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We analyze the polarization of nuclear spins in a quantum dot induced by a single-electron spin that is
electrically driven to perform coherent Rabi oscillations. We derive the associated nuclear-spin polarization rate
and analyze its dependence on the accessible control parameters, especially the detuning of the driving frequency
from the electron Larmor frequency. The arising nuclear-spin polarization is related to the Hartmann-Hahn effect
known from the NMR literature with two important differences. First, in quantum dots, one typically uses a
micromagnet, leading to a small deflection of the quantization axes of the electron and nuclear spins. Second,
the electric driving wiggles the electron with respect to the atomic lattice. The two effects, absent in the traditional
Hartmann-Hahn scenario, give rise to two mechanisms of nuclear-spin polarization in gated quantum dots. The
arising nuclear-spin polarization is a resonance phenomenon, achieving maximal efficiency at the resonance of
the electron Rabi and nuclear Larmor frequency (typically a few or a few tens of MHz). As a function of the
driving frequency, the polarization rate can develop sharp peaks and reach large values at them. Since the nuclear
polarization is experimentally detected as changes of the electron Larmor frequency, we often convert the former
to the latter in our formulas and figures. In these units, the polarization can reach hundreds of MHz/s in GaAs
quantum dots and at least tens of kHz/s in Si quantum dots. We analyze possibilities to exploit the resonant
polarization effects for achieving large nuclear polarization and for stabilizing the Overhauser field through
feedback.
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I. INTRODUCTION

Spin qubits in semiconducting quantum dots [1] are
pursued as promising qubit hosts [2,3]. The advantage of
semiconducting spin qubits is that they can be controlled
electrically. For example, single-qubit gates exploit elec-
tric dipole spin resonance (EDSR) where an oscillating
electric field drives spin rotations through either the mate-
rial spin-orbit interaction [4,5] or a designed micromagnet
[6,7]. The manipulation thus proceeds by applying a res-
onant radio-frequency (rf) field through local gates instead
of a global field typical for electron spin resonance (ESR)
experiments.

Since the first experiments with gated spin qubits, it has
been routinely observed that some form of nuclear spin
polarization often accompanies electrical manipulation [8,9]
including a resonant driving [5,10]. Since in semiconductors
nuclear spins have a strong impact on spin qubits, limiting
their lifetime and coherence [11–16], a lot of research went
into understanding the electron-nuclear spin interactions (see,
for example, the reviews in Refs. [17–20] and the references
therein). A possible control of nuclear spins through the aris-
ing nuclear polarization received particular attention [13,21–
25]. While a certain degree of control was demonstrated
[26–28], overall it remained limited [29–32] and the large

nuclear noise persists as the major issue of III-V materials to
be dealt with [33–36].1

We revisit here the nuclear spin polarization induced by
an EDSR-driven and coherently precessing electron spin in
an isolated quantum dot. We consider the coherent regime
with the electron spin Rabi frequency large compared to the
relevant decay times, either the electron lifetime in the dot
or its spin Rabi decay time. This regime of well-defined
Rabi rotations (or strong driving) is the essential difference
to previous works on this topic [22,45,46] which implicitly or
explicitly considered the limit of weak driving.2

The physics’ essence is closely related to the Hartmann-
Hahn resonance [47], well known from nuclear magnetic
resonance (NMR): Dynamical nuclear spin polarization

1Nuclear spins are one of the main reasons to switch from element–
III-V to element-IV quantum dots. However, even here nuclear spins
might still remain as a performance limit of spin qubits made with
electrons [37,38] as well as holes [39]. Since our focus is on gated
semiconducting dots manipulated electrically, we will make only
sporadic comments to works on self-assembled dots accessed op-
tically, where the nuclear-spin-control program continues unabated
[40–44].

2See especially footnote [18] in Ref. [45].
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FIG. 1. DNSP in a GaAs quantum dot. The measured data
(points) show the polarization rate observed in an EDSR-driven
single-electron quantum dot. The three color curves plot Eq. (45) for
the three isotopes of GaAs as given in the plot legend. The following
parameters were used in the evaluation of the theory expressions:
External field B = 1 T, Rabi frequency at resonance 6.5 MHz, pulse
time Tpulse = 1μs, cycle time Tcycle = 20μs, dot displacement d =
0.5 nm, dot in-plane size l = 34 nm, dot out-of-plane size lz = 10
nm, longitudinal magnetic field gradient ∇||B = 1 T/μm, and trans-
verse magnetic field gradient ∇⊥B = 0.3 T/μm. Finally, we used
energy density G� with a Lorenzian profile and included an ad-
ditional smearing of 2π × 250 kHz according to the discussion in
Sec. V. For better comparison to the data, the theoretically calculated
rates were multiplied by 1/2.

(DNSP)3 arises when the Rabi frequency of the driven elec-
tron is equal to the Larmor frequency of nuclear spins.4

However, important differences preclude using the existing
NMR results: (1) since the electron-spin driving is electrical,
the electron shifts in space with respect to the atomic lattice;
(2) there is often a micromagnet gradient giving dispersion to
nuclear Larmor frequencies and spin quantization axes; and
(3) unlike the dipole-dipole interaction relevant in NMR, the
electron-hyperfine spin-spin interaction is isotropic, preserv-
ing the total spin. As an illustration of the difference, if the
electron is driven purely magnetically (ESR) and the spin
quantization axes of all nuclei and as well as the electron

3In line with the literature on spin qubits, we will use the name
“dynamical nuclear spin polarization” (DNSP) rather than the ‘dy-
namical nuclear polarization’ (DNP) used in the NMR community.

4Since the effect exists in several flavors, it might be useful to
mention further names that are used: The original work, Ref. [47],
considered two different nuclear species, both of which are driven.
The spin “cross-polarization” then arises when their Rabi frequencies
are equal, a condition called also “double resonance” [48]. Reference
[49] coined the acronym “NOVEL” for the variant where one of the
spins is electronic, being driven, and the other is nuclear, not driven.
This is the situation we consider in a quantum dot.

are collinear, the DNSP effects that we describe would not
be present.5

The paper focuses on a detailed derivation of the DNSP
rate, but it also contains measured data on it (Fig. 1). The
derivation is presented in Secs. II–IV with auxiliaries dele-
gated to Appendixes A–L. The main result is the polarization
rate given in Eq. (45a). It is derived for a generic material
(we present theory plots for GaAs and Si), the electron spin
1/2,6 and nuclear spins of arbitrary magnitude and isotopic
composition. The effects that we describe here are resonance
phenomena and very sharp resonance peaks result in the the-
ory if applied naively. When fitting experimental results, one
needs to account for additional ‘smearing’ effects as discussed
in Sec. V. In Sec. VI, we analyze the dependence of the polar-
ization rate on the detuning from the resonance to implement
feedback to control the nuclei, similarly to previous works
along this line [22,27,28,45,46,50].

We uncover two mechanisms of the DNSP: The first is
due to the electron spatial displacement due to the electric
field, the second due to the misalignment of the quantiza-
tion axes for the electron and the nuclei induced by the
micromagnet magnetic-field gradient. The two mechanisms
coexist and interfere, making the polarization-rate depen-
dence on parameters involved. Nevertheless, in GaAs with the
Hartmann-Hahn resonance condition fulfilled, the polariza-
tion rate can reach hundreds of MHz per second (we convert
the nuclear polarization to the change of the electron preces-
sion frequency due to the induced Overhauser field).

An important question is whether one expects sizable
DNSP in natural Si. While the rates are orders of magnitude
smaller than in GaAs, the effect might be observable because
of longer spin coherence times in Si. We estimate that the rates
can reach tens of kHz/s, and even more in smaller dots. On
the other hand, our estimates given in Sec. VI C suggest that,
unlike in GaAs, the arising DNSP does not appreciably affect
gate fidelities in Si.

Concerning the experiment, the measurements were per-
formed by driving a single electron spin in a double dot GaAs
sample with a micromagnet using the Pauli spin blockade
as the spin detection. While we find the qualitative corre-
spondence to the theory satisfactory, the measured data are
noisy and do not show clear resonance peaks. We believe
that this is because of strong feedback: The polarized nuclear
spins change the DNSP rate by changing the EDSR resonance
frequency. It is only through compensating for this effect in
the experiment (that is, readjusting the driving frequency to
the actual value of the hyperfine field) that polarization rates
could have been measured. The compensation precision is
limited and, therefore, the correspondence of the theory and
measurements is only qualitative concerning the shape of the
curve for the DNSP rate. On the other hand, the magnitude of

5However, we reason that such a highly idealized situation does not
describe realistic experiments even if they do not employ micromag-
nets. The DNSP arises, and our formulas apply also in this scenario;
see Sec. V for details.

6The formula covers also the case of a hole spin, if the hole-spin–
nuclear-spin interaction tensor is known. We discuss the hole-spin
scenario in Appendix I.
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the observed rate aligns with the theory almost without any
fitting, using the material constants and parameters of the dot
obtained independently.

II. ELECTRON SPIN COUPLED TO ENSEMBLE
OF NUCLEAR SPINS

We consider an electron confined in a quantum dot inter-
acting with nuclear spins of the atoms of the semiconducting
host. We now list the elements of the problem.

A. Quantum dot

On top of a homogeneous field of a solenoid coil, a
micromagnet fabricated nearby the quantum dot adds an in-
homogeneous component, together resulting in a spatially
dependent magnetic field B(x, y, z). For the DNSP rates stud-
ied here, one can neglect the spin-orbit effects (both from the
intrinsic spin-orbit interactions and from the magnetic field
inhomogeneity) on the electron wave function and take it as
separable to the spin part and the orbital part. We take the
latter as

�(r, z) = 1√
π l

exp[−(r − r0)2/2l2]ψ (z). (1)

The Gaussian form in the in-plane (the 2DEG plane) coor-
dinates (x, y) ≡ r corresponds to harmonic confinement with
the scale l and the minimum at r0. Together with the effective
mass m, the length scale l defines the in-plane orbital energy
h̄2/ml2. The wave-function profile along the coordinate z (out-
of-plane), ψ (z), will not be important and is left unspecified
except of assigning it a corresponding length scale lz. With
that, we define the quantum dot effective volume VD = 2π l2lz
and the effective number of nuclei within the quantum dot
Ntot = VD/v0 (see Appendix A for the definition of VD and
the definition motivation). Here v0 = a3

0/8 is the volume per
atom in a zinc-blende or diamond lattice. Ntot counts all atomic
nuclei, irrespective of their spin. The spin depends on the
isotope. Introducing the isotope fractions φi, the number of
atoms of isotope i in the dot is Ni = φiNtot . The total number
of spin-carrying nuclei is large, up to a million in a typical
GaAs gated dot and ten thousand in a Si dot with natural
isotopic concentrations.

B. Nuclei

Concerning atoms, we need to distinguish different iso-
topes as they differ in their nuclear-spin characteristics. We
use the following notation. The atoms within the quantum dot
are indexed by subscript n. When the individual position of the
nucleus is not relevant, we trade the individual index n for the
isotope index i. (The latter is a function of the former, i = i(n),
but we omit the argument for notational clarity.) In GaAs
i ∈ {69Ga,71Ga,75As}, while n is an integer going from one
to about a million. A quantity X specified for a given nucleus
then reads Xn or Xi. For notational clarity, we sometimes omit
the nuclear index on the spin operator entirely, In or Ii → I.
There are also quantities that are defined only with the isotope
index i, for example, the material isotopic fractions φi.

The nuclear spin is coupled to the magnetic field through
the Zeeman term,

HZ
n = −gnμN Bn · In. (2)

Here, gn is the nuclear g factor, μN is the nuclear magneton,
In is the nuclear spin magnitude (not necessarily 1/2), and
In is the vector of nuclear spin operators. Among these, the
g factor and spin magnitude depend only on the isotope, so
that the atom index n could be traded for the isotope index i.
Importantly, the magnetic field Bn = B(xn, yn, zn) depends on
the location of the atom because of the micromagnet induced
gradients. They are parameterized by ∇B, a second-rank ten-
sor defined by (∇B)i j = ∇iB j . While the gradients are small,
l|∇B| � B, taking them into account is crucial for one of
the DNSP mechanisms. Finally, we define the unit vector zn

pointing along sgn(gn)Bn, being the direction of the nuclear
spin in the ground state of HZ

n . With that, we rewrite Eq. (2)
as

HZ
n = −h̄ωnIn · zn, (3)

where the angular Larmor frequency ωn is positive indepen-
dently on the sign of the g factor, a form that will be useful in
the derivations below.

C. Electron and its hyperfine interaction with nuclei

The DNSP arises due to a coupling of the electron and
nuclear spins. It takes the form of the Fermi-contact, or hy-
perfine, interaction,

Hhf =
∑

n

Anv0|�(rn, zn)|2In · s. (4)

Here, An is an isotope-dependent constant, and s is the vec-
tor of electron spin operators. We consider a spin one-half,
s = 1/2, and use the spin operator s = σ/2 with σ the Pauli
sigma matrices. Once the electron orbital degrees of free-
dom have been separated and specified by Eq. (1), the spin
is the remaining degree of freedom. It is described by the
Hamiltonian

HZ
e = geμBBe · s, (5)

where ge is the g factor and μB is the Bohr magneton. Equa-
tion (5) is the analog of Eq. (2) (the overall sign is opposite
due to the opposite electric charge), but there are differences
concerning the field Be. Namely, in the lowest approximation
that we adopted by Eq. (1), it is a sum of two contributions.
The first is the spatial average of the magnetic field within the
quantum dot,

〈B〉 =
∫

|�(r, z)|2B(r, z) dr dz. (6)

The second is the statistical average of Eq. (4), the Overhauser
field, which we specify introducing polarizations pn,

〈In〉 = pnInzn. (7)

To make progress, we adopt further approximations. The goal
of this paper is to calculate the nuclear spin polarization pn,
or its rate of change, the DNSP rate. However, we are not
interested in polarizations of individual atoms, which are not
observable anyway, but rather in their collective effect on the
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electron spin. Therefore we assign all atoms of a given isotope
the same polarization

pn → pi, (8)

drastically reducing the set of unknowns. Compared to this
approximation, in reality the nuclei in the center of the dot will
be polarized more and on the outskirts less. In the derivations
below, we repeatedly average over the nuclei (or over the
dot coordinates) in this spirit. The second approximation is
to neglect the deflection of the Overhauser field from the
average external field concerning the electron Zeeman energy.
This deflection is a higher-order effect (in the magnetic field
gradients) and neglecting it is in line with using Eq. (1). We
thus write the electron Zeeman term

HZ
e = −h̄ωes · ze, (9)

with ze a unit vector along −sgn(ge)〈B〉 and the positive
Zeeman energy

h̄ωe = |geμB〈B〉| +
∑

i

sgn(ge)piφiIi|Ai|. (10)

To arrive at this form, we assumed that the polarizations are
small, so that the magnitude of the first term is bigger than the
second (see Appendix B for the derivation).

D. EDSR

The last basic element is the EDSR driving. Applying an
oscillating electric field E(t ) = E0 cos(ωrft − φrf ) drives the
electron in space. The micromagnet-field gradients result in
an effective oscillating magnetic field. Since the driving fre-
quency is small compared to the electron orbital confinement
energy, h̄ωrf � h̄2/ml2, the drive is adiabatic with respect
to the electron orbital degrees of freedom and results in a
time-dependent displacement of the dot center r0 by

d(t ) = eE(t )l2

h̄2/ml2
. (11)

The EDSR drive can thus be taken into account by using
Eq. (1) with a time-dependent center, r0 → r0 + d(t ), in
Eqs. (4) and (6). The replacement in Eq. (4) will lead to one
of the DNSP mechanisms (as we will see below), while in
Eq. (6), it gives an effective oscillating magnetic field

Brf (t ) = (d(t ) · ∇r0 )〈B〉. (12)

The component of Brf (t ) perpendicular to the average field Be

is denoted as

−geμB[Brf (t )]⊥ ≡ −2h̄ωRRb cos(ωrft − φrf ). (13)

The equation defines the unit vector b and the Rabi angular
frequency at resonance ωRR. The Rabi oscillations of the elec-
tron due to this term, induced by the electric field, are called
EDSR.

All quantities that were defined in this section and will be
used in the following are collected for reference in Table III in
Appendix L.

III. ELECTRON-NUCLEAR SPIN PAIR

We consider DNSP arising in the following repeated ex-
periment. The electron spin is initialized to the ground state

of He
Z (using the electron reservoir, not nuclei), and then

EDSR driven for a fixed time, of order microseconds, at a
fixed detuning ω� = ωrf − ωe of order tens of 2π × MHz.
Reference [51] gives a detailed description of these steps and
their implementation.7

We derive the polarizations pi and the corresponding rates

	i = ∂t pi, (14)

proceeding in two steps: First, we consider an isolated nucleus
n, of the isotope i, in contact with a driven electron. We solve
for its dynamics. Second, we average the arising polarization
rate over the dot, in line with Eq. (8). Considering the nuclei
polarization rates as independent is a good approximation as
long as only a small fraction of the electron spin is transferred
to the nuclear ensemble over one experimental cycle (after
which the electron is reinitialized).8 This condition is well
fulfilled in all our numerical examples and plots.

The restriction to a single nucleus allows us to simplify the
notation. We introduce a shorthand notation for the hyperfine
coupling (the Knight field) as

Jn(t ) = Anv0|�n(t )|2, (15)

where we denoted the time dependence explicitly. The Hamil-
tonian for the electron-nuclear pair is

H = − h̄ωnI · zn − h̄ωes · ze

− 2h̄ωRRs · b cos(ωrft − φrf ) + Jn(t )δI · s. (16)

The first two terms are the Zeeman energies, Eqs. (2) and (5),
the third is the EDSR-driving term, Eq. (13), and the last is the
hyperfine coupling, originating from Eq. (4). In this term, we
subtracted the statistical average, defining δI = I − 〈I〉, since
the average has been included in ωe. For further convenience,
all frequencies in the above equation are defined as positive.
Inverting a sign, for example of a g-factor, would be reflected
by inverting the corresponding unit vector z.9 While the hy-
perfine coupling Jn is signed, neither the DNSP rate nor the
feedback through Eq. (10) will depend on the sign.

IV. POLARIZATION RATE

We now proceed with the derivation of the polarization rate
using Eq. (16). As already noted, the calculation is related to
some results of the NMR and molecular-chemistry literature

7The regularity of reinitalization of the electron spin is crucial for
autofocusing in experiments such as Ref. [52]. On the other hand,
assuming random reinitialization times was important for the de-
scription in Ref. [53]. In our model, the (ir)regularity of the moments
at which the electron spin is initialized is irrelevant (although it
matters into what state the electron spin is initialized): The DNSP
is happening continuously during the electron Rabi precession.

8Reference [54] went beyond the approximation of independent
rates and considered the electron spin being dissipated into the nu-
clear ensemble as a whole.

9We find that while the g factor signs are not entirely irrelevant
as they show up in the formulas below, they do not lead to quali-
tative differences. Rather, inverting a g factor maps the problem to
an equally relevant scenario for all questions that we consider. See
especially Sec. VI.
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[54–57]. Nevertheless, there are important differences, which
we point out on the way.

A. The origin of the DNSP

The first step is to gauge away the time-dependent driving,
transforming to a rotating reference frame, � ′ = U�. It is
useful to transform both the electron and nuclear spins, with
the following unitary,

U (t ) = exp(−is · zeωrft ) exp(−iI · znωrft ). (17)

Adopting the rotating-wave approximation in the third term of
Eq. (16) gives the transformed Hamiltonian

H ′ = − (h̄ωn − h̄ωrf )I · zn − (h̄ωe − h̄ωrf )s · ze

− h̄ωRR s · ye + δI · J ′
n(t ) · s. (18)

We have defined ye as the vector b rotated by angle φrf around
axis ze, and the transformed hyperfine tensor by the relation

U (t )Jn(t ) δI · sU (t )† =
∑

i j

[J ′
n(t )]i jδIis j . (19)

Here, the differences to the existing derivations can be appre-
ciated. First, were the quantization axes of the electron and the
nucleus parallel, which would be the case for a magnetic field
constant in space, the transformation U would commute with
the spin-spin interaction

[J ′
n(t )]i j = Jn(t )δi j (uniform B field).

This result arises because the hyperfine interaction Eq. (4)
conserves the total (electron plus nuclear) spin. In this case,
the transformation into the rotating frame does not generate
time-dependent terms. In our problem, the Knight field Jn is
still time-dependent due to the spatial displacement of the
electron, making the wave function modulus |�n|2 in Eq. (15)
time-dependent. This additional time dependence is the sec-
ond difference to the existing results. For a typical NMR
scenario with two nuclei in the lattice of a crystal or in a
molecule, their mutual interaction in the laboratory frame is
constant. That would here correspond to an ESR [58] (and
not EDSR) driving of the electron, by which the transformed
hyperfine tensor would become not only diagonal in spin
indexes but also time-independent

[J ′
n(t )]i j = Jn(0)δi j . (ESR and uniform B field)

Under such conditions, the transformed Hamiltonian in
Eq. (18) would be time-independent and no DNSP effects
would arise.10

Since in the NMR scenarios the laboratory frame Jn is
time-independent, a finite DNSP requires either “nonsecular”
terms in the exchange tensor, such as Ixsz [49,54,55,57] or
Rabi-driving also the nuclear spin [56], where the “secular”
exchange term Izsz allows for spin flips (as in the standard
Hartmann-Hahn scenario [47]).

10On the other hand, both ESR [10] and EDSR [5] experiments in
a gated quantum dot showed signatures of DNSP. In the former, an
oscillating electric field probably accompanied the desired oscillating
magnetic field.

Concluding, there are two sources of the time depen-
dence of the transformed hyperfine tensor J ′

n. One is the
noncollinearity of the spin quantization directions and is due
to the micromagnet-induced magnetic field gradients. The
second is due to the time-dependent spatial oscillations of
the electron induced by the EDSR drive. We refer to the
two sources as the two mechanisms of the DNSP. Neither is
present in the standard NMR scenario, while at least one is
necessary for a finite DNSP in a quantum dot in the coherent
regime of EDSR.

B. Identification of the secondary resonance

After explaining the physical origins of the effects and their
differences from the Hartmann-Hahn scenario of NMR, we
now proceed with straightforward manipulations of Eq. (18).
The technical reason for employing the transformation U was
to move all time-dependence into the last term of H ′. Since
it is the smallest term, it can be treated perturbatively. To this
end, we first diagonalize the unperturbed part by introducing
the following unit vectors and angles:

ye = Rze,φrf · b, (20a)

xe = ye × ze, (20b)

oe = ze sin γ + ye cos γ , (20c)

sin γ = −ω�

ωR
, (20d)

cos γ = ωRR

ωR
. (20e)

Also, ωR =
√

ω2
RR + ω2

� is the (positive) Rabi frequency and
Rn,α is a 3 × 3 matrix corresponding to a rotation around
vector n by angle α. The axes and angles are shown in Fig. 2.
The Hamiltonian becomes

H ′ = −(h̄ωn − h̄ωrf )I · zn − h̄ωRs · oe + δI · J ′
n(t ) · s. (21)

The unperturbed part of the Hamiltonian (the first two terms)
has eigenstates with the nuclear and electron spins parallel or
antiparallel to the vectors zn and oe. We denote them as |s j〉,

H ′(J ′
n = 0)|s j〉 = Es j |s j〉, (22)

where s and j denote the spin eigenvalues: s ∈ {+1/2,−1/2}
and j ∈ {+I,+I − 1, . . . ,−I} with a general integer or half-
integer value for I . The corresponding energy is 11

Es j = −(h̄ωn − h̄ωrf ) j − h̄ωRs. (23)

The energy difference between a pair of eigenstates is

Es j − Es′ j′ = (h̄ωn − h̄ωrf )( j′ − j) + h̄ωR(s′ − s). (24)

The DNSP (and the Hartmann-Hahn effect) arises if a pair of
these eigenstates is Rabi-driven through the time-dependent

11Concerning unperturbed energies, we thus include only the col-
lective Overhauser field from all nuclei acting on the electron
[entering into h̄ωR through Eq. (10)] and neglect the Overhauser
field and the Knight field stemming from the last term in Eq. (21).
Reference [56] deals with the scenario where the diagonal part of
the hyperfine interaction is strong and needs to be included in the
unperturbed energies.
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FIG. 2. Angles and directions relevant for EDSR. The electron
ground-state spin direction ze is along or opposite to the magnetic
field Be, depending on the electron g-factor sign. In the frame rotating
with the electron Larmor frequency, the EDSR field is along the
vector oe and makes an angle π/2 − γ with the axis of the pre-
cession. For the nuclear ground-state spin direction zn, apart from
relating to the magnetic field by the g factor, it also changes with the
position within the dot due to the micromagnet. The rotation Rze→zn

that rotates the axis ze into the axis zn is parameterized by two Euler
angles: δ′ for the initial rotation around ze, and δ for the final rotation
around the rotated axis ye

′.

term in Eq. (21) on resonance with the energy difference
Eq. (24).12 Since we are interested in transitions that change
the nuclear spin, j′ �= j, the large energy difference h̄ωrf must
be compensated by a time-dependent term oscillating at a
similar frequency. The matrix elements of J ′

n are polynomial
functions of exponentials exp(±iωrft ) and, therefore, contain
only integer multiples of ωrf as frequencies. The integer one
multiple can compensate the driving frequency in Eq. (24) and
what remains is13

h̄ωn( j′ − j) + h̄ωR(s′ − s).

This difference can become zero only if the electron also flips,
s = −s′, and we get that a quasiresonant pair fulfills

s + j = s′ + j′. (25)

Concluding, the only states that can become quasiresonant
are (we explicitly denote the spin quantization directions in
subscripts as a reminder)

|soe = 1/2, jzn〉 ↔ |soe = −1/2, ( j + 1)zn〉, (26)

12In contrast, in Refs. [22,46], the energy mismatch is assumed to
be compensated by an additional agent, such as an applied source-
drain voltage. In Ref. [45] (Ref. [59]), it is the finite linewidth of the
electron (hole) spin.

13This step can be understood as going into a rotating frame effec-
tively undoing the rotation due to the second term of Eq. (17). We
include an alternative derivation of the polarization rate using such a
frame in Appendix K, see Eq. (K4).

and that happens if the Hartmann-Hahn-like condition,

h̄ωn ≈ h̄ωR, (27)

is fulfilled.

C. Secondary Rabi oscillations

We depict the result of the preceding analysis by the fol-
lowing Hamiltonian for the electron-nuclear spin pair:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Hs′ j′,s j ↑↑ ↑↓ ↓↑ ↓↓
↑↑ E↑↑ · · ·
↑↓ · E↑↓ Y † ·
↓↑ · Y E↓↑ ·
↓↓ · · · E↑↑

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

We have used a pictorial notation for the spin states, ↑ and
↓ for the electron states +1/2 and −1/2, and for nuclear
states j + 1 and j. In addition to the state energies, given by
Eq. (23), one needs only one matrix element,

Y = 〈↓ ↑|δI · J ′
n(t ) · s|↑ ↓〉 ≡ 〈↓ ↑|I+s−|↑ ↓〉X ≡ I+X,

(29)

for the only pair of states that might become quasiresonant.
Here, we have introduced the spin ladder operators s± = sx ±
isy and I± = Ix ± iIy. All other states are off-resonant, with
the Hamiltonian matrix elements negligible with respect to
the energy differences. These negligible off-resonant elements
are denoted by dots in Eq. (28). Therefore one can focus
on the state pair {↑↓,↓↑} as an effective two-level system
displaying Rabi oscillations.14 In Eq. (29), we have introduced
the abbreviations X and I+, as parts of the matrix element Y
that we calculate below separately.

The corresponding 2 × 2 block of the Hamiltonian can be
then treated by the textbook method for the Rabi problem.
We define a Bloch sphere spanning the two orthogonal states
{↑↓,↓↑} which we place on the sphere z axis. There are two
parameters important for the Rabi oscillations: The energy
difference of the states, which is E↑↓ − E↓↑ = h̄ωn − h̄ωR,
and the magnitude of the matrix element |Y |. The phase of
Y defines only where to put the in-plane axes, x and y, of the
Bloch sphere, and is not relevant in the following. The two
parameters define the (positive) Rabi frequency

h̄ωhh
R =

√
|Y |2 + |h̄ωn − h̄ωR|2, (30)

and the angle 	 which will turn out useful,

sin 	 = h̄ωn − h̄ωR

h̄ωhh
R

, (31a)

14Note that these are “secondary” Rabi oscillations, different from
the Rabi oscillations of the electron spin itself. The “primary” elec-
tron spin Rabi oscillations are taken into account—in the basis
corresponding to Eq. (28)—through the energies only. The ap-
pearance of the “secondary” Rabi oscillations in a frame where
the “primary” oscillations are already trivial is the essence of the
Hartmann-Hahn effect, see Eqs. (49) and (50) in Ref. [47].
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FIG. 3. Bloch sphere for the secondary Rabi oscillations. The
electron-nuclear states |↑↓〉 and |↓↑〉 define the north and south
pole of the Bloch sphere. The in-plane axes are chosen so that the
energy vector is in the yz plane, making an angle π/2 − 	 with the z
axis. This angle is defined by the matrix element |Y | and the energy
difference h̄ωn − h̄ωR. Finally, p(0) is the initial polarization of the
system.

cos 	 = |Y |
h̄ωhh

R

. (31b)

These quantities are shown in Fig. 3.
Now we come to a somewhat subtle point concerning the

initial state, that is, the system state at the time when the
electron enters the dot or its EDSR driving begins. The phase
relation of the ↑↓ and ↓↑ components of this initial state
has contributions not only from the phase difference of the
electron spin up and down state, which is controlled, but also
from a similar phase difference on the nuclear spin, which
is not controlled. Alternatively viewed, the Hamiltonian in
Eq. (28) induces entanglement between the electron and nu-
clear spin. This entanglement is lost repeatedly as the electron
is repeatedly reinitialized through the reservoir or otherwise.
As a consequence, on average (over the experiment cycle
repetitions) the initial state in the Bloch sphere in Fig. 3 can
only have a nonzero component along the sphere z axis.15

We will thus describe this initial state by a density matrix,
parameterized by a vector p(t ), which is at time t = 0 aligned
with the z axis, and its length might be smaller than one.

The dynamics of this “polarization” vector is a simple
precession and can be expressed, for example, by

p(t ) = R−1
x,π/2−	 · Rz,ωhh

R t · Rx,π/2−	 · p(0), (32)

where x and z are unit vectors along the Bloch-sphere axes.
In addition, it is only the z component that is relevant, as we

15In the language of Ref. [60], in our scenario we have “crosspo-
larization” but no “coherence transfer.” Our assumption means that
we do not consider that the nuclear spin precession and the moments
when the electron EDSR rotation starts are synchronized over many
cycles. Such a long-time synchronization is essential for nuclear
autofocusing [52,61].

have just discussed. It is then straightforward to evaluate the
previous equation for that component arriving at

pz(t ) = pz(0)
(
sin2 	 + cos2 	 cos ωhh

R t
)
. (33)

This result is the first main ingredient of the DNSP
polarization rate.

D. Calculation of the matrix element I+

We now look at the initial polarization pz(0). As explained,
it is contributed by the initial polarization of both the electron
and the nucleus. The conversion from these two polarizations
to pz(0) is not completely trivial because we consider a gen-
eral nuclear spin I and because the polarizations need to be
weighted by the spin-dependent transition matrix element I+.
The calculation is shown in Appendix C and gives

pz(0)|I+|2 = I × (αI (pn)pe − pn). (34)

Here, pe is the initial polarization of the electron spin along
the axis oe and pn is the polarization of the nuclear spin
along the external magnetic field. Both of these polarizations
are normalized so that the maximal possible polarization cor-
responds to p = 1. Finally, αI (pn) is a factor of order one,
which we calculate in Appendix C, see Eq. (C5b). We get
αI = (2/3)(I + 1) for pn � 1 and αI = 1 for 1 − pn � 1.

Equation (34) states that the electron polarization pe is the
source of the nuclear polarization pn. As the latter develops
a finite value, the rate diminishes. For nuclear spin I = 1/2,
one has αI = 1 for any pn, and the rate is proportional to
the difference pe − pn, a natural result. The proportionality
factor αI differs from one for nuclear spin I > 1/2. In any
case, in the majority of experiments the steady state nuclear
polarization will be reached once the DNSP rate is balanced
by additional decay channels, such as nuclear diffusion, rather
than due to the DNSP rate dropping to zero at pn = peαI .
Therefore the second term in the bracket in Eq. (34) can
usually be dropped.

Let us now elucidate the electron polarization pe, consid-
ering two typical experiments. In the first, the initial electron
state is along the external magnetic field. Once the driving is
turned on, the electron performs Rabi oscillations. This choice
is the standard EDSR and means the initial electron polar-
ization is equal to ze · oe = sin γ . In the second, the electron
is “spin-locked,” meaning its spin is along oe and the initial
polarization is one.16 Summarizing, we get

pe = sin γ (EDSR), (35a)

pe = 1 (spin locking). (35b)

While the first choice corresponds to the standard EDSR, the
advantage of the second one (concerning possible DNSP) is

16In this case the system has to be initialized either adiabatically
changing the driving frequency [47] or using a phase shift in the
driving pulse [55]. Even if it is the former, we are not concerned with
the transition period needed to spin-lock the electron. We assume
that the transition period is shorter than the time during which the
electron remains spin-locked with a constant Rabi frequency. Finally,
a more complicated initial polarization when the electron is driven
off resonance was considered in Ref. [57].
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that the lifetime of the electron spin is longer in the spin-
locked state, compared to the lifetime of the Rabi oscillations
[62]. Finally, we note that in both scenarios one can invert
the polarization pe → −pe, by preparing the electron in the
excited state, rather than in the ground state.

E. Calculation of the matrix element X

We now turn to X , the second component of the matrix
element Y . Writing δI · J ′

n(t ) · s in the interaction picture

〈s j| exp(iEs jt/h̄)δI · J ′
n(t ) · s exp(−iEs′ j′t/h̄)|s′ j′〉, (36)

one can see that the resonant component of J ′
n(t ) is the one

of frequency 2s × ωrf . Introducing the Fourier components in
this matrix,

J ′
n(t ) =

∑
k∈Z

exp(ikωrft )J ′
n

(k)
, (37)

the resonant matrix element in Eq. (36) would be J ′
n(t ) ≈

J ′
n

(2s) exp(i2sωrft ). Keeping only this term, essentially the
rotating wave approximation, the calculation of the matrix el-
ement is a straightforward algebraic exercise and we delegate
it to Appendix D. The result, after the spatial average over the
dot coordinates, is

〈|X |2〉 = X 2
df + X 2

sh + 2ξXdf Xsh, (38a)

where

Xdf = J

4

∇⊥Bl

B
cos γ , (38b)

Xsh = J

4

d

l
(1 + sin γ ), (38c)

ξ = cos(δ′ + φrf ) cos(φ), (38d)

with J being the average 〈Jn〉, ∇⊥B being the magnitude of
the gradient of the transverse components of the magnetic
field, and the angles δ′ and φ express the mutual orientation
of the magnetic field gradient and the dot displacement (see
Appendix D for details). As in experiments these directions
are difficult to control or even to know, instead of going into
its rather tedious analysis, we drop the interference term from
Eq. (38a). We retain only the first two terms:17Xdf is due to
a deflection (thus “df”) of the spin quantization axes of the
electron and the nucleus, and requires a finite gradient of the
transverse magnetic field component. Xsh is due to the time
dependence of the electron-nuclear spin coupling constant, in
turn due to the time dependence of |�(rn)|2, in turn due to the
physical shifts (thus “sh”) of the quantum dot electron with
respect to the crystal lattice. Equation (38) is the second main
ingredient for the calculation of the DNSP rates.

17The latter mechanism was considered in several previous works
on DNSP in quantum dots [22,45,46,50] starting with Ref. [63]. As
we explain in Appendix G, our Eq. (38c) can be thought of as a
generalization of these previous works.

F. Evaluation of the DNSP rate

We now have all ingredients needed to evaluate the DNSP
rate. We define the individual nuclear spin polarization rate by

	n = 〈pz(0) − pz(t )〉
t

, (39)

where the bar denotes the statistical average over the nuclear
spin distribution and the angle brackets the average over the
dot coordinates. The overall sign has been chosen to define
a positive polarization rate as the decrease of pz, that is a
transition of nuclear spin from ↓ towards ↑. In other words, a
positive polarization rate means that nuclear spins are pumped
into their energy ground state, being along or opposite to the
external field depending on the nuclear g-factor sign. Using
Eqs. (31b) and (33) gives

	n = 1

h̄2 〈pz(0)|XI+|2〉1 − cos ωhh
R t(

ωhh
R

)2
t

. (40)

Next, we approximate the averaging over the nuclear spins by
evaluating it separately for the matrix element X 2 and the rest,

	n = 1

h̄2 pz(0)|I+|2 〈|X 2|〉1 − cos ωhh
R t(

ωhh
R

)2
t

. (41)

The two needed results are given in Eqs. (34) and (38a).
We have arrived at a rate for an ‘average” nuclear spin,

which is not really a rate: It contains time, since it originates
from coherent precession expressed by Eq. (33). We convert it
to a time-independent rate18 by considering the limit t → ∞
upon which the last factor in Eq. (41) becomes a delta func-
tion of a finite width given by the matrix element |Y |. Since
for our parameters the latter is several orders of magnitude
smaller than other energy smearings that we consider below,
we neglect it,

1 − cos ωhh
R t(

ωhh
R

)2
t

→ πδ(ωR − ωn). (42)

We now define the total polarization rate

	i,tot =
∑
n∈i

	n = Ni

∫
dωn g(ωn)	n(ωn), (43)

introducing the nuclear frequency density g(ω) as the fraction
of i-isotope nuclei with Larmor frequency ω out of their total
number Ni. The function is derived in Appendix A. We get

	i,tot = Ni
π

h̄2 pz(0)|I+|2 〈|X 2|〉g(ωR). (44)

Note the crucial role of the micromagnet, setting the width
of the distribution g(ω): The larger the gradient, the more
dispersed the Larmor frequencies of the nuclei in the dot area,
and the wider the resonance. Here, the resonance means the
electron Rabi frequency ωR hitting the peak of the function g,
which is located at the Larmor frequency of the nuclei in the
dot center.

18As a remark, this time-dependence was kept in Ref. [54], result-
ing in a nontrivial time dependence of the polarization. For example,
a polarization overshoot seen in the data in Fig. 3 therein could be
explained with it.
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G. Final form of the DNSP rate and its discussion

We now put together the pieces to present the rate in a
user-friendly form. In the course of derivation, we have used
several approximations, which are expected to bring an error
of order one. Therefore we neglect small terms, in order to
arrive at a simple formula with an appealing physical inter-
pretation:

∂t pi = π

h̄2

(
X 2

df + X 2
sh

)
(αI pe − pi )G� (ωR − ωi ), (45a)

where

Xdf = Ai

4Ntot

l∇⊥B

B
cos γ , (45b)

Xsh = Ai

4Ntot

d

l
(1 + sin γ ), (45c)

pe = ±
{

sin γ for EDSR,

1 for spin locking,
(45d)

G� (x) = 1√
2π�

exp

(
− x2

2�2

)
, (45e)

�μM = ωi
l∇||B

2B
, (45f)

αI =
{

2
3 (Ii + 1) for pi ≈ 0,

1 for pi ≈ 1,
(45g)

tan γ = ωe − ωrf

ωRR
. (45h)

Here, the quantities dependent on the atomic isotope have the
subscript i, l is the dot in-plane confinement length, typically
tens of nanometers, d is the dot displacement magnitude given
by Eq. (11), typically below a nanometer. The plus sign for pe

applies if the electron is initially in the ground state of the
static field in the laboratory frame (for EDSR) or the rotating
frame (for spin locking). If initially the electron spin is in the
excited state, the minus sign applies. Finally, ∇||B is the mag-
nitude of the longitudinal (along the vector 〈B〉) component
of the magnetic-field gradient, and ∇⊥B is the magnitude of
the gradient of the magnetic field transverse components. For
the moment, we assume that � = �μM; however, below we
list additional sources contributing to � in Eq. (45a) beyond
Eq. (45f).

Let us make a few comments on the DNSP rate given in
Eq. (45), our main result.

(1) Equation (45a) gives the rate of polarization of iso-
tope i. It can be converted to the total “spin-injection” rate
by 	i,tot = IiNi∂t pi. Since the hyperfine interaction is spin
preserving, this total rate of spin injected into the nuclei is
compensated by the opposite change of the electron spin
(component along the external magnetic field).

(2) The nuclear polarization direction is defined as the
positive rate corresponding to pumping-in the nuclear spin
energy ground state (along the magnetic field if the nuclear
g factor is positive).

(3) Neglecting the saturation effect, meaning dropping pi

from the right-hand side of Eq. (45a), the DNSP rate has a
characteristic shape as a function of the detuning from the
electron Rabi resonance, parameterized by γ here. Namely,

since ωR(γ ) = ωR(−γ ), the DNSP rate is antisymmetric in
γ in EDSR and symmetric in spin-locking experiments if
the “deflection” mechanism dominates. The “shaking” mech-
anism makes the profile strongly asymmetric in both cases,
through the factor (1 + sin γ ). The shape of the DNSP rate as
a function of γ can then hint at the dominant mechanism.

(4) In experiments with a single dot, the DNSP will be
typically done by repeating a cycle including the electron
spin initialization, driving, and, perhaps, measurement. In this
case, one should renormalize to the rate observed over the
laboratory time by 	 → 	 × (Tpulse/Tcycle ), reflecting that the
cycle contains “dead time” with respect to the DNSP.

(5) During a single cycle, Eq. (45a) is valid only up to time
Tpulse such that 	totTpulse � 1, since the electron spin can not
change by more than a single full flip.19

(6) Since the total spin of nuclei is difficult to measure
directly, it is useful to convert the nuclear polarization into
quantities directly observable through the electron. In Ap-
pendix B, we express the effects of the DNSP given in Eq. (45)
as the change of the electron Larmor frequency, due to the
change of the Overhauser field,

∂t (geμBBOv) =
∑

i

φiAiIi∂t pi, (46)

and as the change of the detuning,

∂t f� = − 1

2π h̄
sgn(ge)

∑
i

φi|Ai|Ii∂t pi. (47)

(7) In the far-off-resonance limit, corresponding to γ →
±π/2 in our notation, one of the adopted assumptions is not
fulfilled, see Eq. (48) below.20 While we believe that Eq. (45)
can still be used for qualitative estimates, it might break down
in certain limits, one example given in Appendix G.

(8) The micromagnet was essential for several elements:
The primary Rabi oscillations of the electron, the deflection of
the quantization axes of the electron and the nucleus, and the
dispersion of the nuclear Larmor frequencies across the dot.
In the next section we argue that there are intrinsic sources
for the latter two, so that they are present in comparable mag-
nitudes in experiments without a micromagnet. The analysis
here then applies also if the micromagnet, as the source of
the Rabi oscillations, is replaced by the intrinsic spin-orbit
interaction. In other words, it applies also for holes, as long as
Eq. (1) is still applicable, see Appendix I. If it is not, meaning
the spin-orbit length is smaller than the size of the dot, we
expect DNSP with nontrivial spatial textures analogous to
those predicted in Ref. [45].

(9) Considering the nuclear spins in isolation, as we have
done at the outset of the derivation of Eq. (45), is quite a
cavalier approximation. We believe that it suffices for what we
aim at, being a rough estimation of the DNSP rate. Another
motivation to adopt it is the fact that the full problem—of
an electron spin relaxing into an interacting dipole-dipole
coupled nuclear system—is too difficult. While a formal

19Maximizing the portion of the electron spin transferred to nuclei
over one cycle was done in Ref. [64].

20The far-off-resonance limit was considered in Ref. [57].
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expression for the rate can be found in the literature (see
Eq. (2.36) in Ref. [65], Eq. (4.1) in Ref. [66], or Eq. (13) in
Ref. [67]), its evaluation is not easy, see the discussion in the
introduction of Ref. [65] and in Ref. [66].

After deriving the DNSP rate within our model, we now
generalize the resulting formula to grasp effects important in
real-world experiments.

V. MODEL LIMITATIONS AND EXTENSIONS

The above DNSP effects rely on fulfilling the Hartmann-
Hahn condition, Eq. (27). Specifically, the rotating wave
approximation that we adopted in Sec. IV C in describing
the secondary Rabi oscillations assumes that among the four
energies

h̄ωn, h̄ωR, h̄ωn + h̄ωR, h̄ωn − h̄ωR, (48)

the last is by far the smallest. We now look with what preci-
sion these energies (or frequencies) and their differences are
defined.

Concerning the nuclear Larmor frequencies, we have con-
sidered their smearing across the quantum dot due to the
micromagnet, arriving at a Gaussian density (45e) with the
dispersion (45f). The parameters given in the caption of Fig. 1
give the frequency dispersion of several tens of 2π × kHz.21

This value should be compared to additional frequency smear-
ing sources.22 On the one hand, the bulk value for both the
intrinsic nuclear linewidth deduced from the T2 times and
the local field (dipolar and other) from other nuclei look
negligible.23 On the other hand, in a nanostructure the inho-
mogeneous strain and electric fields amplify line widths: The
quadrupole splitting �Q � 2π × 10 kHz [73] or the Knight
field from the electron �K of a similar magnitude are typical
(these values are for GaAs).24 The total frequency span of a
given isotope might crawl to 100 kHz.25 All these sources

21Specifically, for a longitudinal gradient of 0.3 mT/μm and
the dot lateral size l = 34 nm, we get �μM(29Si) = 2π ×
43 kHz, �μM(69Ga) = 2π × 52 kHz, �μM(71Ga) = 2π × 66 kHz,
�μM(75Ga) = 2π × 37 kHz.

22In the NMR literature, the dispersion of nuclear energies due to
nuclear dipole-dipole interactions is often taken as Gaussian. For
example, see Eq. (A20) in Ref. [68]. Therefore those numbers are
directly comparable to our �μM.

23Reference [69] found �T2 � 2π × 1 kHz. Slightly larger values
for 75As and 71Ga in lattice-matched dots are collected from other
references in Ref. [70]. References [71,72] give the nuclear local field
in GaAs as up to a few Gauss (it is anisotropic), corresponding to
�dip ∼ 2π× (a few) kHz.

24For our parameters, we estimate �K ∼ J � 2π × 10 kHz. More
precisely, for quantum-dot parameters lz = 10 nm and l = 34 nm,
the electron-frequency shift upon a single nuclear spin flip, Jn/h̄, is
equal to 2π × 6 kHz for 69Ga, 2π × 7.5 kHz for 71Ga, 2π × 7 kHz
for 75As; and for lz = 6 nm and l = 20 nm, it is 2π × (−1.7) kHz for
29Si. In self-assembled dots, the Knight fields are much larger, and
the single-nuclear-flip electron-frequency shift of 200 kHz could be
detected in Ref. [43].

25See Fig. 3 a in [74] or Fig. 2 in Ref. [75], showing the line profile
of 75As at high magnetic fields.

can be included in our formula by simply adding the corre-
sponding variances, redefining the parameter � in Eq. (45e)
as follows:

�2 → �2
μM + �2

T2
+ �2

dip + �2
Q + �2

K. (49)

As an important consequence, one expects the discussed DNSP
effects even in samples without a micromagnet: The longi-
tudinal magnetic field gradient is effectively replaced by the
sources given on the right-hand side of Eq. (49) without the
first term which then equals zero. Similarly, some of these
terms contribute also to the deflection of the quantization axis
of nuclear spins, that is, an effective transverse gradient. The
quasistatic dipole field of other nuclei parameterized by �2

T∗
2

is isotropic and can be thus taken as an effective contribution
to the gradient ∇⊥B in Eq. (45b). The quadrupolar fields also
contribute, though they are anisotropic so that the contributing
part depends on the direction of the magnetic field and the de-
tails of the atomic electric field gradients.26 Finally, the Knight
field from the electron is fast oscillating which averages out its
components perpendicular to the external magnetic field. The
remaining component is along the external magnetic field and
does not give any deflection. In sum, for experiments with-
out a micromagnet, the effective transverse gradient entering
Eq. (45b) should be assigned a value according to a conversion
formula

l∇⊥B

B
→ �

ωi
, (50)

with � somewhat smaller than the one given by Eq. (49).
We now turn to the frequency of the electron as an-

other source of uncertainty in Eq. (27). Copying the
formula here again, the electron Rabi frequency is ωR =√

(ωRR)2 + (ωrf − ωe)2. First, during the driving the Over-
hauser field will diffuse, changing the electron Larmor
frequency ωe. However, for pulses of order microseconds, we
find that the resulting shift is smaller than a few 2π × kHz
and thus negligible for the discussion here.27 More impor-
tantly, within a finite time interval T , no frequency can be
defined with uncertainty much below δω ∼ 1/T .28 A Rabi

26In experiments with self-assembled quantum dots, the quadrupo-
lar fields are thought to dominate the DNSP effects [76]. One
important consequence of considering quadrupolar interaction ex-
plicitly (we do it in Appendix K), is that it allows for double spin-flip
transitions, �Iz = ±2, in addition to single-flip ones, �Iz = ±1.
The multiple resonance peaks, corresponding to Raman-transition
detuning equal to once and twice the nuclear Zeeman energy, were
observed in Refs. [40–42].

27For Tpulse = 1μs, we estimate the diffusion-induced variance of
the Overhauser field, �B, of 2π × 8 kHz from the measurements of
Ref. [36], 2π × 7 kHz from Ref. [34], or 2π × 6 kHz from Ref. [77]
(values for GaAs).

28The numerical prefactor c to use in the relation δω = c × 1/T is
not obvious. We define it by demanding

∫ δω

−δω
f (ω)dω = 1/2, with

f (ω) being the spectral density. For f equal to a Lorenzian, such as
Eq. (51), one has δω = � and thus c = 1. For f equal to the left-hand
side of Eq. (42) with t = T , we get δω ≈ π/2 × 1/T , a value that we
adopt in plots.
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pulse applied for 1 μs gives δω ∼ 2π × 160 kHz. This smear-
ing should be assigned to the equality sign in Eq. (27), rather
than to any individual frequency, but let us interpret it as an
effective electron lifetime. In general, one considers it to-
gether with the lifetime of Rabi oscillations, or the Rabi decay
time T Rabi

2 ,29 adding (π/2) × 1/Tpulse and 1/T Rabi
2 in square.

Nevertheless, since the latter is negligible in our scenario, we
define �p = (π/2) × 1/Tpulse.30 An important difference to
the sources in Eq. (49) discussed in the previous paragraph
is that this type of smearing, essentially originating from the
Heisenberg uncertainty relation, leads to a Lorenzian, rather
than a Gaussian, spectral density

F� (ω) = 1

π

�

(ω − ωR)2 + �2
. (51)

This smearing could be included in the main result, Eq. (45a),
by replacing the spectral density in Eq. (45e) by the
convolution

G� (ωR) → (G� � F�p )(ωR). (52)

However, we will not use Eq. (52). Since the reasoning that
lead to both Eq. (45e) and Eq. (51) was only qualitative,
dwelling on an exact expression in Eq. (52) is not meaningful.
Instead, we simply add the finite-lifetime smearing �p into
the list in Eq. (49) and use that as the width of the spectral
density function entering Eq. (45) with either the Gaussian or
the Lorenzian profile.

To complete the list of smearing mechanisms, note that
due to the nuclear and electrical noise, in an experiment the
electron detuning frequency varies with time and thus can be
known and controlled only approximately. In experiments em-
ploying estimation and feedback, similar to the one producing
the data in Fig. 1, the resulting uncertainty was 2π × 288 kHz
in Ref. [36], several hundreds of 2π × kHz in Ref. [77] and
several times 2π × 78 kHz (the frequency bin) in Ref. [34].
This uncertainty is yet another source of averaging: The ex-
perimentally measured polarization rate corresponds to

〈∂t pi〉(ω�) =
∫ ∞

−∞
dωerr G�err (ωerr ) ∂t pi(ω� + ωerr ), (53)

where �err is the precision with which the detuning angular
frequency can be fixed during the collection of data assigned
to a single point on the curve such as plotted in Fig. 1. This

29We use the notation of Ref. [3]. The Rabi decay T Rabi
2 is con-

tributed by the decay and decoherence times in the rotated frame,
often denoted by T1ρ and T2ρ [78], the former introduced by Ref. [62]
denoted therein as T2e.

30Previous works on DNSP arising from ESR in quantum dots
[22,45,46] considered that 1/T Rabi

2 as just described dominates all
other time-decay or frequency-smearing scales. These works do not
even consider the nuclear hyperfine energy. This approximation was
probably motivated by early experiments [5,10] where only a few
Rabi oscillations were discernible. More recently, Rabi oscillations
of single spins of much higher quality were achieved: The decay time
T Rabi

2 was larger than the Rabi oscillation period by the factor 42.5 in
Ref. [36] (GaAs), 70 in Ref. [79] (natural Si) and 444 in Ref. [80]
(isotopically purified Si). In other words, for current experiments, it
might be reasonable to assume Tpulse � T Rabi

2 .

averaging is different from the previous two, since now it is
not only the spectral density that is smeared, but also the angle
γ dependency that is averaged. Therefore it would suppress
the anti-symmetric-in-γ parts of the polarization rates, which
can be identified easily by looking at Eqs. (45b)–(45d).

To conclude, there are three different types of averaging
that need to be done with Eq. (45a): A Gaussian and a
Lorentzian smearing of the spectral function, and a Gaussian
averaging of the whole formula. Roughly, we replace them by
adding all the smearing sources to � used in (45e).

With the polarization rate derived and analyzed in detail,
we next move to examining system dynamics in the presence
of DNSP pumping.

VI. POLARIZATION-RATE PROFILE, SYSTEM
DYNAMICS, AND FEEDBACK

In this section, we look at three topics. First, we illustrate
the polarization-rate magnitude expected in a typical quantum
dot, and discuss the rate inversion-symmetry with respect to
the zero detuning f� = 0. Second, we examine polarization-
rate feedback induced by changes in the detuning aiming
at a substantial nuclear polarization. Third, we analyze the
effects of the feedback on suppressing or enhancing detuning
fluctuations, which influence qubit gate fidelities.

A. Polarization rate profile

We illustrate the behavior of the polarization rate derived
in Eq. (45) by plotting it for the arsenic isotope as a function
of the detuning in Fig. 4. Analogous plots for other nuclei of
GaAs, and for a Si dot where the rate is orders of magnitude
smaller, are in Appendix F. Figure 4(a) shows the rate in
the regime where the electron Rabi frequency at resonance
is smaller than the nuclear Larmor frequency. The rate has a
resonant peak at a finite detuning, where the electron Rabi and
nuclear Larmor frequencies become equal. At this resonance
the rate can reach large values, depending on the resonance
width, which has been discussed in Sec. V. The deflection
mechanism corresponds to a rate with a definite left-right sym-
metry in the figure, symmetric for a lock-in initial state and
antisymmetric for an initial state along the magnetic field.31

The shaking mechanism corresponds to a strongly asymmetric
rate, with appreciable values at negative detunings only.

Figure 4(c) shows the case with the Rabi frequency at zero
detuning larger than the nuclear Larmor frequency. In this
case, the condition of the Hartmann-Hahn resonance can not
be reached for any detuning. While the symmetry properties
of the rate components discussed in the previous paragraph
still hold, there is no resonance peak and the rates are much
smaller overall. This difference, between the resonant and
nonresonant regime, is the larger the larger is the ratio fRR/ fi.
Finally, at large detuning the rates fall off as 1/ f 2

�, which is

31In other words, the EDSR-scenario curves cross zero at zero
detuning, due to the factor pe = ± sin γ . Polarization rates with
this profile are called “cooling functions” in Refs. [40,42]. In those
experiments, the polarization is explained as due to asymmetry in the
density of final states [59,81].
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FIG. 4. The polarization rate as a function of the electron de-
tuning frequency for 75As. In the upper panel, fRR = fi/2, in the
middle panel, fRR = fi, and in the lower panel, fRR = 2 fi. Further
parameters are as in Fig. 1 except for Tpulse = 10μs.

the same in the upper panel, though hard to see there because
of the resonant peak.

Figure 4(b) shows the crossover case fRR = fi. Here, the
two resonance peaks visible in the upper panel merge into
one. Compared to those two resonances, the merged peak is
broader and (for spin locking) has a somewhat anomalous
shape (it has a flat top). This property can be understood
by noting that the derivative ∂ fR/∂ f� becomes zero at zero
detuning.

B. Feedback

Equation (47) hints at feedback effects. The detuning fre-
quency f� changes if the nuclear polarization changes, since
the electron feels it as the Overhauser field. However, the
polarization rates themselves strongly depend on the detuning.
Such mutual dependence of the nuclear polarization rate and
its effects, the accumulated nuclear polarization, has been
studied at length (see the second paragraph of the introduction
and the references therein).

Motivated by those works, we now look at the feedback
effects in our system. We start by pointing out one crucial
difference. Here, the DNSP polarization is a resonance phe-
nomenon, so that the dependence of the polarization rate
on the electron detuning might become (close to resonance)
much more sensitive than the dependence in the Pauli spin

blockade setups [24]. While this fact will make building up
large polarizations more difficult, it might allow for more
efficient Overhauser field stabilization and the associated de-
phasing suppression.

To appreciate this sensitivity, we copy here Eq. (B6) de-
rived in Appendix B [it also follows from Eq. (47)]

∂ f�
∂ pi

= − sgn(ge)

2π h̄
φi|Ai|Ii. (54)

This equation relates changes in the nuclear polarization pi to
changes in the electron detuning at a fixed value of the driving
frequency. Evaluating the constants on the right-hand side, we
get 25 MHz in natural silicon (it would be sixty times less
in isotopically purified 800 ppm silicon), and from about 7 to
17 GHz for the three isotopes in GaAs. Therefore especially in
the latter material, a tiny change in the nuclear polarization—
say a few of 0.01%—can bring the system into and out of the
resonance, turning on and off the DNSP rate.

To shed light on the possible system dynamics, we plot the
DNSP rates in Fig. 5 in a two-dimensional plot. We assume
the “spin locking” scenario, see Eq. (45d), where the rates are
somewhat larger than for the ‘EDSR’ choice.32 The horizontal
axis is the detuning, the vertical the nuclear polarization. The
colored arrows show the polarization rate: The arrow length
scales with the rate magnitude and the arrow direction shows
which way the system evolves at a fixed driving frequency.
The black arrows represent nuclear spin-polarization decay,
due to diffusion or other means, according to

∂t pi = −Rpi. (55)

The decay constant R depends on the material nuclear spin
diffusion constant, the dot geometry, and possibly on the iso-
tope. Since these dependencies might be complicated,33 it is
more practical to extract the decay scale R from experimental
data rather than to calculate it from first principles. Typical
decay times of nuclear polarization in dots is from seconds
(see Ref. [82] or the estimates of parameter κ in Appendix H)
to minutes (see Fig. 3 in Ref. [36] or Fig. 3(e) in Ref. [83]).

One can understand the system behavior from Fig. 5(a).
As a simple example, it shows the rate for 75As isotope in
a GaAs dot with the driving frequency fixed to a certain
value corresponding to the detuning −7 MHz at zero nu-
clear polarization. This state is denoted by the empty circle
in Fig. 5. With the driving frequency fixed, the system can
move only along the blue line. It will reach a steady state at
a finite positive polarization p = peq where the polarization
and decay rates are equal [they are shown in Fig. 5(b)]. The
system will stay at such finite polarization as long as random
(thermal) fluctuations do not take it out of the window where
the DNSP rate is sizable. The larger the value of the equilib-
rium polarization peq, the stronger the forces on the system
at the equilibrium and the smaller the fluctuations around

32A feedback exploiting the EDSR scenario was implemented in
Ref. [44].

33For example, Ref. [82] converts the observed Overhauser field
dynamics into the effective material diffusion constant and finds that
its value changes strongly with the magnetic field.
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FIG. 5. System dynamics under DNSP and decay. The param-
eters are the same as in Fig. 4 except for fRR = 5 MHz. (a) The
two axes give the system state coordinates: The electron detuning
on the horizontal axis and the nuclear polarization on the vertical
axis. The vectors show the direction and rate at which the system
moves from a given configuration. The colored arrows depict the
DNSP rate for i = 75As, the black arrows denote the spin decay into
pi = 0. At a fixed driving frequency, the system can move along a
line since all vectors throughout the plot are parallel. The position of
the line is fixed by the detuning at zero nuclear polarization (empty
circle), here fixed to −7 MHz. (b) The polarization [“pump”; the
right-hand side of Eq. (45a)] and decay [Rpi, the right-hand side of
Eq. (55)] rates at fixed driving frequency. The equilibrium is where
the two rates are equal, denoted by the filled circle. In (a) the arrows
are scaled for visibility. While a larger arrow means a larger rate,
the proportionality is not linear for a given color and not to scale
between different colors. The arrows’ map is only illustrative. The
rate magnitudes are quantitative in (b).

the steady state [22,50].34 On the other hand, also the more
volatile the steady state becomes and the more easily it can be
kicked off by thermal fluctuation into p = 0. In other words,
if peq is large enough, the system will be bistable. What is

34The decrease of fluctuations when the forces become larger can
be also understood from the model in Appendix H: Eq. (H8) states
that the fluctuations σ 2

� are proportional to the inverse of the decay
rate 2/κ .

large enough is decided by the width of the resonance, in
turn given also by the inverse of the micromagnet gradient
B|| and additional sources according to the discussion around
Eq. (49).

One can consider more complicated evolutions when the
driving frequency is changed. A change in the driving fre-
quency translates into a horizontal shift of the blue line. When
the system state is represented by the filled circle in the figure,
a sudden change of the driving will move it together with
the blue line horizontally, that is, keeping the current value
of the polarization. In changes that are more adiabatic, the
system state will tend to follow the local equilibrium position
on the blue line. A simple scenario would be a slow increase of
the rf-frequency, starting at a negative detuning f� = frf − fe.
The polarization would steadily increase until the equilibrium
polarization would become too large to be sustained. The
required speed of change of the driving frequency can be read
off from Fig. 5(b), or directly from a plot like Fig. 4: The
optimal speed to built a large polarization is a value somewhat
smaller than the polarization rate at the peak, which is a few
hundreds of MHz/s for these parameters.

C. Restoring force

To elaborate on the previous section, we next consider
the electron spin coherently driven by EDSR with the goal
of performing a qubit gate. One typical situation is that the
electron is driven at zero detuning and starts polarized along
the external field. It differs from the previous by having now
pe = ± sin γ . We are interested in how the arising DNSP
polarization affects gate precision. Specifically, we analyze
the DNSP influence on the stability of the desired condition
f� = 0. Using Eqs. (45) and (47), we get

∂t f ∗
� = sgn(p∗

e )sgn(ge)
f ∗
�

fRR

(
X ∗2

df + X ∗2
sh

) 1

6h̄3

×
∑

i

φi|Ai|Ii(Ii + 1)G� (ωRR − ωi ). (56)

To arrive at these formulas, we have used Eq. (35a), expanded
Eq. (45a) in the limit around γ ≈ 0, and, to simplify, dropped
the polarization pi from the right-hand side and used αI for the
small pn limit. The star as the superscript denotes a relation to
the limit γ → 0. Specifically, for the matrix elements Xsh and
Xdf the star means that they are evaluated using Eqs. (45b)
and (45c) with γ = 0. Also, we have added the initial state
specification as sgn(p∗

e ) with the value +1 for the ground
state and −1 for the excited state. Finally, we also note that
except of ge, p∗

e , and f�, quantities in the expression are
positive.

Equation (56) describes a simple feedback, since the rate of
change of the detuning is proportional to the detuning value.
Whether the feedback is negative (fluctuations suppressed)
or positive (fluctuations amplified) is decided by the overall
sign, the product of signs of the electron g factor ge and
the initial state p∗

e . This latter product can be contracted to
“electron spin initially along Be” being the sign −1 (negative
feedback) and “electron spin initially opposite to Be” being
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the sign +1 (positive feedback).35 Let us first discuss the first
alternative.

A negative feedback means that driving the electron spin
stabilizes the desired condition f� = 0. To quantify this ef-
fect, we write Eq. (56) in the form

∂t f ∗
� = −	∗ f ∗

�, (57)

introducing 	∗ as the feedback strength with the units of
inverse time. To assess how efficient the stabilization is, we
judge it against the intrinsic thermal fluctuations of the nuclei.
However, the comparison is not straightforward, since these
thermal fluctuations proceed as a diffusion of the Overhauser
field, characterized by a diffusion constant, which is not a rate.
To bridge this gap, in Appendix H we describe this diffusion
by a bounded random walk model, which contains two pa-
rameters: The diffusion constant D� and a time κ related to
the restoring force that keeps the Overhauser-field fluctuations
bounded.

The behavior of the system can be then understood as
follows: Let us assume that the detuning is set to the desired
value f� = 0. At this value, the polarization rate is zero. The
detuning will diffuse away from the desired condition accord-
ing to the diffusion constant D�. This short-time diffusion
speed is not affected by the DNSP and the feedback. Without
any feedback, the Overhauser field will reach the long-time
variance σ 2

� = D�κ/2. In Appendix H, we show that the
restoring force in this process can be represented in a form
identical to Eq. (57) upon identifying the constant 	 with 1/κ .
Thus, one can assign an intrinsic restoring force 	0 ≡ 1/κth

to the thermal diffusion. The DNSP feedback increases the
restoring force by adding 	∗ ≡ 1/κfb to the intrinsic compo-
nent. The fluctuations are then described by the variance

σ ∗2
� = D�

(
1

κth
+ 1

κfb

)−1

. (58)

To quantify the efficiency, one should compare the intrin-
sic rate 	0 to the one due to feedback 	∗. If 	∗ � 	0, the
feedback is negligible. If 	∗ � 	0, the feedback substantially
decreases the magnitude of the fluctuations, cutting the result-
ing variance by factor 	∗/	0.

We plot the quantity 	∗ in Fig. 6. It shows that the DNSP-
induced feedback might be indeed substantial, with 	∗ larger
than 	0 by up to two or three orders of magnitude for our pa-
rameters at the resonance with the arsenic isotope. The effect
on the gate fidelity is more complicated, since the feedback
depends on the initial state. While for some input states the
feedback improves the fidelity by stabilizing the detuning, the
effects are opposite for other input states. Concerning gate
fidelities, it seems advisable to keep the system away from
the Hartmann-Hahn resonance.

D. Closing remarks

We note that the simplified picture presented in the above
by discussing a single isotope is complicated in GaAs by

35The fact that the feedback switches from positive (“resonance
seeking”) to negative (“resonance avoiding”) upon inverting the elec-
tron spin was pointed out in Ref. [84].

FIG. 6. Stabilization by feedback in GaAs. The EDSR-driven
electron starts in its ground state and precesses around an in-plane
axis of the Bloch sphere, meaning f� = 0. The plot shows the
restoring rate 	∗ as a function of the Rabi frequency at resonance
for the three isotopes. We took Tburst = Tcycle = 1μs, zero additional
broadening, and the remaining parameters as in Fig. 1. The value
in the box is the expected range for the intrinsic restoring force
	0 = κ−1

th . The analogous figure for an electron qubit in Si is in
Appendix F 2 and for a hole qubit in SiGe in Appendix I.

having three different isotopes with different resonance fre-
quencies. Still, the DNSP rates depend, through the actual
value of the detuning, only on the sum of the corresponding
Overhauser fields. The simplest-looking scheme to stabilize
the total Overhauser field is to use the Hartmann-Hahn reso-
nance of a single isotope with the most efficient polarization,
being 75As in our estimates.

Let us also reiterate a point crucial for both observing and
exploiting the DNSP rates discussed in this paper. As already
stressed several times, these rates are resonance phenom-
ena, sensitive to the electron detuning, in turn to its Larmor
frequency. A change in the frequency by a few MHz can
substantially change the polarization rates. Therefore adjust-
ing the driving frequency to the instantaneous value of the
electron Larmor frequency is essential. It can be possibly done
by periodic estimation of this frequency [34,36]. Another pos-
sibility is to use chirps of the driving frequency [64,85].

Let us conclude by saying that there is room for more
investigations of feedback effects based on Hartmann-Hahn
DNSP in gated quantum dots.

VII. CONCLUSIONS

In this paper, we have investigated dynamical nuclear spin
polarization arising in a quantum dot with a single electron
whose spin is electrically driven to perform Rabi oscilla-
tions. We considered the coherent regime where many Rabi
oscillations happen before the electron leaves the dot or its
spin decoheres. In this regime, the electron spin can polarize
nuclear spins in the quantum dot volume through an analog
to the Hartmann-Hahn effect known from NMR [47]. This is
a resonance phenomenon, occurring when the electron Rabi
frequency becomes equal to the nuclear Larmor frequency.

We have derived the corresponding nuclear-spin polariza-
tion rate under general conditions in Sec. IV so that the main
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result, Eq. (45), covers both GaAs and Si dots, and, with slight
adjustments,36 even Ge or Si hole dots.

When converted to changes in the electron detuning from
the Rabi resonance, the nuclear-spin polarization rates in
GaAs reach tens to hundreds of MHz/s. The theory fares well
with a preliminary measurement in a GaAs sample presented
in Fig. 1. In Si, the rates are orders of magnitude smaller.
While we do not present data for Si, our theory predicts rates
of order tens of kHz/s.

We have identified two essential differences to the standard
Hartmann-Hahn scenario. (1) The micromagnet magnetic-
field gradient slightly deflects the spin-quantization axes of
the electron and nuclei. (2) The electric driving slightly wig-
gles the electron with respect to the atomic lattice. These two
effects correspond to two different mechanisms of polariza-
tion. In Sec. V, we have reasoned that the polarization will
be present even in samples without a micromagnet, and we
have provided estimates with which a polarization rate can be
assigned to this scenario.

Finally, we have analyzed the feedback in the system. It
stems from the fact that the polarization rate is sensitive to the
electron detuning from the Rabi resonance, which in turn is
sensitive to the accumulated nuclear polarization through the
Overhauser field. In Sec. VI, we have looked at the possibility
of reaching a sizable nuclear polarization and the conse-
quences of the Hartmann-Hahn resonance on the fidelity of
a gate implemented as coherent Rabi precession. Concerning
the first, the achievable nuclear polarization is ultimately set
by how sharp the resonance can be made, in turn dependent
on the electron spin coherence and the micromagnet gradient.
If used as active feedback, we estimate that exploiting the res-
onance can decrease the fluctuations of the Overhauser field
by two or more orders of magnitude (in GaAs). Concerning
the gate fidelities, we have found that it is improved for some
input states and worsened for others. We do not evaluate the
fidelities, and remain at the advice of avoiding the resonance
when implementing quantum gates on an electron or hole spin
qubit.
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36We give the main result, Eq. (45), assuming isotropic hyperfine
tensor, ∝ s · I. It remains unchanged for “secular” hyperfine tensor,
szIz. If additional, “nonsecular” terms are present, often the case for
holes, they will generate additional terms in Eq. (D11), which need
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parameters entering Eq. (45) need to be reinterpreted as discussed in
Sec. V, see especially Eqs. (49) and (50).

APPENDIX A: DENSITY OF NUCLEAR
LARMOR FREQUENCIES

In this section, we introduce the distribution g used in
Eq. (43) to replace the summation over discrete nuclei. The
quantity being summed contains a factor v2

0 |�n|4, arising from
the square of the right-hand side of Eq. (4). Here, we have
denoted �n ≡ �(rn, zn). Therefore let us consider∑

n∈set

v2
0 |�n|4 × constants, (A1)

where the “set” defines which nuclei are included. In our case,
it is nuclei of isotope i with a given Larmor frequency. Also,
“constants” are further terms that can depend on the isotope,
but not on the nucleus spatial position. Since such constants
only propagate through all the formulas below, we omit them.
We rewrite the sum as

1

N2
tot

∑
n∈set

N2
totv

2
0 |�n|4. (A2)

taking out a dimensionless factor N−2
tot . In line with the existing

literature, we move this factor into the matrix elements X , see
Eqs. (45b) and (45c). These matrix elements then contain the
‘average’ hyperfine strength Ai/Ntot . The dividing factor, writ-
ten suggestively as Ntot, is interpreted as the total (counting
all isotopes) effective number of atomic nuclei within the dot,
defining it by

Ntot = 1

v0
∫

dr dz|�(r, z)|4 . (A3)

With this rescaling, the sum that we are interested in is∑
n∈set

N2
totv

2
0 |�n|4. (A4)

Since the nuclear Larmor frequency is a smooth function of
the nuclear position, we replace the discrete summation by in-
tegration in space with the three-dimensional volume element
dV . As we only include the isotope i, the volume density of
nuclei is φi/v0. We get∫

D
dV

φi

v0
N2

totv
2
0 |�|4, (A5)

where the restriction n ∈ set has been expressed as a volume
D. We define Ni ≡ φiNtot as the effective number of isotope-i
nuclei, and use Eq. (A3) to finally get

dNi = Ni
dV |�|4∫
dV |�|4 , (A6)

as the effective number of nuclei of isotope i within a volume
element dV . In this expression, the denominator normalizes
the density dV Ni|�|4 into a dimensionless quantity. If inte-
grated over all space, it gives the effective number of isotope-i
nuclei in the dot.

We now consider the desired restriction on the nuclei
included in the sum, being a given value of their Larmor
frequency. The latter is proportional to the magnitude of the
magnetic field at the position of the corresponding nucleus,
Bn. In the lowest order of the magnetic-field gradients and
neglecting the shifts along the z coordinate, this magnitude
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FIG. 7. Cumulative distribution of the effective number of nu-
clei. The horizontal axis shows both the real space coordinate x, here
along the gradient of the longitudinal component of the magnetic
field, and the nuclear Larmor frequency. The frequency increases
monotonically with x and in the dot center it equals ωi.

varies linearly over the dot in-plane coordinates,

B(xn) ≈ B(x0) + (xn − x0)∇||B, (A7)

where we choose the in-plane coordinates such that x is along
the gradient of the magnetic field longitudinal component (the
component along the direction of the magnetic field at the dot
center; see also Appendix D) and ∇||B is the magnitude of this
gradient.

The restriction on the nuclear Larmor frequency is then a
restriction on the x-coordinate, and we can integrate out the
remaining two coordinates y and z,

dNi = Ni

√
2

l
√

π
exp

(
−2(x − x0)2

l2

)
dx, (A8)

where we have used the Gaussian form for the in-plane wave
function, Eq. (1).

The desired density can be now obtained from the cumula-
tive distribution (see Fig. 7 for an illustration)∫ ω

−∞
g(ω)dω =

∫ x(ω)

−∞

dNi

Ni

=
∫ x(ω)

−∞

√
2

l
√

π
exp

(
−2(x′ − x0)2

l2

)
dx′, (A9)

where x(ω) is the coordinate at which the Larmor frequency
is ω. It can be obtained from the relation

ω − ωi

ωi
= (x(ω) − x(ωi ))

∇||B
B

, (A10)

where ωi is the (isotope-dependent) nuclear Larmor frequency
at the dot center, x(ωi ) = x0.

Differentiating Eq. (A9) with respect to ω, and using
Eq. (A10), we get

gi(ω) = 1

ωi

B

l∇||B

√
2√
π

exp

[
−2

(
ω − ωi

ωi

B

l∇||B

)2
]
. (A11)

The first term sets the scale, the rest is a dimensionless peak
profile centered at ω = ωi. It encodes the resonance character

of the problem: Since the nuclear g factors differ for different
isotopes, they become resonant at different values of the elec-
tron Rabi frequency ωR. The width of resonance is a fraction
of the nuclear Larmor frequency proportional to the gradient
of the magnetic-field longitudinal component.

APPENDIX B: DNSP RATE EXPRESSED AS THE
DETUNING CHANGE

Here, we give the electron Larmor frequency including the
contribution from the nuclear polarization. While the formulas
might look too straightforward even for an Appendix, they
might be useful when considering materials with different
signs of the g factors.

The electron spin couples to the external magnetic field and
the effective field arising from polarized nuclei, called also the
Overhauser field,

HZ
e = geμBB · s +

∑
i

φiAiIi pizn · s. (B1)

We used the definition of the polarization pi to be along the
unit vector zn = sgn(gn)B/B. With this, and using also Ai =
sgn(gi )|Ai|, we can write the above Hamiltonian as

HZ
e = sgn(ge)|ge|μBB · s

(
1 +

∑
i

φi|Ai|Ii pi
sgn(ge)

|ge|μBB

)
.

(B2)

The electron Larmor frequency is the magnitude of the vector
multiplying the electron spin operator,

h̄ωe = |ge|μBB

∣∣∣∣∣1 +
∑

i

φi|Ai|Ii pi
sgn(ge)

|ge|μBB

∣∣∣∣∣. (B3)

Most often, the nuclear polarization is not so large as to make
the Overhauser field bigger than the external field. Then, the
second term inside the absolute value is smaller in magnitude
than the first, making their sum positive and the absolute value
sign unnecessary,

h̄ωe = |ge|μBB + sgn(ge)
∑

i

φi|Ai|Ii pi. (B4)

We can now covert the DNSP polarization rate into the rate of
change of the electron Larmor frequency and the detuning,

∂t f� = −∂t fe = − sgn(ge)

2π h̄

∑
i

φi|Ai|Ii∂t pi, (B5)

the first equation following from our definition f� = frf −
fe. Finally, we note the relation between the change of the
electron detuning with respect to the change in the nuclear
polarization,

∂ f�
∂ pi

= − sgn(ge)

2π h̄
φi|Ai|Ii. (B6)

It becomes useful when considering possible feedback in the
system.

APPENDIX C: DERIVATION OF EQ. (34)

Here, we derive Eq. (34). The line over the left-hand side of
that equation denotes the average over the probability distribu-
tions, or density matrices, of the electron and the nuclear spin.
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FIG. 8. Spin polarization transitions. The diagram shows the
states of a system composed of an electron spin and a nuclear spin,
the latter illustrated for I = 3/2. The electron spin can be either up or
down, with corresponding probabilities pe

↑ and pe
↓. The nuclear spin

can be in one of the four states, with corresponding probabilities pn
j .

The matrix element I+ connects states as denoted by the blue lines.
A transition increasing the nuclear polarization corresponds to going
along one of the blue lines upwards, from left to right.

Figure 8 helps to visualize the transitions, and shows why the
matrix element I+ should be averaged together with (and not
independently to) the polarization pz.

To perform the calculation, one needs to quantify the prob-
abilities of the basis states |s j〉. As explained in the main text,
we consider them separable into the corresponding probabili-
ties for the electron spin s and the nuclear spin j, ps j = pe

s pn
j .

With the electron spin having only two states available, their
probabilities can be expressed through a single number, let us
denote it by pe, because of the normalization pe

↑ + pe
↓ = 1.

Namely,

pe
↑ = 1

2 (1 + pe), (C1a)

pe
↓ = 1

2 (1 − pe). (C1b)

These relations then define pe as the initial electron-spin-
polarization along the axis oe, and lead to Eq. (45d).

On the other hand, there might be more than two nuclear
spin states in general. Still, we define the nuclear polarization
by

pn ≡ 〈Iz〉
I

= 1

I

I∑
j=−I

j pn
j . (C2)

This single number, together with the normalization
∑

j pn
j =

1, is not enough to specify the probabilities pn
j uniquely.37

Nevertheless, starting with

pz(0)|I+|2 =
∑

j

p↑ j |〈↓, j + 1|s−I+| j ↑〉|2

− p↓ j |〈↑, j − 1|s+I−| j ↓〉|2, (C3)

it is a few-line algebra to get

pz(0)|I+|2 = −〈Iz〉 + pe
[
I (I + 1) − 〈

I2
z

〉]
. (C4)

37For example, the occupations of the four sublevels of spin 3/2
got far from thermal distribution under the feedback employed in
Ref. [42].

Equation (C3) expresses the rate (proportionality factor) for
building the nuclear polarization as the difference of the rates
for transitions increasing the value of spin j and the rate
decreasing it, see Fig. 8. Using the definition of pn we can
then write

pz(0)|I+|2 = I × (peαI (pn) − pn), (C5a)

αI (pn) ≡ (I + 1) − 〈
I2
z

〉
/I. (C5b)

For small nuclear polarization, one has 〈I2
z 〉 = I (I +

1)/3 + O(p2
n). For the opposite limit, pn → 1, we got

〈I2
z 〉 = I2 − O[(1 − pn)]. Therefore

αI = 2
3 (I + 1), for pn → 0, (C6a)

αI = 1, for pn → 1. (C6b)

At intermediate polarization, α will be somewhere between
these two limiting values. For spin one-half the two limiting
values are the same and α = 1 for any pn.

APPENDIX D: DERIVATION OF EQ. (38)

Our goal is to calculate the transition matrix element

Y = 〈s′, j′|δI · J ′
n

(−2s) · s|s, j〉. (D1)

Here, the spin indexes are related by Eq. (25), the correspond-
ing quantization axes are oe and zn, see Eq. (26), and the
time-dependent tensor J ′

n is defined in Eqs. (17), (19), and
(37). Using these relations, and choosing s = 1/2, we write
the matrix element in a more concrete form

Y = 〈↓, j + 1|δI · J ′
n

(−1) · s|↑, j〉. (D2)

We now do two straightforward transformations. First, we
express the spin-operator vectors in coordinates aligned with
their quantization axes. For example, the electron spin ↑ is an
eigenstate of the operator

σoe ≡ σ · oe = σ · Rze→oe [ze] = (
R−1

ze→oe
[σ]

) · ze, (D3)

where we denote Rn→m a rotation operator taking unit vector
n to unit vector m. Second, we introduce “ladder” operators
for spins; for example,⎛

⎜⎜⎝
σx

σy

σz

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1/2 1/2 0

−i/2 i/2 0

0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

σ+
σ−
σz

⎞
⎟⎟⎠. (D4)

With these, the operator of interest can be written

δI · J ′
n

(−1) · s = δIzn,L · (LTRT
ze→zn

J ′
n

(−1)Rze→oe L
) · σoe,L,

(D5)

where L is the three by three matrix in Eq. (D4) and
the subscript (n, L) on the spin-operator vector states that
the vector components are in the ladder operators basis in
the coordinate frame with its third axis along n. The advantage
of such transformation is that in this basis we can treat the
spin quantum numbers s, j as representing the “usual” basis
with the spin quantization axis along “z.” Also, as the only
possibly nonzero component of the polarization 〈I〉 is z, we
can drop the polarization, δI → I, and get the matrix element
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TABLE I. Matrix elements of M(t ) defined in Eq. (D10). We do not give the elements Mz· and M·z as they do not couple resonant states. The
elements have symmetry M (k)

f f ′ = (M (−k)

f , f
′ )∗, which we interpret as the amplitude for a spin-spin transition at energy quantum k being complex

conjugate of a reverse transition at opposite energy. Here, the index inversion is defined by + = −, − = +, and z = z.

Fourier Matrix elements in ladder basis

index k M (k)
++ M (k)

+− M (k)
−+ M (k)

−−

0 eiδ′ (sin γ−1)(1+cos δ)
8

eiδ′ (sin γ+1)(1+cos δ)
8

e−iδ′ (sin γ+1)(1+cos δ)
8

e−iδ′ (sin γ−1)(1+cos δ)
8

−1 cos γ sin δ

4
cos γ sin δ

4 0 0

+1 0 0 cos γ sin δ

4
cos γ sin δ

4

−2 e−iδ′ (sin γ+1)(cos δ−1)
8

e−iδ′ (sin γ−1)(cos δ−1)
8 0 0

+2 0 0 eiδ′ (sin γ−1)(cos δ−1)
8

eiδ′ (sin γ+1)(cos δ−1)
8

in Eq. (D2) as

Y = 〈↓, j + 1|I+[Jn(t )M(t )](−1)
+− s−|↑, j〉 ≡ XI+, (D6)

where we used Eq. (19) and Eq. (15) with the time dependence
according to Eq. (11), to express the element through the
following short hands:

I+ = 〈↓, j + 1|I+s−|↑, j〉, (D7)

X = [Jn(t )M(t )](−1)
+− , (D8)

Jn(t ) = Jn

(
1 − 2

d(t ) · (r − r0)

l2
cos(ωrft − φrf )

)
, (D9)

M(t ) = LTRT
ze→zn

Rzn,ωrf t R
−1
ze,ωrf t Rze→oe L. (D10)

In the last line, we used an alternative notation for rotations,
putting Rn,α for the matrix implementing rotation around unit
vector n by angle α.

Since Jn(t ) contains only −1, 0, and +1 Fourier compo-
nents, to get the component ±1 of the product Jn(t )M(t ), we
need the Fourier components of M(t ) up to ±2. They are given
in Table I for the parts of interest. The desired matrix element
is

X ≡ [Jn(t )M(t )](−1)
+−

= J (−1)
n M (0)

+− + J (0)
n M (−1)

+− + J (1)
n M (−2)

+− , (D11)

and the three terms are, respectively,

−Jn
1 + cos δ

8
ei(φrf +δ′ )(1 + sin γ )

d(t ) · (r − r0)

l2
, (D12a)

Jn
sin δ

4
cos γ , (D12b)

−Jn
1 − cos δ

8
e−i(φrf +δ′ )(1 − sin γ )

d(t ) · (r − r0)

l2
, (D12c)

where δ′ and δ are the two Euler angles of the rotation
Rze→zn = Rze,δ′ ◦ Rye,δ , see Fig. 2.

For realistic micromagnet gradients and quantum dot sizes,
the change of the magnetic field across the quantum dot is
small compared to the magnetic field magnitude. The angle
δ is then close to either 0, when sgn(gegi ) = −1 (the case of
both Si and GaAs conduction band), or π , when sgn(gegi ) =
+1. Out of the two terms in Eqs. (D12a) and (D12c), these two
scenarios imply that the second or the first can be neglected,

respectively. The matrix elements in Eq. (D12) show that these
two scenarios map to each other upon inverting the sign of
γ . Therefore the relative sign of the electron and nuclear g
factors implies no essential difference for the arising DNSP
rate magnitude.

On the other hand, the micromagnet gradient makes the
angles δ, δ′ dependent on the position within the dot, compli-
cating the analysis. We consider a simplified scenario. The
restriction is insignificant for the results presented in this
paper, but simplifies the notation and calculations. Namely,
the gradient of the magnetic field at the dot position is given
by the tensor ∇i〈Bj〉.38 For in-plane displacements, the six
derivatives, ∇x0〈B〉 and ∇y0〈B〉, enter the problem. We split
them to the gradient of the field along its direction (also
denoted as the field longitudinal component), ∇(〈B〉 · ze), and
the two gradients of the two remaining transverse compo-
nents. The former is important for the resonance width, see
Eq. (A11) in Appendix A. The latter can be represented by
a two by two matrix, schematically denoted by ∇(〈B〉 × ze).
Our simplified scenario corresponds to neglecting the smaller-
in-magnitude of the two singular values w1 and w2 of this
matrix. Assuming w1 is the larger one, the component of
the magnetic field perpendicular to ze is given by (r − r0) ·
u1w1v1, where ui and vi are the unit vectors from the singular
value decomposition.39 More important than their values, we
note that in this case the angle δ′ is fixed, given by the direction
of the vector v1, while δ is position dependent, given by40

± sin δ ≈ tan δ = ((r − r0) · ∇)(〈B〉 × ze) · v1

〈B〉
≈ (r − r0) · u1w1

〈B〉 . (D13)

In the main text, we use a shorthand notation ∇⊥B ≡ w1 =
|∇(〈B〉 × ze) · v1| as the gradient size of the transverse com-

38The derivative is with respect to the dot center r0.
39We use the notation of Chap. 2.9 of Ref. [89]. See therein for

details on the singular value decomposition.
40The plus sign applies if the axes ze and zn are close to parallel

(δ ≈ 0) and minus sign if they are close to antiparallel (δ ≈ π ). If it is
the minus sign here, it inverts the relative sign of the interference term
in Eq. (38d). To ease the notation, we include this possible minus sign
by redefining δ′, adding π to it.
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TABLE II. Matrix elements of M(t ) defined in Eq. (D10) for a general hyperfine interaction, given by Iis jJi j . We give only the elements
M+−. The symmetry M (k)

f f ′ = (M (−k)

f , f
′ )∗ still holds.

Matrix element value

M (0)
+−

1+sin γ

8 ((Jxx cos δ + Jyy + iJxy cos δ − iJyx ) cos δ′ − (Jzx + iJzy ) sin δ + (iJxx − Jyx + Jyx cos δ + iJyy cos δ) sin δ′)

M (−1)
+− − cos γ

4 ((Jxz cos δ − iJyz ) cos δ′ − Jzz sin δ + (Jyz cos δ + iJxz ) sin δ′)

M (+1)
+− 0

M (−2)
+−

−1+sin γ

8 ((Jxx cos δ − Jyy − iJxy cos δ − iJyx ) cos δ′ − (Jzx − iJzy ) sin δ + (iJxx + Jxy + Jyx cos δ − iJyy cos δ) sin δ′)

M (+2)
+− 0

ponent of the magnetic field, and ∇||B ≡ |∇(〈B〉 · ze)| as the
gradient size of the longitudinal component. Also, we denote
φ as the angle of vectors d and v1.

With the geometry clarified, let us go back to Eq. (D11). It
is a sum of three terms. To be specific, let us take the δ ≈ 0
scenario. Each term contains a small factor: In the first, it is
the dot shift compared to its size O(d/l ), in the second the
deflection angle O(δ), and in the third there are both O(d/l )
and O(δ2). As already noted, the third term can be neglected
with respect to the first. (If δ ≈ π , the roles of the first and
third terms would be swapped). The transition amplitude is
thus a sum of two terms. The complex factor exp[i(φrf + δ′)]
makes the two terms interfere in the matrix element squared
magnitude |X |2. Once again, we are interested in the average
of this expression over the dot. Equation (38) follows after a
short algebra using Eq. (D11), Eq. (D13), and the following
averages:

〈r − r0〉 = 0,

〈(a · (r − r0))(b · (r − r0))〉 = (a · b)l2.

We conclude with a comment to the interference strength
ξ given in Eq. (38d). It is a product of two cosines. If
neither of the two arguments is known, one could replace
them by their average using ξ →

√
〈ξ 2〉 = 1/2, where the

average 〈·〉 is the integral over the unknown angles with a
uniform prior probability distribution. In other words, the
interference is somewhat suppressed by the misalignment of
the essentially random directions of vectors d, v1, and the
angle φrf . Within our precision here, we simply neglect the
interference.

APPENDIX E: ANISOTROPIC HYPERFINE INTERACTION

We now extend the previous Appendix by considering
a more general form of the hyperfine Hamiltonian Hhf

in Eq. (4), with the spin-spin interaction not necessarily
isotropic. It would result in the hyperfine coupling in Eq. (15)
becoming a second-rank tensor, with Cartesian components
denoted here as Jxx, Jxy, and so on. The relevant matrix
elements for a general hyperfine tensor, calculated from
Eq. (D10), are given in Table II.

We are motivated by the possible application of our for-
mulas to hole qubits (see Appendix I). Before that, we look
at what tensor matrix elements are required for a nonzero
DNSP, making the connection to the existing literature.
From Table II, we find that without the axes deflection,

neither the isotropic exchange (Jxx = Jyy = Jzz as the only
nonzero matrix elements) nor the “secular exchange” (Jzz

the only nonzero matrix element; the name is used in the
NMR literature), induce transitions. Whereas the former ap-
plies for dipole-dipole interactions in liquid solutions [55],
the latter form of spin-spin coupling originating in dipole-
dipole interaction is typically considered in the solid state
[67,68].41

We thus have the following analogy to the NMR and the
Hartmann-Hahn effect. While there both spins are driven,
here it is only one of them (the electron). Since driving a
spin effectively deflects its energy quantization axis from the
direction of the magnetic field, driving also the second nuclear
spins in NMR is analogous to having here a nonzero deflection
angle δ due to the micromagnet.42

In the literature on self-assembled quantum dots, the “non-
secular” (the NMR name) hyperfine interaction terms, such
as Jxz, are called “noncollinear.” While in Refs. [59,81] such
terms are assigned to the effects of the light-hole–heavy-
hole mixing on the hole hyperfine tensor (see Appendix I),
in the majority of the works in that field the “noncollinear-
ity” is understood as due to the quadrupolar fields [76]
(they were considered as the DNSP source in Ref. [90]
and coined as noncollinear hyperfine tensor in Ref. [84],
including the quadrupolar effects perturbatively). If due to
quadrupolar fields, the noncollinearity then qualitatively cor-
responds, in our work, to the combined effect of an isotopic
electron-nuclear hyperfine interaction and the deflection of the
quantization axes.

APPENDIX F: ADDITIONAL PLOTS

We present additional plots analogous to Figs. 4 and 6 of
the main text.

41However, there are also isotropic interactions: In its derivation
of the polarization rate, Ref. [47] considered the electron-mediated
nuclear-nuclear exchange as such an isotropic interaction.

42Section IV C of Ref. [47] contains a discussion of the case where
the second spin is not driven (as here) and invokes an exchange tensor
with components such as Jzx and Jzy needed to produce finite nonzero
matrix element for the polarization transition. The same anisotropic
terms were considered also in Refs. [54,55].
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FIG. 9. Polarization rate as a function of the electron detuning
frequency for gallium isotopes. The plot is analogous to Fig. 4, and
all parameters are the same as there.

1. Plots analogous to Fig. 4

Figure 9 shows DNSP rates for the two gallium isotopes
of GaAs, using the same parameters as in Fig. 4. Figure 10
is a similar plot for the 29Si isotope of a Si dot. There, some
parameters are slightly changed, reflecting that silicon dots
are typically smaller and have better coherence because of
nuclear-induced dephasing being smaller than in GaAs. For
these parameters, the DNSP rates in Si are about four orders
of magnitude smaller than in GaAs.

2. Plots analogous to Fig. 6

To illustrate the magnitude of the DNSP polarization rate in
silicon, we plot the restoring rate 	∗ in Fig. 11. Comparing to

FIG. 10. Polarization rate as a function of the electron detuning
frequency for 29Si in a silicon quantum dot. The plot is analogous
to Fig. 4 and the parameters are as there except for: Pulse time
Tpulse = 100μs, cycle time Tcycle = 200μs, dot in-plane size l = 20
nm, additional smearing 2π × 25 kHz.

Fig. 6, we observe that in Si the polarization is several orders
of magnitude smaller than in GaAs. It is also much smaller
than the intrinsic restoring force 	0 due to thermal diffusion.
In this respect, the EDSR-induced dynamics of nuclear spins
is minor.

APPENDIX G: LAIRD MECHANISM

We now consider a different resonance, not of the
Hartmann-Hahn type. We include it for completeness, and
because both the calculation and the corresponding experi-
ment are related to the ones we have considered. Namely,
we now assume that for some reason, the electrical driving
is not effective in driving the electron spin. While the dot is
electrically driven as before, there is no EDSR (disregarding

FIG. 11. Stabilization by feedback in an electron qubit in Si. The
plot is analogous to Fig. 6 (see its caption for a plot description) and
adopts the same parameters except for the material parameters of Si
and a smaller dot, l = 20 nm.
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nuclei). The most straightforward scenario would be a dot
without a micromagnet.

Still, the electron spin can be transferred to the nuclei, so
that DNSP arises. However, it happens at a different resonance
condition, namely when the driving frequency equals the
difference of the electron and nuclear Larmor frequencies.43

As we explain here, the DNSP arises as a backaction of the
torque that a random transverse component of the Overhauser
field exerts on the electron.44 When the resonance condition
is fulfilled, this torque results in the electron EDSR and the
nuclear polarization. The effect was experimentally demon-
strated by Laird et al. [63].

To estimate the strength of this mechanism, and compare
it to the ones from the main text, we now make an analogous
derivation of the DNSP rate for this scenario. Since the micro-
magnet is not relevant now, we drop it from the problem. The
Hamiltonian in Eq. (16) simplifies considerably,

H = −h̄ωnIn · zn − h̄ωes · ze + Jn(t )δIn · s. (G1)

The two vectors zn and ze are now parallel (or antiparallel).
We go into a frame rotating with the nuclear spin,

H ′ = −[h̄ωe + sgn(gegn)h̄ωn]sz + Jn(t )δIn · s. (G2)

In the last term, we keep only the transverse (in spin) and
varying (in time) component,

H ′ = −[h̄ωe + sgn(gegn)h̄ωn]sz + [Jn(t ) − Jn(0)]In⊥ · s.
(G3)

We sum over all nuclei and consider the electron dynamics
described by

He = −(
h̄ωrf − h̄ωL

�

)
sz + 2 cos(ωrft − φrf )h̄ωL

RR · s,

(G4a)

h̄ωL
� = h̄ωrf − [h̄ωe + sgn(gegn)h̄ωn], (G4b)

h̄ωL
RR = 1

2

∑
n

v0An(d · ∇)|�n|2In,⊥ , (G4c)

Thus, we obtained a Rabi Hamiltonian He with the de-
tuning h̄ωL

� and the driving field h̄ωL
RR. In this section, we

introduce several quantities analogous to the ones in the main
text, denoting them by the superscript L for “Laird.”

We estimate the typical value of the transverse field, aver-
aging over the dot

〈(
h̄ωL

RR

)2〉 = 1

4

〈∑
n,m

v2
0A2

i 4(d · rn0)(d · rm0)l−4|�n|4In,⊥ · Im,⊥

〉

= 2
I (I + 1)

3
(d/l )2φiA

2
i v0/VD, (G5)

43Such slight detunings which lead to spin-selective electron-
nuclear flip-flops were considered in Ref. [50].

44Several previous works [53,91,92] analyzed the DNSP arising
from a periodically reset electron spin, treating the electron and
Overhauser fields as classical vectors precessing around each other.
That a semiclassical model contains all the relevant physics is con-
firmed by the fact that it also explains the observed nuclei-induced
electron-spin dephasing [93].

FIG. 12. Rabi oscillations in the Laird mechanism. The
schematic defines the Rabi angle γ L in terms of the detuning and the
matrix element given in Eq. (G6). This figure is analogous to Fig. 3.

with the short hand rn0 = rm − r0. In the averaging, we as-
sume that the polarization pi is small and use 〈In,⊥ · Im,⊥〉 =
δn,m(2/3)I (I + 1) corresponding to unpolarized nuclei.

The transverse field corresponds to the Rabi precession
angle (see Fig. 12)

sin γ L = − h̄ωL
�

h̄ωL
R

, (G6a)

cos γ L = h̄ωL
RR

h̄ωL
R

, (G6b)

h̄ωL
R =

√(
h̄ωL

RR

)2 + (
h̄ωL

�

)2
. (G6c)

The electron spin z component evolves according to

sz(t ) = sz(0)
[
sin2 γ L + cos2 γ L cos ωL

Rt
]

= sz(0)
[
1 + cos2 γ L

(
cos ωL

Rt − 1
)]

, (G7)

an equation analogous to Eq. (33).
Finally, since the z component of the total spin of the

system is conserved, the change of the electron spin equals
the opposite change of the spin of the nuclei,

Iz(t ) − Iz(0) = sz(0) − sz(t ) = pe

2
cos2 γ L

(
1 − cos ωL

Rt
)
,

(G8)

where we have put sz(0) = pe/2 in line with the notation in
Eq. (C1). With the total duration of the driving being Tpulse (we
drop the subscript and use T in the following two equations to
improve readability), this change is equivalent to a rate (of
polarization the total nuclear spin of isotope i)

	L
i = pe

2
cos2 γ L 1 − cos ωL

RT

T
, (G9)

in turn equivalent to the polarization rate

∂t pi = 1

IiφiNtot
	L

i

= pe

2

1

IiφiNtot

(
h̄ωL

RR

)2(
h̄ωL

R

)2

1 − cos ωL
RT

T
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= pe

2

1

φiNtot

(2/3)(Ii + 1)(d/l )2φiA2
i

h̄2Ntot

1 − cos ωL
RT(

ωL
R

)2
T

= pe
(Ii + 1)

3h̄2

A2
i

N2
tot

d2

l2

1 − cos ωL
RT(

ωL
R

)2
T

. (G10)

In analogy to Eq. (42), we interpret the last factor as a
(Lorenzian-shaped) spectral density: In the limit of a long
evolution time T → ∞ and a small hyperfine matrix element
ωL

RR → 0, it becomes a delta function

π h̄δ(h̄ωe + sgn(gegn)h̄ωn − h̄ωrf ), (G11)

imposing the conservation of the energy transfer between the
electron spin, a nuclear spin, and a microwave photon. With
this interpretation, we cast the rate in line with the notation of
Eq. (45a),

∂t pi = π

h̄2 X 2
L αI peG�L

(
ωL

�

)
, (G12a)

where

XL = Ai

Ntot

d

l
, (G12b)

�2
L = 2Ii(Ii + 1)

3

d2

l2

φiA2
i

Ntot
. (G12c)

We have arrived at a formula analogous to Eq. (45). It is
interesting to note that, up to an additional factor of 2 in
the matrix element XL, Eq. (G12) corresponds to Eq. (45a)
including only the “shaking” mechanism in the limit fRR → 0
with γ → π/2. The remaining differences are natural. First,
since we assumed unpolarized nuclei, the rate in (G12a) con-
tains the factor from Eq. (34) evaluated at pn = 0. Second, the
width of the spectral function now refers only to the thermal
distribution of the Overhauser field. The latter is similar to the
values seen in Sec. V.45 However, one also needs to point out
substantial differences:

First, the mechanism considered in this section originates
in the (reaction) torque that the electron spin exerts in re-
sponse to the (action) torque from nuclei inducing the electron
Rabi rotation. In the main text, this torque was due to the
micromagnet and had nothing to do with nuclei. While a
stochastic gradient from the Overhauser field will coexist with
the one due to a micromagnet, they will have a random mutual
orientation (alternatively: Random phase). If it is the micro-
magnet gradient that dominates, the random phase suppresses
the ‘Laird’ polarization rate and makes it zero on average in
experiments with micromagnets.

Second, the derivation here applies in the incoherent
regime, otherwise the time-dependent factor in Eq. (G10)
should not be converted to a delta function, but kept as oscil-
lating, leading to an oscillating nuclear polarization. Taking
the opposite view, trying to use Eq. (45) in the far-off res-
onant regime, we do not expect to recover Eq. (G12a) from
Eq. (45a) upon taking the limit fRR → 0. Namely, the as-
sumption that the last term in Eq. (48) is the smallest is not
fulfilled far from the resonance and explains the unnatural

45Using d = 0.5 nm, lz = 10 nm, and l = 34 nm, we get
�L (29Si) = 2π × 34 kHz, �L (69Ga) = 2π × 135 kHz, �L (71Ga) =
2π × 140 kHz, �L (75Ga) = 2π × 207 kHz.

result (1 + sin γ )/2 → θ (γ ) in the limit fRR → 0. To correct
for this deficiency, one would need to keep both in-phase
and out-of-phase frequency components, for example using
the technique of Ref. [94]. However, since we are interested
primarily in DNSP arising in dots with high-quality single-
qubit operations, we do not pursue the off-resonant regime,
and the connection between Eqs. (G12a) and (45a), further.

The most important conclusion of this section is that the
DNSP arising as the backaction of the electron “primary”
Rabi oscillation on the nuclear spins, that is, the “Laird”
mechanism, can be neglected if nuclei are not the dominant
source of the primary Rabi oscillations, that is, in experi-
ments employing micromagnets or spin-orbit coupling. The
nuclear contribution to the ‘primary’ Rabi oscillations of the
electron spin was neglected in the main text, attributing it to
the micromagnet entirely. While nuclei also contribute, the
corresponding DNSP rate is going to be much smaller than
Eq. (G12a), the latter comparable to one of the mechanisms
included in Eq. (45a).

APPENDIX H: EFFECTIVE PARAMETERS
OF BOUNDED DIFFUSION

The Overhauser field acting on the electron spin in a
quantum dot fluctuates because of diffusive thermal fluctua-
tions of nuclear spins mediated by dipolar nuclear spin-spin
interactions. The diffusion results in the Overhauser-field vari-
ance growing linearly over short times and saturating at long
times. The long-time average (probability distribution) of the
Overhauser-field components is a Gaussian with a finite vari-
ance centered at zero. A simple model of such stochastic
quantity is a random walk with a harmonic restoring force
[95,96]. Using the notation of Ref. [97], with K (ω0, ω, δt )
being the conditional probability of the electron Larmor fre-
quency having value ω at time t if it had value ω0 at time
t0 = t − δt , the model gives

K (ω0, ω, δt ) = 1√
2πσ 2

δt

exp

[
−
(
ω − ω0e−δt/κ

)2

2σ 2
δt

]
, (H1a)

where

σ 2
δt = σ 2

�

(
1 − e−2δt/κ

)
. (H1b)

Hence, the model has two parameters, σ 2
� and κ . The

first parameter is the variance long-time saturation value. For
the Overhauser field contribution to the electron Larmor fre-
quency,

σ 2
� = 1

h̄2 〈(δh̄ωe)2〉, (H2)

it is, by a calculation analogous to Eq. (G5),

σ 2
� = 1

h̄2

〈∑
n,m

v2
0AnAm|�n|2|�m|2In,z · Im,z

〉

= 1

h̄2

∑
i

Ii(Ii + 1)

3
φiA

2
i

v0

VD
. (H3)

The parameter κ has the units of time and describes the restor-
ing force that keeps the random walk bounded. Specifically,
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the expectation value of the distribution in Eq. (H1a) is

ω ≡
∫

dωK (ω0, ω, δt ) = ω0e−δt/κ . (H4)

The Taylor expansion at short time δt � κ gives

ω − ω0 = −ω0

κ
δt . (H5)

Since the expected average change is proportional to the time
interval, the proportionality factor corresponds to a polariza-
tion rate. Further, taking the limit δt → 0,

∂tω = −ω

κ
, (H6)

the equation expresses a restoring force, since the detuning
frequency is pulled back to the ‘equilibrium’ ω = 0 in pro-
portion to its instantaneous deviation from the equilibrium.

Similarly, the variance growth at short times,

(ω − ω0)2 = σ 2
δt + ω2

0

(
e−2δt/κ − 1

)2 ≈ σ 2
�

2δt

κ
, (H7)

shows that the process is a diffusion with the diffusion con-
stant

D� = 2σ 2
�

κ
. (H8)

With these results, we can convert the “intrinsic” thermal
fluctuations of the Overhauser field, which are bounded and
well described by a Gaussian distribution at long times, into
the corresponding parameters of the above model. As we
already noted, there are several experimental measurements
of D� in gated GaAs quantum dots. Based on the values
given in footnote [27], we take D� = (2π × 7 kHz)2/1μs as
a representative value. Equation (H8) then gives κ = 0.2 s [we
evaluated σ 2

� from Eq. (H3) using our parameters], predicting
the Overhauser field equilibration scale in seconds.

In silicon, we are not aware of a direct experimental
measurement of the diffusion constant of the quantum dot
Overhauser field, D�. To arrive at an estimate, we use the re-
sult of Ref. [98], which, using the methods of Refs. [99,100],
derives the time-correlation of the Overhauser field, converted
to angular frequency units as

ω(t )ω(t + δt ) = σ 2
�√
2π

∏
α∈{x,y,z}

(
1 + 2Dl−2

α |δt |)−1/2
, (H9)

where D is the material bulk nuclear spin diffusion constant.
Taylor expanding for short times δt → 0, we get

D� = σ 2
�√
2π

D
(
l−2
x + l−2

y + l−2
z

)
, (H10)

and finally

κ =
√

8π

D

(
l−2
x + l−2

y + l−2
z

)−1
. (H11)

Crosschecking the value for GaAs, using the bulk diffu-
sion D = 7 nm2/s estimated theoretically [101,102] gives κ =
0.001 s, implying equilibration time of the order of a minute.
The two values delimitate the range for the expected value of
the intrinsic rate 	0, which we use in the caption of Fig. 6 as

0.01−0.1 s−1. Assuming that in silicon the spin diffusion is
slower, with D = 2 nm2/s measured in Ref. [103], we use an
order of magnitude smaller rates, 	0 ∼ 0.001−0.01 s−1, as an
orientation value46 in Figs. 11 and 13.

APPENDIX I: DNSP IN HOLE QUBITS

We now apply the results of Table II to quantum dots with
holes. Aiming at rough estimates, we consider the heavy-hole
(HH) limit with the hyperfine interaction of the Ising form
[108]47

Hhf =
∑

n

A||,nv0|�(rn, zn)|2Izsz. (I1)

This limit leads to a simple result for the matrix element X .
Namely, with Jzz being the only nonzero element of the hyper-
fine tensor,48 Table II gives M (0)

+− = 0 = M (−2)
+− and M (−1)

+− =
Jzz cos δ sin γ /4. It means, first of all, that in the Ising limit the
“shaking” mechanism is not effective, only the “deflection”
one contributes,

X HH
df = A||

4Ntot
sin δ cos γ , (I2)

X HH
sh = 0. (I3)

The next difference to electrons is that for holes, apart from
the hyperfine tensor, the g-tensor is also strongly anisotropic
and the confinement has strong effects on the hole spin. Im-
portant here, the deflection of the quantization axes of the
hole spin and nuclear spins will be most often dominated
by the quantum dot confinement rather than the small gra-
dients of the magnetic field. The factor sin δ is then not
necessarily small for holes. Specifically, consider a quasi-two-
dimensional quantum dot with the strong confinement along
the z axis, what fixes the heavy-hole spin along z. With the
magnetic field in the plane, the deflection angle δ is π/2. The
factor sin δ in Eq. (I2) is then 1, rather than l∇⊥B/B ≈ 0.03
in Eq. (45b), boosting the rate by orders of magnitude. On the
other hand, the nuclei are still polarized in the plane, so that
the arising polarization is not visible as a change in the hole
Larmor frequency. Additional NMR pulses would be needed
to detect this polarization through the hole.

Concerning the material, recent progress with hole qubits
[110] motivates us to consider silicon and germanium atoms
for a possible DNSP. The hyperfine constants in the valence

46Using bulk diffusion constant for a quantum dot has its limits.
Compared to a bulk crystal, the diffusion in a dot can be, on the one
hand, slowed down by the potentially large inhomogeneities of the
magnetic [104], Knight [105], or quadrupolar [70,106] fields, and,
on the other, boosted by electron-mediated nuclear flip flops [107].

47Going beyond this simplest limit might require numerics to eval-
uate the hole wave function. The hyperfine interaction tensor is
nongeneric, given by the details of the confinement potential [39].

48The light-hole–heavy-hole mixing results in further elements in
the hyperfine tensor. Treating the mixing perturbatively, some of
these elements arising in the first and second order were given in
Refs. [81,109].
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FIG. 13. Stabilization by feedback in a hole qubit in SiGe. The
plot is analogous to Fig. 6 (see its caption for the description) and
adopts the same parameters except for the atomic parameters of Si
and Ge.

band for the two are similar,49 while the 9/2 nuclear spin of
73Ge is much larger than the 29Si spin 1/2. These numbers
would suggest germanium as more perspective to search for
the DNSP signal. However, its low g-factor makes the nuclear
Larmor frequency low, in turn the detection of the Hartmann-
Hahn resonance challenging.

For a SiGe hole qubit, we summarize as follows. Since the
hyperfine constant in the silicon valence band is similar to the
one in the conduction band (see Table 1 in Ref. [111]), taking
a heavy hole with spin along z and the magnetic field also
along z, the resulting DNSP rate is similar to the one for an
electron qubit in silicon. It was plotted in Fig. 10, where only
the deflection mechanism applies for a hole. The resulting rate
is low. A somewhat larger rate arises in germanium atoms,
because of the larger nuclear spin. However, the resonance
frequency is low (below 1 MHz for B = 1 T). Concerning
a possible observation of the DNSP with holes, the most
favorable scenario then looks to be searching for it in silicon
atoms with a heavy-hole quantum dot in an in-plane magnetic
field.

We illustrate this case with Fig. 13, plotting the induced
rate 	∗. For 29Si atoms, the rate can be compared to the
analogous plot for an electron quantum dot, Fig. 11. The lack
of suppression due to the factor sin δ (with sin δ = 1 for the
hole) boosts the rate by three orders of magnitude. On the
other hand, one order of magnitude is offset by a smaller size
of the electron-qubit quantum dot, due to a larger effective
mass. As a result, the difference between the curves for Si in
Figs. 11 and 13 is approximately two orders of magnitude.

As seen in Fig. 13, the rate for 73Ge atoms can become
larger than for 29Si. It is due to a larger nuclear spin of germa-
nium. However, the resonance happens at a low frequency, so
that the resonant peak is not discernible for Ge in Fig. 13,

49Our Eq. (I1) corresponds to Eq. (17) of Ref. [111] with An = A||
and the perpendicular components A⊥ neglected. The reference gives
A|| = −2.5 neV for 29Si and A|| = −1.1 neV for 73Ge, with A⊥ two
orders of magnitude smaller.

overwhelmed by the rate behavior at zero frequency.50 A
discernible peak appears for B = 2 T or higher (not shown),
but such fields might be too high for holes in SiGe to be useful
as spin qubits.

APPENDIX J: COLLECTIVE ENHANCEMENT?

Here we consider the possibility of an enhancement of the
polarization rate due to collective effects. We have considered
a single nuclear spin in all our derivations of the polarization
rate. However, the coupling to a system with many spins can
be coherently enhanced (known as ‘superradiance’ [112]),
observed as an increase of the Rabi frequency by the factor
[113]

√
N where N is the number of spins. Therefore one can

wonder whether such effects, absent in our single-nuclear-spin
calculations, could boost the polarization rate compared to our
estimates.

We find that this is not the case, and concerning the rates,
calculations within a single spin or many spin basis are exactly
equivalent. To show the essence of this somewhat surprising
equivalence, we consider here only the dependence of the
polarization rate on the matrix element of the spin-rasing oper-
ator I+. The rate is proportional to a squared matrix element of
it, see, for example, Eq. (41), with I+ defined in Eq. (29). We
calculate the squared matrix element of the total (“collective”)
spin-raising and lowering operators in a many-spin system

J± =
2N∑

n=1

In,±, (J1)

with n labeling the individual spins, the total number of which
is 2N . We consider nuclear spins 1/2 for simplicity in this
section.

We consider the basis composed of many-spin states with
the quantum numbers being the total spin j and its component
along the z axis m,

| j, m〉. (J2)

The admissible values are m ∈ {−N,−N + 1, . . . , N − 1, N},
and j ∈ {0, 1, . . . , N}. The matrix elements of the total-spin
operators are

J2| j, m〉 = j( j + 1)| j, m〉, (J3a)

Jz| j, m〉 = m| j, m〉, (J3b)

J±| j, m〉 =
√

j( j + 1) − m(m ∓ 1)| j, m ± 1〉. (J3c)

One example of a collective basis state is the totally polar-
ized one,

| j = N, m = N〉 = |↑〉 ⊗ |↑〉 ⊗ · · · ⊗ |↑〉, (J4)

50We note that Eq. (56) diverges in the limit fRR → 0. This diver-
gence is spurious, and stems from the assumption fRR � f�, which
we adopted in deriving Eqs. (56) and (57). At detunings larger than
fRR, the assumption is violated, Eq. (57) does not hold, and the
quantity 	∗, though still well defined, is of little use. For this reason,
we limit the lowest frequency on the horizontal axis in Figs. 6, 11,
13 to an ad hoc value of 1 MHz.
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where there are N+ = 2N spins up and N− = 0 spins down.
Except for the fully polarized one, other collective states
are coherent superpositions of several tensor-product states
all having the same up and down individual spins, given by
N± = N ± m. This property gives the recurrence relation for
Cjm, the degeneracy of the basis state | j, m〉, as(

N+ + N−
N+

)
=
(

N+ + N−
N−

)
=

N∑
j=m

Cjm, (J5)

where the bracket denotes a binomial coefficient. The recur-
rence is solved by

Cjm =
(

2N

j + N

)
−
(

2N

j + N + 1

)
, (J6)

valid for any j � 0 including j = N .
We now proceed to main calculation of this section, the

average total squared matrix element (called in short “rate”
in further) in the subspace with a fixed value of the quantum
number m,

R
±
m ≡

∑
j

p jR
±
jm. (J7)

The definition comprises the rate in the state | j, m〉,
R±

jm ≡ |〈 j, m|J±| j, m〉|2 = j( j + 1) − m(m±1), (J8)

and the probability that the system is in state | j, m〉,

p j = Cjm∑
j Cjm

. (J9)

In this equation, the normalizing denominator is the number
of states with a fixed value of m, which is given in Eq. (J5),

Cm =
∑

j

Cjm =
(

2N

N + m

)
=
(

2N

N − m

)
=
(

2N

N + |m|

)
,

(J10)

where the first two binomial coefficients evaluate to the same
value and can thus be written as the third one. It remains to
evaluate the following sum:

S =
N∑

j=|M|
CjmR±

jm. (J11)

Inserting the definitions from Eqs. (J6) and (J8), we get

S =
(

2N

N + j

)
R±

jm| j=|m| +
N∑

j=|m|+1

(
2N

N + j

)
[R±

jm − R±
j−1,m]

=
(

2N

N + |m|

)
(|m|∓m) +

N∑
j=|m|+1

(
2N

N + j

)
2 j. (J12)

Using the identity [see Eq. (5.18) in Ref. [114]]∑
k�m

(
r
k

)( r

2
− k

)
= m + 1

2

(
r

m + 1

)
, (J13)

the sum in Eq. (J12) can be brought to

(N + |m| + 1)

(
2N

N + |m| + 1

)
, (J14)

which, on using Eq. (5.6) of Ref. [114] twice, equals

(N − |m|)
(

2N
N − |m|

)
. (J15)

Collecting the expression in Eqs. (J10) and (J12), we get a
simple result

R
±
m = N∓m. (J16)

This result is exact, following from identities for binomial
coefficients. Importantly, the average rate within a fixed-m
subspace is linear in m. Therefore the average rate in the total
(considering all m-subspaces) system, which might be spin-
polarized, can be obtained by replacing the spin polarization
on the right-hand side of the last equation with its statistical
average m → 〈m〉. The proof is as follows:

R
± ≡

∑
j,m qmCjmR±

jm∑
j,m qmCjm

=
∑

m

qmCm∑
m qmCm

R
±
m

=
∑

m

pm(N∓m)

= N∓〈m〉, (J17)

where we denoted pm as the (spin-polarization defining) prob-
abilities of occupation of the subspace m. Again, this result is
exact and the only assumption it requires is that the probabili-
ties of individual states, denoted qm in the above, depend only
on m (and not j or other, exchange-symmetry related quantum
numbers).

Introducing the spin polarization pnuc = 〈m〉/N , we get the
polarization rate evaluated in collective-state basis as

R
± = 1

2 (1∓pnuc) × 2N. (J18)

On the other hand, using Eq. (J8) for j = 1/2 gives the single-
spin-increasing and decreasing rate as

	
single
+≡↓→↑ = pnuc

↓ × R+
( j=1/2,m=−1/2) = pnuc

↓ × 1, (J19)

	
single
−≡↑→↓ = pnuc

↑ × R−
( j=1/2,m=1/2) = pnuc

↑ × 1. (J20)

Upon introducing single-spin polarization for nuclear spins
(here being 1/2 spins) analogously to Eq. (C1), we thus get

R
± = 2N × 	

single
± , (J21)

the rate for a collection of spins equals their number times the
rate of a single spin.

We thus conclude that there is no “collective enhancement”
of the polarization rate. The single-spin calculation gives ex-
actly the same as the many-spin calculation, even if the system
is spin-polarized, including fully spin-polarized (〈m〉 = N).
This conclusion seems paradoxical taking into account the
superradiance effects of a polarized many-spin system. For
example, the coupling (that is, the matrix element of the
many-spin operator J+) of a fully spin-polarized system is
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proportional to
√

2N .51 The explanation of the paradox is as
follows. When considering Rabi oscillations of a many-spin
system due to a resonant excitation induced by J±, the fully
symmetric sum of individual spin operators, the frequency
of these oscillations, given by the matrix elements of J±,
is proportional to

√
2N and thus “enhanced.” In contrast to

this, the frequency of Rabi oscillations of a single spin is
not enhanced. The two calculations differ, and to describe
the Rabi oscillations of (say, highly polarized) many-spin
system, one should use the collective states. However, when
calculating the polarization rate, the limit t → ∞ [see, for
example, Eq. (42)] effectively means that we evaluate the rate
as the curvature of the Rabi-oscillation curve at t = 0. The
curvature of that curve is equal to the oscillation amplitude
times the oscillation frequency squared. In the many-spin
calculation, taking the fully polarized system for illustration,
the system oscillates between two states, | j = N, m = N〉 and
| j = N, m = N − 1〉 with the frequency enhanced by a factor√

2N . The oscillation frequency is large and the amplitude
is small, �m = 1. In a single-spin calculation, each spin os-
cillates with the same (nonenhanced) Rabi frequency, but the
amplitude is 2N, since the system oscillates between m = N
and m = −N . The resulting rate, being the product of the
amplitude and the frequency squared, is the same in both
pictures,

R = 2N × 12︸ ︷︷ ︸
single-spin calculation

= 1 ×
√

2N
2︸ ︷︷ ︸

collective spin states

. (J22)

The two ways are equivalent, justifying our approach of eval-
uating the rate in a single-spin calculation.

APPENDIX K: QUANTITATIVE TREATMENT OF THE
QUADRUPOLAR-INTERACTION INDUCED

POLARIZATION

In Sec. V, we have encompassed the quadrupolar interac-
tion effects qualitatively, including it in Eqs. (49) and (50)
among the sources of deflection of the electron and nuclear
spin quantization axes. Here we aim at a more quantitative
description, motivated by the experimental results mentioned
in footnote [26], especially the resonances of the electron
Rabi frequency with twice the nuclear Zeeman energy. They
correspond to double nuclear spin flips and were observed in
Refs. [40–42]. Among others, we examine what the theory
predicts for the ratio of double to single nuclear spin-flip rates.

With this goal, we expand the Hamiltonian in Eq. (2) by
the following term:

HQ = eQn
3

2

Vn,αβ

6In(In + 1)
(In,αIn,β + In,βIn,α ). (K1)

Here, Q is the quadrupolar moment of the nucleus n, Vn,αβ is
the matrix of electric field gradients at the nucleus position,
and α and β are Cartesian coordinates indexes. The nuclear
index n could be traded for the isotope index i on all quantities.

51This enhancement has been demonstrated experimentally. For
example, Ref. [113] has confirmed the increase of the Rabi frequency
with the predicted factor

√
2N for N = 1, 2, and 3.

We will omit it entirely from now on for notational simplicity.
We also consider axially symmetric potential, upon which the
interaction can be written as due to a tensor V with a single
diagonal component (Eq. (10.60) in Ref. [115]),

HQ = h̄ωQ(I · q)2. (K2)

We parametrize it by an energy scale h̄ωQ and a unit vector
q. The scale sets the quadrupolar splittings, being of the order
of 10 kHz in GaAs. Anticipating its meaning, we denote the
angle of the unit vector q with the magnetic field direction (the
z axis) as δ, the deflection angle.

We now derive the nuclear spin polarization rate in a way
alternative to the main text. We start with Eq. (16) with the
quadrupolar term added,

H = − h̄ωnI · zn − h̄ωes · ze + h̄ωQ(I · q)2

− 2h̄ωRRs · b cos(ωrft − φrf ) + J (t )δI · s (K3)

and transform only the electron spin operator into the rotating
frame

U (t ) = exp(−is · zeωrft ). (K4)

Adopting again the rotating-wave approximation in the fourth
term of the Hamiltonian, we get

H ′ = − h̄ωnI · zn + h̄ωQ(I · q)2 − h̄ωRs · oe

+ J (t )δI · R−1
ze,ωrf t · s. (K5)

Since that effect was already analyzed in the main text, we ne-
glect the electron wave-function oscillations in space, putting
Jn(t ) ≈ J (0) ≡ J . As then the Hamiltonian does not contain a
term that can compensate for the fast frequency ωrf , we may
drop the terms oscillating with this frequency in the last term
and get a time-independent Hamiltonian

H ′ = − h̄ωnI · zn + h̄ωQ(I · q)2 − h̄ωRs · oe

+ J (δI · ze)(s · ze). (K6)

Here one can see the relation to the two effects analyzed in the
main text. Had we retained the oscillating part of J (t ), it would
compensate the oscillating phase of transverse components
in the last term, such as δI+s−, and thus provide a channel
for nuclear polarization. Alternatively, polarization can arise
if the Zeeman terms are not collinear zn �= ze. Without either
of the two sources, the Hamiltonian without the quadrupolar
term can not lead to nuclear spin polarization (as we con-
cluded Sec. IV A), since it contains only a diagonal operator
Iz. Examining here the effects of the quadrupolar term, we
neglect both of the polarization sources already analyzed and
set also zn = ze ≡ z, getting

H ′ = −h̄ωnIz − h̄ωRs · oe + h̄ωQ(I · q)2 + J δIz sz. (K7)

Since the Hamiltonian is time-independent, we evaluate
the polarization rate using the Fermi’s Golden Rule (FGR).
During the derivation, we will reuse some of the results of
the main text. We first assume that the quadrupolar term is
smaller than the nuclear Zeeman energy, so that we can treat
it (together with the hyperfine term) perturbatively. We thus
define the unperturbed system with the first two terms of
Eq. (K7), resulting in the basis states |s j〉 given in the main
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text in Eq. (22) with s representing the z component of the
electron spin and j the nuclear spin.

We first consider a single-spin-flip resonance, meaning
h̄ωR ≈ 1 × h̄ωn. The FGR then gives for the nuclear-spin-
increasing transition rate

	+ = 2π

h̄
|〈−, j + 1|Heff |+, j〉|2 p j,+G� (ωR − ωn). (K8)

Here, we have identified the density of states in the FGR with
Eq. (45e), p+, j is the occupation probability of the initial
state |+, j〉, and the matrix element between the quaside-
generate states |+, j〉 and |−, j + 1〉 should be evaluated by
the Hamiltonian Heff describing the quasidegenerate subspace.
We get this effective Hamiltonian in the second-order of the
degenerate perturbation theory (Ref. [116]; see footnote 1 in
Ref. [117]),

〈m|Heff |m′〉 =
∑

l �=m,m′
〈m|H ′

1|l〉〈l|H ′
1|m′〉

(
1

Eml
+ 1

Em′l

)
.

(K9)

where m and m′ are the two quasidegenerate states, l are other
basis states, and we have denoted the third and fourth term
of Eq. (K7) as H ′

1 = HQ + HJ , the perturbation part of the
Hamiltonian. Since the two terms of H ′

z have simple matrix
elements (HQ being identity in the electron sector and HJ

being diagonal in the nuclear sector), one can simplify the
effective Hamiltonian to

Heff = 1

h̄ωn
[HQ, HJ ]. (K10)

The simplification shows that the expression for the rate con-
tains the following matrix element of nuclear spin operators:

α̃I = 1

I
Tr({I+, Iz}ρ{I−, Iz}), (K11)

where {., .} is the anticommutator and ρ is the system density
matrix. For unpolarized nuclear spins, a limit that we restrict
to, the matrix element can be calculated exactly giving

α̃I = 2
15 (4I3 + 8I2 + I − 3). (K12)

Introducing q± = qx ± iqy as the complex components of the
unit vector q, the transition rate takes the form

	+ = 2π

h̄

∣∣∣∣ h̄ωQJ

h̄ωn
〈−|sz|+〉q−qz

∣∣∣∣2Iα̃I p+G� (ωR − ωn),

(K13)

where p+ ≡ pe
↑ introduced in Eq. (C1). The rate for the oppo-

site (nuclear-spin decreasing) transition takes the same form
upon swapping all “+” and “−” indexes, resulting in the only
consequential change being p+ → p−. For the polarization
rate ∂t pi = (	+ − 	−)/I , we get

∂t p1f
i = π

h̄
X 2

Q,1f α̃I peG� (ωR − ωi ), (K14a)

XQ,1f = Ai

4Ntot

h̄ωQ

h̄ωn

sin 2δ

2
√

2
cos γ , (K14b)

where we introduced the matrix element XQ as the effective
“deflection” matrix element induced by the quadrupolar in-
teration. It should be compared to Eq. (45b) and we find
an explicit prescription for the quadrupolar-induced effective
axes deflection, anticipated in Eq. (50), as

l∇⊥B

B
→ h̄ωQ

h̄ωn

sin 2δ

2
√

2
. (K15)

This is the first main result of this section.
We next consider the double-spin-flip transitions, assum-

ing h̄ωR ≈ 2 × h̄ωn. Since the calculation is analogous, we
point out only the differences. The nuclear-spin operator that
induces the transitions in Eq. (K11) is changed to

1

I
Tr({I+, I+}ρ{I−, I−}). (K16)

Interestingly, its average over an unpolarized ensemble is ex-
actly four times the one given in Eq. (K12). The denominator
of the transition rate in Eq. (K13) is now 2h̄ωn instead of h̄ωn

and the factor q−qz changes to q2
−. These changes result in an

expression basically identical to Eq. (K14) up to a change in
the dependency on the quadrupolar deflection angle δ:

∂t p2f
i = π

h̄
X 2

Q,2f α̃I peG� (ωR − 2ωi ), (K17a)

XQ,2f = Ai

4Ntot

h̄ωQ

2h̄ωn

sin2 δ√
2

cos γ . (K17b)

We then arrive at the second main result here, the ratio of the
single-flip to double-flip polarization rates (at their respective
resonances, assuming the density of states are the same):

X 2
Q,1f

X 2
Q,2f

= 4 coth2 δ. (K18)

Interestingly, the double-flip process is not necessarily weaker
than a single-flip one. The ratio of the two rates can reach any
value, depending on the angle δ, the orientation of the electric
field gradient with respect to the magnetic field.

In the preceding calculation, we have considered the limit
where the nuclear quadrupolar interaction is smaller than the
nuclear Zeeman energy. We finish with a short comment on
the opposite limit. The above procedure could be performed
similarly, swapping the roles of the quadrupolar and Zeeman
term in defining the basis and providing the perturbation al-
lowing transitions. However, if the quadrupolar interaction
dominates, only a “single-flip” resonance occurs, when the
electron Rabi frequency matches the nuclear Zeeman energy,
the energy difference between the spin ±1/2 nuclear states.
Other energy resonances are given the quadrupolar energy,
rather than the Zeeman energy. Since in the experiments, clear
single as well as double spin-flip resonances were observed in
Refs. [40–42], we do not pursue the calculation in this limit.

APPENDIX L: NOTATION: LIST
OF DEFINED QUANTITIES

We collect the definitions of the main symbols used
throughout the text for easier reference and lookup. We group
them in the three parts of Table III.
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TABLE III. (a) Quantities related to the Larmor precession speed and the spin orientation. (b) Quantities related to nuclear spins. The
relation v0 = a3

0/8 applies for zinc-blende and diamond crystals. For our wave-function choice in Eq. (1), the quantum dot volume is VD =
2π l2lz, see Appendix A. The amplitude of the electron Bloch wave function at the atomic nucleus is ηi. For the electric-field gradient tensor is
V the quadrupolar interaction magnitude h̄ωQ, see Eqs. (K1)-(K2). (c) Quantities related to the EDSR drive.

Zeeman energies, Larmor frequencies, and related quantities

Electron Nucleus Description Sign Definition

qe qn sign of electric charge signed qe = −1, qn = +1

ge gn g factor signed material parameter

μB μN magneton positive nature constant

s I spin magnitude positive s = 1/2, I = (half)integer

s I spin operator vector I2 = I (I + 1), s2 = s(s + 1)

Be Bn magnetic field vector tunable parameter

ze zn spin ground-state direction unit vector z = sgn(qg)B/B

h̄ωe h̄ωn Zeeman energy positive h̄ωn = |gnμnB|; for h̄ωe, see Eq. (10)

fe fn Larmor frequency positive f = ω/2π

δ, δ′ angles relating ze and zn signed see Fig. 2

Atomic and nuclear quantities

Quantity Description Sign Definition

a0 lattice constant positive material parameter

v0 volume per atom positive v0 = a3
0/8

VD quantum dot volume positive VD = 1/
∫

dV |�|4
Ntot number of atoms in the dot positive Ntot = VD/v0

φi isotopic fraction positive material parameter

Ni number of atoms for i-th isotope positive Ni = Ntotφi

Ai hyperfine constant for i-th isotope signed 4
3v0

μNμBgi|ηi|2
Jn hyperfine coupling strength for nucleus n signed Jn = Anv0|�n|2
J average hyperfine coupling strength signed J ≡ 〈Jn〉 = Ai/Ntot

h̄ωQ quadrupolar interaction strength signed 3eQ(q · V · q)/6I (I + 1)

EDSR related quantities

Quantity Description Sign Definition

d dot shift in space in-plane vector d = eE0l2/(h̄2/ml2)

b direction of the EDSR field unit vector see Eq. (13)

γ detuning angle signed sin γ = − f�/ fR

φrf phase shift of the EDSR signal signed E(t ) = E0 cos(ωrft − φrf )

Freq. Ang. freq. (ω = 2π f )

frf ωrf frequency of the EDSR drive positive tunable parameter

f� ω� detuning frequency signed f� = frf − fe

fRR ωRR Rabi frequency at resonance positive see Eq. (13)

fR ωR Rabi frequency positive fR = √
( fRR)2 + f 2

�
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interaction-dominated dynamics of nuclear spins in self-
assembled InGaAs quantum dots, Phys. Rev. Lett. 107,
167401 (2011).

[107] G. Wüst et al., Role of the electron spin in determining
the coherence of the nuclear spins in a quantum dot, Nat.
Nanotechnol. 11, 885 (2016).

[108] J. Fischer, W. A. Coish, D. V. Bulaev, and D. Loss, Spin
decoherence of a heavy hole coupled to nuclear spins in a
quantum dot, Phys. Rev. B 78, 155329 (2008).

[109] B. Eble et al., Hole–nuclear spin interaction in quantum dots,
Phys. Rev. Lett. 102, 146601 (2009).

[110] N. W. Hendrickx et al., A four-qubit germanium quantum
processor, Nature (London) 591, 580 (2021).

[111] Y. Fang, P. Philippopoulos, D. Culcer, W. A. Coish, and S.
Chesi, Recent advances in hole-spin qubits, Mater. Quantum
Technol. 3, 012003 (2023).

[112] Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche,
Observation of self-induced Rabi oscillations in two-level
atoms excited inside a resonant cavity: The ringing regime of
superradiance, Phys. Rev. Lett. 51, 1175 (1983).

[113] J. M. Fink et al., Dressed collective qubit states and the
Tavis-Cummings model in circuit QED, Phys. Rev. Lett. 103,
083601 (2009).

[114] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete
Mathematics: A Foundation for Computer Science, 2nd ed.
(Addison-Wesley, Reading, Mass, 1994).

[115] C. P. Slichter, Principles of Magnetic Resonance, No. 1 in
Springer Series in Solid-State Sciences, 3rd. ed. (Springer,
Berlin, New York, 1996).

[116] G. Bir and G. Pikus, Symmetry and Strain-induced Effects in
Semiconductors, A Halsted Press Book (Wiley, 1974).

[117] P. Stano et al., Orbital effects of a strong in-plane magnetic
field on a gate-defined quantum dot, Phys. Rev. B 99, 085308
(2019).

155306-31

https://doi.org/10.1103/PhysRevB.81.205304
https://doi.org/10.1103/PhysRevB.80.125318
https://doi.org/10.1103/PhysRevB.85.041303
https://doi.org/10.1103/PhysRevB.84.035441
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1134/1.1790024
http://arxiv.org/abs/arXiv:2004.12049
http://arxiv.org/abs/arXiv:2302.11717
https://doi.org/10.1103/PhysRevLett.101.236803
https://doi.org/10.1103/PhysRevB.72.165333
https://doi.org/10.1088/1367-2630/13/3/033036
https://doi.org/10.1103/PhysRevB.78.153201
https://doi.org/10.1103/PhysRevLett.92.037205
https://doi.org/10.1126/sciadv.aba3442
https://doi.org/10.1103/PhysRevLett.107.167401
https://doi.org/10.1038/nnano.2016.114
https://doi.org/10.1103/PhysRevB.78.155329
https://doi.org/10.1103/PhysRevLett.102.146601
https://doi.org/10.1038/s41586-021-03332-6
https://doi.org/10.1088/2633-4356/acb87e
https://doi.org/10.1103/PhysRevLett.51.1175
https://doi.org/10.1103/PhysRevLett.103.083601
https://doi.org/10.1103/PhysRevB.99.085308

