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Laser-induced surface magnetization in Floquet-Weyl semimetals
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We investigate optically induced magnetization in Floquet-Weyl semimetals generated by irradiation of
a circularly polarized continuous-wave laser from the group II-V narrow gap semiconductor Zn3As2 in a
theoretical manner. Here, this trivial and nonmagnetic crystal is driven by the laser with a nearly resonant
frequency with a band gap to generate two types of Floquet-Weyl semimetal phases composed of different
spin states. These two phases host nontrivial two-dimensional surface states pinned to the respective pairs of the
Weyl points. By numerically evaluating the laser-induced transient carrier dynamics, it is found that both spins
are distributed in an uneven manner on the corresponding surface states due to significantly different excitation
probabilities caused by the circularly polarized laser with the nearly resonant frequency. It is likely that such
spin-polarized surface states produce surface magnetization and furthermore the inverse Faraday effect also
contributes almost as much as the spin magnetization. To be more specific, excited carriers with high density of
the order of 1021 cm−3 are generated by the laser with electric field strength of a few MV/cm to result in the
surface magnetization that becomes asymptotically constant with respect to time, around 1 mT. The magnitude
and the direction of it depend sharply on both the intensity and frequency of the driving laser, which would be
detected by virtue of the magneto-optic Kerr effect.
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I. INTRODUCTION

Weyl semimetals (WSMs) that belong to a class of topolog-
ical semimetals (SMs) [1–15] have been extensively studied
from the perspective of the nontrivial topology leading to
many intriguing features of unusual electronic, magnetic,
and optical properties. Low-energy excitation of WSMs is
described by the Weyl equation characteristic of a linearly
dispersive gapless band and well-defined chirality, where the
Berry curvature shows a monopole at the resulting crossing
point termed the Weyl node. The WSMs result in fundamental
properties such as Fermi arc surface states, axion electrody-
namics, and chiral anomaly (the Adler-Bell-Jackiw anomaly)
proposed in particle physics [16–21]. Further, these exhibit
a great number of novel transport properties [13,14], such
as ultrahigh mobility [22], titanic magnetic resistance [22],
anomalous Hall conductivity [4,23–27], and large negative
magnetic resistance observed in magnetotransport attributed
to the chiral anomaly [24,28–31]. The WSMs are created by
breaking of either time reversal symmetry or spatial-inversion
symmetry from Dirac SMs and nodal-line SMs that are dif-
ferent types of topological SMs [14,15]. In the WSMs with
the time reversal symmetry breaking, there are a pair of Weyl
nodes with opposite chirality, while, in those with the spatial-
inversion symmetry breaking, the number of Weyl nodes is a
multiple of four [2,14].
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The introduction of an interaction of electron with a
monochromatic continuous-wave laser with circular polariza-
tion also breaks the time reversal symmetry of the Dirac and
nodal-line SMs to lead to a WSM state in nonequilibrium
[32–39]. Due to the temporal periodicity of the Hamiltonian
of concern, the Floquet theorem ensures the existence of a
set of quasienergy bands (Floquet bands) associated with the
WSM states, termed as Floquet WSM (FWSM) states. The
physical properties of the FWSMs can be controlled by means
of built-in laser parameters such as intensity, frequency, and
polarization, giving rise to band modulation and topological
phase transitions. The creation and optical control of Floquet
states, termed as the Floquet engineering, provide a new av-
enue for the quantum control of topological materials [40–43].
In passing, the spatial inversion symmetry is also broken by
the application of the monochromatic continuous-wave laser.
However, the time-glide spatial inversion symmetry holds cor-
rect instead to realize the same invariance in the Hamiltonian
as the spatial inversion symmetry [44,45].

In recent years, there has been a growing interest in the
FWSMs for exploring new topological properties that cannot
be realized in WSMs in equilibrium [46–61]. It is found that
the drive of a three-dimensional Luttinger SM by an ellipti-
cally polarized light leads to the coexistence of WSM phases
with double and single Weyl points, which can be tuned to
be type I or type II [56], and the periodical driving of hybrid
multi-WSM phases modulates the number of various isolated
band touching points on demand by tuning system parameters
[57]. Further, chirality switching of Weyl nodes is observed
in a ferromagnetic Weyl semimetal excited by circularly
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polarized midinfrared light pulses, which accompanies the
reversal of magnetization [60].

It has been reported very recently that two different spin-
polarized FWSM phases are created at one time by irradiating
on a trivial narrow gap semiconductor, Zn3As2, an intense
circularly polarized laser with frequency that is almost on
resonant with the band gap [59]. This is due to the fact that
an electric-dipole transition induced by this laser between
valence and conduction bands with one spin state is dominant
over that between bands with the other spin state. To be
more specific, given the driving laser with a left-hand circular
polarization (rotating in counterclockwise sense with time),
the dipole coupling between the down-spin bands is much
greater than that between the up-spin bands. Thus two types
of Floquet bands with distinct energy structures are generated
by the hybridization of valence and conduction bands with
each spin state. In particular, the resulting up-spin Floquet
band forms just a considerably smaller band gap than that of
the down-spin Floquet band, similar to a nodal line SM with
a band crossing in the shape of a closed ring. Furthermore,
the associated surface states supported by these two Floquet
bands also differ a lot from each other in energy structure.
This finding is much contrasted with properties of the FWSMs
induced by a circularly polarized laser with an off-resonant
frequency [32,35,62], in which a high-frequency approxi-
mation based on the Floquet-Magnus expansion [63–67] is
warranted.

This paper is aimed at examining the possibility of the
manifestation of transient magnetization attributed to the
above-stated difference of the dipole couplings in the FWSM
created by the on-resonant drive. It is stressed that real car-
rier excitations caused by such transient quantum dynamics
play crucial roles of the magnetization, differing from the
off-resonant drive just causing virtual excitations. Due to the
application of the intense laser with a peak electric field of
the order of 1 MV/cm, down-spin electrons are considered to
be more dominantly excited than up-spin electrons, resulting
in the imbalance of spin distributions between the respective
Floquet bands. It is likely that conspicuous surface magnetiza-
tion arises from such imbalance of spin distributions, namely,
the surface spin polarization, where the associated bulk mag-
netization is also induced, but however actually neglected
compared with the surface one, as shown later (Sec. III).
Furthermore, it is considered that the inverse Faraday effect
(IFE) contributes to the surface magnetization to some ex-
tent in addition to the above spin magnetization. The IFE is
given rise to by the laser with circular polarization and the
orbital magnetization is generated, which remains constant
in time [50–53,68–81]. Differing from the conventional IFE
arising from the second-order optical process with respect to
the electric field of the laser, it is expected that the higher
order terms come into play for the orbital magnetization
concerned here due to the application of the intense laser.
In passing, it is remarked that the IFE on WSMs, differing
from the present FWSMs, has been studied recently to exhibit
frequency-independent magnetization mechanisms [50,51].

The remainder of this paper is organized as follows. Sec-
tion II describes the theoretical framework, Sec. III presents
the results and discussion, and Sec. IV presents the con-
clusion. Further, three Appendixes are included. Hereafter,

the atomic units (a.u.) are used throughout, unless otherwise
stated.

II. THEORY

In this section, one begins with the construction of the
Floquet Hamiltonian in Sec. II A, followed by the description
of the density matrices for the laser-induced dynamics of
concern in Sec. II B and of the laser-induced magnetization
in Sec. II C.

A. Floquet Hamiltonian

The crystal adopted here is the group II-V narrow gap
semiconductor, Zn3As2, with the C4-rotational symmetry
along the � − Z axis in the the Brillouin zone (BZ). This
structure is similar to that of Cd3As2, though the band of the
latter is inverted to result in a Dirac SM [82–86]. Here, one
employs the structure of α′Zn3As2 with a tetragonal structure
P42/nbc [87] among many equilibrium phases of Zn3As2

depending on pressure and temperature.
An effective electronic Hamiltonian of this crystal is con-

structed based on the Kane model [4,59] in view of the
low-energy electronic properties mostly determined by the
conduction band composed of Zn 4s orbitals and the valence
band composed of As 4p orbitals. Thus the following four
states are considered as conduction s states |�6, Jz = ±1/2〉
and heavy-hole p states |�7, Jz = ±3/2〉, where Jz represents
the z component of the total angular momentum quantum
number at the � point with a three-dimensional (3D) Bloch
momentum k = (kx, ky, kz ) being equal to zero. Here, light-
hole states and split-off states are disregarded because of
relatively large energy separation from these four states at
the � point. The effective Hamiltonian is given by the 4 × 4
matrix [88,89]:

H(k) =
5∑

j=3

Dj (k)γ j, (1)

where γ j’s represent the four-dimensional Dirac matrices
for the Clifford algebra ensuring the anticommutation rela-
tion, {γ j, γ j′ } = 2δ j j′ , defined by γ1 = τx ⊗ σx, γ2 = τx ⊗
σy, γ3 = τx ⊗ σz, γ4 = τz ⊗ I2, and γ5 = τy ⊗ I2; I2 repre-
sents the 2 × 2 unit matrix, and τl and σl with l = x, y, z
represent the Pauli matrices for orbital and spin degrees
of freedom, respectively. According to the above defini-
tion of γ j’s, it is understood that the states of |�6, Jz =
1/2〉, |�7, Jz = 3/2〉, |�6, Jz = −1/2〉, and |�7, Jz = −3/2〉
are labeled as 1, 2, 3, and 4, respectively, for the matrix ele-
ments of H(k), namely, {Hmn(k)} with m, n = 1–4. Moreover,
Dj (k)’s are given by

D3(k) = tsp sin (kxdx ),

D4(k) = �g − 2
∑

l=x,y,z

t l{1 − cos (kldl )},

D5(k) = tsp sin (kydy). (2)

Here, t l represents a hopping matrix between identical bands
in the l direction with l = x, y, z, where t l < 0 and t x = t y,
and tsp represents a hopping matrix between different bands
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due to a spin-orbit coupling. Further, dl represents a lattice
constant in the l direction and the band gap at the �-point Eg

is given by the difference of the energy of the conduction band
at �6 from that of the valence band at �7 with �g = Eg/2.

An interaction of electron with light is introduced into
H(k) by replacing k by K(t ) = k + A(t ), followed by adding
to H(K(t )) an interband electric-dipole interaction repre-
sented by H′(t ). Here, A(t ) represents a vector potential of
the laser at time t , given by

A(t ) =
(

−Fx

ω
sin ωt,

Fy

ω
cos ωt, 0

)
, (3)

with ω as frequency and Fx and Fy as constants, and in view
of F(t ) = −Ȧ(t ), the associated electric field becomes

F(t ) = (Fx cos ωt, Fy sin ωt, 0). (4)

The laser is linearly polarized in the x direction when Fx �= 0
and Fy = 0, while being left-hand circularly polarized in the
x − y plane when Fx is set equal to Fy, namely, Fc ≡ Fx = Fy.
The time-dependent effective Hamiltonian of the driven semi-
conductor is thus read as

HF (k, t ) = H(K(t )) + H′(t ), (5)

where

H(K(t )) =
5∑

j=3

Dj (K(t ))γ j . (6)

The interband electric-dipole interaction is provided as [59]

H′(t ) = (
y sin ωt )τx ⊗ I2 + (
x cos ωt )τy ⊗ σz, (7)

where 
x = FxP/
√

2 and 
y = FyP/
√

2. Here, P is a dipole
matrix element given by P = 〈S|x|X 〉 = 〈S|y|Y 〉, where x
and y represent the x and y components of electron posi-
tion r, respectively, and the states of |�6, Jz = ±1/2〉 and
|�7, Jz = ±3/2〉 are represented by |�6, Jz = ±1/2〉 = i|S〉
and |�7, Jz = ±3/2〉 = ±(1/

√
2)|X ± iY 〉, respectively, in

terms of s, px, and py states denoted as |S〉, |X 〉, and |Y 〉,
respectively.

Obviously, this Hamiltonian ensures the temporal periodic-
ity, HF (k, t + T ) = HF (k, t ) with T = 2π/ω, and the system
of concern follows the Floquet theorem [90]. Thus the present
time-dependent problem ends up with the following Floquet
eigenvalue problem as

LF (k, t )φkα (t ) = Eα (k)φkα (t ), (8)

where LF (k, t ) is the Floquet Hamiltonian defined as

LF (k, t ) = HF (k, t ) − iI
∂

∂t
, (9)

with I the 4 × 4 unit matrix, Eα (k) representing an eigen-
value showing the αth Floquet energy, and φkα (t ) representing
the associated eigenvector ensuring the temporal periodic-
ity, φkα (t + T ) = φkα (t ). Hereafter, it is understood that the
photon sideband α is represented as α0(Nα ), where α0[≡
α0(0)] and Nα stand for a parent band and the number of
the sideband, respectively. Further, α(N ) ≡ α0(Nα + N ) and
Eα(N )(k) ≡ Eα (k) + Nω = Eα0 (k) + (Nα + N ) ω, with N be-
ing an integer.

For the purpose of later convenience, the wave function
φkα (t ) is represented in view of the above periodicity as

φkα (t ) =
∑

μ

χμϕμ,kα (t ), (10)

where χμ represents the μth state corresponding to |�6, Jz =
±1/2〉 and |�7, Jz = ±3/2〉, and the periodic function
ϕμ,kα (t ) is given in terms of the Fourier expansion as

ϕμ,kα (t ) =
∑

n

einωtCμn,kα. (11)

Thus Eq. (8) is recast into∑
ν

LFμν (k, t )ϕν,kα (t ) = Eα (k)ϕμ,kα (t ), (12)

where

LFμν (k, t ) = HFμν (k, t ) − δμν i
d

dt
(13)

and ∑
νn′

LF μn,νn′ (k)Cνn′,kα = Eα (k)Cμn,kα, (14)

where

LF μn,νn′ (k) = 1

T

∫ T

0
dt e−inωt LFμν (k, t ) ein′ωt . (15)

B. Density matrices

In the actual physical system, the intense monochromatic
laser with circular polarization is exerted on the crystal at a
certain time, for example, at t = 0, leading to high-density
carrier excitation followed by dephasing and relaxation. The
detail of this transient dynamics with concomitant physical
phenomena can be examined by tracking the alteration of the
associated density matrices in time. The one-electron Hamil-
tonian representing the dynamics is given by

H (k, t ) = H(k) + V (k, t ), (16)

where

V (k, t ) ≡ [HF (k, t ) − H(k)]θ (t ) (17)

under the tacit assumption that temporal width of the ap-
plied laser pulse is sufficiently long. Obviously, H (k, t +
T ) �= H (k, t ), since H (k, t ) = H(k) for t < 0 and H (k, t ) =
HF (k, t ) for t > 0. Employing Eq. (16), the total Hamiltonian
represented by Ĥ (t ) is read as

Ĥ (t ) =
∑
kμν

Hμν (k, t ) â†
kμ

(t )âkν (t ), (18)

where â†
kμ

(t ) and âkμ(t ) represent creation and annihilation
operators of state μ at k in the Heisenberg representation,
respectively, and electron-electron interactions are neglected
for the sake of simplicity. Furthermore, for a given k, the field
operator of the system is provided by

ψ̂k(t ) =
∑

μ

χμâkμ(t ). (19)
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The time evolution of operator âkλ(t ) follows the Heisen-
berg equation of

i
dâkλ(t )

dt
= [âkλ(t ), Ĥ (t )]

=
∑

ν

Hλν (k, t )âkν (t ), (20)

where the equal-time anticommutation relation
{âkμ(t ), â†

k′ν (t )} = δμνδkk′ is employed. Hence it is shown that
a reduced density matrix, defined by

ρkμν (t ) = 〈â†
kμ

(t )âkν (t )〉g, (21)

ensures the equation of motion given by

i
dρkμν (t )

dt
= 〈[â†

kμ
(t )âkν (t ), Ĥ (t )]〉g

=
∑

λ

[−H∗
μλ(k, t )ρkλν (t ) + H∗

λν (k, t )ρkμλ(t )].

(22)

Hereafter, the reduced density matrix Eq. (21) is simply
termed as a density matrix. 〈X̂ 〉g represents a ground state
expectation value of operator X̂ . In addition, the contributions
of phenomenological damping have to be incorporated with
Eq. (22), as is taken account of later.

Now, the operator b̂†
kα

(t ) is defined as

b̂†
kα

(t ) =
∑

μ

â†
kμ

(t )ϕμ,kα (t )θ (t ), (23)

which brings the operator â†
kμ

(t ) to

â†
kμ

(t ) =
∑

α

b̂†
kα

(t )C∗
μ0,kα, (24)

as is shown in Eq. (A16). Hence the field operator of Eq. (19)
is rewritten as

ψ̂k(t ) =
∑
μα

χμCμ0,kα b̂kα (t )

=
∑
α0

φkα0 (t )b̂kα0 (t ), (25)

where Eqs. (10), (A12), and (A13) are employed. The equal-
time anticommutation between b̂kα (t ) and b̂†

k′α′ (t ) is evaluated
in view of Eq. (11) as

{b̂kα (t ), b̂†
k′α′ (t )}

= δkk′
∑

μ

ϕμ,kα (t )ϕ∗
μ,kα′ (t )

= δkk′
∑
μn�n

ei�nωtCμn,kαC∗
μn,kα′(�n)

= δkk′
∑
�n

ei�nωtδα0α
′
0
δNα,(Nα′ +�n)

= δkk′ei(Nα−Nα′ )ωtδα0α
′
0
. (26)

Thus one obtains the anticommutation relation that{
b̂kα0 (t ), b̂†

k′α′
0
(t )

} = δkk′δα0α
′
0
, (27)

which implies that b̂kα0 (t ) and b̂†
k′α′

0
(t ) play the role of fermion

operators.
Next, the equation of motion of b̂kα0 (t ) is derived. In view

of Eq. (20) with Eqs. (23) and (24),

i
db̂kα0 (t )

dt
=

∑
ν

(
i
dâkν (t )

dt
ϕ∗

ν,kα0
(t ) + âkν (t )i

dϕ∗
ν,kα0

(t )

dt

)

+ ib̂kα0 (0)δ(t )

= [
b̂kα0 (t ), Ĥ (t )

] +
∑

ν

âkν (t )i
dϕ∗

ν,kα0
(t )

dt

+ ib̂kα0 (0)δ(t ). (28)

On the other hand, defining another Hamiltonian as

L̂(t ) =
∑
kα0

Eα0 (k)b̂†
kα0

(t )b̂kα0 (t ), (29)

and employing Eq. (23), this is cast into

L̂(t ) =
∑

kα0nμν

Eα0 (k)ϕμ,kα0 (t )e−inωtC∗
νn,kα0

â†
kμ

(t )âkν (t )

=
∑

kα0nμν

[
Eα0(−n)(k) + nω

]
ϕμ,kα0(−n)(t )

×C∗
ν0,kα0(−n)â

†
kμ

(t )âkν (t )

=
∑
kμν

Hμν (k, t )â†
kμ

(t )âkν (t )

+
∑

kα0nν

nωC∗
ν0,kα0(−n)e

−inωt b̂†
kα0

(t )âkν (t )

= Ĥ (t ) +
∑
kα0ν

b̂†
kα0

(t )âkν (t )i
dϕ∗

ν,kα0
(t )

dt
, (30)

where Eqs. (11), (A10), (A14), (A21), and (24) are employed.
Putting the above result into the first term in the second equal-
ity of Eq. (28) leads to

i
db̂kα0 (t )

dt
= [

b̂kα0 (t ), L̂(t )
]

−
[

b̂kα0 (t ),
∑
kα′

0ν

b̂†
kα′

0
(t )âkν (t )i

dϕ∗
ν,kα′

0
(t )

dt

]

+
∑
kν

âkν (t )i
dϕ∗

ν,kα0
(t )

dt
+ ib̂kα0 (0)δ(t )

= [
b̂kα0 (t ), L̂(t )

] + ib̂kα0 (0)δ(t ), (31)

where Eq. (27) is employed. This becomes of the form of

i
db̂kα0 (t )

dt
= Eα0 (k)b̂kα0 (t ) + ib̂kα0 (0)δ(t ) (32)

and the solution of it is given by

b̂kα0 (t ) = b̂kα0 (0)e−iEα0 (k)tθ (t ). (33)

Applying Eq. (A14), eventually, one obtains

b̂kα (t ) = b̂kα (0)e−iEα (k)tθ (t ), (34)
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with α = α0(Nα ) and b̂kα0 (0) = b̂kα (0). Further, it should be
noted that the equation of motion of b̂kα0 (t ) given by Eq. (31)
for t > 0 corresponds to the Heisenberg equation with the
effective Hamiltonian L̂(t ). This implies that the Floquet state
(kα0) is considered as a fermionic quasiparticle, ensuring the
anticommutation relation Eq. (27).

According to the above results, the density matrix of
Eq. (21) is recast into

ρkμν (t ) =
∑
αα′

ρ̄kαα′ (t )C∗
μ0,kαCν0,kα′ , (35)

where a density matrix of the quasiparticle is introduced as

ρ̄kαα′ (t ) = 〈b̂†
kα

(t )b̂kα′ (t )〉g

= ρ̄kαα′ (0)ei[Eα (k)−Eα′ (k)]tθ (t ). (36)

On the other hand, by employing Eq. (23), one obtains

ρ̄kαα′ (0) =
∑
μνnn′

ρkμν (0)Cμn,kαC∗
νn′,kα′ , (37)

providing the initial conditions of the quasiparticle states in
Eq. (36) that are represented in terms of initial values of
the original density matrix ρkμν (0). Here, ρkμν (0) = δμνδμv ,
with v a band index corresponding to valence bands of states
|�7, Jz = ±3/2〉.

Moreover, by incorporating the phenomenological damp-
ing terms with the equation of motion of the density matrices
ρkμν (t ) of Eq. (22), ρ̄kαα′ (t ) for t > 0 is modified to

ρ̄kαα (t ) = ρ̄kαα (0)e−t/T1 + ρ̄kαα (tqe)
(
1 − e−t/T1

)
(38)

for α = α′ and

ρ̄kαα′ (t ) = ρ̄kαα′ (0)ei[Eα (k)−Eα′ (k)]t−t/T2 (39)

for α �= α′ (see Supplemental Material [91]). Here, T1 and
T2 represent longitudinal and transverse relaxation times, re-
spectively, and teq represents quasiequilibrium time, where
teq 
 T1. Apparently, these expressions are in agreement with
Eq. (36) in the limit of T1, T2 → ∞.

C. Laser-induced magnetization

Here, one presents an exact quantum-mechanical descrip-
tion of an optically induced magnetization imparted by
an intense laser with circular polarization within the elec-
tric dipole approximation. This provides a materials-specific
framework for the calculation of the optomagnetic polar-
ization in a nonperturbative manner with respect to laser
intensity, not limited to model systems.

1. Solenoid current density and magnetization

One begins with the following Hamiltonian as

h(r, t ) = h0(r) + V (r, t ), (40)

where h0(r) represents a one-electron material Hamiltonian,
given by

h0(r, t ) = −∇2

2
+ v(r) + vso(r), (41)

with v(r) and vso(r) as a periodic potential of crystal and a
spin-orbit interaction, respectively, and V (r, t ) represents the
electric dipole interaction with the laser, given by

V (r, t ) = F(t ) · r. (42)

Here, a field operator �̂(r, t ) is defined so as to ensure the
equation of motion

i
∂�̂(r, t )

∂t
= h(r, t )�̂(r, t ), (43)

with the equal-time anticommutation relation

{�̂(r, t ), �̂†(r′, t )} = δ(r − r′). (44)

Accordingly, it is readily seen that the charge density of elec-
tron represented by

ρ(r, t ) = −〈�̂†(r, t )�̂(r, t )〉g (45)

follows the equation of continuity,

∂ρ(r, t )

∂t
+ ∇ · j(r, t ) = 0, (46)

where j(r, t ) represents the charge current density of electron,
given by

j(r, t ) = −Re〈−i�̂†(r, t )∇�̂(r, t )〉g. (47)

On the other hand, Ampère’s circuital law is read as

∇ × B(r, t )

μ0
= jtot (r, t ) + ∂ε0E(r, t )

∂t
, (48)

where E(r, t ) and B(r, t ) represent an electric field and a mag-
netic flux density, respectively, with ε0 and μ0 the permittivity
of vacuum and the permeability of vacuum, respectively. The
total current density jtot (r, t ) is provided by the sum of the
free current density j(r, t ) and bound current densities as

jtot (r, t ) = j(r, t ) + jm(r, t ) + j p(r, t ), (49)

where jm(r, t ) and j p(r, t ) represent the bound currents as-
cribable to magnetization M(r, t ) and polarization P(r, t )
given by

jm(r, t ) = ∇ × M(r, t ) (50)

and

j p(r, t ) = ∂P(r, t )

∂t
, (51)

respectively. Since the polarization vector is read as

P(r, t ) = −〈�̂†(r, t )r�̂(r, t )〉g = rρ(r, t ), (52)

the bound current density induced by this is rewritten as

j p(r, t ) = r
∂ρ(r, t )

∂t
= −r∇ · j(r, t ), (53)

due to Eq. (46).
Employing the following formula [72]:

A∇ · B − B∇ · A = ∇ × (A × B) + A · ∇B − B · ∇A,

(54)

with A = −r and B = j(r, t ), Eq. (53) becomes

j p(r, t ) = −∇ × [r × j(r, t )] − r · ∇ j(r, t )

− 2 j(r, t ). (55)
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This brings the free current density to be of the form

j(r, t ) = − 1
2 {∇ × [r × j(r, t )] + r · ∇ j(r, t )

− r∇ · j(r, t )}. (56)

Therefore, the total current density becomes

jtot (r, t ) = j(r, t ) + ∇ × M(r, t ) − r∇ · j(r, t )

= ∇ × {
M(r, t ) − 1

2 r × j(r, t )
}

− 1
2 {r · ∇ j(r, t ) + r∇ · j(r, t )}. (57)

It is obvious that the first term in the last equality implies the
solenoid current density j (sol)(r, t ) imparted by jtot (r, t ). This
gives rise to the magnetization given by

M (sol)(r, t ) = M(r, t ) − 1
2 r × j(r, t ). (58)

Here, the first term originates simply from spins of elec-
trons and the other is ascribable to the polarization-induced
magnetization.

The first term of Eq. (58) is expressed as

M(r, t ) = μBge〈�̂†(r, t )s�̂(r, t )〉g, (59)

with the spin angular momentum operator as s = σ/2, where
Bohr magneton μB is introduced, namely, μB = 1/2, and ge

represents the gyromagnetic ratio of electron spin. Moreover,
the second term is given by

M (2)(r, t ) = μBRe[〈�̂†(r, t )l�̂(r, t )〉g]. (60)

Here, this term ascribable to l shows the contribution of the or-
bital magnetization caused by an elliptic trajectory of electron
under the circularly polarized light field. The effect of mag-
netization thus induced is termed as the IFE as mentioned in
Sec. I, which is understood as a second-order optical process
caused exclusively by the irradiation of circularly polarized
light. The above procedure of extracting the contribution of
the orbital magnetization from j (sol)(r, t ) is also adopted in the
perturbative manner in Ref. [72]. The obtained expression of
IFE in terms of l is identical with that introduced in Ref. [81],
however, without a quantum-mechanical derivation. As shown
right below, in fact, the term of l is altered by the choice
of a gauge factor incorporated in �̂(r, t ) as an additional
phase. Equation (60) is applicable to calculations of the opto-
magnetic polarization of any material induced by a circularly
polarized laser with any laser intensity regardless of tempo-
ral width—ranging from an ultrashort pulse to a continuous
wave laser. To be more specific, this is evaluated in terms of
transient density matrices subject to nonequilibrium quantum
dynamics, as shown below, differing from most theories of
IFE just providing a stationary part of induced magnetization
at an asymptotic limit [68,72–80].

In passing, as regards the second term of Eq. (57), it is
shown that

∇ · jtot (r, t ) = − 1
2∇ · {r · ∇ j(r, t ) + r∇ · j(r, t )}, (61)

while, owing to Gauss’ law, Eq. (48) becomes

0 = ∇ · jtot (r, t ) + ∂ε0∇ · E(r, t )

∂t

= ∇ · jtot (r, t ) + ∂ρtot (r, t )

∂t
, (62)

where ρtot (r, t ) represents the total charge density defined by
the sum of ρ(r, t ) and the polarized charge ρp(r, t ) = −∇ ·
P(r, t ), that is,

ρtot (r, t ) = ρ(r, t ) + ρp(r, t ). (63)

Hence Eq. (61) is nothing but the equation of continuity for
the total charge density and current density, and the right side
of Eq. (61) is identical with −∂ρtot (r, t )/∂t .

2. Gauge transformation

Below, we aim to represent Eqs. (59) and (60) in terms of
the density matrix of Eq. (21) by taking an appropriate gauge
transformation on �̂(r, t ). Hereafter, a function f (r) and an
operator ξ̂ (r) are represented as 〈r| f 〉 and 〈r|ξ̂〉, respectively,
in terms of the Dirac notation, if necessary. Accordingly,
Eq. (40) is rewritten as

h(r, t ) =
∑

μ,R,μ′,R′
〈r|μR〉hμR,μ′R′ (t )〈μ′R′|r〉 (64)

in terms of a set of Wannier states {|μR〉} with μ and R a band
index and a site vector of the crystal. Here,

hμR,μ′R′ (t ) = 〈μR|h0|μ′R′〉 + 〈μR|V |μ′R′〉
≡ h0

μR,μ′R′ + VμR,μ′R′ (t ). (65)

The second term is represented by

VμR,μ′R′ (t ) = 〈μR|F(t ) · r|μ′R′〉
= F(t ) · R δμμ′δRR′ + F(t ) · Xμμ′ δ̄μμ′δRR′ , (66)

where X is defined as the displacement of electron from
the position of an ionic core of the crystal, namely, X =
r − R, and an electric dipole matrix element at each R is
approximately given by 〈μR|X |μ′R′〉 ≈ rμμ′δRR′ with rμμ′ =
〈μ|r|μ′〉. Here, the property has been used that a Wannier
function 〈r|μR〉 is just a function of X and is mostly localized
inside a cell situated at R. Thus 〈μR|X |μ′R′〉 is considered
almost independent of R. Therefore, Eq. (43) is cast into

i
∂

∂t
〈μR|�̂〉 =

∑
μ′R′

{
h0

μR,μ′R′ + F(t ) · (Rδμμ′

+ rμμ′ δ̄μμ′ )δRR′
}〈μ′R′|�̂〉. (67)

Now, the Peierls phase transform defined by

〈μR|�̂〉 = eiA(t )·R〈μR|�̂〉 (68)

brings Eq. (67) into the following equation for �̂μR ≡ 〈μR|�̂〉
as ∑

μ′R′
e−iA(t )·Rh̃μR,μ′R′ (t )eiA(t )·R′

�̂μ′R′ = i
∂

∂t
�̂μR, (69)

where

h̃μR,μ′R′ (t ) ≡ 〈μR|h̃(t )|μ′R′〉
= h0

μR,μ′R′ + F(t ) · rμμ′ δ̄μμ′δRR. (70)

Here, h̃(t ) is defined by

h̃(r, r′; t ) = 〈r|h̃(t )|r′〉
= δ(r − r′)h0(r) + F(t ) · χ(r, r′), (71)
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where

χ(r, r′) =
∑
μμ′R

〈r|μR〉rμμ′ δ̄μμ′ 〈μ′R|r′〉. (72)

The following equation

�̂μk(t ) ≡ 〈μk|�̂(t )〉 = âkμ(t ) (73)

is derived from Eq. (69), as shown in Appendix B, where |μk〉
represents a Bloch state. Thus, by taking account of Eq. (68),
�̂(r, t ) = 〈r|�̂(t )〉 becomes of the form

�̂(r, t ) = 1√
N

∑
μRk

〈r|μR〉ei[k+A(t )]·R âkμ(t )

=
∑
μk

ei[k+A(t )]·rUμ[k+A(t )](r) âkμ(t )

≈
∑
μk

ei[k+A(t )]·rUμ0(r)âkμ(t )

= 1√
N

∑
μRk

ei[k+A(t )]·r〈r − R|χμ〉〈χμ|ψ̂k(t )〉

= 1√
N

∑
Rk

ei[k+A(t )]·r〈r − R|ψ̂k(t )〉. (74)

Here, in the second equality, a periodic part of the Bloch func-
tion 〈r|μk〉 is introduced as Uμk(r), in the third equality, the
approximation of UμK(t )(r) ≈ Uμ0(r) is made to be consistent
with the spirit of the k · p model employed in Eq. (B6), and
in the fourth equality, Eqs. (19) and (B7) are employed and
the Wannier function 〈r|μR〉 is represented as 〈r − R|χμ〉 ≡
χμ(r − R).

It is evident that the gauge transformation

�̂(r, t ) = eiA(t )·r�̂ ′(r, t ) (75)

of Eq. (74) is attributed to the Peierls phase transform of
Eq. (68), where

�̂ ′(r, t ) = 1√
N

∑
Rk

eik·rψ̂k(r − R, t ). (76)

Applying this to Eqs. (59) and (60), these become

M(r, t ) = μBge〈�̂ ′†(r, t )s�̂ ′(r, t )〉g (77)

and

M (2)(r, t ) = μBRe[〈�̂ ′†(r, t ){l + r × A(t )}�̂ ′(r, t )〉g], (78)

respectively. It is seen in Eq. (78) that the operator l for the
IFE is altered by an additional contribution depending on A(t ),
though the physical quantity M (2)(r, t ) remains invariant with
respect to this gauge transformation.

Finally, the volume-averaged magnetization at time t

M̄ (sol)(t ) = M̄(t ) + M̄ (2)(t ) (79)

is shown below, where

M̄(t ) = 1

V

∫
dr M(r, t ), (80)

with M = M, M (2). Equation (77) becomes

M̄(t ) = μBge

V

∑
kμν�R

∫
dX χ∗

μ(X )sχν (X+�R)〈a†
kμ

(t )akν (t )〉g

≈ μBge

V

∑
kμν

ρkμν (t )〈μ|s|ν〉, (81)

where in the last equality just the Wannier functions at the
same site, namely, �R = 0, are taken account of for the
summation over �R and the density matrix of Eq. (21) is
introduced. Similarly, Eq. (78) ends up with

M̄ (2)(t ) = μB

V

∑
kμν

Re[ρkμν (t ){〈μ|l |ν〉 + 〈μ|r|ν〉 × K(t )}],

(82)

with K(t ) = k + A(t ). By numerically evaluating M̄ (sol)(t )
at each t , the temporal variance of it is examined, fol-
lowed by extracting the time-independent magnetization at the
asymptotic limit, M̄ (sol)(t → ∞). In actual calculations, the
expression of Eq. (35) for the density matrices is employed in
light of Eqs. (38) and (39).

III. RESULTS AND DISCUSSION

A. Floquet energy bands and Weyl node formation

For the purpose of the later discussion of induced mag-
netization, one shows the band structures of Floquet energy
Eα (k) that are calculated based on the theoretical framework
of Sec. II A. For the numerical calculations, the same mate-
rial parameters as those of Ref. [59] are employed; the band
gap of the original crystal Zn3As2 is set to be Eg = 0.0169
(0.46 eV). Hereafter, the conduction bands with Jz = ±1/2
and the heavy-hole bands with Jz = ±3/2 are denoted as e and
hh, respectively, and thus the associated Floquet sidebands
with N photons are represented by e(N ) and hh(N ), respec-
tively. In particular, attention is paid to the Floquet states of
e(0), e(−1), hh(0), and hh(+1) around the Fermi energy
EF = 0, which is set at the middle of the energy difference
between the original e and hh bands at the � point. It is likely
that the band of e(−1) crosses with that of hh(+1) in a certain
range of laser frequency ω and strength of electric field Fc to
form a pair of Weyl nodes on the kz axis, accompanying band
deformation. Strictly speaking, pairs of Weyl nodes manifest
themselves in many places in the BK, at which the Floquet
bands e(N ) and hh(N ′) intersect regardless of the magnitude
of ω( �= 0); for more detail, consult Fig. 6 of Ref [59].

Figure 1(a) shows the variance of locations of the Weyl
nodes at kW (+)

z and kW (−)
z on the kz axis for up-spin and down-

spin states of FWSM, respectively, as a function of Fc with
ω = 0.0147 (0.4 eV). Figure 1(b) shows the same as Fig. 1(a)
but as a function of ω with Fc = 0.0003 (1.54 MV/cm). It is
found that one Weyl node at kW (±)

z is annihilated with another
Weyl node formed at −kW (±)

z with an opposite chirality at
kW (±)

z = 0 where these are brought together. This shows a
topological phase transition to a trivial insulating phase with
the opening of a Floquet band gap. Another topological phase
transition to a nontrivial insulating phase at kW (±)

z = π would
be likely caused for ω > Eg as shown in Fig. 1(b), while this
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FIG. 1. Variance of locations of the Weyl nodes at kW (+)
z and

kW (−)
z on the kz axis for up-spin (denoted by red dots) and down-spin

(denoted by blue dots) states of FWSM, respectively. (a) kW (±)
z as

a function of Fc with ω = 0.0147 (0.4 eV). The axis of ordinate is
gauged in the unit of 1/dz. (b) The same as panel (a) but as a function
of ω with Fc = 0.0003 (1.54 MV/cm).

is not verified in Fig. 1(a), where kW (±)
z = 0.95 at Fc → 0

following an analytic model derived in Ref. [59]. The variance
of locations of the Weyl nodes is consulted in Sec. III B for
the discussion of the Fc and ω dependence of the induced
magnetization.

Figures 2(a) and 2(b) show bulk energy dispersions of E (k)
of up-spin and down-spin FWSM bands of e(−1) and hh(+1)
at kz = 0, respectively, where Fc = 0.0003 (1.54 MV/cm) and
ω = 0.0147 (0.4 eV) that is almost resonant with the band
gap Eg. The opening of Floquet band gap is confirmed in both
panels; in fact, these bands remain open besides kz = 0 as far
as −kW (±)

z < kz < kW (±)
z . It is seen that the up-spin Floquet

band of e(−1) looks almost degenerate with that of hh(−1),
accompanying the formation of a nodal ring reminiscent of the
Floquet nodal-line SM, in contrast with the down-spin Floquet
band showing the clear band gap formation. The difference
is attributed to the fact that optical transitions between bands
with down spin are more dominantly made than those with up
spin by the left-hand circularly polarized laser, as mentioned
in Sec. I. To be more specific, the band gap of the up-spin Flo-
quet band arises from an optical spin-orbit coupling, namely,
a spin-orbit coupling tsp reduced by a factor of J1(zc) with
zc = Fcdc/ω and dc ≡ dx = dy, while that of the down-spin
band is governed by an optical dipole coupling 
c(≡ 
x =

y), where tspJ1(zc) = 2.1 × 10−4 and 
c = 5.5 × 10−3 [59].
As ω increases from Eg, the dominance of the down-spin
bands becomes more suppressed and, eventually, the differ-
ence between these two would disappear for ω 
 Eg. Here is
one more comment on the nodal ring of the up-spin Floquet
band. The energy dispersion E (+)(k) at any kz has the similar
structure as that of Fig. 2(a) at kz = 0 as long as |kz| < kW (+)

z ,
apart from the fact that the positions of the rings shift upward
in energy from EF = 0 and the diameters of the rings decrease
as kz increases. Eventually, the ring converges to the Weyl
node with vanishing of the diameter. By connecting these
rings as functions of kz continuously, one can imagine that

FIG. 2. Bulk energy dispersion of E (±)(k) of FWSM bands of
e(−1) and hh(+1) at kz = 0 in the atomic units, generated by
the laser drive with circular polarization, where Fc = 0.0003 (1.54
MV/cm) and ω = 0.0147 (0.4 eV). Here, bands dominated rather by
the s-orbital (p-orbital) component are denoted by a red (blue) solid
line. The axis of abscissa kl is gauged in the unit of 1/dl with l = x, y.
(a) E (+)(k) in the kx − ky plane for the up-spin bands. (b) E (−)(k) in
the kx − ky plane for the down-spin bands. (This figure is quoted from
Fig. 7 of Ref. [59] after some processing.)

the intersection between e(−1) and hh(+1) bands forms a
manifold similar to a spheroid in the BZ with the kx and ky

axes as two principle axes with the same length and a line
connecting a pair of Weyl nodes, namely, the kz axis as the
third axis.

Hereafter, it is understood that an open boundary condition
is imposed on the Floquet eigenvalue equation of Eq. (12) in
the y direction in place of the periodic one, where an electron
is confined within a finite range of y, while moving freely in
the x − z plane. The resulting band of α state is represented as
Eα (k̄) with k̄ = (kx, kz ) to make it distinct from Eα (k), where
Eα (k̄) is considered as a projection of Eα (k) onto the kx − kz

plane. The confinement of electron results in the formation
of surface states within the band gaps seen in Figs. 2(a) and
2(b). Figure 3 is a schematic view of FWSM band structures,
E (+)(k̄) and E (−)(k̄), for the up-spin and down-spin states,
respectively, which is depicted based on the results of the
numerical calculations of Eq. (12) under the open boundary
condition. Figures 3(a) and 3(b) show the surface states pinned
to a pair of Weyl nodes at k̄

W (±) ≡ (0, kW (±)
z ) and −k̄

W (±)

and exhibiting a Fermi arc if all electrons are assumed to be
occupied below EF . Here it is also shown that the height of the
up-spin Weyl cones is much smaller than that of the down-spin
Weyl cones due to the same reason as the difference of the
band gap between Figs. 2(a) and 2(b). In Figs. 3(c)/3(d), the
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FIG. 3. Schematic view of band structures of FWSM for both
spin states. (a) Overview of the up-spin band with a surface state
(painted in red) pinned to a pair of Weyl nodes at ±k(W (+)

z (specified
in yellow), which are formed as intersections of Dirac cones (painted
in blue). (b) The same as panel (a) but for the down-spin band. (c) En-
ergy dispersions of the up-spin band E (+) as functions of kx , sliced at
kz = 0, kz with 0 < kz < kW (+)

z , and kz = kW (+)
z . The projected bulk

bands are painted in blue and the surfaces states are depicted by red
solid lines. (d) The same as panel (c) but energy dispersions of the
down-spin band E (−).

energy dispersion E (+)/E (−) of the up-spin/down-spin band
is sliced at three different kz’s, namely, kz = 0, kz located
between 0 and kW (+)

z /kW (−)
z , and kz = kW (+)

z /kW (−)
z , and these

sliced energy bands are shown as functions of kx. The range
of line segment in the kx axis that supports a surface state is
maximized at kz = 0, and more reduced with increasing kz

from 0 to kW (±)
z . Incidentally, connecting these line segments

in Fig. 3(c) continuously from −kW (+)
z to +kW (+)

z leads to a
manifold similar to an ellipse formed in the kx − kz plane;
obviously, this is nothing but the projection of the manifold
mentioned above for E (+)(k).

These surface states play decisive roles of generating
solenoid magnetization M̄ (sol)(t ) of Eq. (79) in this study,
as shown below. This is because the main part of the spin
magnetization M̄(t ) is caused due to the imbalance between
excited carrier densities in the up-spin band and those in the
down-spin band. Here, the degree of imbalance corresponds
to the degree of spin polarization, denoted as Ispin, which is
defined as the ratio of the spin difference to the total number

of electrons. Such imbalance is considered more conspicuous
than that in the bulk states, since most of the electrons in
the bulk still stay at the parent band hh(0) associated with
the ground state in spite of the intense optical excitation of
concern.

B. Surface magnetization

The excited electron densities at time t in the bulk and
surface are evaluated by the volume average density η(b)

ee (t )
and the surface average density η(s)

ee (t ), respectively. These are
the diagonal components of η(b)

μν (t ) and η(s)
μν (t ) defined in terms

of ρkμν (t ), as shown in Eqs. (C3) and (C5), respectively. The
surface magnetization is provided by replacing Eqs. (81) and
(82) by alternative expressions suitable for the generation of
the surface states, which is read as Eq. (C6), that is,

M̄ (sol)(t ) = μBRe
∑
μν

η(s)
μν (t )〈μ|ges + l + r × A(t )|ν〉. (83)

It is found that this is composed of the three contributions
from the spin magnetization, the orbital magnetization rel-
evant to the IFE, and the remaining term due to the gauge
correction. Here, the z component of it, M̄ (sol)

z (t ), is evaluated.
Figure 4(a) shows η(b)

ee (t )’s for both spins as functions of
t with the relaxation times introduced in Eqs. (38) and (39)
as T1 = 500 fs and T2 = 250 fs, respectively, where Fc =
0.0003 (1.54 MV/cm) and ω = 0.0147 (0.4 eV). The total
valence electron density of the crystal amounts to ne = 4.4 ×
1022 cm−3. The red and blue solid lines represent one-cycle
time (T ) average of these electron densities of down spin
and up spin, respectively, and Ispin ≈ 0.01 at t = 25T , where
one period equals T = 10.3 fs. Figure 4(b) shows η(s)

ee (t )’s for
both spins as functions of t , where surface electron states are
extracted from all of the calculated Floquet states numerically
by inspecting the degree of electron densities localized at the
outermost site in the y direction. The incorporated surface
states are shown in Figs. 4(c) and 4(d). It is remarked that,
for the purpose of comparison with η(b)

ee (t ) of Fig. 4(a), η(s)
ee (t )

of Fig. 4(b) is shown in the unit of cm−3 by dividing η(s)
ee (t )

defined in Eq. (C5) by the lattice constant dy = 3 Å in the y
direction instead of the usual unit of cm−2. Here, it is found
that Ispin ≈ 0.5 at t = 25T , which is much greater than that in
the bulk. The surface electron densities created by the drive
with the linear polarization show no spin difference between
both excited electron densities, as is clear (though not shown
here).

Figure 5(a) shows the calculated result of the induced sur-
face magnetization (represented by a solid black line), where
the one-cycle average value is represented by a solid red
line, and the magnetic induction, namely, the magnetization
multiplied by μ0, B(ind)

z (t ) ≡ μ0M̄ (sol)
z (t ), is gauged in the unit

of mT, where η(s)
μν (t ) appearing in Eq. (83) is redefined by

dividing by dy. It is found that the magnetization of the order
of 1 mT is induced in the present system. This strength seems
compatible with the rough estimate that η(s)

ee (t ) is about one
thousand times smaller than ne, where assuming all electrons
of the crystal are aligned as an ideal ferromagnet the magne-
tization of the order of 1 T is generated besides the IFE. In
passing, the strength of a refrigerator magnet is of the order
of mT. The detailed origins of the induced magnetization are
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FIG. 4. (a) Excited electron densities in the bulk η(b)
ee (t ) (in the

unit of cm−3) for both spins as functions of time t (in the unit of fs),
where Fc = 0.0003 (1.54 MV/cm) and ω = 0.0147 (0.4 eV). The
red and blue solid lines represent one-cycle time average of these
electron densities of down spin and up spin, respectively. (b) The
excited electron densities in the surface η(s)

ee (t ) (cm−3) for both
spins as functions of t (fs), where Fc = 0.0003 (1.54 MV/cm) and
ω = 0.0147 (0.4 eV). Here, these densities are gauged in the unit of
cm−3 rather than cm−2. For more detail, consult the text. (c) Surface
states incorporated with the calculation of η(s)

ee (t ) for the up spin,
represented by blue solid lines, are shown overlaid on E (+)(k̄) as a
function of kx with kz = 0. (d) The same as panel (c) but for the down
spin, represented by red solid lines, are shown overlaid on E (−)(k̄) as
a function of kx with kz = 0.

analyzed by examining the respective contributions from the
three different generation mechanisms, which are shown in
Figs. 5(b)–5(d). It is seen that the negative values of the spin
magnetization and the orbital magnetization, namely, the IFE,
are in harmony with the dominance of η(s)

ee (t ) of the down
spin with Jz = −1/2 over that of the up spin with Jz = 1/2,
as shown in Fig. 4(b). To be more precise, η

(s)
hh (t ) of the

down spin with Jz = −3/2 also contributes to these magneti-
zations, since the down-spin Floquet bands are formed by the
hybridization between the two bands with Jz = −1/2,−3/2
through both the spin-orbit and electric-dipole couplings. The
contributions of the IFE to B(ind)

z (t ) are always slightly smaller
than those of the spin magnetization regardless of Fc to the
extent examined. On the other hand, the magnetization due to
the gauge correction oscillates violently immediately after the

FIG. 5. (a) Surface magnetic induction B(ind)
z (t ) (in the unit of

mT), represented by a solid black line, as a function of time t (in
the unit of fs), where Fc = 0.0003 (1.54 MV/cm) and ω = 0.0147
(0.4 eV). Here, the one-cycle average value is represented by a solid
red line. For more detail, consult the text. (b) The same as panel (a),
but for the surface magnetization attributed to the spin magnetization.
(c) The same as panel (a), but for the surface magnetization attributed
to the orbital magnetization associated with the IFE. (d) The same as
panel (a), but for the surface magnetization attributed to the gauge
correction term.

excitation, but asymptotically becomes negligibly small. Such
a tendency of this correction term remains largely unchanged
regardless of Fc to the extent examined. On the other hand, it
would be worth mentioning here the induced magnetization
of bulk. According to numerical calculations of M̄ (sol)(t ) with
modification from Eq. (83) for the bulk, the induced mag-
netization is estimated to be about 40 mT at t = 25T as a
mere ideal maximum [92]. The most contribution comes from
the IFE, though both the spin magnetization and the gauge
correction have little effect.

Here, the surface magnetic induction of the IFE imparted
by B(ind)

z , which is represented as B(IFE)
z , is discussed in a

qualitative manner in terms of the expression of IFE based
on the Drude-Lorentz model. This is read as [81]

B(IFE)
z = −μ0n(s)

e (Fc)

2

ω(
ω2 − ω2

0

)2 + (γω)2
F 2

c , (84)
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where n(s)
e (Fc) represents a surface electron density; ω0 and

1/γ represent a resonance energy and a transverse relaxation
time, respectively. It is noted that the electrons occupied in the
surface states are composed of a portion of excited carriers in
the present FWSM system and thus the leading contribution
of n(s)

e (Fc) arises from F 2
c terms, namely, n(s)

e (Fc) ∝ F 2
c . This

implies that B(IFE)
z of concern would be dominated by the F 4

c

terms, differing from the conventional IFE depending on F 2
c .

Here, it would be appropriate to set ω0 equal to zero, since
the FWSM surface states are considered metallic. Thus, with
n(s)

e (Fc) ≈ 0.5 × 1019 cm−3, ω = 0.4 eV, Fc = 1.54 MV/cm,
and 1/γ = T2 = 250 fs, one obtains B(IFE)

z ≈ −2.5 mT. The
results of Fig. 5(c) are somehow consistent with this estimate.
Incidentally, the magnitude of it is about similar to that of a
disordered metal, though under a different optical condition
[76].

Next, the discussion is made on the Fc dependence of the
surface magnetization with ω = 0.0147 (0.4 eV). The vari-
ance of locations of the Weyl nodes for both spin states with
respect to Fc is shown in Fig. 1(a), where it is seen that the
Weyl node moves from the band center at kz = 0 toward the
band edge as Fc decreases. Figures 6(a) and 6(b) show η(s)

ee (t )
and B(ind)

z (t ) at Fc = 0.0001 (0.51 MV/cm), respectively, and
Figs. 6(c) and 6(d) show those at Fc = 0.0002 (1.03 MV/cm).
These correspond to Figs. 4(b) and 5(a) for Fc = 0.0003. The
projected Floquet bands E (k̄) in both cases of Fc look similar
to those of Figs. 4(c) and 4(d) besides the size of band gap
at kz = 0 (though not shown here). It is obvious that η(s)

ee (t ) at
Fc = 0.0002 is much more dominant over that at Fc = 0.0001,
which is reflected on the difference between B(ind)

z (t )’s in
both cases in a straightforward manner. It is noted that the
magnitude of B(ind)

z (t ) at Fc = 0.0002 is noticeably larger than
that at Fc = 0.0003. This is understood from the perspective
of the degree of spin polarization Ispin, that is, Ispin ≈ 1 at
Fc = 0.0002 even though η(s)

ee (t ) for the down spin is of a
comparable order with that at Fc = 0.0003. As Fc increases
from 0.0003, the magnitude of B(ind)

z (t ) becomes smaller. Fur-
ther, the direction of it changes to the positive sign when Fc

exceeds around 0.0004, since the pair of Weyl nodes of the
down spin is annihilated at kz = 0 to cause the disappearance
of the surface states, as shown in Fig. 1(a).

As regards the ω dependence of the surface magnetization
with Fc = 0.0003 (1.54 MV/cm), the variance of locations
of the Weyl nodes for both spin states with respect to ω is
shown in Fig. 1(b), where it is seen that the Weyl node moves
from the band center toward the band edge as ω increases.
Figure 7(a) shows B(ind)

z (t ) at ω = 0.0110 (0.3 eV). Here, the
up spin band forms a pair of Weyl nodes, whereas a gap
still opens in the down spin band, accompanying a trivial
insulating phase, as seen in Figs. 7(b) and 7(c). This is con-
sistent with the observation that the resulting magnetization is
oriented in a positive direction with much smaller magnitude
than that seen in Fig. 5(a) at ω = 0.4 eV.

As ω increases above the band gap Eg = 0.46 eV, the
picture changes dramatically, as shown for ω = 0.5 eV
in Fig. 8. As mentioned in Sec. III A, the Floquet bands
of Ee(−1)(k̄) and Ehh(+1)(k̄) form the pairs of Weyl nodes
at kz = k(±)

z ,−k(±)
z accompanying the surface states for

ω < Eg. Here, bands are arranged in ascending order in
energy as hh(0), e(−1), hh(+1), and e(0) in the whole

FIG. 6. Fc dependence of the excited electron densities in the
surface η(s)

ee (t ) and the surface magnetic induction B(ind)
z (t ) with

ω = 0.0147 (0.4 eV). (a),(b) The same as Fig. 4(b) and Fig. 5(a),
respectively, but for Fc = 0.0001 (0.51 MV/cm). (c),(d) The same
as Fig. 4(b) and Fig. 5(a), respectively, but for Fc = 0.0002 (1.03
MV/cm).

two-dimensional BZ. However, when ω > Eg, it is ex-
pected that these bands are rearranged in the order of
e(−1), hh(0), e(0), and hh(+1) in the limited region of the
BZ including k̄ = 0. Figure 8(c) for the down-spin bands is
the case. Here, a pair of bands of hh(+1) and e(0) repel with
each other strongly, forming a conspicuous anticrossing due
to the optical dipole coupling without surface states, and so
do another pair of bands of hh(0) and e(−1). Further, the
bottom of band e(0) lies above the top of band h(0), forming
a band gap around EF = 0. In the remaining region of the
BZ, a band gap is still formed by the bands of e(−1) and
hh(+1) around EF = 0, supporting surface states extending
to the edges of the BK. As regards the up-spin bands seen
in Fig. 8(b), the band rearrangement does not occur yet, and
the bottom of band hh(+1) lies above the top of band e(−1),
which reduces the region of the BK where the surface states
are allowed to exist. The resulting magnetization is shown in
Fig. 8(a) and this is larger than that in Fig. 6(d), presumably
due to enhancement of Ispin.

Roughly speaking, the magnetization B(ind)
z (t ) is consid-

ered proportional to the product of η(s)
ee (t ) of down-spin
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FIG. 7. ω dependence of the surface magnetic induction B(ind)
z (t )

with Fc = 0.0003 (1.54 MV/cm). (a) The same as Fig. 5(a) but
for ω = 0.0110 (0.3 eV). (b) Surface states incorporated with the
calculation of B(ind)

z (t ) for the up spin, represented by blue dots, sim-
ilar to Fig. 4(c). (c) Surface states incorporated with the calculation
of B(ind)

z (t ) for the down spin, represented by red dots, similar to
Fig. 4(d).

electrons and an area of the associated surface state AW , where
AW corresponds to the area in the BZ that is painted in red
in Figs. 3(b). Assuming that the shape of the surface state in
the BZ is an ellipse, as mentioned in Sec. III A, this area is
approximately represented as

AW = πKxKz

cos θW
, (85)

FIG. 8. ω dependence of the surface magnetic induction B(ind)
z (t )

with Fc = 0.0003 (1.54 MV/cm). (a) The same as Fig. 7(a) but for
ω = 0.0184 (0.5 eV). (b) The same as Fig. 7(b) but for ω = 0.0184
(0.5 eV). (c) The same as Fig. 7(c) but for ω = 0.0184 (0.5 eV).

where Kz is half of the separation of the pair of Weyl nodes,
given by Kz = kW (−)

z , Kx is half of the line segment in the kx

axis that supports the down-spin surface state at kz = 0, and
θW is an intersection angle between the down-spin surface
plane in the BZ and the kx − kz plane. That is,

B(ind)
z (t ) ∝ η(s)

ee (t )AW . (86)

This is considered correct under restricted conditions that ω ≈
Eg and Fc � 0.0003, corresponding to the cases of Figs. 5(a),
6(a), and 6(c). Otherwise, the expression of AW can be mod-
ified to a certain extent and B(ind)

z (t ) would be of a more
complicated form. Actually, anticrossings formed in the re-
gion of ω > Eg hinder the formation of the surface state
around kx = 0 in part, which corresponds to the case of
Fig. 8(a). However, the separation Kz would still play an
important role in the formation of magnetization, since Kz

becomes greater with the increase of ω, as seen in Fig. 1(b). In
summary, it is speculated that Kz is a crucial factor governing
the surface magnetization. Incidentally, this factor also plays
a key role of the anomalous Hall effect that is expected to
be realized in the present FWSMs [4,23–27], though this is
beyond the scope of this paper.

IV. CONCLUSIONS

The nonmagnetic and narrow-gap semiconductor Zn3As2

is driven by a left-hand circularly polarized continuous-wave
laser with a nearly resonant frequency to the band gap to
produce the two types of FWSM phases distinguished by
the spins. The numerical evaluation of the transient nonequi-
librium dynamics of the concerned system shows that the
FWSM surface state formation accompanies the surface mag-
netization composed of the spin polarization and the orbital
magnetization corresponding to the IFE with the gauge cor-
rection. The magnitude and direction of the magnetization
varies sharply, depending on the intensity and frequency of
the driving laser. It is stressed that the surface magnetization
found here is more pronounced, when the laser has a nearly
resonant frequency, and this is strong enough to form distinct
Weyl pairs in the BK and to make the occupied electrons in the
surface states highly spin polarized. Such an intriguing phe-
nomenon would be measurable by virtue of the longitudinal
magneto-optic Kerr effect appropriate for detecting surface
magnetization [93–95]. However, it is remarked that, in actual
experiments, the high-intensity laser employed here would
possibly lead to effects of disturbing the predicted magneti-
zation due to heating, spin relaxation through a coupling with
phonons and a spin-spin interaction, band gap renormaliza-
tion, and so on, which are not considered here.

The findings in this paper have the following significance.
The laser-induced magnetization presented here is a departure
from conventional research on photoinduced magnetization
[60,69–71,75–80] in that, in the former, the surface magne-
tization separated from bulk magnetization is enhanced by
spin magnetization due to high-density resonant excitation in
addition to the IFE, while, in the latter, this is due to spin flips
simply caused by the IFE in coordination with a strong spin-
orbit coupling. Such induced magnetization is expected to
provide a new platform for the studies of magnetotransport in
topological materials. For instance, this would enable optical
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control of chiral anomaly that is still a less studied issue [96].
To be more specific, it is likely that the surface magnetization
is further fed back to an interaction with electronic states of
a pair of FWSMs to form Landau levels in the kz direction
in a realistic situation, though this is disregarded in the the-
oretical model employed here. Application of an additional
electric field along the z direction is considered to exhibit
negative magnetic resistance due to the chiral anomaly that
is dominantly shown in a relatively low magnetic field region
corresponding to that evaluated here [24,28–31].

Finally, one more comment is made on the advantage of the
theoretical method developed here to deal with the nonequilib-
rium dynamics of the Floquet topological systems. To deepen
the understanding of these systems in nonequilibrium and
to further explore the underlying physics of it, an approach
from the transient quantum dynamics accompanying real car-
rier excitation is inevitably required in addition with just the
analyses of Floquet band structures. In this study, by intro-
ducing the creation and annihilation operators of a fermionic
quasiparticle, represented as b̂†

kα
(t ) and b̂kα (t ), respectively, a

density matrix ρkμν (t ) = 〈â†
kμ

(t )âkν (t )〉g can be represented in
a closed form without numerically solving the optical Bloch
equations. Here, the fermionic quasiparticle is considered as
a composite particle in which laser-electron interactions are
fully renormalized to a band electron in terms of the Floquet
base. Thus it is expected that these fermionic quasiparticle
operators can be employed to facilitate the description of the
nonequilibrium dynamics of the topological materials driven
by a laser pulse with a relatively long temporal width of the
order of ps. Actually, a variety of the Keldysh Green’s func-
tions [97] are described in closed forms in a nonperturbative
manner with respect to a laser-electron interaction and these
are specifically applied to high-harmonic generation, high
density excitation, etc. Further, based on these operators, it is
also possible to construct the Green’s functions incorporating
electron correlation effects for examining many-body effects
of Floquet topological materials that still remain unexplored.

APPENDIX A: MISCELLANEOUS RELATIONS DERIVED
FROM THE FLOQUET EIGENVALUE EQUATIONS

The Floquet eigenvalue equations are represented by the
following equations as∑

ν

LFμν (k, t )ϕν,kα (t ) = Eα (k)ϕμ,kα (t ) (A1)

and ∑
νn′

LF μn,νn′ (k)Cνn′,kα = Eα (k)Cμn,kα, (A2)

given by Eqs. (12) and (14), respectively, where

ϕμ,kα (t ) =
∑

n

einωtCμn,kα. (A3)

There are the unitarity relations regarding the matrix {Cμn,α′ },
given by ∑

μn

C∗
μn,kαCμn,kα′ = δαα′ (A4)

and ∑
α

Cνn,kαC∗
μn′,kα = δμνδnn′ . (A5)

Here, the orthonormalization relation for ϕν,kα (t ) is given by

1

T

∫ T

0
dt

∑
μ

ϕ∗
μ,kα (t )ϕμ,kα′ (t ) = δαα′ (A6)

and the associated closure relation is given by

1

Nph

∑
α

ϕν,kα (t )ϕ∗
μ,kα (t ) = δνμ, (A7)

where Nph = ∑
Nα

1. This is readily verified as follows:

1

Nph

∑
α

ϕν,kα (t )ϕ∗
μ,kα (t ) = 1

Nph

∑
α,n,n′

ei(n−n′ )ωtCνn,kαC∗
μn′,kα

= 1

Nph

∑
n,N

eiNωtδνμδN0

= δνμ

1

Nph

∑
n

1 = δνμ. (A8)

Further, it is shown that Eq. (A1) becomes∑
ν

LFμν (k, t )[eiNωtϕν,kα (t )] = [Eα (k) + Nω][eiNωtϕμ,kα (t )]

= Eα(N )(k)[eiNωtϕμ,kα (t )],

(A9)

with Eα(N )(k) ≡ Eα (k) + Nω, and thus one obtains the rela-
tion that

eiNωtϕν,kα (t ) = ϕν,kα(N )(t ). (A10)

Here, it is understood that the photon sideband α is repre-
sented as α0(Nα ), where α0[≡ α0(0)] and Nα stand for a parent
band and the number of the sideband, respectively. Further,
α(N ) ≡ α0(Nα + N ) and Eα(N )(k) = Eα0 (k) + (Nα + N )ω. In
view of Eq. (A3), Eq. (A10) is recast into

ϕν,kα (t ) =
∑

n

einωtCνn,kα = e−iNωtϕν,kα(N )(t )

=
∑

n

ei(n−N )ωtCνn,kα(N )

=
∑

n′
ein′ωtCν(n′+N ),kα(N ), (A11)

leading to the relation that

Cνn,kα = Cν(n+N ),kα(N ). (A12)

According to Eq. (23), given by

b̂†
kα

(t ) =
∑

μ

â†
kμ

(t )ϕμ,kα (t )θ (t ), (A13)

the operator b̂†
kα

(t ) pertinent to the creation of the Floquet
quasiparticle is subject to the relation

eiNωt b̂†
kα

(t ) = b̂†
kα(N )(t ) (A14)
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due to Eq. (A10). By employing Eqs. (A3) and (A5),
Eq. (A13) is rewritten as∑

α

b̂†
kα

(t )e−inωtC∗
νn,kα =

∑
αμ

â†
kμ

(t )e−inωtϕμ,kα (t )C∗
νn,kαθ (t )

=
∑
αμn′

â†
kμ

(t )ei(−n+n′ )ωtCμn′,kαC∗
νn,kαθ (t )

= â†
kν

(t ). (A15)

Hence, in view of Eqs. (A14) and (A12), the inverse-
transformed relation from Eq. (A13) is obtained as

â†
kν

(t ) =
∑
α(−n)

b̂†
kα(−n)(t )C∗

ν0,kα(−n)

=
∑

α

b̂†
kα

(t )C∗
ν0,kα. (A16)

Here, the matrix element HFλμ(k, t ) is rewritten in terms of
the Floquet eigenstates. One begins with Eq. (A1) of the form

∑
ν

HFλν (k, t )ϕν kα (t ) = ϕλ,kα (t )Eα (k) + i
dϕλ,kα (t )

dt
. (A17)

Multiplying the left-hand side of this by ϕ∗
μ,kα (t ), followed by

taking the summation over α, leads to

1

Nph

∑
να

HFλν (k, t )ϕν,kα (t )ϕ∗
μ,kα (t ) = HFλμ(k, t ), (A18)

where Eq. (A7) is employed. On the other hand, the right-hand
side of Eq. (A17) becomes

1

Nph

∑
α

(
ϕλ,kα (t )Eα (k)ϕ∗

μα (t ) + i
dϕλ,kα (t )

dt
ϕ∗

μ,kα (t )

)

= 1

Nph

∑
α,n,n′

ei(n−n′ )ωt [Eα (k) − nω]Cλn,kαC∗
μn′,kα

= 1

Nph

∑
α,n,N

e−iNωt Eα(−n)(k)Cλ0,kα(−n)C
∗
μN,kα(−n)

= 1

Nph

∑
α,n

Eα(−n)(k)Cλ0,kα(−n)ϕ
∗
μ,kα(−n)(t )

= 1

Nph

∑
n

∑
α

Eα (k)Cλ0,kαϕ∗
μ,kα (t )

=
∑

α

Eα (k)Cλ0,kαϕ∗
μ,kα (t ), (A19)

where Eqs. (A3) and (A12) are employed. Thus one obtains

HFμλ(k, t ) =
∑

α

Eα (k)Cλ0,kαϕ∗
μ,kα (t ) (A20)

and this is also rewritten as

HFλμ(k, t ) = H∗
Fμλ(k, t )

=
∑

α

Eα (k)C∗
μ0,kαϕλ,kα (t ). (A21)

Finally, the following relation is noted as

Iμ(−1)nCμn,kα = Cμn,−kα Ĩkα, (A22)

where Iμ and Ĩkα represent the parity of band μ and a constant
phase factor with |Ĩkα| = 1, respectively. For more detail, con-
sult the Supplemental Material [91]. In particular, Ĩk0α plays
a role of the parity of the time-glide spatial inversion [44,45]
at k = k0, where k0 represents a high-symmetry momentum
equal to G/2 with G a reciprocal lattice vector satisfying
G · R = 2nπ with n an integer.

APPENDIX B: DERIVATION OF EQ. (73)

Equation (69) is rewritten in the Bloch representation,
where the Wannier state |μR〉 is represented in terms of the
Bloch state |μk〉 as

|μR〉 = 1√
N

∑
k

e−ik·R|μk〉, (B1)

with k as the Bloch momentum and N the number of the sites.
In light of the fact that Eq. (69) is expressed as∑

μ1R1μ2R2μ′k′
〈μk|μ1R1〉e−iA(t )·R1 h̃μ1R1,μ2R2 (t )eiA(t )·R2

×〈μ2R2|μ′k′〉〈μ′k′|�̂〉 = i
∂

∂t
〈μk|�̂〉, (B2)

one obtains the following equation as∑
μ′k′

〈μK(t )|h̃(t )|μ′K ′(t )〉�̂μ′k′ = i
∂

∂t
�̂μk, (B3)

with K(t ) ≡ k + A(t ), K ′(t ) ≡ k′ + A(t ), and �̂μk ≡
〈μk|�̂〉, where, in view of Eq. (B1), the relations of∑

μ1R1

〈μk|μ1R1〉〈μ1R1|e−iA(t )·R1 = 〈μK(t )| (B4)

and ∑
μ2R2

eiA(t )·R2 |μ2R2〉〈μ2R2|μ′k′〉 = |μ′K ′(t )〉 (B5)

are employed. Furthermore, the Hamiltonian matrix element
of Eq. (B3) becomes

〈μK(t )|h̃(t )|μ′K ′(t )〉
=

∫
dr

∫
dr′e−iK·rU ∗

μK(t )(r)h̃(r, r′; t )eiK ′ ·r′
Uμ′K ′(t )(r

′)

≈ 〈Uμ0(r)|e−iK(t )·rh0(r)eiK(t )·r|Uμ′0(r)〉δkk′

+
∫

dr
∫

dr′e−iK·rU ∗
μ0(r)F(t ) · χ(r, r′)eiK ′·r′

Uμ′0(r′)

= 〈χμ(r)|e−iK(t )·rh(r, t )eiK(t )·r|χμ′ (r)〉δkk′ . (B6)

In the first equality, Eq. (71) is employed and the periodic
part of the Bloch wave function 〈r|μK(t )〉 is represented as
UμK(t )(r). In the last two equalities, this is replaced by

Uμ0(r) = 1√
N

∑
R

χμ(r − R), (B7)
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following the conventional recipe of the k · p perturbation
theory, where a Wannier function is introduced as χμ(r) =
〈r|μ〉 and 〈r|μR〉 is represented as 〈r|μR〉 = 〈r − R|χμ〉 =
χμ(r − R). The resulting expression is in agreement with
Hμμ′ (k, t )δkk′ of Eq. (20). By comparing Eq. (B3) with
Eq. (20), one comes to the conclusion that �̂μk(t ) = âkμ(t )
given in Eq. (73).

APPENDIX C: EXPRESSIONS
FOR THE SURFACE MAGNETIZATION

Equations (81) and (82) are rewritten to conform to the
surface magnetization. First, the operator âkμ(t ) of Eq. (73)
is read as

âkμ(t ) = 〈μk|�̂(t )〉
=

∑
k̄

′
Ry

〈μk|μk̄
′
Ry〉〈μk̄

′
Ry|�̂(t )〉

= 1√
Ny

∑
Ry

e−ikyRyα̂k̄Ryμ
(t ), (C1)

with Ny the number of sites in the y direction, where an
alternative operator in the partial site representation α̂k̄Ryμ

(t )

is defined as 〈μk̄Ry|�̂(t )〉. Thus the density matrix of Eq. (21)
is recast into

ρkμν (t ) = 1

Ny

∑
Ry�Ry

e−iky�Ry
〈
α̂

†
k̄Ryμ

(t )α̂k̄(Ry−�Ry )ν (t )
〉
g
. (C2)

The spatial average density matrix in the bulk is given by

η(b)
μν (t ) = 1

V

∑
k

ρkμν (t ) = 1

V

∑
k̄Ry

ρ ′̄
kRyμν

(t ), (C3)

where

ρ ′̄
kRyμν

(t ) = 〈
α̂

†
k̄Ryμ

(t )α̂k̄Ryν
(t )

〉
g, (C4)

and the summation over k is taken in the whole BZ in the
first equality. On the other hand, it is necessary to evaluate the
corresponding density matrix in the surface, defined as

η(s)
μν (t ) = 1

Sxz

∑
k̄

(
ρ ′̄

k0μν
(t ) + ρ ′̄

kLyμν
(t )

)
, (C5)

with Sxz a surface area in the x − z plane, where the summa-
tion over k̄ is taken in the limited area of the two-dimensional

BZ where surface states are present. Just both outermost sites
in the y direction, namely, Ry = 0 and Ly, are taken in the
density matrix of Eq. (C4); Ly represents the size of the crystal
in the y direction. It is remarked that ρ ′̄

kRyμν
(t ) is given by

converting Eqs. (35)–(39) to the corresponding expressions in
the partial-site representation.

Eventually, the surface magnetization is provided by

M̄ (sol)(t ) ≈ μBRe
∑
μν

η(s)
μν (t )〈μ|ges + l + r × A(t )|ν〉. (C6)

Hence it is found that this arises from the spin magnetization
(ges), the orbital magnetization (l ) relevant to the IFE, and the
remaining term [r × A(t )] due to the gauge correction. Here,
it is noted that the term

∑
k ρkμν (t )〈μ|r|ν〉 × k, which is seen

in Eq. (82), is neglected. This is because the leading contribu-
tion of the polarization coherence f (t ) ≡ ρkμν (t ) with μ �= ν

arises from the linear optical process with respect to the laser
field F(t ), and most of the dipole transitions are effective only
when the almost on-resonant condition of ω ≈ Eg ≈ �μν (k)
is met, namely, in the vicinity of the � point, where �μν (k)
represents the energy difference between bands μ and ν. This
statement leads to the assumption that the associated induced
magnetization vanishes in the asymptotic limit of time.

Below, this is verified in more detail. The procedure of
taking the infinite limit of t on the nonsingular function f (t ) in
the interval [0,∞) is replaced by another procedure of taking
a limit of an infinitesimal value of ε, which is given by

lim
t→∞ f (t ) = lim

ε→+0
ε

∫ ∞

0
dt e−εt f (t ). (C7)

This equality is simply verified by taking a partial differentia-
tion with respect to t in the right-hand side. Given

f (t ) =
∑

n

eiωnt fn, (C8)

with ωn �= 0 for n �= 0 and ω0 = 0, it is shown that

lim
t→∞ f (t ) = lim

ε→+0

∑
n

fn
ε

ε − iωn
= f0, (C9)

implying that all of the oscillating terms of f (t ) vanish asymp-
totically and just a constant contribution f0 is extracted. Since
the leading term of f (t ) is linear in F(t ), as stated above, f0

is considered to almost vanish. Besides, it is remarked that
there would possibly remain small nonzero contributions due
to higher-order optical processes just in the vicinity of k = 0.
Therefore, it is concluded that

∑
k ρkμν (t )〈μ|r|ν〉 × k ≈ 0 in

Eq. (82).
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