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Spin transport between polarized Fermi gases near the ferromagnetic phase transition
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We theoretically study the spin current between two polarized Fermi gases with repulsive interactions near
the itinerant ferromagnetic phase transition. We consider a two-terminal model where the left reservoir is
fixed to be fully polarized while the polarization of the right reservoir is tuned through a fictitious magnetic
field defined by the chemical-potential difference between different atomic hyperfine states. We calculate the
spectra of the spin-flip susceptibility function, which displays a magnon dispersion emerging from the Stoner
continuum at low momentum in the ferromagnetic phase. Based on the spin-flip susceptibility and using
Keldysh Green’s function formalism, we investigate the spin current induced by quasiparticle and spin-flip
tunneling processes, respectively, and show their dependence on the polarization bias between two reservoirs.
The one-body (quasiparticle) tunneling demonstrates a linear dependence with respect to the polarization bias.
In contrast, the spin-flip process manifests a predominantly cubic dependence on the bias. While indicating an
enhanced magnon tunneling in the strong-coupling regime, our results also demonstrate a characteristic behavior
around the critical repulsive strength for ferromagnetic phase transition at low temperatures.
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I. INTRODUCTION

The study of transport phenomena allows us to deeply
understand the physical properties of various quantum many-
body systems and has attracted a lot of attention in the
research of cold atomic systems [1,2]. In spin-balanced ul-
tracold fermion systems, controlling Feshbach resonances [3]
enables us to tune the scattering (and hence the interac-
tion) between atoms; transport phenomena can be investigated
in terms of the crossover between the Bardeen-Cooper-
Schrieffer (BCS) and Bose-Einstein condensation (BEC)
regimes, with an attractive interaction increasing monoton-
ically [4–6]. Owing to the controllability, experiments with
such ultracold Fermi gases have been carried out in various
regimes to observe, e.g., multiple Andreev reflections [7] and
the ac and dc Josephson currents [2,8–10].

On the repulsive side of the Feshbach resonance, a
two-component Fermi gas undergoes a ferromagnetic phase
transition below the Curie temperature as predicted by the
mean-field Stoner model [11]. The magnetic moments of par-
ticles (corresponding to the hyperfine states called pseudospin
in Fermi atomic gases) tend to be aligned parallel to each other
under the effect of a sufficiently strong repulsion, giving rise
to a transition from the paramagnetic to ferromagnetic states.
Experiments have provided strong evidence for the ferromag-
netic phase transition, when the interaction strength exceeds a
certain critical value [12]. More recently, by investigating the

spin dynamics of an ultracold 6Li gas, a scattering length a
for the critical interaction strength is found to be kFa � 1 at
the temperature T/TF � 0.12 [13], where kF (TF) is the Fermi
momentum (temperature). On the other hand, a beyond mean-
field theory has predicted a critical interaction strength around
kFa = 1.05 [14,15] for a phase transition at low tempera-
ture, while quantum Monte Carlo calculations give a lower
value (kFa � 0.8) [16,17] for zero temperature. Variational
calculations for the Fermi gas with the hard-sphere-potential
approximation have shifted the transition to a higher repulsion
strength as kFa � 1.8 [18].

Apart from the quantitative analysis of the ferromag-
netic transition beyond the mean-field theory, spin transport
phenomena in spin-imbalanced systems have gained both
experimental and theoretical attention in various systems
[19–25]. In solid-state physics, particularly within the spin-
tronics community, the spin tunneling in ferromagnet has
been extensively discussed based on the spin Seebeck ef-
fect induced by a temperature gradient [26–32] and the spin
pumping protocol realized by ferromagnetic resonance under
microwave irradiation [19,33–36]. In cold atomic systems,
the bulk spin transport has been investigated theoretically in
Fermi gases [37,38] and has been experimentally explored
during the transverse demagnetization process of a 3D Fermi
gas [39]. Meanwhile, the mesoscopic spin transport phenom-
ena at the interface have also been widely studied via the
Hamiltonian approach with a two-terminal model [40], where
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FIG. 1. Schematic view of the two-terminal system considered
in this work. The left reservoir is fully polarized while the right
one is partially polarized. Spin currents are induced through the
potential barrier due to the spin imbalance between two reservoirs.
The external potential of the junction is shown below the schematic.
The μσ,i represents the chemical potential for each component in
each reservoir.

two polarized Fermi gases are connected through a quantum
point contact [41]. For normal Fermi gases, spin currents can
be induced by the spin imbalance between two reservoirs with
different polarization [42]. This observation serves as motiva-
tion to infer that spin tunneling between Fermi gas clouds may
exist due to the interaction.

Toward the cold-atomic quantum simulation of transport
phenomena associated with spintronics, the multiparticle tun-
neling process, such as spin-flip tunneling at the interface,
plays a crucial role, where the spin is exchanged between
reservoirs. However, the existence of such a process for
cold atomic junctions is still elusive, because it is not
straightforward to distinguish it from the usual quasiparticle
tunneling. On the other hand, the recent experimental re-
sults of anomalous tunneling transports in strongly interacting
Fermi gases imply the possible existence of pair-tunneling
transport in atomic systems. Such a correlated tunneling event
has attracted much interest in nuclear systems, where the
two-nucleon pairing can suppress the sequential tunneling
of nucleons [43]. In Ref. [44], it is proposed that the noise
measurement can be direct evidence of pair-tunneling trans-
port. Accordingly, it is an interesting question whether or
not the spin-flip tunneling process can be identified via the
spin-transport measurement in cold atomic systems.

In this work, we propose a system provoking the spin-flip
tunneling through the potential barrier between two reservoirs
consisting of two-component Fermi gases with the spin po-
larization (see Fig. 1). Note that an internal magnetic field is
induced due to the spin polarization [i.e., finite chemical po-
tential difference between two spin species h = (μ↑ − μ↓)/2,
where μσ is the chemical potential for the spin σ =↑,↓].
We focus on a regime with repulsive interactions. The ferro-
magnetic phase corresponds to the fully spin-polarized regime
induced by the effective magnetic field h (explicit breaking
of the spin-inversion symmetry) or the repulsive interaction
leading to the Stoner instability. The reservoir on the left side
is fixed to be fully polarized, where the minority chemical
potential is sufficiently small (e.g., μ↓ = 0 at T = 0). The

magnetization of the right reservoir is adjusted to match that
of the left reservoir, resulting in a state without spin bias.
Alternatively, the magnetization of the right reservoir can be
configured such that the majority spin direction is opposite
to that of the left reservoir, leading to a substantial spin bias.
Such a situation is similar to the junction system where the
left reservoir can be regarded as an analog of a half-metallic
ferromagnet [45] and the right one may exhibit metallic or
itinerant ferromagnetic behavior depending on the tuning pa-
rameters h and a. The average Fermi energy of two spin
components εF for the two reservoirs are set to be equal so
that we can purely study the spin current without the mass
tunneling current through the junction.

This paper is organized as follows. In Sec. II, we present
the formalism: a two-terminal model and spin-flip tunnel-
ing current operators with a mean-field approximation. In
Sec. III, we derive the formula of a one-body spin tunneling
current up to the leading order and show its dependence on
the spin bias between two reservoirs. In Sec. IV, we adopt
the random-phase approximation (RPA) to investigate the
spin-flip susceptibility and numerically evaluate the spin-flip
tunneling current. We conclude this work in Sec. V.

Throughout the paper, we take h̄ = kB = 1 and the volumes
for both reservoirs to be unity.

II. HAMILTONIAN

The total Hamiltonian of the two-terminal model for
two-component Fermi gases with contact-type repulsive in-
teraction is given by H = HL + HR + HT (see Appendix A),
where the reservoir Hamiltonian Hi=L,R reads

Hi=L,R =
∑
p,σ

εp,σ,ic
†
p,σ,icp,σ,i

+ g
∑
p,p′,k

c†
p+ k

2 ,↑,i
c†
−p+ k

2 ,↓,i
c−p′+ k

2 ,↓,icp′+ k
2 ,↑,i. (1)

Here εp,σ,i = p2/(2m) − μσ,i is the kinetic energy of a Fermi
atom with mass m in the reservoir i = L, R measured from the
reservoir chemical potential μσ,i, g is the interaction strength,
and c†

p,σ,i (cp,σ,i) creates (annihilates) a particle with spin σ

and momentum p in the reservoir i. Also we can obtain the
tunneling Hamiltonian eventually leading to the spin tunnel-
ing from one reservoir to the other as

HT = H1T + H2T, (2a)

H1T = T1

∑
p,q,σ

c†
q,σ,Rcp,σ,L + H.c., (2b)

H2T = T2

∑
p,q

(
S+

p,LS−
q,R + S+

q,RS−
p,L

)
, (2c)

where we have kept the leading-order terms with respect to
the single-particle transmission and reflection amplitudes [46]
and introduced spin ladder operators, S+

p,i = c†
p,↑,icp,↓,i and

S−
p,i = c†

p,↓,icp,↑,i. Notice that H1T denotes the tunneling of a
single particle with spin σ , while H2T denotes the exchange of
the spin degrees of freedom between the left and right reser-
voirs. Therefore, H1T (H2T) represents the one-body (spin-flip)
tunneling process with the tunneling strength T1 (T2), which
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can be estimated with the one-particle transmission coefficient
Bp,σ . Assuming the long-wavelength limit for transmitted
waves, we can write T2 = 2g Re[B∗

0,↑B0,↓] [44,46]. Although
T1 should generally depend on the spin component, we will
estimate its averaged value using an average Fermi energy in
each reservoir. Moreover, while the low-energy effective tun-
neling process in Refs. [44,46] may conserve the momentum
at the interface as in the case of uniform RF transport [47],
we employ the momentum-unconserved tunneling [42]. This
simplification would not change the results qualitatively.

The spin-current operator in the Heisenberg representation
is defined as

Îs = − Ṅ↑,L + Ṅ↓,L

= i[N↑,L, HT] − i[N↓,L, HT], (3)

where Nσ,i = ∑
p c†

p,σ,icp,σ,i is the particle-number operator
for each component. The current includes both contributions
from the one-body and spin-flip tunneling processes, Îs =
Î1s + Î2s, where we defined the one-body and spin-flip tunnel-
ing currents as

Î1s = i[N↑,L, H1T] − i[N↓,L, H1T]

= −iT1

∑
p,q

(c†
q,↑,Rcp,↑,L − c†

q,↓,Rcp,↓,L) + H.c., (4a)

Î2s = i[N↑,L, H2T] − i[N↓,L, H2T]

= 2iT2

∑
p,q

(S†
p,LS−

q,R − S+
q,RS−

p,L). (4b)

Notice that the quantum tunneling with a similar two-
terminal model has been studied for a strongly correlated
Fermi system [46], which can be applied to nuclear reaction
and magnonic spin transport.

For the evaluation of the expectation value of the tunneling
currents in the following sections, we employ the mean-field
approximation for the reservoirs. The mean-field theory yields
an effective chemical potential for each reservoir, μ′

σ,i =
μσ,i − gnσ̄ ,i, and a reservoir Hamiltonian

Hi =
∑
p,σ

ξσ
p,ic

†
p,σ,icp,σ,i − gn↑,in↓,i, (5)

where nσ,i = ∑
p〈c†

p,σ,icp,σ,i〉 is the particle number density
for each component under the mean-field approximation, and
we defined ξσ

p,i = p2/2m − μ′
σ,i.

III. ONE-BODY SPIN-TUNNELING CURRENT

To study the spin-tunneling current between the reser-
voirs, we apply the Schwinger-Keldysh Green’s function
formalism [48,49], which is adapted to nonequilibrium
states with operators evolving with a bare Hamiltonian
H0 = ∑

p,σ,i(p2/2m)c†
p,σ,icp,σ,i. On the other hand, we as-

sume local equilibrium within each reservoir far from the
junction, where operators in the interaction representa-
tion evolve with a grand-canonical Hamiltonian K0 = H0 −∑

p,σ,i μ
′
σ,ic

†
p,σ,icp,σ,i. The two reservoirs together with the

junction constitute a nonequilibrium steady state. Notice that
the relations between operators in the two representations read
c†(H0 )

p,σ,i (t ) = eiμ′
σ,it c†(K0 )

p,σ,i (t ) and c(H0 )
p,σ,i(t ) = e−iμ′

σ,it c(K0 )
p,σ,i(t ). The

perturbation theory gives the expression of spin current as

Is(t, t ′) =
∞∑

n=0

(−i)n

n!

∫
C

dt1 · · ·
∫

C
dtn

× 〈TCÎs(t, t ′)HT(t1) · · · HT(tn)〉. (6)

The time integral in Eq. (7) is taken along the Keldysh contour
C, while TC is the contour-time-ordering product. The differ-
ent denotations t and t ′ are used to distinguish time arguments
located on backward and forward branches on the Keldysh
contour C. Performing the expansion up to the leading order,
the expectation value of the one-body spin-tunneling current
is obtained as I1s ≡ 〈Î1s(t, t )〉, where 〈· · · 〉 denotes the expec-
tation value with respect to the nonequilibrium steady state
and

〈I1s(t, t ′)〉 = −T 2
1

∑
p,q,σ

∫
C

dt1 βσ 〈TCeiμ′
σ,Rt e−iμ′

σ,Lt ′

× ei�μ′
σ t1 c†

q,σ,R(t )cp,σ,L(t ′)

× c†
p,σ,L(t1)cq,σ,R(t1)〉 + H.c., (7)

with β↑ = 1, β↓ = −1, and �μ′
σ = μ′

σ,L − μ′
σ,R. By using

the Langreth rule and performing the Fourier transform, we
write I1s as

I1s = 4T 2
1

∑
p,q,σ

∫
dω

2π
βσ

[
Im Gret

q,σ,L(ω − �μ′
σ )

× Im Gret
p,σ,R(ω)

]
[ f (ω − �μ′

σ ) − f (ω)], (8)

where Gret is the retarded Green’s function and f (ω) =
1/(eω/T + 1) is the Fermi distribution function. These dis-
tribution functions are induced from the lesser propagators
as f (ω) = −G<(ω)/[2i Im Gret (ω)]. We note that this one-
body spin current is similar to the quasiparticle tunneling
current [47] except for the presence of the factor βσ . Here,
we adopt the zero-temperature Green’s functions, Gret

p,σ,i(ω) =
1/(ω − ξσ

p,i + iη), where η is infinitesimal. The chemical
potentials are calculated as μσ,i = dE/dnσ,i = εF,σ,i + gnσ̄ ,i,
where εF,σ,i is the Fermi energy of the spin-σ component in
the reservoir i. Although this expression of μσ,i is obtained
at zero temperature, it can also be a reasonable value at low
but nonzero temperatures. We define the average Fermi energy
εF,i = (εF,↑,i + εF,↓,i )/2 for each reservoir and the average
Fermi momentum kF,i is defined as εF,i = k2

F,i/2m. For the
tunneling junction, we use a delta potential barrier V (x) =
V0δ(x/λ), yielding a constant V (k) = V0 in the momentum
space. Setting the average Fermi energy for both sides to
be the same, i.e., εF,L = εF,R = εF, the averaged one-body
tunneling amplitude T1 can be estimated as T1 = B0(εF + V0),
where B0 is the transmission coefficient for both components
in the spin-balanced case [44,46].

In Fig. 2, we show the one-body spin current I1s ≡ 〈Î1s〉.
Note that X1 = 9πT 2

1 N 2/(4εF) is a normalization constant
with N = k3

F/3π2. The bias �h = hL − hR ranges between
0 and 2εF, where �h = 2εF corresponds to the case that both
reservoirs are fully polarized but with opposite signs. At low
temperatures, I1s exhibits an Ohmic transport. This is similar
to the quasiparticle tunneling through the junction with a
chemical potential bias. This trend can be found analytically
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FIG. 2. One-body spin tunneling current as a function of polar-
ization bias �h = hL − hR, where X1 is the normalizing constant.
The average Fermi energies εF,i of two reservoirs are the same and
the left reservoir is set to be fully polarized, i.e., hL/εF = 1 with
hL = μ↑,L − μ↓,L. The temperature is set to be T/TF = 0.05, which
is close to zero.

by expanding the expression (8) in powers of the chemical
potential bias �μ′

σ . Since the spectrum of the left reservoir
is eventually independent of the bias, Gret

q,σ,L(ω − �μ′
σ ) =

1/(ω − ξσ
q,R + iη), the dependence stems from the distri-

bution difference, f (ω − �μ′
σ ) − f (ω) = (−∂ f /∂ω)�μ′

σ +
O(�μ′

σ
2). Thus we can conclude the quasiparticle tunneling

current is linearly dependent on the bias regardless of its
carrier (i.e., spin or mass).

IV. SPIN-FLIP TUNNELING CURRENT

The spin-flip susceptibility, which can be used to charac-
terize the ferromagnetic behavior of Fermi gases, plays an
important role in investigating the dynamics of the spin-flip
tunneling processes. In the spin-polarized gases, a disper-
sion of spin-flip collective modes (magnons) occurs in the
spin-susceptibility spectra out from the Stoner particle-hole
continuum [50]. The dispersion facilitates the propagation of
magnons.

The linear response theory gives the spin-flip susceptibility
as a retarded Green’s function:

χ ret
p,i (t, t ′) = −iθ (t − t ′)

〈
S+

p,i(t )S−
p,i(t

′) + S−
p,i(t

′)S+
p,i(t )

〉
, (9)

where S+
p,i and S−

p,i are the spin ladder operators appearing
in the spin-flip current operator in Eq. (4b). By applying
similar manipulations to those applied for I1s, truncating the
expression at the leading-order term, we can write

I2s = 8T 2
2

∑
p,q

∫
dω

2π
Im χ ret

p,L(ω) Im χ ret
q,R(ω − 2�h)

× [b(ω − 2�h) − b(ω)], (10)

where b(ω) = 1/(eω/T − 1) is the Bose distribution function
induced from b(ω) = χ<(ω)/[2i Im χ ret (ω)].

In order to compute the spin-flip contribution I2s, we uti-
lize RPA [51,52] to evaluate the spin-flip susceptibility. By
employing energy representation, we can express

χ ret
p,i (ω) = �p,i(ω)

1 + g�p,i(ω)
. (11)

Here, �p,i(ω) is the Lindhard function,

�p,i(ω) =
∑

k

f (ξ+
k,i ) − f (ξ−

k+p,i )

ω − ξ−
k+p,i + ξ+

k,i + iη
, (12)

where the symbol + (−) denotes the spin with directions
along (against) the polarization. According to RPA, the spin-
susceptibility spectra, i.e., the imaginary part of χp,i, can be
obtained as

Im χ ret
p,i (ω) = Im �p,i(ω)

[1 + g Re �p,i(ω)]2 + [g Im �p,i(ω)]2
. (13)

Defining the normalized parameters k̃ = k/kF, p̃ = p/kF,
and ω̃ = ω/εF, we can write the real part of the Lindhard
function as (see Appendix B)

Re �p,i(ω) = 3Ni

8εF,i p̃

∫
dk̃ k̃{ f (ξ+

k,i ) ln[A+
p̃,i(ω̃, k̃)]

− f (ξ−
k,i ) ln[A−

p̃,i(ω̃, k̃)]}, (14)

where the amplitudes A±
p̃,i(ω̃, k̃) are given by

A±
p̃,i(ω̃, k̃) =

√
[(ω̃ ∓ p̃2 − 2h̃i )2 − 4k̃2 p̃2 + η2]2 + (4ηk̃ p̃)2

[(ω̃ − 2k̃ p̃ ∓ p̃2 − 2h̃i )2 + η2]2
.

(15)
According to the Cauchy-Hadamard theorem, the imagi-

nary part of the Lindhard function can be simply obtained as
(see Appendix B)

Im �p,i(ω) = − 3πNi

8εF,i p̃

∫ ∞

α

dk̃ k̃[ f (ξ+
k,i ) − f (ξ−

q0,i
)], (16)

where we defined α = 1
2 | ω̃−2h̃i

p̃ − p̃| and q̃0 =
√

ω̃ + k̃2 − 2h̃i.
Moreover, RPA develops a pole at 1 + g�p,i(ω) = 0, cor-
responding to the magnon peak. When p → 0, the magnon
pole appears at ω = 2h − g(N↑ − N↓) [53], which implies a
possible energy gap for the magnon dispersion. Defining g∗ =
gN /εF = 8kFa/3π , we can find that the zero-momentum pole
for a fully polarized gas (h/εF = 1) appears at ω = 0 when
g∗ = √

2, which yields a gapless magnon dispersion. Impos-
ing such a gapless condition, the spin susceptibility is shown
in Fig. 3. The dispersion of magnon modes, which manifests a
quadratic law in p at small momentum [54], can be seen as an
apparent maximum below the Stoner particle-hole continuum.

Now, we are in a position to evaluate the spin-flip current
within the leading order of T2 based on the spin-susceptibility
spectra and Eq. (10). In the following, we are going to study
the dependence of the current on the interaction strength, the
system temperature, and the applied bias.

First, we investigate the interaction dependence of I2s in
the polarized regime. The Monte Carlo calculations have
predicted a critical interaction strength for an unpolarized
repulsive Fermi gas as kFa � 0.8 [16,17], which corresponds
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FIG. 3. Imaginary part of the spin-flip susceptibility χ ret
p (ω) for a

fully polarized two-component Fermi gas. The temperature is taken
to be T/TF = 0.1 and the two-body coupling strength is set to be g∗ =
gN /εF = √

2 to fulfill the gapless condition. The magnon dispersion
can be seen at low momentum and low frequency and is indicated
by the dotted eye guide. The color bar is shown with the log scale in
arbitrary unit.

to g∗ � 0.68. Figure 4(a) shows the current-interaction char-
acteristics in the proposed polarized regime at T/TF = 0.05. A
critical value g∗ � 1.5 (kFa � 1.77) is indicated for the ferro-
magnetic phase transition, as the current sharp increases and
reaches a maximum at around g∗ = 1.65 (kFa � 1.94). This
critical strength is close to the value at the gapless condition
of magnons at zero temperature (i.e., g∗ = √

2), while the dif-
ference comes from the effect of the finite temperature as well
as the finite practical value of η in the numerical calculations.
Also, it is worth noting that while this critical value is close to
the Stoner’s mean-field result, it is larger than the Monte Carlo
result predicted from the extrapolation to the nonpolarized
case [55]. This difference may originate from the higher-
ordered terms and the finite-range effect that are neglected in
our analysis. It is also observed that I2s gradually decreases
above the critical repulsion strength. This can be understood
from the expression of spin susceptibility spectra in Eq. (13).
At infinitely large interaction strength (g∗ → ∞), Im χ ret

p,i (ω)
tends to vanish, indicating the Stoner continuum and magnon
excitation are suppressed. More intuitively, if the repulsive
interaction is strong, the left reservoir cannot further transfer
the spin σ =↑ to the right reservoir because of the strong re-
pulsive interaction with the σ =↓, leading to the suppression
of I2s. As a result, I2s approaches zero in the strong-repulsion
limit. However, one should notice that over the critical in-
teraction strength (g∗ = √

2 at T = 0, which becomes larger
at T �= 0), the system becomes metastable via the first-order
transition towards the inhomogeneous phase when going be-
yond the mean-field theory [12,17,56]. In this regard, our
results in the strong-repulsion regime may be regarded as the
spin-flip tunneling transport under the metastable condition.
As experimentally reported in Ref. [57], the upper bound of
the coupling strength for equilibrium repulsive Fermi gases

0 0.5 1 1.5 2
g*

0

20

40

60

80

I 2s
/X

2

 h/
F
=0.5

 h/
F
=1.0

 h/
F
=1.5

(a)

g*=1.65

FIG. 4. (a) Current-interaction features for I2s with different po-
larization bias �h at T/TF = 0.05. (b) The interaction dependence
of I2s with �h/εF = 1 at different temperatures. The repulsive inter-
action strength is described by g∗ = 8kFa/3π . X2 = 9T 2

2 N 4/(πεF )
is the normalizing constant. The current displays a sharp change at
around g∗ = 1.5, which indicates a ferromagnetic phase transition.

is kFa � 1. Beyond this coupling, we need to consider the
three-body loss effect, which is out of the scope of this paper.

Meanwhile, the effect of temperature on the current-
interaction characteristics can be seen in Fig. 4(b), where
all temperatures are set to be relatively low as we
use the low-temperature approximation (i.e., we adopted
the zero-temperature propagators and included the tempera-
ture dependence in the distribution functions). We can see
that no significant shift of the critical point has been observed
apparently. To obtain the results more precisely, other finite-
temperature corrections such as damping of quasiparticles
need to be considered, which is left for future work. Here, we
incorporate the temperature variations of the distribution func-
tions to gain a preliminary understanding of the temperature
dependency of the currents. Figure 5 depicts the temperature
dependence of I2s with various values of �h. It is worth
noting that both one-body and two-body spin tunnelings are
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FIG. 5. Temperature dependence of spin-flip tunneling current
I2s with different values of �h, where the coupling strength is set
to be g∗ = 1.0. The results are obtained at temperatures that are
relatively low compared with the Fermi temperature due to the zero-
temperature approximation and chemical potential we applied.

enhanced at high temperatures. This is a consequence of the
properties of the Fermi and Bose distributions. Note that we
have chosen the coupling strength to be g∗ = 1.0 as a rep-
resentative, as other coupling strengths demonstrate similar
temperature dependence.

To obtain the current-bias feature, the left reservoir is set to
be always fully polarized (hL/εF = 1), while the polarization
of the right side varies between hR/εF = 1 and hR/εF = −1.
Here we focus on the weakly repulsive regime (g∗ �

√
2),

where the homogeneous right reservoir is stable against the
phase separation (i.e., ferromagnetism). Notice that the spin-
flip current I2s for various coupling strength g∗ becomes larger
as the bias �h increases [Fig. 6(a)]. On the other hand, ac-
cording to Eq. (13), the Stoner continuum is suppressed by the
large g∗, which indicates that the transport of magnon modes
plays a major role in strong-coupling regimes. Moreover,
the spin-flip current exhibits a nonlinear dependence on �h,
which is different from the behavior of I1s. We suppose that the
current I2s is a power function of the bias �h like I2s ∝ �hγ ,
while the log-log plot shown in Fig. 6(b) numerically gives the
value of γ . The exponent is obtained as γ � 3.1 at g∗ = 0.2
and decreases when the interaction becomes stronger. This in-
dicates the current is more sensitive to the changes of the bias
�h in the weakly interacting case. If we expand the spectrum
Im χ ret

p,L(ω − 2�h) and the distribution function b(ω − 2�h)
in Eq. (10) in terms of the bias �h and keep to the third order,
we will find that the second-order term vanishes while the
first- and third-order terms remain, leading to an odd function
which is consistent with the antisymmetry of current with
respect to the bias. The sensitivity of current to the bias may
be caused by the dominance of the third-order term in the
weak-coupling side. Such a different dependence with respect
to the polarization bias may provide a way to distinguish the
one-body and spin-flip (two-body) tunneling signals. More
interestingly, the significance of nonlinear dependence in the
weak-coupling side may provide a possible way to induce

0 0.5 1 1.5 2
 h/ F

0

10

20

30

40

50

60

I 2s
/X

2

g*=0.2
g*=0.5
g*=1.0
g*=1.41

(a)

FIG. 6. (a) Spin-flip tunneling current as a function of polariza-
tion bias �h with different two-body coupling strengths at T/TF =
0.05. The average Fermi energies εF and particle number density N
of two reservoirs are set to be the same to induce a pure spin current.
The left reservoir is set to be fully polarized, i.e., hL/εF = 1, while
the polarization of the right side is gradually tuned from hR/εF = 1 to
hR/εF = −1. (b) The log-log plot of the spin-flip current depending
on the bias, where γ represents the slope for each line.

a third harmonic spin current by applying an ac spin bias
on the junction, which enables us to clearly distinguish the
two-body signal from the one-body signal in the frequency
domain. Note that the oscillation period of ac bias should be
comparable to the timescale of the tunneling process, which
can be estimated by the uncertainty principle, so that the
present results can be applied adiabatically.

V. CONCLUSION

In this study, we have theoretically studied the spin tun-
neling current induced by a magnetization bias between two
repulsively interacting Fermi gases near the ferromagnetic
phase transition. Utilizing the Schwinger-Keldysh formalism,
we have derived the one-body and spin-flip tunneling currents
up to the leading order of the single-particle wave-function
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amplitude near the potential barrier. Based on the spin-flip
susceptibility functions with RPA, we have computed the
spin-flip current. We have shown how the one-body spin
current and spin-flip current vary with the polarization bias be-
tween two gases. The one-body contribution increases linearly
with the bias, while the spin-flip one exhibits a predominantly
cubic dependence. This nonlinearity implies the generation of
third harmonics in the spin current when an ac bias is applied.
We have also investigated the interaction and temperature
dependencies of the spin-flip current in the present system.
For fully polarized Fermi gases, a critical repulsive strength
is demonstrated close to the gapless conditions. The magnon
modes, which appear as poles in the spin-susceptibility spec-
tra, are supposed to play a major role in the spin tunneling
processes in the strong-coupling regime (large g). Moreover,
our study may provide a practical tool for estimating the cou-
pling strengths of one-body and spin-flip tunnelings in cold
atomic systems.
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APPENDIX A: DERIVATION OF HAMILTONIAN

The Hamiltonian for the two-terminal model connected
through a potential barrier with a contact-type two-body in-
teraction in each bulk system is given by

Ĥ =
∫

d3r
∑

σ

ψ̂†
σ (r)

(
−∇2

2m
+ V (r)

)
ψ̂σ (r)

+ g
∫

d3r ψ̂
†
↑(r)ψ̂†

↓(r)ψ̂↓(r)ψ̂↑(r), (A1)

where ψ̂σ (r) denotes the field operator for wave functions of
particles with spin σ , V (r) describes the potential barrier, and
g = 4πa/m is the two-body coupling constant with the s-wave
scattering length a. Notice that the field operator ψ̂σ (r) can be
rewritten as ψ̂σ (r) = ψ̂σ,L(r) + ψ̂σ,R(r). Inserting it into the
Hamiltonian above, we have the local reservoir Hamiltonian,

Ĥi=L,R =
∫

d3r
∑

σ

ψ̂
†
σ,i(r)

(
−∇2

2m

)
ψ̂σ,i(r)

+ g
∫

d3r ψ̂
†
↑,i(r)ψ̂†

↓,i(r)ψ̂↓,i(r)ψ̂↑,i(r), (A2)

and the one-body tunneling term,

Ĥ1T =
∫

d3r
∑

σ

[
ψ̂

†
σ,L(r)

(
−∇2

2m

+ g
∑

i

N̂σ̄ ,i(r)

)
ψ̂σ,R(r) + H.c.

]
, (A3)

where N̂σ,i(r) is the density operator. Also, we can obtain the
pair tunneling term,

Ĥpair = g
∫

d3r[P̂†
L (r)P̂R(r) + H.c.], (A4)

where P̂†
i (r) = ψ̂

†
↑,i(r)ψ̂†

↓,i(r) is the pair creation operator, and
the spin-flip tunneling term,

Ĥ2T = g
∫

d3r[Ŝ+
L (r)Ŝ−

R (r) + Ŝ+
R (r)Ŝ−

L (r)], (A5)

with the spin ladder operators Ŝ+
i (r) = ψ̂

†
↑,i(r)ψ̂↓,i(r) and

Ŝ−
i (r) = ψ̂

†
↓,i(r)ψ̂↑,i(r). Notice that we can omit the pair-

tunneling coupling since the pair-tunneling current does not
occur because we consider the vanishing chemical-potential
bias (μL − μR = 0).

While the potential barrier peaking in the junction between
the reservoirs may induce an inhomogeneity near the barrier,
far from the junction the potential goes smoothly to zero.
Therefore, we can consider uniform gases inside the reser-
voirs, with the wave function being the asymptotic form:

ψσ,L(r) =
∑

p

c̃p,σ,L

{
eip·r + Rp,σ e−ip·r (x < 0),
Bp,σ eip·r (x > 0),

(A6)

ψσ,R(r) =
∑

p

c̃p,σ,R

{
Bp,σ e−ip·r (x < 0),
e−ip·r + Rp,σ eip·r (x > 0),

(A7)

where c̃p,σ,i is the amplitude of the asymptotic wave function,
while Rp,σ and Bp,σ are respectively one-particle reflection
and transmission coefficients with respect to the potential
barrier. In Eqs. (A6) and (A7), x symbolically denotes the
direction perpendicular to the potential barrier at x = 0. By
substituting the asymptotic wave functions into Eq. (A2)–(A5)
and replacing c̃p,σ,i with the fermionic annihilation opera-
tor cp,σ,i, we obtain the reservoir Hamiltonian and tunneling
Hamiltonian as Eq. (1) and Eq. (2).

APPENDIX B: CALCULATION OF SPIN-FLIP
SUSCEPTIBILITY

In this Appendix, we give the details of calculations of the
spin-flip susceptibility spectra. We notice that Eq. (12) can be
rewritten as

�p,i(ω) =
∑

k

f (ξ+
k,i )

ω − ξ−
k+p,i + ξ+

k,i + iη

−
∑

k

f (ξ−
k,i )

ω − ξ−
k,i + ξ+

k−p,i + iη
. (B1)

By changing the discrete summation over k into the integral
over parameters in a spherical coordinate and carrying out the
angular integral, we obtain
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�p,i(ω) = k3
F,i

8π2εF,i p̃

∫
dk̃ k̃

[
f (ξ+

k,i ) ln

(
ω̃ + iη + 2k̃ p̃ − p̃2 − 2h̃i

ω̃ + iη − 2k̃ p̃ − p̃2 − 2h̃i

)
− f (ξ−

k,i ) ln

(
ω̃ + iη + 2k̃ p̃ + p̃2 − 2h̃i

ω̃ + iη − 2k̃ p̃ + p̃2 − 2h̃i

)]
. (B2)

Due to the infinitesimally small number η, the formulas in the parentheses can be expressed as

ω̃ + iη + 2k̃ p̃ ∓ p̃2 − 2h̃i

ω̃ + iη − 2k̃ p̃ ∓ p̃2 − 2h̃i
=

√
[(ω̃ ∓ p̃2 − 2h̃i )2 − 4k̃2 p̃2 + η2]2 + 16η2k̃2 p̃2

[(ω̃ − 2k̃ p̃ ∓ p̃2 − 2h̃i )2 + η2]2

× exp

{
−i arctan

[
4k̃ p̃η

(ω̃ ∓ p̃2 − 2h̃i )2 − 4k̃2 p̃2 + η2

]}
≡ A±

p̃,i(ω̃, k̃)e−iθ±
p,i (ω̃,k̃). (B3)

Thus, by defining Ni = k3
F,i/3π2, we obtain the real part of the Lindhard function expressed as Eq. (14).

On the other hand, according to the Cauchy-Hadamard principal value theorem, 1
�+iη = P 1

�
− iπδ(�), we may write the

imaginary part of the Lindhard function as

Im �p,i(ω) = −π

∫
d3k

(2π )3

[
f (ξ+

k,i − f (ξ−
k+p,i )

]
δ

[
ω − (k + p)2

2m
+ k2

2m
− 2hi

]
. (B4)

By writing the integral over parameters in a spherical coordinate and performing the change of variables, cos θ → q = |k + p|,
Eq. (B4) can be rewritten as

Im �p,i(ω) = − k3
F,i

4πεF,i p̃

∫
dk̃ k̃

∫ k̃+p̃

|k̃−p̃|
dq̃ q̃[ f (ξ+

k,i ) − f (ξ−
k+p,i )]δ(ω̃ − q̃2 + k̃2 − 2h̃i ), (B5)

where q̃ = q/kF. Then by using the identity δ[ f (x)] = δ(x − x0)/| f ′(x0)| with f (x0) = 0, we have

Im �p,i(ω) = − k3
F,i

4πεF,i p̃

∫
dk̃ k̃

∫ k̃+p̃

|k̃−p̃|
dq̃ q̃[ f (ξ+

k,i ) − f (ξ−
k+p,i )]δ(q̃ − q̃0), (B6)

where q̃0 =
√

ω̃ + k̃2 − 2h̃i. Meanwhile, to make the integral be nonzero, q̃0 should satisfy the inequality |k̃ − p̃| � q̃0 � k̃ + p̃,
which yields a lower limit of integral over k as

k � 1

2

∣∣∣∣ ω̃ − 2h̃i

p̃
− p̃

∣∣∣∣. (B7)

Therefore, we gain the expression of the imaginary part of Lindhard as Eq. (16). By defining g∗ = gN /εF, we are able to
calculate the imaginary part of χp,i(ω) as

Im χ̃p,i(ω) = Im �̃p,i(ω)

[1 + g∗ Re �̃p,i(ω)]2 + [g∗ Im �̃p,i(ω)]2
, (B8)

where χ̃p,i = χp,iεF,i/Ni and �̃p,i = �p,iεF,i/Ni.
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