx
+

∂χ
spin
MzMy

(q)

∂qy

⎤
⎦

q=0

. (A3)

Following the same steps as for χ , the above expression pro-
vides Eq. (9) of the main text.

APPENDIX B: EVALUATION OF THE
INTERCONVERSION COEFFICIENTS: TOPOLOGICAL

INSULATOR

The results presented in the main text are tedious but yet
straightforward. Hence, below we provide only a few neces-
sary remarks and clarifications concerning the derivations of
the main text, while we examine further aspects regarding the
stability of the quantization of the interconversion coefficients
in the nonsuperconducting phase.

1. Case of a pristine Dirac cone: Linear response

Regarding the TI surface states, we first assume that these
are dictated by a pristine conical Dirac spectrum and neglect

any possible warping effects (see, for instance, Ref. [40]). To
describe such a situation, we consider that m → ∞. Hence, in
the present case the perturbation term becomes

〈k + q|V̂ TI|k〉 = eυ(σy,−σx ) · A(q) − M(q) · σ

= −(Mx(q) + eυAy(q), My(q)

− eυAx(q), Mz(q)) · σ.

The above illustrates that the in-plane magnetization compo-
nents play a role analogous to the vector potential, and results
in the expression χ = eυgsoc. In the main text, we find that
χTI(� = 0) = e

4π h̄ sgn(μ), i.e., it is quantized. In contrast, as
shown in the paper, the addition of a nonzero pairing gap
spoils this quantization.

2. Case of a pristine Dirac cone: Alternative derivation
using a Landau-level approach

In this section, we provide an alternative understanding
of the quantized interconversion phenomena by residing to a
Landau-level picture. For this purpose, we restrict to the case
of a pristine Dirac cone in the absence of superconductivity.
The cone is under the influence of a magnetization which
features a constant gradient in space.

a. Uniform gradient for the in-plane magnetization

We first consider a spatial gradient of the in-plane magne-
tization My(y) = By. Without loss of generality we consider
that the slope of the above-mentioned spatial profile is
positive, i.e., B = ∂yMy > 0. In addition, we introduce an aux-
iliary uniform out-of-plane magnetization component Mz. The
latter will allow us to calculate the induced out-of-plane spin
density Sz. The respective electron part of the Hamiltonian for
zero chemical potential becomes

Ĥ�=μ=0,Mz

0;τz=1 ( p̂y, y, kx ) = (υ h̄kx − By)σy − υ p̂yσx − Mzσz

= −[υ p̂yσx + B
(
y − υ h̄kx/B

)
σy

+ Mzσz].

At this stage it is convenient to define the length scale �B =√
υ h̄/B and the frequency ωB = √

2υ/�B, given the choice
υ > 0. With the new variables, the Hamiltonian becomes

Ĥ�=μ=0,Mz

0;τz=1 ( p̂y, y, kx )

= −h̄ωB

[
�B√

2

p̂y

h̄
σx + 1√

2�B

(
y − kx�

2
B
)
σy

]
− Mzσz.

Following closely Ref. [96], we now introduce the ladder
operators for a given kx,

â(kx ) = �B√
2

p̂y

h̄
− i

y − kx�
2
B√

2�B
and

â†(kx ) = �B√
2

p̂y

h̄
+ i

y − kx�
2
B√

2�B
, (B1)

which satisfy [â(kx ), â†(kx )] = 1, and allow us to reexpress
the Hamiltonian according to the following form:
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Ĥ�=μ=0,Mz
0;τz=1 ( p̂y, y, kx ) = −h̄ωB[â†(kx )σ− + â(kx )σ+] − Mzσz,

where σ± = (σx ± iσy)/2. This Hamiltonian is more
conveniently diagonalized by identifying the eigenstates
and eigenvectors of the Hamiltonian for Mz = 0, that
reads as Ĥ�=μ=Mz=0

0;τz=1 ( p̂y, y, kx ) = −h̄ωB[â†(kx )σ− + â(kx )

σ+]. This Hamiltonian satisfies [Ĥ�=μ=Mz=0
0;τz=1 ( p̂y, y, kx )/h̄ωB]

2

= â†(kx )â(kx )(1 − σz )/2 + â(kx )â†(kx )(1 + σz )/2 = â†(kx )
â(kx ) + (1 + σz )/2. The latter gives rise to a zero-energy
Landau level for σz = −1 and eigenvector:

|u0,−1(kx )〉 = |φ0(kx )〉
(

0
1

)
with ε0,−1 = 0,

where we introduced the eigenstates of the displaced quantum
harmonic oscillator |φn(kx )〉 (with displacement kx�

2
B) which

satisfy the defining relation â†(kx )â(kx )|φn(kx )〉 = n|φn(kx )〉.
Having obtained the expression for the zero-energy Lan-
dau level allows us to determine the remaining spectrum of
Ĥ�=μ=Mz=0

0;τz=1 ( p̂y, y, kx ), which is given in terms of the follow-
ing two families of non-zero-energy Landau levels:

|un,σ (kx )〉 = 1√
2

⎛
⎝|φn−1(kx )〉

σ |φn(kx )〉

⎞
⎠ with

εn,σ (kx ) = σεn(kx ) = σ h̄ωB
√

n for n � 1.

Each Landau level sees a degeneracy per area which is given
by 1/2π�2

B. Note that due to the presence of chiral symmetry,
i.e., where {Ĥ�=μ=Mz=0

0;τz=1 ( p̂y, y, kx ), σz} = 0̂, the eigenstates of
each pair of nonzero energy Landau levels are related ac-
cording to |un�1,±(kx )〉 = σz|un�1,∓(kx )〉. These observations
allow us to immediately infer the energy spectrum when Mz �=
0. Specifically, we have the eigenenergies

E0(kx, Mz ) = Mz − μ

and En,±(kx, Mz ) = ±En(Mz ) − μ

with En(Mz ) =
√

(h̄ωB )2n + M2
z . (B2)

To obtain Sz, we need to infer the energy per area in the
additional presence of a chemical potential. We have

E = 1

2π�2
B

{
(Mz − μ)�(μ − Mz ) +

∞∑
n=1

∑
σ=±

[σEn(Mz ) − μ]

× �[μ − σEn(Mz )]

}
. (B3)

It is now straightforward to obtain the spin density Sz =
−∂E/∂Mz. We are particularly interested in the out-of-plane
spin density for Mz = 0 which allows us to infer gsoc. In this
limit, it is only the zero-energy Landau level that contributes
to Sz since the energy contribution from the nonzero Landau
levels is even under Mz ↔ −Mz. After replacing �B by its
defining relation and setting ∂yMy ≡ ∇ · M, we find that gTI

soc
takes the form gTI

soc(� = 0) = 2�(μ)/4πυ h̄. At first sight,
this result appears to contradict our previous conclusions

since, instead of 2�(μ), one would instead expect the function
sgn(μ). However, there is no reason for such a distinction
between μ > 0 and μ < 0 to be physical. Indeed, as it has
been also pointed out in Ref. [97] in the frame of a dif-
ferent but related calculation, such a discrepancy is because
a different regularization takes place in the present proce-
dure compared to the Green function approach. Therefore,
in order to properly regularize the above process, we simply
antisymmetrize our result with respect to μ ↔ −μ, and find
that 2�(μ) �→ �(μ) − �(−μ) ≡ sgn(μ). After this regular-
ization, we recover our previously obtained results, which
can now be attributed to the contribution of the zero-energy
Landau level.

b. Uniform gradient for the out-of-plane magnetization

We now proceed with examining the other possible
scenario, that is, to have a spatially varying out-of-plane mag-
netization. In the following, we consider the concrete profile
Mz(y) = By, where now B = ∂yMz. Without any loss of gen-
erality, B is considered positive in the analysis below. Since
for such a magnetization profile we expect the generation of
a uniform spin density Sy, we also consider the presence of
a uniform in-plane magnetization My. Thus, the Hamiltonian
describing this situation now becomes

Ĥ�=μ=0,My

0;τz=1 ( p̂y, y, kx ) = (υ h̄kx − My)σy − υ p̂yσx − Byσz

≡ σy − σz√
2

[υ p̂yσx + Byσy

+ (My − υ h̄kx )σz]
σy − σz√

2
.

By bringing the Hamiltonian in the above form, we can im-
mediately obtain the eigenenergies of this Hamiltonian using
the results of the previous paragraphs. In principle, one can
obtain the resulting Sy by evaluating the energy per area as we
did in the previous section. However, the emergence of B in
the final result is not as transparent as it was in the previous
case, where it entered through the Landau-level degeneracy.
For this reason, we offer another route to transparently calcu-
late Sy in the presence of the constant magnetization gradient
B = ∂xMz (see Appendix B 3).

3. Adiabatic framework for uniform out-of-plane magnetization
gradients

In this paragraph we discuss the quantization of the spin
and current densities arising from a uniform out-of-plane
magnetization gradient in terms of an alternative approach
which relies on treating the inhomogeneous magnetization in
a spatially adiabatic fashion. As we explained in Appendix B 2
and further show here, the present method allows studying the
phenomena in question more transparently, while it also al-
lows us to describe the inhomogeneous problem in a different
frame, in which the Hamiltonian is translationally invariant.

For the purpose of exposing the here-proposed adia-
batic method, we reexpress the Hamiltonian in the following
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manner:

Ĥ�=0,My

0;τz=1 ( p̂y, y, kx ) =
√

(υ h̄kx − My)2 + (By)2σye−i�(y)σx − υ p̂yσx − μ

≡ ei�(y)σx/2{
√

(υ h̄kx − My)2 + (By)2σy − υ[ p̂y + h̄∂y�(y)σx/2]σx − μ}e−i�(y)σx/2, (B4)

where we introduced the angle �(y) through the defining relation tan[�(y)] = By/(υ h̄kx − My). Since My is kept intact, we can
evaluate Sy using the Hamiltonian in the rotated frame appearing inside the brackets of Eq. (B4):

Ĥ�=0,My

0;τz=1 ( p̂y, y, kx ) =
√

(υ h̄kx − My)2 + (By)2σy − υ p̂yσx − υ h̄∂y�(y)

2
− μ. (B5)

For weak strengths of B, i.e., which satisfy |μ| � BLy, where Ly denotes the sample’s length in the y direction, we
can consider the approximation |υ h̄kx − My| � |y|B, which renders the above frame Hamiltonian translationally invariant.
Therefore, within this adiabatic type of approach, we obtain the Hamiltonian

Ĥ�=0,My

0;τz=1 (k) = |υ h̄kx − My|σy − υ h̄kyσx − μ − υ h̄B/[2(υ h̄kx − My)] (B6)

which reveals that the effect of the out-of-plane magnetization gradient is to effectively act as an additional kx-dependent
chemical potential which breaks inversion symmetry.

At this stage, it is important to remark that the term υ h̄kx − My is nonzero only as long as μ is nonzero. For B = 0, only one
of the two helicity branches with energies ±√(υ h̄kx − My)2 + (υ h̄ky)2 crosses the chemical potential. As we show below, Sy

originates from the Fermi level response of that single helicity branch.
To demonstrate this, we assume with no loss of generality that μ = |μ| > 0. Due to the anisotropic manner in which B

influences the band structure, we proceed by viewing the Hamiltonian as a collection of multiple 1D systems in the x direction,
for which ky plays the role of a mere parameter. In this sense, the Fermi points of the upper helicity branch which crosses the
Fermi level are given by υ h̄kx − My = ±√μ2 − (υ h̄ky)2, under the condition |υ h̄ky| � |μ|. In the following, the two Fermi
points are labeled by ρ = ±1. For weak strengths of B, the right ρ = 1 (left ρ = −1) mover is described by the effective
Hamiltonian

Ĥ�=0,My

0;τz=1;ρ=±1(k) ≈ ρ

√
1 − (υ h̄ky/|μ|)2(υ h̄kx − My − ρ|μ|

√
1 − (υ h̄ky/|μ|)2) − ρυ h̄B

2|μ|√1 − (υ h̄ky/|μ|)2
. (B7)

From the above we can immediately obtain the induced spin density Sy when My → 0. We have the expression

Sy =
∑
ρ=±1

ˆ +|μ|/υ h̄

−|μ|/υ h̄

dky

2π

ˆ +kc

−kc

du

2πυ h̄
ρ �

{
−ρu + |μ|

[
1 −

(
υ h̄ky

|μ|
)2
]

+ ρυ h̄B
2|μ|√1 − (υ h̄ky/|μ|)2

}
, (B8)

where u = √1 − (υ h̄ky/|μ|)2υ h̄kx and kc denotes a cutoff wave number which controls the validity of the linearization of the
energy spectrum about the Fermi points. Sy is zero for B = 0 and at first order in B, we find

Sy = B
4πυ h̄

ˆ +|μ|/υ h̄

−|μ|/υ h̄

dky

π

υ h̄/|μ|√
1 − (υ h̄ky/|μ|)2

1

2

∑
ρ=±1

ˆ +kc

−kc

du δ{−ρu + |μ|[1 − (υ h̄ky/|μ|)2]}. (B9)

The last integral in the above expression yields unity for each mover, hence leading to the simple expression

Sy = B
4πυ h̄

ˆ +1

−1

dξ

π

1√
1 − ξ 2

= ∂yMz

4πυ h̄
. (B10)

The above yields the correct expression for gTI
soc(� = 0) given that μ > 0. Repeating the above process for μ < 0 allows us to

recover the previous result for both signs of the chemical potential μ.

4. Influence of a quadratic dispersion and warping in the nonsuperconducting phase

We obtain gsoc in the presence of the additional perturbations using Eq. (A3) for the electron part of the Hamiltonian
Ĥ�=0

0;τz=1(k) = (h̄k)2/2m + υ h̄(kxσy − kyσx ) + γ kx(k2
x − 3k2

y )σz − μ. After evaluating the various traces we obtain

gTI
soc(� = 0) =

ˆ ∞

0

dk

2π

ˆ +∞

−∞

dε

π i
υ h̄k

{
ε − iμ

[(ε − iμ)2 + (υ h̄k)2]2
− (γ k3)2 ε − iμ

[(ε − iμ)2 + (υ h̄k)2]3

}

−
ˆ ∞

0

dk

π

ˆ +∞

−∞

dε

π

(υ h̄k)3

mυ2

(ε − iμ)2

[(ε − iμ)2 + (υ h̄k)2]3

+
ˆ ∞

0

dk

2π

ˆ +∞

−∞

dε

2π

(υ h̄k)5

(mυ2)2

i(ε − iμ)[5(ε − iμ)2 − (υ h̄k)2]

[(ε − iμ)2 + (υ h̄k)2]4
,
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where we have already expanded up to second order in 1/m and γ . One confirms that the contribution of the first term yields
sgn(μ)/4πυ h̄ and thus leads to the quantization of gTI

soc for γ = 0 and m → ∞. We focus on the contribution of the remaining
terms, which we reexpress as follows (we replace ∞ by an energy cutoff � > 0 for convenience):

gTI
soc(� = 0) = sgn(μ)

4πυ h̄
+ 1

4πυ h̄

γ 2/2

(υ h̄)6

∂

∂μ

ˆ 0

�

du u6 ∂

∂u

ˆ +∞

−∞

dε

2π

1

(ε − iμ)2 + u2

− 1

πυ h̄

1

mυ2

ˆ 0

�

du u2 ∂

∂u

ˆ +∞

−∞

dε

2π

1

(ε − iμ)2 + u2
+ 1

2πυ h̄

1

mυ2

ˆ 0

�

du u4 ∂

∂u

ˆ +∞

−∞

dε

2π

1

[(ε − iμ)2 + u2]2

+ 1

16πυ h̄

5

(mυ2)2

∂

∂μ

ˆ 0

�

du u4 ∂

∂u

ˆ +∞

−∞

dε

2π

1

(ε − iμ)2 + u2

− 1

8πυ h̄

1

(mυ2)2

∂

∂μ

ˆ 0

�

du u6 ∂

∂u

ˆ +∞

−∞

dε

2π

1

[(ε − iμ)2 + u2]2

= sgn(μ)

4πυ h̄
+ 1

4πυ h̄

γ 2/2

(υ h̄)6

∂

∂μ

ˆ 0

�

du u6 ∂

∂u

�(u − |μ|)
2u

− 1

πυ h̄

1

mυ2

ˆ 0

�

du u2 ∂

∂u

�(u − |μ|)
2u

− 1

8πυ h̄

1

mυ2

ˆ 0

�

du u4 ∂

∂u

{
1

u2

[
δ(u − |μ|) − �(u − |μ|)

u

]}
+ 1

16πυ h̄

5

(mυ2)2

∂

∂μ

ˆ 0

�

du u4 ∂

∂u

�(u − |μ|)
2u

+ 1

32πυ h̄

1

(mυ2)2

∂

∂μ

ˆ 0

�

du u6 ∂

∂u

{
1

u2

[
δ(u − |μ|) − �(u − |μ|)

u

]}
.

Carrying out the integrations leads to the following result:

gTI
soc(� = 0) = sgn(μ)

4πυ h̄

⎧⎨
⎩1 + 1

2

( μ

mυ2

)2
− 3

2

[
γμ2(
υ h̄
)3
]2
⎫⎬
⎭− 1

8πυ h̄

�

mυ2
. (B11)

The above is obtained after omitting terms ∝δ(� − |μ|) and ∂μ�(� − |μ|) since we assume that � � |μ|. Following the same
spirit as in Sec. IV E, we drop the contribution ∝� since we are interested in the response which originates from energies near
the Fermi energy |μ| � �. Here, one can also invoke that mυ2 � �, which allows dropping the last term. Therefore, the above
analysis implies that the quantization found for gTI

soc(� = 0) for the pristine Dirac cone surface states is protected against adding
warping and a quadratic dispersion of a weak strength. This is because the modification is of quadratic order in 1/m and γ . Hence,
the magnitude of such corrections relative to the quantized value of gTI

soc(� = 0) introduced by the two kinds of perturbations
depends on the value of the chemical potential, and how close this is to the Dirac point. As it is typical for similar topological
semimetals, the various anomalous properties prevail as long as the chemical potential is tuned near the band-touching point.

We now proceed with examining the fate of χTI(� = 0) when these two kinds of deviations from the pristine Dirac cone
structure are present. In the same spirit with the previous paragraphs, we proceed by obtaining the modified coefficient from
Eq. (A2). However, the respective polarization tensor elements need to be modified according to

�MzAx (q) =
ˆ

dk
(2π )2

T
∑
ikn

1

2
Tr{σzĜ ′

0(k + q, ikn)(+eυσy)Ĝ ′
0(k, ikn)}

+
ˆ

dk
(2π )2

T
∑
ikn

1

2
Tr

(
σzĜ ′

0(k + q, ikn)
e

h̄

{
h̄2

m

(
kx + qx

2

)
+ 3γ

[
k2

x − k2
y + qx

(
kx + qx

3

)]
σz

}
Ĝ ′

0(k, ikn)

)
,

�MzAy (q) =
ˆ

dk
(2π )2

T
∑
ikn

1

2
Tr{σzĜ ′

0(k + q, ikn)(−eυσx )Ĝ ′
0(k, ikn)}

+
ˆ

dk
(2π )2

T
∑
ikn

1

2
Tr

(
σzĜ ′

0(k + q, ikn)
e

h̄

{
h̄2

m

(
ky + qy

2

)
− 3γ (kx + qx )(2ky + qy)σz

}
Ĝ ′

0(k, ikn)

)
,

where the above Green functions Ĝ ′
0 include the perturbation terms ∝γ , 1/m. The above are separated into two parts, one per

row. The parts contained in the first rows give rise to a contribution which satisfies χTI(� = 0) = eυgTI
soc(� = 0) even when γ

and 1/m are generally nonzero. Hence, the corrections due to the two perturbations introduced to χTI(� = 0) arising from the
first rows are immediately obtained using Eq. (B11). However, χTI(� = 0) takes an additional contribution originating from
the second rows. These result from the conservation of electric charge which leads to the modified vertices. Concomitantly, this
generally implies the inequivalence χTI(� = 0) �= eυgTI

soc(� = 0) for the final expressions. Direct evaluation of Eq. (A2) yields
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the expression

χTI(� = 0) = eυgTI
soc(� = 0) + e

4π h̄

ˆ �

0
du

(
u2

mυ2

)[
1 − 1

2

(
u2

mυ2

)
∂

∂μ

]
∂

∂u

ˆ +∞

−∞

dε

2π

1

(ε − iμ)2 + u2

= e

4π h̄
sgn(μ)

⎧⎨
⎩1 + μ

mυ2
− 1

2

( μ

mυ2

)2
− 3

2

[
γμ2(
υ h̄
)3
]2
⎫⎬
⎭− e

4π h̄

�

mυ2
. (B12)

Once again, the term ∝� needs to be dropped. Notably, aside from the part of χTI(� = 0) which is proportional to the modified
gTI

soc(� = 0), the additional term affects χTI(� = 0) at first order with in 1/m, due to the vertex correction ∝k/m. This implies
that χTI(� = 0) is less protected than gTI

soc(� = 0).

5. Investigation of deviations from the pristine Dirac cone via the theory of orbital magnetization

For completeness we obtain once again the results of Appendix B 4 using the theory of orbital magnetization. We extend the
approach of Sec. IV B to include hexagonal warping and a quadratic kinetic energy term. For the two-band model of interest, the
uniform orbital magnetization T = 0 now becomes

Mz = e

4π h̄

ˆ
dk
2π

2μ(k)�(k){�[μ(k) + E (k)] − �[μ(k) − E (k)]}, (B13)

where we have introduced the k-dependent chemical potential μ(k) = μ − (h̄k)2/2m. Furthermore, we parametrized the ensu-
ing Hamiltonian Ĥ�=0,Mz �=0

0;τz=1 (k) = (h̄k)2/2m + υ h̄(kxσy − kyσx ) + [γ kx(k2
x − 3k2

y ) − Mz]σz − μ according to Ĥ�=0,Mz �=0
0;τz=1 (k) ≡

d(k) · σ − μ(k), where d(k) = ( − υ h̄ky, υ h̄kx, γ kx(k2
x − 3k2

y ) − Mz ). The latter vector possesses the modulus E (k) ≡ |d(k)|.
Here, �(k) corresponds to the Berry curvature of the valence band, and is given as �(k) = 1

2 d̂(k) · [∂kx d̂(k) × ∂ky d̂(k)], where
d̂(k) = d(k)/E (k). Using the above expression, it is straightforward to obtain the orbital magnetization up to second order in
1/m and γ . By means of a Taylor expansion, we have

Mz = e

4π h̄

⎧⎨
⎩
∑

s=0,1,2

(−1)s

s![2mυ2]s

∂s

∂μs

ˆ
dk
2π

(υ h̄k)2sm(k) − γ 2

2

ˆ
dk
2π

[
kx
(
k2

x − 3k2
y

)]2 ∂

∂Mz

[
6

m(k)

Mz
− ∂m(k)

∂Mz

]⎫⎬
⎭,

where we retained terms up to second order in 1/m and γ . For compactness, in the above we introduced the function m(k) =
2μ�γ=0(k)�[Eγ=0(k) − |μ|] with �γ=0(k) = −(υ h̄)2Mz/[2E3

γ=0(k)], and Eγ=0(k) = √(υ h̄k)2 + M2
z . The desired coefficient

at zeroth order in Mz is obtained via the expression χTI(� = 0) = −∂Mz/∂Mz|Mz=0. The result obtained by means of evaluating
the above expression is in perfect agreement with the part of Eq. (B12) which is independent of �. We note that there is some
discrepancy when it comes to the terms ∝�, which are nevertheless supposed to be neglected since they are spurious and
unphysical.

APPENDIX C: EVALUATION OF THE INTERCONVERSION COEFFICIENTS: RASHBA METAL

We now discuss the evaluation of the interconversion coefficients in the case of a Rashba metal. We employ Eqs. (9)–(11)
of the main text. To facilitate the calculations we introduce polar coordinates, i.e., kx = k cos ϕ and ky = k sin ϕ, where k =√

k2
x + k2

y and tan ϕ = ky/ky. This allows us to reexpress the matrix Green function Ĝ0(k, ε) as follows:

Ĝ−1
0 (k, ϕ, ε) = e−iϕσz/2ĝ−1(k, ε)eiϕσz/2, (C1)

where ĝ−1(k, ε) = iε − τz[h̄
2(k − kF )2/2m + υ h̄kσy] − �τx. Using the above, we find that

kx
∂Ĝ0(k, ε)

∂ky
− ky

∂Ĝ0(k, ε)

∂kx
= ∂Ĝ0(k, ϕ, ε)

∂ϕ
= e−iϕσz/2 [σz, ĝ(k, ε)]

2i
eiϕσz/2

along with the relation

∂Ĝ0(k, ε)

∂kx
σx + ∂Ĝ0(k, ε)

∂ky
σy = e−iϕσz/2

{
∂ ĝ(k, ε)

∂k
σx + 1

k

[σz, ĝ(k, ε)]

2i
σy

}
eiϕσz/2. (C2)

By exploiting the above results, we find

χM = eυF

2i

ˆ ∞

0

dk

2π

k

kF

ˆ +∞

−∞

dε

2π

1

2
Tr

{
σz

[σz, ĝ(k, ε)]

2i
ĝ(k, ε)

}
+ eυ

2i

ˆ ∞

0

k dk

2π

ˆ +∞

−∞

dε

2π

1

2
Tr

[
σz

∂ ĝ(k, ε)

∂k
σxĝ(k, ε)

]

+ eυ

2i

ˆ ∞

0

dk

2π

ˆ +∞

−∞

dε

2π

1

2
Tr

{
σz

[σz, ĝ(k, ε)]

2i
σyĝ(k, ε)

}
.
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At this point, we proceed by implementing the so-called quasiclassical approximation. Thus, by assuming that the Fermi
energy EF = h̄2k2

F /2m is the largest energy scale (essentially infinite), we approximate ξ = h̄2(k − kF )2/2m as ξ ≈ h̄υF (k − kF )
and h̄υk ≈ h̄υkF ≡ Esoc. Employing the quasiclassical approximation and tracing over spins yields

χM = − e

4π h̄

ˆ +∞

−EF

dξ

ˆ +∞

−∞

dε

2π

±∑
�,s

� · s

4
Trτ [ĝ�(ξ, ε)ĝs(ξ, ε)] − e

4π h̄
Esoc

ˆ +∞

−EF

dξ

ˆ +∞

−∞

dε

2π

±∑
�,s

� − s

4
Trτ

[
∂ ĝ�(ξ, ε)

∂ξ
ĝs(ξ, ε)

]

− e

4π h̄

υ

υF

ˆ +∞

−EF

dξ

ˆ +∞

−∞

dε

2π

±∑
�,s

�

4
Trτ [ĝ�(ξ, ε)ĝs(ξ, ε)],

where we introduced the quasiclassical Green functions with ĝ−1
± (k, ε) = iε − τz[h̄υF (k − kF ) ± Esoc] − �τx. In the above

expression the first term contributes to gorb and the last two to gsoc. However, in the quasiclassical limit the third term drops
out. To continue, we further take the limit EF → ∞ and we conclude with the following expressions:

gM,intra
orb = − 1

4π h̄υF

ˆ +∞

−∞
dξ

ˆ +∞

−∞

dε

2π

∑
�=±

1

4
Trτ

[
ĝ2

�(ξ, ε)
]
,

gM,inter
orb = + 1

4π h̄υF

ˆ +∞

−∞
dξ

ˆ +∞

−∞

dε

2π

∑
�=±

1

2
Trτ [ĝ+(ξ, ε)ĝ−(ξ, ε)],

gM
soc = − Esoc

4π h̄υF

ˆ +∞

−∞
dξ

ˆ +∞

−∞

dε

2π

∑
�=±

�

2
Trτ

[
∂ ĝ�(ξ, ε)

∂ξ
ĝ−�(ξ, ε)

]
.

The evaluation of the coefficients gM,inter
orb and gM

soc is tedious
but straightforward. Therefore, in the remainder, we focus on
the derivation of the coefficient gM,intra

orb . Since this coefficient
admits only intraband contributions, it is preferable to mo-
mentarily switch back to the Matsubara formalism. Carrying
out the Matsubara summation yields

gM,intra
orb = − 1

4π h̄υF

ˆ +∞

−∞
dξ
∑
�=±

1

2
n′

F [E�(ξ )],

where we introduced the energy dispersions of the two
helical bands E±(ξ ) =

√
(ξ ± Esoc)2 + �2. nF (E ) denotes

the Fermi-Dirac distribution evaluated at energy E , while
n′

F (E ) = dnF (E )/dE . At zero temperature n′
F (E ) = −δ(E ),

with the latter function denoting the Dirac delta function.
The intraband nature of this contribution implies that it is
sensitive to the presence of disorder and nonzero temperature.
We examine the effects of disorder in a phenomenological and
qualitative fashion by “broadening” the Fermi-Dirac function
according to [98]

−n′
F [E�(ξ )] =

ˆ +∞

−∞

dω

2π

1

τ�(ξ )

−n′
F (ω)

[ω − E�(ξ )]2 + ( 1
2τ�(ξ )

)2 ,

(C3)

where τ�(ξ ) define effective intraband relaxation times. In the
remainder, we consider them to be energy independent, in
order to facilitate the discussion, and express them as τ� =
1/(2��). By restricting to T = 0, we have the expression

−n′
F [E�(ξ )] =

ˆ +∞

−∞

dω

2π

1

τ�

δ(ω)

[ω − E�(ξ )]2 + ( 1
2τ�

)2
= 1

π

��

E2
� (ξ ) + �2

�

. (C4)

Therefore, the interconversion coefficient now reads as

gM,intra
orb = 1

4π h̄υF

∑
�=±

1

2

ˆ +∞

−∞

dξ

π

��

(ξ + �Esoc)2 + �2 + �2
�

≡ 1

4π h̄υF

∑
�=±

1

2

ˆ +∞

−∞

dξ

π

��

ξ 2 + �2 + �2
�

. (C5)

Carrying out the integration over ξ directly yields the result of
Eq. (47) in the main text.

APPENDIX D: OUT-OF-PLANE SPIN SUSCEPTIBILITY
FOR A RASHBA METAL

We now proceed with the evaluation of the out-of-plane
spin susceptibility in the case of a Rashba metal in the qua-
siclassical limit. It is most convenient to obtain χ

spin
⊥ by

including a uniform out-of-plane magnetization Mz to the
Hamiltonian of the Rashba superconductor, which results in
the expression

Ĥ(k) = τz[ε(k) + υ h̄(kxσy − kyσx )] + �τx − Mzσz,

where ε(k) = (h̄k)2/2m − μ with k = |k|. The above Hamil-
tonian is dictated by the eigenergies ±E±(k) given by

E±(k) =
√

ε2(k) + (υ h̄k)2 + M2
z + �2 ± 2

√
R(k),

where we introduced the quantity

R(k) = (υ h̄k)2ε2(k) + M2
z ε2(k) + M2

z �2. (D1)

The susceptibility is obtained from the definition

χ⊥ = − d2Egs

dM2
z

∣∣∣∣
Mz=0

, (D2)
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where Egs is the ground-state energy of the system per area.
Since the spectrum depends only on k, we find that

Egs = −1

2

∑
s=±

ˆ ∞

0

k dk

2π
Es(k). (D3)

We adopt a quasiclassical approach and set ε(k) ≈ h̄υF (k −
kF ), Esoc = υ h̄kF . By further taking the limit EF → ∞, the

ground-state energy becomes

Egs = −νF

2

∑
s=±

ˆ +∞

−∞
dε

√
ε2 + E2

soc + M2
z + �2 + 2s

√
R(ε),

(D4)

where νF = m/2π h̄2 and we set R(ε) = (E2
soc + M2

z )ε2 +
M2

z �2. By directly evaluating the above integral we obtain the
susceptibility expression in Eq. (50).
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Banerjee, Colloquium: Spin-orbit effects in superconducting
hybrid structures, arXiv:2210.03549 (2022).

[18] G. L. J. A. Rikken, J. Fölling, and P. Wyder, Electrical magne-
tochiral anisotropy, Phys. Rev. Lett. 87, 236602 (2001).

[19] R. Wakatsuki, Y. Saito, S. Hoshino, Y. M. Itahashi, T. Ideue,
M. Ezawa, Y. Iwasa, and N. Nagaosa, Nonreciprocal charge
transport in noncentrosymmetric superconductors, Sci. Adv. 3,
e1602390 (2017).

[20] Y. Tokura and N. Nagaosa, Nonreciprocal responses from non-
centrosymmetric quantum materials, Nat. Commun. 9, 3740
(2018).

[21] V. M. Edelstein, Magnetoelectric effect in polar superconduc-
tors, Phys. Rev. Lett. 75, 2004 (1995); The Ginzburg - Landau
equation for superconductors of polar symmetry, J. Phys.: Con-
dens. Matter 8, 339 (1996).

[22] K. V. Samokhin, Magnetic properties of superconductors with
strong spin-orbit coupling, Phys. Rev. B 70, 104521 (2004);
Upper critical field in noncentrosymmetric superconductors, 78,
224520 (2008).

[23] W.-Y. He and K. T. Law, Magnetoelectric effects in gyrotropic
superconductors, Phys. Rev. Res. 2, 012073 (2020).

[24] F. Ando, Y. Miyasaka, T. Li, J. Ishizuka, T. Arakawa, Y. Shiota,
T. Moriyama, Y. Yanase, and T. Ono, Observation of supercon-
ducting diode effect, Nature (London) 584, 373 (2020).

[25] C. Baumgartner, L. Fuchs, A. Costa, S. Reinhardt, S. Gronin,
G. C. Gardner, T. Lindemann, M. J. Manfra, P. E. F. Junior,
D. Kochan, J. Fabian, N. Paradiso, and C. Strunk, A Joseph-
son junction supercurrent diode, Nat. Nanotechnol. 17, 39
(2022).

[26] B. Pal, A. Chakraborty, P. K. Sivakumar, M. Davydova, A. K.
Gopi, A. K. Pandeya, J. A. Krieger, Y. Zhang, M. Date, S. Ju,
N. Yuan, N. B. M. Schröter, L. Fu, and S. S. P. Parkin, Joseph-
son diode effect from Cooper pair momentum in a topological
semimetal, Nat. Phys. 18, 1228 (2022).

[27] M. Mostovoy, Ferroelectricity in spiral magnets, Phys. Rev.
Lett. 96, 067601 (2006).

[28] B. Braunecker, G. I. Japaridze, J. Klinovaja, and D. Loss, Spin-
selective Peierls transition in interacting 1D conductors with
spin-orbit interaction, Phys. Rev. B 82, 045127 (2010).

[29] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J.
Beenakker, Majorana fermions emerging from magnetic
nanoparticles on a superconductor without spin-orbit coupling,
Phys. Rev. B 84, 195442 (2011).

[30] M. Kjaergaard, K. Wölms, and K. Flensberg, Majorana
fermions in superconducting nanowires without spin-orbit cou-
pling Phys. Rev. B 85, 020503 (2012).

[31] I. Martin and A. F. Morpurgo, Majorana fermions in supercon-
ducting helical magnets, Phys. Rev. B 85, 144505 (2012).

[32] J. Klinovaja and D. Loss, Giant spin-orbit interaction due to
rotating magnetic fields in graphene nanoribbons, Phys. Rev. X
3, 011008 (2013).

[33] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,
Proposal for realizing majorana fermions in chains of magnetic
atoms on a superconductor, Phys. Rev. B 88, 020407 (2013).

[34] P. Kotetes, Classification of engineered topological supercon-
ductors, New J. Phys. 15, 105027 (2013).

155310-18

https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1016/0038-1098(90)90963-C
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1103/PhysRevB.81.172408
https://doi.org/10.1103/PhysRevB.82.161401
https://doi.org/10.1103/PhysRevB.82.184516
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1038/nphys3242
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/PhysRevLett.87.037004
http://arxiv.org/abs/arXiv:2210.03549
https://doi.org/10.1103/PhysRevLett.87.236602
https://doi.org/10.1126/sciadv.1602390
https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1103/PhysRevLett.75.2004
https://doi.org/10.1088/0953-8984/8/3/012
https://doi.org/10.1103/PhysRevB.70.104521
https://doi.org/10.1103/PhysRevB.78.224520
https://doi.org/10.1103/PhysRevResearch.2.012073
https://doi.org/10.1038/s41586-020-2590-4
https://doi.org/10.1038/s41565-021-01009-9
https://doi.org/10.1038/s41567-022-01699-5
https://doi.org/10.1103/PhysRevLett.96.067601
https://doi.org/10.1103/PhysRevB.82.045127
https://doi.org/10.1103/PhysRevB.84.195442
https://doi.org/10.1103/PhysRevB.85.020503
https://doi.org/10.1103/PhysRevB.85.144505
https://doi.org/10.1103/PhysRevX.3.011008
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1088/1367-2630/15/10/105027


ANATOMY OF SPIN AND CURRENT GENERATION FROM … PHYSICAL REVIEW B 108, 155310 (2023)

[35] B. Braunecker and P. Simon, Interplay between classical
magnetic moments and superconductivity in quantum one-
dimensional conductors: Toward a self-sustained topological
majorana phase, Phys. Rev. Lett. 111, 147202 (2013); J.
Klinovaja, P. Stano, A. Yazdani, and D. Loss, Topological
superconductivity and majorana fermions in RKKY systems,
ibid. 111, 186805 (2013); M. M. Vazifeh and M. Franz, Self-
organized topological state with majorana fermions, ibid. 111,
206802 (2013).

[36] F. Pientka, L. I. Glazman, and F. von Oppen, Topological su-
perconducting phase in helical shiba chains, Phys. Rev. B 88,
155420 (2013); Unconventional topological phase transitions in
helical Shiba chains, 89, 180505(R) (2014).

[37] K. Pöyhönen, A. Westström, J. Röntynen, and T. Ojanen, Majo-
rana states in helical shiba chains and ladders, Phys. Rev. B 89,
115109 (2014).

[38] T. Zhou, N. Mohanta, J. E. Han, A. Matos-Abiague, and I. Žutić,
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