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Since the 1960s and the first observations of radiation-induced disruption of electronic devices in space,
the study of the effects of ionizing radiation on electronics has grown into an extensive field of its own. The
present paper is concerned with studying accurately the energy-loss processes that control the thermalization
of hot carriers (electrons, holes, and/or electron-hole pairs) that are generated by high-energy radiation in
wurtzite GaN, using an ab initio approach. Current physical models of the nuclear/particle physics community
cover thermalization in the high-energy range (kinetic energies exceeding ∼100 eV), and the electronic-device
community has studied extensively carrier transport in the low-energy range (below ∼10 eV). However, the
processes that control the energy losses and thermalization of electrons and holes in the intermediate energy
range of about 10–100 eV (which we define as the “10–100 eV gap”) are poorly known. The aim of this research
is to close this gap. To this end, we utilize density functional theory (DFT) to obtain the band structure and
dielectric function of GaN for energies up to about 100 eV. We also calculate charge-carrier scattering rates
for the major charge-carrier interactions (phonon scattering, impact ionization, and plasmon emission), using
the DFT results and first-order perturbation theory (Fermi’s golden rule/first Born approximation). With this
information, we study the thermalization of electrons starting at 100 eV using the Monte Carlo method to solve
the semiclassical Boltzmann transport equation. Full thermalization of electrons and holes is complete within
∼1 and 0.5 ps, respectively. Hot electrons dissipate about 90% of their initial kinetic energy to the electron-hole
gas (90 eV) during the first ∼0.1 fs, due to rapid plasmon emission and impact ionization at high energies. The
remaining energy is lost more slowly as phonon emission dominates at lower energies (below ∼10 eV). During
the thermalization, hot electrons generate pairs with an average energy of ∼8.9 eV/pair (11–12 pairs per hot
electron). Additionally, during the thermalization, the maximum electron displacement from its original position
is found to be on the order of 100 nm.

DOI: 10.1103/PhysRevB.108.155203

I. INTRODUCTION

In the study of ionizing radiation effects [including total
ionizing dose (TID) and single-event effects (SEE)] in elec-
tronic devices and that of radiation detection (i.e., scintillators
and semiconductor detectors), many computational tools have
been developed to simulate particle transport and also the
resulting possible material damage [1–4]. These codes, de-
veloped by the nuclear/particle physics community, typically
employ the binary collision and free-electron approximations.
The primary assumption of the binary collision approximation
is that the energetic projectile (an ion, for example) interacts
via a series of independent two-body interactions with atoms
in the material. As the energy decreases, this approxima-
tion begins to break down, as simultaneous interactions with
multiple atoms occur. To handle this issue, these codes may
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consider nearly simultaneous interactions, allowing their use
to be extended down below the keV range. At still lower en-
ergies (∼100 eV), the accuracy of the simulations comes into
question as their results do not agree with experimental mea-
surements, which yield deviations from monotonic response.
For example, in Ref. [5], a monotonic decrease in the charge
yield is measured with decreasing energy until energies reach
the order of hundreds of eV. At this point, the charge yield
apparently increases as the energy decreases from ∼100 eV
to ∼70 eV. It is not clear what causes this phenomenon,
but it is reasonable to suspect that electronic band structure
effects may be partly to blame and that inaccuracies of the
simulations are associated with the use of the free-electron
approximation. In addition, inaccuracies are likely caused by
an inaccurate treatment of charge-carrier interactions.

The primary concern of this paper is to study accurately the
thermalization of hot carriers (electrons and/or electron-hole
pairs) generated by high-energy radiation in semiconductors
at energies below this threshold of ∼100 eV. Akkerman et al.
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have developed a code that employs the binary collision and
free-electron approximations to simulate electron transport
down to ∼20 eV (suggesting that the code can be extended
down to 5 eV in some cases) [6]. Their approach, however,
does not take the band structure and carrier-phonon scattering
into account, which likely are critical for accurate simulation
(especially for energies below ∼10 eV) [7].

To account for band structure effects, one may look to
the electronic device community, which has done extensive
work in developing codes to simulate carrier transport in the
“low-energy” region (kinetic energies below ∼10 eV) [8–12].
Such simulations employ the full band structure in solving
the semiclassical Boltzmann transport equation via the Monte
Carlo (MC) method.

Between this low-energy region and what we call the
“high-energy” region (kinetic energies exceeding ∼100 eV),
there is an “intermediate-energy” range of about 10–100 eV,
where the processes that control the energy losses and ther-
malization of electrons and holes are poorly known. We define
this region as the “10–100 eV gap”. While only scant informa-
tion on this topic is available, a major study by Pines showed
that losses to plasmons are the dominant process [13]. We
aim to study the scattering processes in this regime rigorously
from first principles. In this effort, we include plasmon losses
as well as impact ionization and phonon scattering in our
model. To close this “10–100 eV gap”, we utilize the full-band
approach and build up to ∼100 eV.

The energy-loss processes in the “10–100 eV gap” have
been studied theoretically in the past: Rothwarf [14] and
Kingsley and Ludwig [15] in phosphors, Alig et al. in semi-
conductors [16], Ausman and McLean in SiO2 [17]. These
earlier studies followed Pines [18] in assuming that the main
energy losses were due to plasmons. They considered also
their decay into electron-hole pairs (EHPs), generation of
EHPs via impact ionization processes, and final thermal-
ization of the carriers via phonon scattering (see Fig. 1).
However, these calculations were based on simplifying as-
sumptions, such as the use of semi-empirical matrix elements
and/or scattering rates and, most important, the free-electron
model. Here we take a similar approach but use ab initio
methods to compute both the band structure and the energy-
loss and scattering rates. Indeed, it may be argued that the
cutoff energy used in density functional theory (DFT), typi-
cally as large as 80 Ry, may be an excessive overestimation
of the energy above which electrons can safely be taken as
free. However, for electron kinetic energies lower than about
100 eV the ionic (pseudo)potentials represent a fraction of the
total energy so large, 10% or more, that it cannot be ignored
and the free-electron model cannot be expected to be accurate.

In addition to these early plasmon-based studies, with the
prediction of single-event upset in 1962 [19], and the sub-
sequent discoveries of other types of SEE [20–24] and TID,
the study of ionizing radiation effects in Si-based devices has
received much attention [20–22,25–27]. Due to a relatively
recent (within the past couple of decades) surge in interest
in wide band-gap semiconductors [28–30], however, much
work has been reported on ionizing radiation effects in mate-
rials such as SiC [31–34], diamond, β-Ga2O3 [35], and GaN
[36–38]. As the use of wide band-gap materials expands, there
is a growing demand for implementation in space. For this

FIG. 1. A diagram illustrating the processes that occur during
the thermalization of the hot carriers in our simulation. Solid (blue
online) and open circles represent electrons and holes, respectively,
while the “wiggly” dashed and solid lines (green and yellow online)
represent plasmons (h̄ωpl) and phonons (h̄ωph), respectively.

paper, we have chosen to focus on wurtzite GaN. In principle,
however, the methods described in this paper can be applied
to any semiconductor of interest.

GaN has a significantly larger band gap than Si (3.4 eV
compared to 1.1 eV). The larger band gap gives it
a much higher breakdown field (3.3 MV/cm compared
to 0.3 MV/cm), which makes GaN a good candidate
for high-power electronics and extreme device scaling.
GaN has a comparable, if not somewhat higher, elec-
tron mobility (∼1300–2000 cm2 V−1 cm−1 compared to
1440–1500 cm2 V−1 cm−1) due to its relatively small ef-
fective mass of 0.2 me (the free-electron mass). The elec-
tron drift velocity in GaN reaches a peak of ∼2.5–3.0 ×
107 cm/s, while in Si, it saturates at ∼1.0 × 107 cm/s.
These characteristics have made GaN-based devices an in-
creasingly important technology over the past couple of
decades.

As mentioned above, we use an ab initio approach
(DFT) to obtain the electronic band structure of wurtzite
GaN for bands reaching energies above 100 eV. While
the accuracy of these calculations at such a high energy
has not been verified either through experiments or theory,
there is a satisfactory agreement between the calculated
band structure and available experimental data up to
about 10–11 eV above the conduction-band minimum
(Sec. II A) and between the calculated and experimental
dielectric function at somewhat higher energies (Sec. III B 1).
Relevant charge-carrier scattering rates are calculated for the
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major charge-carrier interactions (phonon scattering, impact
ionization, and plasmon emission), using the DFT results and
first-order perturbation theory (Fermi’s golden rule/first Born
approximation). With this information, the thermalization
of electrons is simulated starting at 100 eV in a full-band
MC (FBMC) code. Several results are extracted, including
the average carrier energy, energy distribution and position
as a function of time, the average energy per generated
pair, etc.

It is important to note that here we restrict our attention
to a low-dose rate of irradiation and, so, a low density of
carriers. This restriction allows us to assume that the number
of generated plasmons is small enough to leave their distri-
bution at thermal equilibrium so that we can ignore plasmon
absorption. Similarly, the low density of carriers permits us to
ignore also short-range carrier-carrier scattering.

II. FIRST-PRINCIPLES CALCULATIONS

A. Electronic band structure

For this paper, we use the DFT package Quantum
ESPRESSO (QE) [39] for all ab initio calculations. Norm-
conserving pseudopotentials [40] with PBE [41] exchange-
correlation (XC) functionals are employed. The unit cell of
wurtzite GaN is hexagonal with a space group of P63mc. We
have utilized the experimentally measured lattice constants of
a0 = 3.215 Å and c0 = 5.241 Å [42]. For the self-consistent
calculation, we use a plane-wave cutoff energy of 120 Ry and
a uniform 8 × 8 × 8 Monkhorst-Pack grid of k points.

The FBMC simulation requires knowledge of the elec-
tronic band structure everywhere in the first Brillouin zone
(BZ). We calculate the band structure for a total of 150 bands
(up to ∼100 eV above the conduction band edge) for 3234 k
points in the irreducible wedge of the BZ. These points are
obtained by applying the 24 symmetry operations of wurtzite
GaN to a uniform 40 × 40 × 40 Monkhorst-Pack grid. Of
the 150 bands, the first 18 are valence bands, representing
the states of the 18 valence electrons of GaN (10 d and 8 sp
electrons). The remaining 132 are conduction bands.

We note that according to x-ray photoemission spec-
troscopy measurements [43], below the d states, the next
valence state of GaN is the Ga 3p3/2 state at −102.6 ± 0.1 eV
(with respect to the valence band edge). To meet the require-
ment for energy conservation, a charge carrier would need
to possess a minimum energy of 105.0 eV to excite an elec-
tron from this core state into the conduction bands. Taking
momentum conservation into account as well, the threshold
energy would be significantly higher. Thus, we may safely
assume that core electrons do not play a significant role in
the thermalization of charge carriers in the “10–100 eV gap”
in GaN.

Figure 2 shows the band structure calculated along several
high-symmetry lines of the BZ. The primary band gap is
indicated by the shaded region labeled Eg. Below this gap,
all 18 valence bands are shown. These can be divided into
three major groups. The group of the six highest-energy va-
lence bands (−7 to 0 eV) represents sp states. Below these,
there is a gap followed by a group of two more sp bands,
which intersects a dense set of eight d bands. The final two
d bands appear below these at around −15 eV. We note the

FIG. 2. The band structure of wurtzite GaN along several sym-
metry lines of the BZ is shown. The primary band gap is indicated
by the shaded region labeled Eg. The symmetry line L-M is included
for the reader to see the U valley (the lowest-energy valley above the
gap, along this line).

detailed positions of these bands as they may vary with the
pseudopotential and XC used.

The DFT-calculated primary gap is 1.78 eV, which is
slightly more than half of the measured value of 3.4 eV. This
issue of underestimating the gap is a well-known problem
associated with DFT. Many “solutions” have been proposed,
including hybrid XC functionals, G0W0, and others. These
have been highly successful in calculating the proper band
gap, but their effects on transport properties are inconsis-
tent [47]. Here we simply employ the “scissors” operator,
shifting the conduction bands up by 1.62 eV to correct the
gap. Additionally, using a curve-fitting technique, we calcu-
late an electron effective mass of ∼0.17 me in the � valley,
which is somewhat smaller than the experimental value of
(0.20 ± 0.005) me [48]. It is, however, similar to the DFT
result of 0.18 me from Ref. [49].

To assess the validity of the calculated band structure, we
obtain the energies of direct transitions across the gap at cer-
tain symmetry points by calculating the joint density of states
(JDOS) [47],

JDOS(E ) = 2

�c

∑
nmk

δ[E − (En(k) − Em(k))], (1)

where �c is the unit-cell volume, n is the conduction band in-
dex, and m in the valence band index. “Peaks” and “shoulders”
of the JDOS occur for vertical transitions at BZ symme-
try points. Similar peaks and shoulders occur in measured
absorption/reflectivity spectra and dielectric function data,
allowing one to make a direct comparison.

To evaluate the summation over the delta function in
Eq. (1), we use Blöchl’s tetrahedron method [50]. It
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FIG. 3. Calculated JDOS of GaN from DFT, as a function of
energy. The dashed lines indicate the locations of vertical energy
transitions across the gap measured by Lambrecht et al. [44].
Roughly corresponding peaks and shoulders in the JDOS are indi-
cated with arrows (orange online).

involves a discretization of the first BZ along the recip-
rocal lattice vectors (using the same uniform grid from
above), filling it with “cube” elements. Each element is
then divided into six tetrahedra. We then scan the BZ
for all cubes, which obey the energy-conservation require-
ment in Eq. (1). For all such cubes, the density of states
(DOS) is evaluated by summing the contributions from each
tetrahedron.

In Ref. [44], Lambrecht et al. measured reflectivity curves
for wurtzite GaN. The resulting data yield several major peaks
for which they identified corresponding transitions across the
gap. A few of these major peaks in the reflectivity plot occur at
6.9 eV, 8.0 eV, 9.3 eV, and between 10.5 and 11.5 eV. In Fig. 3,
we show the calculated JDOS; the above experimental ener-
gies and energy range have been marked with dashed lines.
Arrows indicate characteristic peaks and shoulders. Qualita-
tively, we observe good agreement with Ref. [44], especially
for the peaks at ∼8 eV and ∼11 eV.

We list in Table I the vertical transitions identified by
Lambrecht et al. as well as those measured in Ref. [45] (via
electron energy-loss spectroscopy) and Ref. [46] (via syn-
chrotron ellipsometry). In addition, we include the DFT-LDA
work by Lambrecht et al. [45]. In the table, ci and vi refer
to conduction bands and valence bands, respectively, with
i representing the index of the band. For the valence band

indices, i = 1 corresponds to the highest valence band, and
the index increases for deeper bands. For the conduction band
indices, i = 1 corresponds to the lowest conduction band and
increases for higher bands. The point U refers to the satellite
valley between L and M.

We note that for the above experimental work, the peaks as-
sociated with transitions have relatively large widths, leading
to uncertainty in the true transition energies. This uncertainty
leads, for example, to an apparent degeneracy at Kv1 and Kv2

in the experimental results, which does not agree with either
our or the LDA calculations. We can therefore say only that
the measured peaks give approximate energies of the transi-
tions, and that the DFT data from this paper and Ref. [44]
are all in reasonably good agreement with these energies.
Indeed, the largest discrepancy, occurring between our paper
and Ref. [46] for Kv2-c1 , of 0.68 eV is not much larger than
the discrepancies between the experimental results themselves
(as large as 0.3 eV). Additionally, our calculated energy for
this transition (9.68 eV) easily falls within the widths of
the corresponding peaks (9.3 and 9.2 eV, respectively) in
the plots of Refs. [44,45]. Thus, we conclude that the
use of the pseudopotential-XC functional combination of
ONCV+PBE to calculate the band structure is justified.

Lastly, we return briefly to the discussion on the use of DFT
bands instead of free-electron bands. In Fig. 4, we plot both
the DFT (conduction) bands (top frame) and the free-electron
dispersion within the empty lattice approximation (bottom
frame) on the upper end of the 10–100 eV energy range. We
observe significant differences in both the density of the bands
and their gradients (∂E/∂k: the group velocity). As these
deviations would affect the scattering rates, likely, they would
also affect the charge-carrier thermalization rate. For accurate
treatment, then, we use the DFT bands.

B. Phonon dispersion

We utilize density functional perturbation theory (DFPT)
within QE to evaluate the phonon dispersion. It calculates the
lattice dynamical matrix for a given perturbation q, which can
then be diagonalized to obtain the eigenvalues ω

η
q for each of

the possible vibrational modes for a given crystal. Eigenstates
are obtained for a set of 50 points in the irreducible wedge
corresponding to an 8 × 8 × 8 BZ mesh. The main purpose
of obtaining the phonon dispersion is to evaluate the carrier-
phonon interaction, which is covered below (see Sec. II C).

We plot the phonon dispersion calculated along several
symmetry lines in the BZ in Fig. 5. The lowest three
branches are acoustic, with the first two and the third
known as transverse and longitudinal acoustic (TA and LA),

TABLE I. Calculated vertical transition energies (in eV) across the energy gap at certain symmetry points of wurtzite GaN with
comparisons to available theoretical and experimental data from [44–46].

Uv1−c1 Mv1−c2 Lv1−c1 Kv1−c1 Kv2−c1 Av1−c3 Lv3−c3

This paper 7.18 8.00 7.80 9.42 9.68 10.49 11.10
DFT-LDA [44] 6.87 7.65 7.64 9.57 9.68 10.53 11.05
Expt. [44] 6.9 8.0 8.0 9.3 9.3 10.5–11.5 10.5–11.5
Expt. [45] 7.1 8.1 8.1 9.2 9.2
Expt. [46] 7.0 7.9 7.9 9.0 9.0
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TABLE II. Calculated phonon energies in meV for several phonons at the � point. Each phonon is given a label (E2, B1, etc.) that can be
found in Fig. 5, where the associated location is clearly indicated.

E2 (low) B1 (low) A1 (TO) E1 (TO) E2 (high) B1 (high) A1 (LO) E1 (LO)

This paper 16.89 39.94 63.35 65.39 66.31 82.34 86.56 86.73
Theory [51] 17.11 41.41 68.19 70.92 71.17 85.55 90.88 91.37
Theory [52] 17.73 41.78 67.07 70.42 71.79 89.27 92.74 93.85
Theory [53] 18.60 40.91 66.58 68.81 69.18 83.94
Expt. [54] 40.79 85.79 90.39
Expt. [55] 17.85 66.08 69.55 70.55 91.13 92.12

respectively. The other nine branches are optical; all but
the highest branch, which is longitudinal optical (LO), are
transverse optical (TO).

The highest energy of the LO branch at � [E1 (LO)] is
86.73 meV, which slightly underestimates the value measured
by inelastic x-ray scattering of 90.4 meV [54] and that mea-
sured by Raman scattering of 92.1 meV [55]. In fact, in
Table II, several points on the phonon spectrum can be com-
pared to those measured in Refs. [54,55]: Whereas the first
six branches seem to be in good agreement, the energies of
the highest six are consistently underestimated by ∼3–5 meV.
DFPT calculations from Refs. [51,52] and frozen phonon
calculations from Ref. [53] are also included in Table II.
We observe deviations among these theoretical works up to
∼5 meV, and deviations of similar magnitude are seen when
comparing Refs. [51–53] with the experimental data. We con-
clude, therefore, that the deviations observed between our
paper and experiment are in line with the expected accuracy
of DFPT calculations and other theoretical results.

FIG. 4. (Top) Band structure from DFT at kinetic energies near
100 eV. (Bottom) The free-electron dispersion within the empty
lattice approximation at kinetic energies near 100 eV.

C. Carrier-phonon interaction

In QE, the carrier-phonon interaction can be investigated
by calculating the electron-phonon matrix elements using
an included package called EPW (electron-phonon coupling
using Wannier functions) [56,57]. This program utilizes a
Wannier-Fourier interpolation scheme to obtain the matrix
elements on an arbitrarily fine mesh. The resulting matrix
elements are given in the following form:

gη

nn′ (k, k′) =
〈
ψn′ (k′)

∣∣∣∣∂Veff

∂q

∣∣∣∣ψn(k)

〉
, (2)

where ψn(k) is the initial electronic state, ψn′ (k′) is the final
state upon scattering with a phonon of wave vector q and
mode η, and Veff is the converged self-consistent potential
from DFT.

We calculate the electron-phonon matrix elements for uni-
form grids of k and q for all valence bands (18 in total)
and for the first 17 conduction bands. The reason for using
only the first 17 conduction bands will become apparent in
Sec. III B 3, where the rates for all scattering mechanisms are
plotted together. In short, the rates of other scattering types

FIG. 5. Phonon dispersion of wurtzite GaN along several sym-
metry lines of the BZ. Several points at � are indicated with dots
(red online) and labels. These energies are compared to experiment
in Table II.
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(impact ionization and plasmon emission) exceed those of
phonon scattering by a significant margin for intermediate
energies (above ∼10 eV). Therefore, it is unnecessary to per-
form this calculation for energies much higher than 10 eV. We
note, also, that as GaN is a polar material, we include in the
calculation the long-range contributions to the carrier-phonon
interaction, from polar optical phonons.

III. SCATTERING MECHANISMS

With the material properties determined, we now turn to
the evaluation of the relevant charge-carrier interaction rates
in GaN. For the study of hot-electron thermalization, we
have chosen to consider phonon scattering, impact ionization,
and valence-electron plasmon scattering. We will first discuss
phonon scattering, and then we will introduce the energy-loss
rate, which includes scattering from both impact ionization
and plasmons.

A. Carrier-phonon scattering

To calculate the scattering rate between a carrier of wave
vector k in band n and a phonon of wave vector q of
branch η, we use first-order time-dependent perturbation the-
ory (Fermi’s golden rule),

1

τη(k, n)
≈ 2π

h̄

∑
n′,q

∣∣gη

nn′ (k, k′)
∣∣2

(
Nq + 1

2
∓ 1

2

)

× δ
[
En(k) − En′ (k′) ± h̄ωη

q

]
, (3)

with

Nq = 1

e(h̄ωq/kBT ) − 1
. (4)

Here gη

nn′ (k, k′) is the electron-phonon matrix element pro-
vided by EPW (Sec. II C), k′ = k ± q is the “final” wave
vector of the scattered carrier, which has been mapped back
into the first BZ, and n′ is the final band of the scattered
carrier. The numerical integration over the delta function is
evaluated using a similar method to that reported by Fischetti
and Laux [8]. This approach involves the use of the discretized
BZ and identifying momentum- and energy-conserving cubes
in the mesh. For such cubes, we employ Blöchl’s tetrahedron
method to calculate the DOS, which is plugged into the sum-
mation of Eq. (3) in place of the delta function.

The electron-phonon scattering rates, evaluated for the
lowest 17 conduction bands, are shown in Fig. 6 (top frame).
The markers (blue online) represent the rates calculated at
3234 points in the irreducible wedge. Over these markers,
we have also plotted a solid line representing the average
of the rates over equi-energy shells (yellow online). At each
energy, a spread, about the average, is observed in the rates,
indicating that for much of this energy range, the rates have
a relatively strong k dependence. This k dependence sug-
gests that a purely energy-dependent rate is not sufficient
to accurately simulate the scattering process in an FBMC
simulation. Overall, the general shape and magnitude of the
average compare well with those of Bertazzi et al. [11], who
used an empirical pseudopotential method to generate the
electronic band structure, the linear-response method within

FIG. 6. (Top) The total electron-phonon scattering rates in bulk
wurtzite GaN. The rates are first plotted for many k points on the
BZ mesh to observe the spread at a given energy and, thus, the k
dependence of the rates (markers; blue online). Over these points,
the scattering rate averaged over equi-energy shells is plotted (solid
line; yellow online). (Bottom) The total hole-phonon scattering rate
for holes in all 18 valence bands (including d bands).

density functional perturbation theory to obtain the phonon
dispersion, and a deformation potential to produce the scatter-
ing rates.

The hole-phonon scattering rates are shown in the bottom
frame of Fig. 6. Bertazzi et al. also calculated the hole-phonon
rates, but only for the highest six valence bands, correspond-
ing to energies up to ∼7–8 eV. Over this energy range, the
general shape and magnitude of our hole-phonon scattering
rates are in agreement with Ref. [11].

B. Impact ionization and plasmon scattering

While electron- and hole-phonon scattering dominate in
the low-energy regime, at higher energies, impact ionization
and plasmon scattering become possible and more preva-
lent. From an experimental perspective, information about
these scattering mechanisms is typically obtained via electron
energy-loss spectroscopy (EELS). The majority of the peaks
and shoulders that appear in the resulting spectrum repre-
sent single-electron excitations (impact ionization), while a
few represent collective excitations of the valence electrons
(valence-electron plasmons). These collective excitations, or
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FIG. 7. (Left) The real and imaginary parts of the dielectric function for q = 0.00231/Å. (Right) The real and imaginary parts of the
inverse of the dielectric function for q = 0.00231/Å.

plasmons, decay via Landau damping [58], which results in
the creation of an EHP. We note that for both impact ionization
and plasmon emission, we ignore excitons.

The total rate at which carriers scatter by these two mech-
anisms can be calculated using the dielectric function. This is
so because the imaginary part of the inverse dielectric function
(also known as the energy-loss function) is directly related
to the EEL cross section. Here we include only plasmon
emission, as the equilibrium plasmon occupation number is
effectively zero [N (ω) = 0]. In Chapter 2.6 of Ref. [59], FGR
and the dissipation-fluctuation theorem [60,61] are used to ex-
press the equilibrium scattering rate via the dielectric function
as

1

τ
(ELR)
n (k)

= 2π

h̄

∑
n′

∫
dq

(2π )3

e2h̄

q2

∫
dω

2π
Im

[ −1

ε(q, ω)

]

× δ[En(k) − En′ (k + q) ± h̄ω]. (5)

Here Im[−1/ε(q, ω)] is the energy-loss function, and ω and q
are the frequency and wave vector, respectively, of the result-
ing EHP or plasmon. We call this scattering rate the carrier
energy-loss rate (ELR).

1. Calculation of the dielectric function

A number of techniques exist to obtain information about
the EEL spectrum, and thus the loss function. In this pa-
per, we use time-dependent DFT via the code known as
turboEELS [62], which is included in the QE package. It
utilizes linearized time-dependent DFT within the Liouville-
Lanczos approach to optical spectroscopies to calculate the
EEL spectrum. First, we perform a standard ground-state DFT
calculation with a 12 × 12 × 12 Monkhorst-Pack grid. The re-
sult is then passed into turboEELS along with the wave vector
q associated with the momentum transferred in the excitation
process. Additionally, we use 1000 Lanczos iterations with
a bi-constant extrapolation of the Lanczos coefficients up to
20000 and a Lorentzian broadening of 0.02 eV.

We repeat this calculation for a set of q and ω, so that
an interpolation of the dynamic dielectric function [ε(q, ω)]
can be performed for any (q, ω). Ideally, one would obtain
these results on a mesh of q points, spanning the irreducible
wedge of the BZ. This calculation, however, is a difficult task
due to the computational cost of the calculation for each q.

Instead, the dielectric function is calculated for a set of points
along the first crystal axis (perpendicular to the c axis) of
the BZ. All dielectric function results shown below are from
this data set. In Sec. III B 5, for comparison, the dielectric
function is also calculated for several points along the third
crystal axis (parallel to the c axis). Equation (5) is then solved
separately for each data set (perpendicular and parallel to the
c axis), assuming isotropy of the dielectric function. While
the dielectric function is not isotropic for GaN, these two
calculations can be used to provide an idea of how strongly
the ELR depends on the anisotropy of the loss function.

We first calculate ε(q, ω) for a small momentum trans-
fer, q = (0.001, 0, 0), which corresponds to a magnitude of
0.0023 1/Å (Fig. 7). The real and imaginary parts of ε(ω)
(Fig. 7, left frame) have been measured by spectroscopic
ellipsometry [63,65–67], and via reflectivity [44] and EELS
measurements [45] using the Kramers-Kronig transformation.
Looking first at Im[ε], our results yield three major peaks at
approximately 5, 8, and 11.5 eV. In Fig. 8 (bottom frame) we
show a direct comparison with experimental and theoretical
works. For the EELS data of Ref. [45], major peaks occur
at 4, 7, and between 10.5–13 eV, roughly corresponding to
those from this study. Additional smaller peaks occur at ∼8,
9, 11 and 12.5 eV (in agreement with Refs. [44,63,65–67]),
which do not appear in our results. We see that first-principles
calculations of Im[ε] by Benedict et al. [63] were able to
resolve the peaks at ∼8 and 9 eV but show only as a shoulder
the feature at ∼4–5 eV [a peak both in Ref. [45] and in our
results, also shown in Fig. 8 (bottom)]. This feature is likely
associated with the onset of impact ionization [see Figs. 11(a)
and 12 (left) below].

Although the present calculation of the dielectric function,
unlike that of Benedict et al. [63], does not account for the
electron-hole interactions (which would be impractical in a
100-eV range), Fig. 8 (bottom) shows that there are only small
differences between the two in the range up to 10 eV. This
good agreement is due to the relatively large static dielec-
tric constant of GaN. Moreover, the energy-loss function is
accurately obtained using DFT, even though it ignores these
interactions, since it is dominated by the plasmon response
at higher energies [68]. The situation could be different in
materials like diamond or SiO2 in which excitonic effects are
stronger.
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FIG. 8. The real (top frame) and imaginary (bottom frame) parts
of the dielectric function as calculated by time-dependent DFT (dash-
dot) with the calculated results of Refs. [63,64] and the experimental
results of Refs. [45].

For Re[ε] (top frame), we observe similar discrepancies
between our work and experiment: Whereas our calculations
seem to yield the major peaks, many of the more minor
features do not appear in our results. We include a DFT
calculation of Re[ε] from Ref. [64] in Fig. 8 (top frame). We
observe that at energies <8 eV the major peak magnitudes
of Ref. [64], are significantly smaller than those of our study
and Ref. [45]. Still, the peak locations seem to be in rela-
tively good agreement. We note one key difference among
these plotted data: the position of the zero of Re[ε] where
the slope is positive. This zero occurs at ∼20.3 eV for our
study, and at ∼22.9 eV for Ref. [64]. Both are higher than
the experimental result (∼18–19 eV), but our result is roughly
12% closer. The importance of this zero will be discussed in
the following section. Overall, we conclude that the accuracy
of our calculations seems to be in line with the accuracy of
other theoretical works.

The discrepancies between our calculations and measured
dielectric function data most likely originate from the use of
Lorentzian broadening in the turboEELS code. Broadening
schemes, such as Gaussian and Lorentzian broadening, tend

to smooth the results of a BZ integration, causing the details
of the desired spectrum/data to be lost. In principle, one
may adjust the broadening width to attempt to resolve these
missing peaks, which we have done without success. Another
option (that avoids changing the BZ integration scheme) is to
increase the density of the Monkhorst-Pack grid. For a few q
points, we have incrementally increased the density beginning
from 6 × 6 × 6 and found convergence by 12 × 12 × 12. For
further improvement, one would need to change the integra-
tion scheme to a more accurate numerical technique such as
the tetrahedron method [50] or Gilat-Raubenheimer method
[69,70]. Such an endeavor, however, would require significant
effort, as one would need to change the turboEELS source
code. For simplicity, we use the results from turboEELS with-
out making any changes.

2. Plasmon lifetime and dispersion

Before calculating the carrier ELR, we first turn our atten-
tion to identifying the bulk plasmon peaks of wurtzite GaN
in the loss function. In principle, by identifying these peaks,
one may calculate the plasmon emission rate separately from
the impact ionization rate. This approach allows one to treat
the two phenomena separately within the FBMC code. The
primary concern here is the lifetimes of the plasmons. As
mentioned previously, plasmons decay via Landau damping,
which results in the creation of an EHP. When the decay rate is
sufficiently low, plasmons may live long enough in the system
to be reabsorbed or slow the thermalization process. Dealing
with these plasmons and their transport can significantly in-
crease the complexity of the FBMC code.

To identify plasmon peaks in the loss function, one may
first employ the so-called weak damping approximation [71].
Within this approximation, bulk plasmon energies can be
found at zeros of Re[ε] (where the slope is positive). Plas-
mons actually occur at complex zeros of the full complex
dielectric function, but, when damping is weak, real zeros
of the real part are a good approximation. When q is small,
this approximation tends to hold, but for larger q, it breaks
down. Additionally, there may be plasmon peaks for which the
damping is strong enough so that the real part never vanishes
on the real axis (even for small q).

In Fig. 7, Re[ε] goes through zero at ∼20.3 eV, which
corresponds almost exactly with the largest peak in the loss
function. We call this the primary plasmon peak (p1). It rep-
resents the major bulk plasmon predicted by the electron gas
model,

ω2
p = e2n

ε0m
, (6)

to be at an energy of ∼21.7 eV. Here n is the valence electron
density (s and p only) and m is the free-electron mass. It
originates from oscillations of the s and p valence electrons
[72]. EELS data from Refs. [45,72–74] yield a zero at a
lower energy of ∼18–19 eV (Fig. 8, top frame). In addition
to p1, two other peaks (δ1 and δ2) are observed at ∼24 and
∼28 eV (Fig. 9). The locations of these peaks are in closer
agreement with experiment [45,72–74]. In a study of the loss
functions of AlN and GaN, Dhall et al. [72] found that δ1 and
δ2 are associated with collective excitations (plasmons) of the
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FIG. 9. (Top) The loss function of GaN calculated using time-
dependent DFT. The function Im[−1/ε(q, ω)] is plotted vs the
energy h̄ω for the indicated values of q. (Bottom) The loss function
for the indicated value of q with Lorentzian fits for the major sp-
electron plasmon peak (p1) and the two d-electron peaks (δ1 and δ2).

d electrons of Ga, and not single-particle excitations (impact
ionization). As there are no zeros of Re[ε] on the real axis at
∼24 and ∼28 eV (Fig. 7), one would not be able to identify
these plasmons using the weak damping approximation.

With the plasmon peaks identified, we fit Lorentzian curves
to p1, δ1, and δ2, as shown in Fig. 9 (bottom frame). Several
more Lorentzian curves, not shown in the figure, are fit to
the surrounding peaks to improve the overall fit. Using this
curve fitting, we track as a function of q the peak positions,
which yield the plasmon dispersion, and the full width at half
maximum, which yields the plasmon lifetimes (Fig. 10). The
top frame of Fig. 10 indicates that the plasmon energy of
p1 is ∼21 eV and not ∼20.3 eV, where Re[ε] vanishes. This
divergence suggests that the damping of p1 is not negligible.

The bottom frame of Fig. 10 shows that the plasmon
lifetimes are all of order 10−16 s. We note that the lifetime
for p1 is almost 50% larger than that of the delta peaks for
small q. As q increases, the lifetime of p1 clearly decreases,
suggesting that the damping increases. In contrast, the lifetime
of the delta peaks is always short at small q. We conclude
that these magnitudes are short enough to assume immediate
plasmon decay in the FBMC simulation. Therefore, we avoid
the complexity of having to treat the plasmons separately from
impact ionization, as discussed above.

FIG. 10. Plasmon dispersion (top) and lifetime (bottom) ob-
tained from the position and width of the quasi-Lorentzian peaks (p1,
δ1, and δ2) shown in Fig. 9.

In the top frame of Fig. 9, the loss function has a strong de-
pendence on q, especially for the energy range from ∼16 eV
to ∼35 eV. The shape and magnitude of these peaks change
considerably, suggesting that the q dependence must be ac-
counted for in the calculation of the ELR.

3. Electron and hole energy-loss rates

With the dielectric function calculated, we now evaluate
the carrier ELRs. The numerical integration over the delta
function in Eq. (5) is performed similarly as in Sec. III A. It
begins with a search of the BZ for energy- and momentum-
conserving cubes [8]. Here, however, there is an additional
integration over ω. For each cube, we check for energy con-
servation using a list of possible carrier energy losses h̄ω

(from a discretization of the energy range from 0 to the kinetic
energy of the incident carrier). If a given h̄ω satisfies energy
conservation in the cube, the DOS is calculated and included
in the summation.

In Figs. 11(a) and 11(b), we plot the calculated total
electron and hole ELR, respectively. The phonon scattering
rates for each are also shown. As previously mentioned,
for electrons, phonon scattering dominates up to ∼10 eV
above which the ELR dominates by 1–2 orders of magnitude.
This fact makes the phonon interaction practically irrelevant
above this point. For this reason, as discussed in Sec. II C,
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FIG. 11. (a) The electron ELR (solid line) is plotted with the electron-phonon scattering rate (dotted line). The rate flattens out at higher
energies. (b) The hole ELR (solid) is plotted with the hole-phonon scattering rate (dotted). Gaps correspond to gaps in the valence band (Fig. 2).
(c) The JDOS of GaN calculated using the tetrahedron method. A significant increase is observed at ∼17–18 eV, due to the onset of d-electron
excitation. (d) Total DOS of the valence bands of GaN, calculated using tetrahedron method in QE. The large peaks of the d-band DOS are
observed at ∼13.5 eV and ∼15 eV.

electron-phonon matrix elements above the 17th conduction
band (25 eV) are not calculated. For the holes, phonon scat-
tering is the major interaction mechanism up to the first
gap at ∼7 eV. Just above 6 eV, impact ionization (ELR)
reaches a similar magnitude, and it dominates for all higher
energies.

The sharp peaks in the hole-phonon scattering rate, ob-
served at ∼13.5 eV and ∼15 eV, originate from the incredibly
dense d bands seen in Fig. 2. The DOS of these bands far
exceeds the DOS of all other valence bands [Fig. 11(d)] and
even that of all conduction bands up to 100 eV. These d-band
peaks lead to a significant jump in the JDOS at ∼17–18 eV
[Fig. 11(c)], caused by the onset of d-electron excitation [ap-
proximately the primary energy gap (3.4 eV) plus the depth
of the first d bands]. This jump accounts for the rather large
magnitude of the electron ELR (1016–1017 s−1) in Fig. 11(a),
which will be discussed further in the following section.

The large ELRs shown in Fig. 11 may arguably raise
some questions about the validity of the first Born approxi-
mation, which assumes that the wavefunction of the incident
carrier is not appreciably affected by the scattering potential
[75]. This concern has been addressed by Quinn and Ferrel
[76,77], Pines [13], Penn [78], and others who have calcu-
lated ELRs of the same magnitude. They have concluded
that the electron energies at which the ELRs are high are
so large as to still render the broadening of electronic states
acceptably small and that the use of perturbation theory is
justified.

4. Alternative methods for calculating the impact ionization rate

To identify separately collective (plasmon) and single-
particle (impact ionization) contributions to the ELR obtained
above, in this section, we present the carrier impact ioniza-
tion rate (without plasmon scattering) calculated using two
alternative methods to Eq. (5). These include the so-called
“constant matrix element” (CME) approximation and Kane’s
random-k approximation [79], which are derived from the
first Born approximation [80,81]. Here we plot the results
together with the ELR, which helps to assess the accuracy of
the calculated ELR and to identify the energy regions in which
impact ionization dominates.

As one might expect, the major assumption of the CME
approximation is that the matrix element associated with the
scattering process M is a constant. We define this constant as
the average value of the matrix element over all points in the
BZ, all bands, and over both normal and Umklapp processes.
This assumption emphasizes the idea that the matrix element
plays a small role in determining the energy dependence of
the ionization rate. Within this approximation, we write the
impact ionization rate as [81]

1

τ
(CME)
ii (k, n)

= 2π

h̄
〈M2〉

∑
G

∑
nvn′

cn′′
c

∫
dk′

(2π )3

∫
dp′

(2π )3

× δ
[
En(k) + Env (p) − En′

c
(k′) − En′′

c
(p′)

]
,

(7)
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FIG. 12. (Left) Impact ionization rates (calculated by both random-k approximation and the CME approximation), the electron ELR
(calculated via the dielectric function), and the impact ionization rate found by Bertazzi et al. [11]. These are plotted in the relatively low-energy
regime. (Right) Electron ELR and impact ionization rate via random-k up to higher energies.

where

〈M2〉 = e4a4
0m2

(2π )4ε2
s

.

Here k is the wave vector of the incident carrier in band
n, with energy En(k). The wave vector k′ is the crystal mo-
mentum of the final state of the incident carrier, and p and p′
are, respectively, the initial and final crystal momenta of the
excited electron. As this excited electron begins in the valence
band, we label the initial band as nv (v for valence band). The
bands n′

c and n′′
c are the final bands of the incident and excited

particles, respectively (c for conduction band). The matrix el-
ement, M, is the (anti)symmetrized screened Coulomb matrix
element [81]. For M, a0 is the lattice constant, εs is the static
dielectric constant, and m is a number of order 1.

For the random-k approximation, we take Eq. (7) and
employ further simplifications. The major assumption (along
with those of CME) is that the JDOS available to the scat-
tered (incident and excited) particles primarily controls the
kinematics of the ionization process rather than momentum
conservation [81]. In other words, this assumption suppresses
momentum conservation in the ionization process. It holds
when Umklapp processes dominate the pair production chan-
nel, causing momentum randomization. Within random k,
Eq. (7) becomes

1

τ
(ii)
rk (E )

= 2π

h̄

�c

8
〈M2〉

∫ E−Eg

0
dEc

∫ E−Eg−Ec

0

× dEvDc(Ec) Dv(Ev) Dc(E − Eg − Ec − Ev).
(8)

Here �c is the volume of the crystal primitive cell, Ec is the
energy of the excited electron (measured from the conduction
band minimum) after jumping across the gap, Ev is the energy
of the resulting hole, E is the initial energy of the incident
particle, and Di (i = “c” or “v”) is the total DOS at a given
energy in either the valence band or conduction band.

The CME and random-k results for electrons are shown in
Fig. 12 (left frame). The CME rates are plotted for several k
points spanning the irreducible wedge. As with phonon scat-
tering (Fig. 6), we observe a spread in the rates, corresponding
to momentum dependence. As energy increases, the spread
narrows and converges to the random-k line. This convergence

suggests that momentum dependence weakens for increasing
energy and Umklapp processes become the dominant scat-
tering process. A similar spread is observed in the work of
Bertazzi et al. [11], who used an MC approach to solve
the scattering rate equation within the Born approximation,
considering both energy and momentum conservation, and
including a dynamic matrix element. In Fig. 12, we show only
the average ionization rate from Ref. [11], but the convergence
to the random-k line is evident.

Additionally, we include in both frames of Fig. 12 the
electron ELR. It too converges to the random-k results as
energy increases. Between 15 and 20 eV, the ELR diverges
from the random-k line as, it seems, plasmon emission begins
to dominate. Eventually, the two converge again at ∼45 eV,
suggesting that impact ionization is again the major scattering
mechanism. For low energies (below ∼10 eV), we note that
the electron ELR data are orders of magnitude larger than the
others. In 1956, Pines proposed the existence of acoustic plas-
mons that may also appear as excitations in the loss function
[18]. It is possible that interactions with acoustic plasmons
may be responsible for the discrepancy in question. From a
practical perspective, this discrepancy is irrelevant as phonon
scattering dominates in this energy regime. Indeed, we have
artificially modified the ELR to more closely match the rates
of Bertazzi et al. and found that this does not affect the MC
simulation results in any significant way.

We note also that this low-energy discrepancy may be at
least partly due to a numerical artifact in the Im[−1/ε(q, ω)],
resulting from the use of Lorentzian broadening in tur-
boEELS. Near the gap energy (3.4 eV), the loss function
should go to zero, but instead, it remains nonzero down to
much lower energies. As a result, Im[−1/ε(q, ω)] is likely
too large in this energy region causing a spurious increase in
the ELR.

Interestingly, the random-k rates reach the same order of
magnitude as the ELR (1016–1017 s−1; E >∼ 30 eV). Be-
cause the random-k approximation assumes, by definition,
that the impact ionization scattering process is controlled pri-
marily by the JDOS, it can be concluded that the JDOS is the
primary factor in driving the random-k results to this mag-
nitude. This conclusion supports the claim, in the previous
section, that the ELRs are driven to such high magnitudes by
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FIG. 13. (Left) The hole impact ionization rate (calculated by both the CME and random-k approximations), the hole ELR (calculated via
the dielectric function), and the impact ionization rate found by Bertazzi et al. [11]. This plot covers the lower-energy range. (Right) The Hole
ELR and impact ionization rate via random-k up to higher energies. Convergence is observed at higher energies.

the jump in the JDOS caused by d-electron excitations and the
extremely large DOS of the d bands.

For holes (Fig. 13, left frame), we observe similar phe-
nomena. All plotted rates converge to the random-k results
as the energy increases. Additionally, we observe the same
discrepancy between the hole ELR and the hole random-k
results at low energies. We, again, attribute this to the possi-
bility of acoustic plasmon scattering with a contribution from
numerical artifacts in the calculation of the loss function. In
practice, just as with electrons, phonon scattering dominates
in this relatively low-energy regime, so there is no need to
make any changes or improvements at this time.

5. Dependence of the ELR on the direction of q

Lastly, in this section, we come back to the issue of the
anisotropy of the dielectric function in GaN and its effect on
the ELR. As mentioned above, we have calculated the ELR
using the dielectric function calculated perpendicular to the
c axis (“ELR ⊥”, see Figs. 12 and 13) and that calculated
parallel to the c axis (“ELR ‖”). In Fig. 14, the two are plot-
ted together for comparison. As there is excellent agreement
between these rates we conclude that for the purposes of
this work, the anisotropy of the dielectric function does not
significantly affect the ELR, and isotropy may be assumed
without losing accuracy.

IV. FULL-BAND MONTE CARLO SIMULATION

In this section, we present our FBMC simulation. For the
general setup, the use of a synchronous ensemble, and the
scattering mechanism selection, we have followed the meth-
ods laid out by Jacoboni and Reggiani [82]. For the full band
inclusion, we have followed Fischetti and Laux [8]. To estab-
lish the accuracy of the FBMC code and to further test the
DFT data, we first calculate the low- and high-field transport
characteristics. We then move to the simulation of the full
thermalization of 100-eV electrons and the generated EHPs.

A. Particle initialization and carrier free-flights

To begin the MC simulation, we define the initial states
of a set of charge carriers (electrons and/or holes). For the

low- and high-field transport, these carriers are first assigned
a random energy under the Fermi-Dirac distribution, using the
rejection technique [82,83]. For the hot-carrier thermalization,
energies are assigned under a Gaussian distribution centered
at 100 eV. Wave vectors are chosen, for each, by scanning
the BZ mesh for all cubes that intersect the constant-energy
surface Ei, of the ith charge carrier. Each of these cubes is
given a weight equal to the DOS at Ei (via the tetrahedron
method). A cube is then selected randomly by the rejection
technique, using the weight as a probability distribution. A k
within the cube is then chosen, such that E (k) ≈ Ei. This se-
lection is done by creating a “sub-mesh” within each cube and
interpolating the energies at each sub-mesh point, beforehand,
and storing them in a look-up table. The point with the closest
energy to Ei is selected.

After initialization, the carriers enter a “free flight”.
For this calculation, we employ a synchronous ensemble

FIG. 14. The electron ELR calculated using the loss function
obtained along a crystal axis perpendicular to the c axis (solid line;
blue on-line) and that obtained parallel to the c axis (dashed line; red
online). Good agreement is observed, suggesting that the anisotropy
of the dielectric function does not significantly affect the ELR, al-
lowing one to ignore it.
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technique [8,82,84]. We handle the free flight and the process
of updating the particle state as is done in Ref. [8]. The
one major exception is that we use a variable time step, dt .
The magnitude of dt changes with each time step, as the
maximum scattering rate changes throughout the simulation.
We update dt at the beginning of each free flight by obtain-
ing the total scattering rate for each carrier and finding the
maximum. From there, dt is assigned a value equal to the
inverse of the maximum scattering rate divided by 10. This
approach is chosen due to the orders-of-magnitude change
of the scattering rate over the course of the thermalization
process. If one were to fix the time step based solely on the
scattering rate at the beginning, it would take an exorbitantly
long time to run the full thermalization process. This method
is significantly faster and more efficient, but it would lose its
efficiency if the scattering-rate magnitude changes very little
during a simulation.

B. Particle scattering and the selection of final states

Following free flight, we determine whether each carrier
scatters, using the techniques described in Ref. [82]. Once a
scattering mechanism is chosen (or not), a final state of the
incident carrier and, if applicable, the states of the excited
carriers are selected.

Selecting a final state after a carrier-phonon scattering
event proceeds much in the same way that the scatter-
ing rate is calculated in Sec. III A. Following Ref. [8], we
find all momentum- and energy-conserving cubes in the
BZ (labeled with an index j), for all final bands n′. For
each of these cubes, we calculate the density of final states
DOSjn at the final energy and assign a weight: P(q j, n′) =
|gη(k, q j, n, n′)|2(Nq j )DOSj,n′ (En(k) ± h̄ω

η
q j ), which is saved

to a list. Using P(q j, n′), one cube is chosen by the rejec-
tion technique. A wave vector k′ within the cube is then
chosen, using the sub-mesh described in the previous sec-
tion (Sec. IV A), such that En′ (k′) ≈ En(k) ± h̄ω

(η)
q j .

For plasmon emission, because we have assumed
immediate decay of emitted plasmons into EHPs, the
process for selecting a final state is identical to that of impact
ionization. This process is treated in two steps: first, the
emission of a plasmon/generation of a pair, and second,
the division of the EHP momentum and energy between the
excited electron and hole.

For the first part, we employ a variation of the technique
used for phonon scattering (Ref. [8]). We begin by taking the
initial wave vector of the incident carrier k, and calculating
q j = k − k j , where j is the index for each cube in the BZ
mesh, and k j is the point at the center of cube j. We then
generate a list of possible energy losses h̄ω. This list should
span the energy range on which the dielectric function is
calculated. In this case, the dielectric function is calculated
from 0 to 100 eV, and a list of 200 energies is generated on this
interval. For each of these energies, En(k) − h̄ω is calculated.
The BZ is then searched for each cube in each band (n′)
containing En(k) − h̄ω. For these cubes, the density of states
DOSj,n, at the final energy and a probability P(q j, n′, ω) =
(1/|q j |2)Im[−1/ε(q j, ω)]DOSj,n′ (En(k) − h̄ω) are calcula
ted and saved to a list. The rejection technique is then utilized,
as before, to select a cube and an energy loss h̄ω. The final

wave vector of the incident particle is chosen, using the
sub-mesh.

The final output of this section of code is the final state of
the incident particle (energy and wave vector) and the energy
and momentum of the EHP. To divide the pair energy and mo-
mentum between the excited electron and the resulting hole,
we utilize the random-k approximation. We consider many
possible combinations [Eel, Eh = (h̄ω − Eg − Eel )] over the
range from one extreme [electron absorbs all of the pair en-
ergy: Eel = (h̄ω − Eg)] to the other (Eel = 0). Here Eel and Eh

are measured from the conduction band minimum and valence
band maximum, respectively. For each combination, the prob-
ability P(Eel, Eh ) = Dc(Eel )Dv(h̄ω − Eel − Eg) is calculated
and saved in a table. Here Dc(E ) and Dv(E ) are the total
density of states at E of the conduction bands and valence
bands, respectively. The rejection technique is then used to
select a combination (Eel, Eh). With the energies selected, one
simply finds all cubes that contain each energy and selects
one, using the rejection technique with the DOS as the proba-
bility distribution. Wave vectors within each cube are chosen
using the sub-mesh method.

C. Low- and high-field transport characteristics

As mentioned above, to establish the accuracy of the
FBMC code and to further test our DFT results, we first
calculate the low- and high-field transport characteristics. We
present these data in Figs. 15 and 16. Fields are directed along
the �-K symmetry line, for transport on the basal plane. In
Fig. 16, we plot the calculated average electron drift veloc-
ity of this work with the results of a few theoretical works
[9,11,85–87] and one experimental [88]. In all cases, we see
a similar trend: a relatively steep slope at low fields followed
by a peak, a gradual decrease, and eventual saturation. We ex-
tract a peak velocity of approximately 2.5 × 107 cm/s, which
agrees with Refs. [86,87] and is in relatively good agreement
with the experimental result: ∼2.4 × 107 cm/s [88]. In con-
trast, both Fang et al. and Bertazzi et al. calculated peak
velocities of about 2.8 × 107 cm/s [9,11], while a value of
∼2.6-2.7 × 107 cm/s is reported in Ref. [85]. Fang et al. used
a very similar DFT approach to that used here, with ONCV
pseudopotentials and LDA XC functionals. The peak velocity
and other differences are likely attributable to the use of a
different pseudopotential-XC combination [89].

For low fields (below ∼50 kV/cm), our results follow very
closely those of Refs. [9,85,87], suggesting similar electron
mobilities. From the slope at these low fields, we extract a
mobility of ∼2000 cm2/(V s). Indeed, this agrees well with
the reported value of 1950 cm2/(V s) from Ref. [9]. Both
significantly exceed the experimentally measured value of
1300 cm2/(V s) [90] (clearly seen by comparing the low-field
slopes to that of Ref. [88] in Fig. 16). Fang et al. argue that
this discrepancy is likely attributable to the lack of impurity
and dislocation scattering in the theoretical models [9]. To
this point, in Fig. 16, the slopes of Refs. [11,86], in which
ionized impurity scattering is included, are closer to experi-
mental results. Additionally, inaccuracies in the band structure
likely play a significant role. For example, our calculated
electron effective mass underestimates the measured value
(see Sec. II A), which one may predict will lead to a higher

155203-13



DALLIN O. NIELSEN et al. PHYSICAL REVIEW B 108, 155203 (2023)

FIG. 15. (Left) Average electron and hole kinetic energy as a function of the electric field from the MC simulations. (Right) Average
electron and hole drift velocity as a function of the electric field along the �-K symmetry line.

mobility. In a paper by Vitanov et al., in which they employed
a nonparabolic model using experimentally calibrated mate-
rial parameters (including the effective masses), an electron
mobility of ∼1600 cm2/(V s) is reported [91]. As this paper
does not take impurity or defect scattering into account, it is
clear that improvements in the band structure cause apprecia-
ble improvement in the predicted mobility.

For the holes (Fig. 15, right frame), we observe a
much smaller low-field slope, and we extract a mobility of
∼37 cm2/(V s). This result is consistent with the relatively
flat bands near the valence band maximum (Fig. 2). While it
is considerably lower than the results of other first-principles
calculations, which found a value of 52 cm2/(V s) [92], it
is in excellent agreement with Hall-effect measurements of
31 cm2/(V s) [93].

FIG. 16. Average electron drift velocity as a function of the
applied electric field along the �-K symmetry line. This study
(finely dashed line: magenta) is compared to the work in references
[9,11,85–88].

Following the peak, in all cases, the electron drift velocity
decreases significantly and gradually reaches a steady-state
saturation velocity. Chen et al. explain that saturation oc-
curs as electrons fill the U and second � valleys [94].
This paper predicts a saturation velocity of approximately
1.1 × 107 cm/s, which slightly exceeds that of Ref. [85]:
1.0 × 107 cm/s. Results from Refs. [9,11] are somewhat
higher, settling down around 1.3 × 107 cm/s. The hole drift
velocity saturates to ∼8.2 × 106 cm/s for a field strength of
1 MV/cm. As with the electrons, this is slightly lower than
the value predicted by Bertazzi et al., who calculated a sat-
uration velocity of 9.4 × 106 cm/s at the same field strength

FIG. 17. The time evolution of the injected hot-particle energy in
wurtzite GaN at a temperature of 300 K with no applied field. The
entire duration of the simulation is depicted in the larger frame, while
only the first femtosecond is shown in the inset frame. The inset
figure is included to observe more easily the rapid energy loss due
to plasmon emission (and some impact ionization) at the beginning
of the simulation.
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FIG. 18. The time evolution of the energy distribution of injected hot electrons in wurtzite GaN at a temperature of 300 K with no applied
field. The distribution functions have been normalized to the total number of electrons.

[11]. Saturation for holes occurs as they fill the M and
A valleys.

The kinetic energy-field curves for electrons and holes are
shown in the left frame of Fig. 15. We see that, initially, the
electron energy remains nearly thermal until about 10 kV/cm,
after which a gradual increase is observed. Between approx-
imately 100–300 kV/cm, there is a sharper incline, which
coincides with the peak electron drift velocity (large slope in
the band structure). From 300–800 kV/cm, the slope of the
energy-field curve gradually decreases as the average electron
drift velocity saturates. These results agree well with those
of Ref. [9]. The characteristic “S” shape is also reported by
Kolnik et al. [95], who used an empirical pseudopotential
method to calculate the band structure. The major discrepancy
between our study and that of Ref. [95] is that electrons, in
Ref. [95], remain near thermal energies up to much higher
fields: up to about 50–100 kV/cm. This discrepancy is likely
attributable to a difference in the electron effective mass
(Ref. [95]: 0.2 me, this paper: 0.17 me). The larger effective
mass reflects a smaller curvature of the band structure in the
� valley. Additionally, their method includes ionized impurity
scattering, which, as we have already seen, decreases the
mobility significantly. This likely increases the total scattering
rate enough to prevent significant kinetic energy gains for
fields below 50–100 kV/cm.

D. Hot-electron and electron-hole pair thermalization

For the hot-electron thermalization simulation, we begin
with a bulk wurtzite GaN crystal at a temperature of 300 K
with no applied field. In such a system, at equilibrium, the
electrons are at energies near the thermal level (∼40 meV).
The sudden appearance of hot electrons is simulated by “in-
jecting” a set of 1000 electrons with energies under a Gaussian
distribution centered at 100 eV, as described in Sec. IV A.

In Fig. 17, we plot the average electron and hole ener-
gies as a function of time, including the initial hot electrons
and the generated EHPs. The time required for full electron
thermalization is approximately 1 ps. For generated holes,
thermalization is complete in roughly half the time. The initial
steps of the simulation are difficult to see in the larger plot,
due to the x-axis scale, so an inset figure is included (upper
right), with a log time scale. In this inset figure, we see that the
electron energy drops sharply from 100 to 10 eV in 0.1–0.2 fs.
This rapid decline of the kinetic energy per particle is caused
by the fast transfer of the initial kinetic energy to generated
carriers via the very fast emission of plasmons at these en-
ergies, with an emission rate of the order of 1016–1017 s−1

(Fig. 11).
The emitted plasmons tend to possess energies of ∼21, 24,

and 28 eV, due to corresponding peaks in the loss function
(Fig. 9). Figure 18 shows several snapshots of the energy
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FIG. 19. (Dashed line) The average number of pairs generated
per hot electron as a function of time. Saturation occurring at 11.3
suggests an average generation of 11–12 pairs per hot electron.
(Solid line) The average energy lost to phonons per hot electron as a
function of time.

distribution at certain times throughout the simulation. Ini-
tially [Fig. 18(a)], the distribution is Gaussian, as expected. At
0.0109 fs [Fig. 18(b)], we see that many electrons have already
experienced one or more plasmon emission events. Peaks at
roughly 80, 60, and 40 eV indicate losses in multiples of the
above-mentioned plasmon peak energies. The large number of
electrons with energies below 20 eV correspond to generated
EHPs. After 0.103 fs, we see, in Fig. 17, a sudden decrease
in the thermalization rate. The energy distribution at this time
indicates that most electrons possess energies below the low-
est plasmon energy [Fig. 18(c)], causing plasmon emission
to cease and impact ionization and phonon scattering to be
the primary scattering mechanisms. In Fig. 11, we see that
with the dissipation of plasmon emission below ∼20 eV, the
scattering rate drops an order of magnitude to 1015 s−1, which
causes this decrease. After 10.0 fs [Fig. 18(d)], the tail of
the energy distribution, on the high end, no longer exceeds
10 eV. All electrons in the simulation, therefore, experience
only phonon scattering.

Looking now at holes, we do not observe the same rapid
energy decrease at the beginning of the simulation. Unless
core states have been ionized by the original irradiation (a sit-
uation that we ignore here), hot holes do not possess sufficient
energy to exceed the lowest plasmon frequency. Instead, holes
tend to lose energy by a combination of impact ionization
and phonon emission, leading to their much flatter slope in
Fig. 17 (inset figure; t � 0.1 fs). We note the increase in the
average hole energy at the beginning of the simulation (inset
figure; t � 0.003 fs). Initially, no holes are included, and this
increase simply corresponds to hole buildup as EHPs are gen-
erated. In the later stages of the process, which we can see in
the larger frame of Fig. 17, the slope of the hole thermalization
is greater than that of the electrons. The greater slope can be
explained by the fact that hole-phonon scattering rates below
∼2.5 eV are roughly one order of magnitude larger than those
of electrons (Fig. 6).

To observe where the energy goes in the thermalization
process, the average number of generated pairs (per hot elec-
tron) is plotted along with the average energy lost to phonons
as a function of time (Fig. 19). We see that during the ini-
tial stages of the simulation (t < 1 fs), most of the energy
losses are to pair generation, as the energy lost to phonons
is practically zero. At ∼10−14 s, phonon emission increases
significantly, and the pair generation rate begins to flatten.
These phonons will eventually decay, potentially resulting in
temperature increases in the material.

In this paper, temperature effects are ignored, as we fo-
cus instead on the energy-loss processes in the “10–100 eV
gap”. As phonons do not occur early on, while most electrons
are still in the “10-100 eV gap”, it is not anticipated that
temperature effects will significantly influence thermalization
in this regime. Depending on the phonon density later in
the process, temperature rises may be significant, affecting
transport characteristics and device operation. Here we as-
sume a low radiation dose and dose rate, resulting in a low
hot electron density and, therefore, a low phonon density.
This would lead to quick energy dissipation and removal
from the system, and, therefore, to minimal temperature
rises.

One may notice that ∼60% of the initial energy is lost to
phonons by the end of the simulation. The other ∼40% can be
accounted for by the ionization energy of each pair (number
of pairs times the gap) plus some leftover kinetic energy of
the electrons and holes. Eventually, this ionization energy
will be lost to radiative (photons) and nonradiative (phonons)
electron-hole recombination and Auger recombination. It is,
however, presumed that the timescale for recombination will
be significantly greater than a picosecond, and, therefore, it
is not accounted for in this work. Indeed, the measurements
of Jursenas et al. support this assumption, as the smallest
recombination lifetimes are found to be of the order of a
nanosecond [96].

In addition to the energy distribution, we have also tracked
the real-space positions of the simulated particles. This track-
ing allows us to analyze the real-space spread and average
distance traveled during thermalization. We start the simu-
lation with all electrons at the origin (Fig. 20). By the end
(Fig. 20, bottom, right), the average distance traveled is on
the order of 100 nm. As modern transistors have dimensions
of approximately tens of nm, which continue to shrink, this
result suggests that electrons generated by ionizing radiation
will easily reach the boundaries of the device and may travel
through several devices. This conclusion is in agreement with
Weller et al. [97], who emphasize that this must be true for
electronic equilibrium as a condition for proper device simu-
lation and testing.

Lastly, we calculate the average energy required to gen-
erate an electron-hole pair, which is commonly referred to
as the mean ionization energy. This number is important
for understanding and calculating the amount of free charge
created by ionizing radiation/particles in electronic devices,
especially in binary-collision codes [7]. Furthermore, it is
a parameter used in determining the performance character-
istics of semiconductors in radiation detection. By simply
tracking the energies of EHPs as they are created, we cal-
culate an average creation energy of ∼8.9 eV (with each hot
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FIG. 20. The time evolution of the real-space position of the
hot electrons. This simulation begins with all electrons at (0,0,0) to
observe how they travel and spread over time. It does not represent a
real-life situation; it is merely an experiment.

electron generating 11–12 pairs, throughout the process). It is
generally accepted that the mean ionization energy in a semi-
conductor is approximately equal to three times the bandgap
(3 × 3.4 = 10.2 eV, for GaN). At first glance, our result is
reasonable, as it is within ∼14% of this guideline. Several
analytic approximations are also available to calculate this
energy [98–100]. Using the empirical expression reported by
Klein [100],

Ei = 2.8Eg + 0.6 eV, (9)

we calculate a value of 10.12 eV. A lower value of 9.59 eV has
been found via electron-beam-induced current measurements
[101]. Even better (if not identical) agreement is observed
with Ref. [102], in which a value of 8.9 eV is reported. Over-
all, we conclude that the calculated average creation energy is
reasonable.

V. CONCLUSIONS

We have presented a first-principles study of hot-electron
and EHP thermalization in wurtzite GaN to close the “10–
100 eV gap”. We have developed an FBMC code in which
we have included plasmon emission and impact ionization,
calculated using the full dynamic dielectric function, for
accurate simulation of the thermalization processes in the
intermediate-energy range (∼10–100 eV). We also include
phonon scattering for all valence bands (including the d
bands) and for conduction bands up to a kinetic energy of
∼25 eV. We have found that, in agreement with Pines [13],
plasmon-mediated processes dominate at high energy (during
the initial 0.1 fs), impact ionization at intermediate energies
(from 0.1 to ∼10 fs), and that phonons control the later stages
of the thermalization (from 10 fs to full thermalization).

In addition to studying the time scale, we have also inves-
tigated the length scale (diffusion of hot carriers) and found
that hot carriers travel an average distance of ∼100 nm. As
others have found [1,97], this distance easily exceeds the
typical dimensions of modern electronic devices, consistent
with the requirement to establish secondary electronic equi-
librium during device simulation and testing. It is important to
know how fast and how far these carriers decay as they may
create defects in the crystal, cause unexpected and unwanted
transients and shorts in FETs, and cause catastrophic failure
of the device [1].

We have also calculated an average EHP creation energy
of ∼8.9 eV/pair, which agrees well with the reported data.
This number, also known as the mean ionization energy,
is a critical parameter for the binary-collision codes of the
nuclear/particle physics community. It also gives an idea of
the amount of excess charge to expect, and, therefore, what
kind of damage to predict.

Overall, this paper provides the understanding, methods,
and framework to study theoretically the full thermalization of
charge carriers generated from a realistic streak of an ionizing
particle in an electronic device.
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