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Recent experiments reported that the magnetic field can drive the Lifshitz transition and one-dimensional (1D)
Weyl nodes in the quantum limit of three-dimensional pentatellurides, as they own low carrier densities and can
achieve the extreme quantum limit at a low magnetic field. In this paper, we will investigate the conditions for
the existence of the 1D Weyl nodes and their dc transport properties. We find that in the strong topological
insulator (TI) phase of ZrTe5, the formation of the Weyl nodes depends heavily on the carrier density; while in
the weak TI phase of HfTe5, the Weyl nodes are more likely to appear. These behaviors are attributed to the fact
that in the strong and weak TI phases, the zeroth Landau levels exhibit opposite evolutions with the magnetic
field. Moreover, the signatures of the critical fields that characterize the distinct behaviors of the system can be
directly captured in the conductivities.
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I. INTRODUCTION

When a perpendicular magnetic field is applied on a
two-dimensional (2D) or three-dimensional (3D) electronic
system, the electrons will be confined to move on curved
orbits due to the Lorentz force [1] and, consequently, a set of
discrete energy levels, i.e., the Landau levels (LLs) will form.
If the magnetic field is strong and a few LLs are occupied, the
system lies in the quantum Hall regime [2–4]. Further increas-
ing the magnetic field, if all electrons occupy only the zeroth
LLs, the extreme quantum limit will be reached. For most
semiconductor materials, realizing the quantum limit seems
impossible, as the required magnetic field strength would be
inaccessible in the experiment.

In the past 20 years, the developments of topological ma-
terials have provided insights to investigate the interactions
between the magnetic field and electronic systems [5–8].
Among the emerging topological materials, 3D pentatel-
lurides [9,10] including ZrTe5 and HfTe5 are representatives
and can exhibit a number of desirable features: (i) the
low-energy bands are well described by the effective non-
interacting models that are topologically nontrivial [11]; (ii)
they have narrow gaps and small band masses, leading to the
sizable cyclotron frequencies even for a weak magnetic field
[12,13]; and (iii) the crystal sample owns a high purity, with
the electron mobility reaching the order of 105 cm2 V−1 s−1,
and the low carrier density of about 1016 ∼ 1017 cm−3 at a
low temperature [13–16]. Therefore, the quantum limit may
be reached in 3D pentatellurides at a weak magnetic field,
which makes its study possible.

Recent experiments in pentatellurides reported that the
system can indeed reach the quantum limit at the magnetic
field of several Tesla [17,18]. More importantly, there exists
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a magnetic field driven Lifshitz transition to the 1D Weyl
regime: the crossing points of the zeroth LLs can be regarded
as 1D Weyl nodes because the band structure and spin texture
are analogous to those of the Weyl nodes that are formed by
Bloch band crossings [19–21]. In this regime, since the Fermi
surface is perfectly nested, the electronic states are unstable
to the interactions [22,23], which makes it a good platform to
investigate the strongly correlated electronic states. In ZrTe5,
the Lifshitz transition was characterized by the combined dc
electric transport and ultrasound measurements [17]. More-
over, the chemical potential was found to meet and cross the
Weyl nodes, resulting in the enhancement of the hole band
occupation and the weakening of the electron band occupa-
tion [17]. In HfTe5, the Lifshitz transition was demonstrated
by the magnetoinfrared spectroscopy [18], where a highly
unusual reduction of optical activity and the variation of
the accompanying resonant peaks were observed when the
chemical potential crosses the zeroth LLs. Based on these
observations, we propose the following questions: Do the
Weyl nodes always exist in pentatellurides through modulat-
ing the magnetic field? If not, what are the conditions for their
existence?

In this paper, we will systematically explore the above
questions in theory. Although the ground states of ZrTe5 and
HfTe5 depend heavily on the specific experimental conditions,
such as the growth method, temperature [24], and so on, it
is widely believed that their ground states are located close
to the phase boundary between a strong topological insulator
(TI) and a weak TI [11]. In the strong TI, the band inversions
can occur in all three directions; whereas in the weak TI, the
band inversion occurs only in one direction or in one plane.
More importantly, the two phases can be characterized by
the Z2 topological invariant index [25,26]. Here we will take
the ground state in ZrTe5 and HfTe5 as the strong and weak
TI, respectively, which are supported by many experimental
studies [12,18,27–29].
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Under the condition of fixed carrier density, we calculate
the chemical potential as a function of the magnetic field
B. The chemical potential variation, together with the LL
movements, will lead to several critical fields that characterize
the distinct behaviors of the system. We also study the dc
transport property in the quantum limit by calculating the lon-
gitudinal conductivity σxx and Hall conductivity σxy by using
the Kubo-Streda formula. We find that in the strong TI phase
of ZrTe5, the magnetic field can drive the zeroth LLs from
crossing to be separated, thus the appearance of the 1D Weyl
nodes depends heavily on the carrier density; whereas in the
weak TI phase of HfTe5, the magnetic field drives the zeroth
LLs from separated to cross each other, which makes the 1D
Weyl nodes more likely to appear. The critical fields can be
captured by the peaks of σxx and the vanishing σxy. Moreover,
the linear dependence of σxy on the inverse magnetic field,
σxy ∼ B−1, holds in the quantum oscillation regime but does
not in the quantum limit. We attribute this observation to the
g2-spin Zeeman term that breaks the particle-hole symmetry.
Our paper can help one better understand the quantum limit
and the 1D Weyl nodes that are driven by the magnetic field
in 3D pentatelluride experiments.

II. MODEL AND METHODS

We use the effective k · p model to describe the low-energy
excitations in 3D pentatellurides. In the four-component basis
(|+,↑〉 |−,↑〉 |+,↓〉 |−,↓〉)T , the Hamiltonian is written as
(h̄ = 1) [13,28–30]

H (k) = v(kxσz ⊗ τx + kyI ⊗ τy) + vzkzσx ⊗ τx

+ [
M − ξ

(
k2

x + k2
y

) − ξzk
2
z

]
I ⊗ τz. (1)

Here σ and τ are the Pauli matrices acting on the spin and
orbit degrees of freedom, respectively. v and vz are the Fermi
velocities, ξ and ξz are the band inversion parameters, and M
denotes the Dirac mass. When taking vz = 0, H (k) becomes
decoupled, and the up spin and down spin are good quantum
numbers. In the 3D system, there exist the inversion symme-
try (IS) I−1H (−k)I = H (k) with the operator I = τz, the
time-reversal symmetry (TRS) T −1H0(−k)T = H0(k) with
T = iσyK and K being the complex conjugation, the particle-
hole symmetry (PHS) P−1H (k)P = −H (k) with P = iσyτx,
as well as the chiral symmetry C−1H (k)C = −H (−k) with
C = σy ⊗ τy. Thus, according to the Altland and Zirnbauer
notations, the topological states described by H (k) belong to
the chiral symplectic class CII [31,32].

When a uniform magnetic field B = Bez acts on the 3D
system, the 1D Landau bands will form, with the dispersions
along the magnetic field direction. To solve the LLs, we
choose the vector potential in the Landau gauge as A = −Byex

and make the Peierls substitution π = k − eA. Then we define
the raising and lowering operators a† = lB√

2
(πx + iπy) and

a = lB√
2
(πx − iπy), with [a, a†] = 1 and the magnetic length

lB = 1√
eB

= 25.6√
B

nm. Besides the orbital effect, the magnetic
field can also cause the spin Zeeman splitting, which is de-
scribed as

HZ = − 1
2 g1μBBσz − 1

2 g2μBBσzτz. (2)

Here μB denotes the Bohr magneton, and g1 and g2 are
the Landé g factors. Since we have P−1σzP = −σz and
P−1σzτzP = σzτz, the PHS is preserved by the g1 term but
is broken by the g2 term.

With the trial wave function ψn = (c1
n|n〉, c2

n|n − 1〉, c3
n|n −

1〉, c4
n|n〉)T , where the harmonic oscillator state |n〉 is defined

by a†a|n〉 = n|n〉 and c1,··· ,4
n are the coefficients, we obtain the

energies for the zeroth and n � 1 LLs [33],

ε0λ(kz ) = −λ

(
M − ξzk

2
z − ξ

l2
B

+ 1

2
g1μBB

)
+ 1

2
g2μBB, (3)

εnsλ(kz ) = s

[(
M − 2nξ

l2
B

− ξzk
2
z − λ

2
g2μBB

)2

+ 2nv2

l2
B

] 1
2

+ λ

(
ξ

l2
B

− 1

2
g1μBB

)
, (4)

respectively. Here the index s = ±1 denotes the
conduction/valence band, and λ = ±1 characterizes the
up-spin/down-spin branch.

With the density of states (DOS) D(ε), the chemical poten-
tial μ is determined by the carrier density n0 as [34,35]

n0 =
∫ ∞

0
dεD(ε) f (ε − μ) +

∫ 0

−∞
dεD(ε)[ f (ε − μ) − 1],

(5)

where f (x) = 1
exp(βx)+1 is the Fermi-Dirac distribution func-

tion with β = 1
kBT the inverse temperature, and the charge

neutrality is taken at the zero energy.
The contribution of the zeroth LL to the DOS is given

analytically as

D0λ(ε) = g

2π

[
ξz(C + λε − λ

2
g2μBB)

]− 1
2

, (6)

where g = 1
2π l2

B
is the LL degeneracy in the x-y plane and can

be denoted as the uniform DOS, C = M − ξ

l2
B

+ 1
2 g1μBB. We

see that D0λ exhibits the square-root singularity, leading to the
asymmetric peaks at ε = −λC + 1

2 g2μBB.
We further study the dc transport properties of the system,

as the conductivities or resistivities can be measured directly
in the experiments to help judge the electronic states. The
conductivity tensors are calculated by using the Kubo-Streda
formula [36,37],

σαβ = 1

2πV

∑
k

∫ ∞

−∞
dε f (ε − μ)

[
Tr

(
Jα

dGR

dε
Jβ (GA − GR)

− Jα (GA − GR)Jβ

dGA

dε

)]
, (7)

where V is the volume of the 3D system, Jα = e ∂H
∂kα

is the cur-
rent density operator along the α direction, and GR/A(ε, η) =
(ε − H ± iη)−1 is the retarded/advanced Green’s function,
with η representing the LL linewidth broadening that is
introduced phenomenologically to represent the impurity scat-
terings and will be taken as a constant for simplicity. In the
following, we focus on the zero temperature.

155202-2



MAGNETIC FIELD DRIVEN LIFSHITZ TRANSITION AND … PHYSICAL REVIEW B 108, 155202 (2023)

FIG. 1. (a) The LL spectra and the chemical potential μ in the strong TI, with the LL index (nsλ) being labeled. The carrier density is
fixed at n0 = 6.76 × 1016 cm−3 and the critical fields are B0

s = 2 T, B1
s = 3.85 T, B2

s = 7.25 T, B3
s = 11.75 T, and B4

s = 13 T, as indicated by
the dotted lines. The dashed blue line helps to judge B2

s and the inset shows the enlarged plot around zero energy. (b)–(f) The LL dispersions
at the critical fields B0,1,2,3,4

s , respectively, in which the red dotted lines denote the positions of μ.

With the help of the LL energies and wave functions, the
longitudinal conductivity σxx and Hall conductivity σxy can
be derived directly. The selection rules n → n ± 1 are deter-
mined from the nonvanishing matrix element of the current
density, and there is no limit on the s and λ index. We note that
the conductivity components satisfy the following relations:

σxx(nsλ → n + 1, s′λ′) = σxx(n + 1, s′λ′ → nsλ), (8)

σxy(nsλ → n + 1, s′λ′) = −σxy(n + 1, s′λ′ → nsλ), (9)

meaning that the contributions to σxx from the LL transition
nsλ → (n + 1, s′λ′) and from (n + 1, s′λ′) → nsλ are equal,
while those to σxy are opposite. The expressions of σxx and σxy

are obtained as [38]

σxx =σ0η
2

π2l2
B

∫ ∞

−∞
dkz

∑
n�0

∑
s,s′

∑
λ

M2
ns,λ;n+1,s′,λ

[(μ − εns,λ)2 + η2][(μ − εn+1,s′,λ)2 + η2]
, (10)

σxy = σ0

π l2
B

∫ ∞

−∞
dkz

∑
n�0

∑
s,s′

∑
λ

[(εns,λ − εn+1,s′,λ)2 − η2]M2
ns,λ;n+1,s′,λ

[(εns,λ − εn+1,s′,λ)2 + η2]2
[θ (μ − εns)θ (εn+1,s′,λ − μ) − θ (μ − εn+1,s′,λ)θ (εns,λ − μ)],

(11)

where σ0 = e2

2π
is the unit of the quantum conductivity, and θ (x) is the step function. Explicitly, the matrix elements are given as

Mns,1;n+1,s′,1 = −
√

2nξ

lB
c1

ns,1c1
n+1,s′,1 +

√
2(n + 1)ξ

lB
c2

ns,1c2
n+1,s′,1 + vc2

ns,1c1
n+1,s′,1, (12)

Mns,−1;n+1,s′,−1 = −
√

2(n + 1)ξ

lB
c3

ns,−1c3
n+1,s′,−1 +

√
2nξ

lB
c4

ns,−1c4
n+1,s′,−1 − vc3

ns,−1c4
n+1,s′,−1. (13)

Due to the complicated form of the matrix elements
Mns,λ;n+1,s′,λ, the integrations over kz in Eqs. (10) and (11)
may not be completed analytically and need to be solved with
numerics.

III. STRONG TOPOLOGICAL INSULATOR IN ZrTe5

In this section, we study ZrTe5 and take the model pa-
rameters from the experiment [28]: M = 5 meV, (v, vz ) =
(6, 0) × 105 m/s, (ξ, ξz ) = (100, 200) meV nm2, g1 = −8,
and g2 = 10. In fact, when the Fermi velocity vz is nonvan-
ishing, a gap may be opened with the magnitude [39]

� = 2

√
Mv2

z

ξz
− v4

z

4ξ 2
z

. (14)

Here to observe the 1D Weyl nodes, we simply take vz = 0,
so there is no gap opening and the system behaves as a
semimetal. Since the features of band inversions in the x-y
plane as well as the z direction are kept and a finite vz will not
affect the main conclusions of this paper (see Appendix A 1),
we still regard the ground state of the system as a strong TI.
At a weak magnetic field, the band inversion in the z direction
leads to the zeroth LLs crossing at the momentum kz = ±kc,
with

kc =
(

M

ξz
− eξB

ξz
+ g1μBB

2ξz

) 1
2

. (15)

We fix the carrier density at n0 = 6.76 × 1016 cm−3 and
calculate the chemical potential μ through solving Eq. (5)
self-consistently. The results are displayed in Fig. 1(a) as
a function of the magnetic field B, in which μ exhibits a
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nonmonotonous variation. In fact, μ is determined by the
interplay between the local DOS due to the 1D LL dispersion
and the uniform DOS g that is proportional to B. When B is
weak, μ lies above the n � 1 LLs and the quantum oscil-
lations are clearly visible in μ. According to the Onsager’s
relation, the oscillation period is closely related to the Fermi
surface area [40], as analyzed by us in a previous study [38].
When B increases, the critical fields that are caused by the
combined effects of the chemical potential variation and the
LL movements will appear successively [Fig. 1(a)].

First, at the critical field B0
s , the system enters into the

quantum limit, with all electrons confined to the zeroth LLs
[Fig. 1(b)]. When B increases, the 0+ and 0− LLs move
upwards and downwards, respectively. Since the uniform
DOS gaining surpasses the local DOS dropping, μ decreases
with B.

At the critical field B1
s , μ intersects the 0− LL [Fig. 1(c)],

with

B1
s = M − μ

eξ − (g1 + g2)μB/2
. (16)

Then the Fermi surface varies from incorporating two points
to four points. Correspondingly, the crossing points at kz =
±kc own opposite chiralities and behave as two 1D Weyl
nodes. The effective Hamiltonian Heff is written as

Heff = vF (kz ∓ kc)σz, (17)

where the Fermi velocity is

vF = 2ξ
1
2

z

(
M − eξB + g1μBB

2

) 1
2

. (18)

Thus, in the strong TI phase of ZrTe5, the magnetic field drives
the Lifshitz transition and the system lies in the 1D Weyl
regime.

When B further increases, μ decreases steadily, meaning
that the magnetic field can effectively modulate the position
of μ with respect to the Weyl nodes. We see that μ will meet
the Weyl nodes at the critical field B2

s [Fig. 1(d)], with

B2
s = 2μ

g2μB
, (19)

in which the g2-spin Zeeman term plays a decisive role in
driving B2

s ; without g2, μ cannot meet the Weyl nodes. In the
experiment, B2

s is detectable only when g2 is strong enough.
The decreasing μ is followed by an upturn [Fig. 1(a), inset].
This is because the � point of the 0+ LL moves to be above
the zero energy, leading to the carriers turning from holes to
electrons.

After that, μ will be close to the � point of the 0+ LL and
crosses it at the critical field B3

s [Fig. 1(e)], with

B3
s = M + μ

eξ − (g1 − g2)μB/2
. (20)

When B > B3
s , only the 0− LL is occupied and the Weyl nodes

do not exist.
Finally, at the critical field B4

s , with

B4
s = M

eξ − g1μB/2
, (21)

FIG. 2. The zeroth LLs in the quantum limit, and the chemical
potential μ for a set of carrier densities n0 = (2.751, 2.143, 1.122) ×
1017 cm−3. The inset plots the characteristic carrier density ns, with
the horizontal lines denoting different n0.

the zeroth LLs touch each other at the � point [Fig. 1(f)].
Further increasing B, the zeroth LLs will be separated, and
the system becomes a trivial insulator.

According to the above analysis, in the strong TI phase,
the magnetic field can drive the zeroth LLs from crossing to be
separated. Correspondingly, the system turns from topological
nontrivial to trivial. Based on this observation, we suggest that
the 1D Weyl nodes do not always appear in the strong TI
phase; their appearance depends heavily on the carrier density
of the system. To further clarify this point, we calculate the
chemical potential μ for a set of the carrier density n0 and plot
the results in Fig. 2. Since a gap is opened when B > B4

s , if μ

lies in the gap, only the 0− LL is occupied. The characteristic
carrier density ns is determined as

ns(B) =
∫ μ=ε0−(�)

0
D0−(ε)dε = g

π

√
C + g2μBB/2

ξz
. (22)

The inset of Fig. 2 shows that ns increases with B
monotonously.

In Fig. 2, we see that there exist three cases for the 1D
Weyl nodes: (i) When the carrier density n0 < ns(B4

s ), e.g.,
n0 = 1.122 × 1017 cm−3, the chemical potential μ intersects
the 0− LL before the zeroth LLs getting separated, which
enables the formation of the Weyl nodes. This is similar to
the case in Fig. 1(a). (ii) When ns(B4

s ) < n0 < ns(Bm), e.g.,
n0 = 2.143 × 1017 cm−3, μ can only meet the � point of the
0+ LL after a gap is opened in the system. Here Bm represents
the maximum magnetic field that would be accessible in the
experiment and is taken as Bm = 30 T. Then μ will drop
across the gap and lie below the � point of the 0− LL, leading
to the absence of the Weyl nodes. (iii) When n0 > ns(Bm), e.g.,
n0 = 2.751 × 1017 cm−3, μ cannot intersect the 0− LLs even
after a gap is opened, and no Weyl nodes exist. Therefore, in
the strong TI phase, the carrier density of the crystal sample
directly determines the Weyl nodes that are driven by the
magnetic field. For comparison, in Ref. [18], a schematic plot
of the chemical potential variation with B is presented for
a fixed carrier density in the strong TI phase, which is just
case (iii).
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FIG. 3. The DOS (a), longitudinal conductivity σxx (b), and Hall conductivity σxy (c) versus the magnetic field B in the strong TI, with the
parameters the same as Fig. 1(a) and the critical fields labeled by the dotted lines. (b) and (c) are plotted for different linewidths η. The arrow
in (c) marks the kink structure in σxy. The inset in (c) plots σxy versus the inverse magnetic field B−1 at η = 0, where the red dashed line shows
the linear relation of σxy ∼ B−1, with the slope extracted as k = 0.108 m�−1cm−1T.

To find the signatures of the critical fields in the quantum
limit, we calculate the DOS as well as the conductivity. With
the parameters chosen the same as Fig. 1(a), we plot the results
in Fig. 3 as functions of the magnetic field B, in which the
critical fields are labeled by the dotted lines.

In Fig. 3(a), in the quantum limit, three asymmetric peaks
are exhibited at the critical fields B0

s , B1
s , and B3

s , where μ

crosses the (1 + −), 0−, and 0+ LL, respectively. Explicitly,
the peaks at B0

s , B1
s , and B3

s have long tails towards B < B0
s ,

B > B1
s , and B < B3

s , respectively. Moreover, the DOS re-
mains finite when μ meets the Weyl nodes at B2

s . This is
different from the Weyl nodes that are formed by breaking
the TRS or IS in a Dirac semimetal [19–21], where the DOS
vanishes at the Weyl nodes.

In Figs. 3(b) and 3(c), the conductivities are shown, with
the linewidth η included to represent the effect of the impurity
scatterings. In the quantum limit, we observe that (i) The
longitudinal conductivity σxx increases with η, whereas the
Hall conductivity σxy shows certain robustness to η. These
results are consistent with our previous studies [41]. (ii) In
σxx, corresponding to the DOS, three peaks are exhibited at the
critical fields B0

s , B1
s , and B3

s . Such peaks are distinguishable
when η is weak but would be smeared at a strong η = 10 meV.
(iii) σxy decreases smoothly with B except a kink as marked
by the arrow [Fig. 3(c)], which is attributed to the upturn
behavior of μ. (iv) σxy vanishes at the critical field B2

s and will
reverse its sign when the carriers change from electrons to
holes. The vanishing σxy shows certain robustness to η, which
favors the experimental observations. Thus, the signatures of
B0,1,3

s and B2
s can be captured by the peaks of σxx and the

zero value of σxy, respectively. But no signatures of B4
s are

found in the conductivities, since the conductivities reflect the
properties of the Fermi surface or Fermi sea in the system, and
μ cannot meet the touching � point of the zeroth LLs unless
the carrier density is exactly n0 = ns

0(B4
s ). In the experiment,

the signatures of B1
s and B2

s have been reported in the dc
transport measurements of ZrTe5 [17].

In the inset of Fig. 3(c), we plot σxy as a function of the
inverse magnetic field B−1 in the clean case η = 0. We see
that in the quantum oscillation regime, the classical linear

dependence of σxy on B−1 [42,43],

σxy = n0e

B
, (23)

is retrieved. With the extracted slope k =
0.108 m�−1 cm−1 T, the carrier density is obtained as
n0 = 6.75 × 1016 cm−3, which agrees well with the chosen
value. But in the quantum limit, σxy shows evident deviations
from the linear relation. Intuitively, if the linear relation holds
in the quantum limit, σxy would vanish at an infinite magnetic
field; now since σxy vanishes at the critical field B2

s , the linear
relation can no longer hold.

To further understand the above behaviors, we investigate
the role of the PHS in σxy by choosing a set of the Zee-
man splittings g1 and g2 and plot the results in the inset of
Fig. 3(c). When g1 = g2 = 0, the system owns the PHS and
the Weyl nodes are located at the zero energy. We see that
the linear dependence of σxy on B−1 holds in the quantum
limit. When g1 = −8, the 0+ and 0− LLs will move upwards
and downwards, respectively, but keep crossing each other. As
the PHS is preserved, the Weyl nodes remain located at the
zero energy and the linear dependence holds in the quantum
limit. However, at a finite g2 = 10, the PHS is broken and thus
the Weyl nodes are shifted in energy. Consequently, the linear
dependence will be destroyed in the quantum limit. In a recent
magnetotransport experiment of ZrTe5, the Hall resistivity ρxy

exhibited a similar dependence on the magnetic field [44],
which supports our theoretical analysis.

Actually, when the chemical potential μ > 0 lies between
the nth and (n + 1)th LLs, the dominant contributions to σxy

come from the LL transition (n, 1, λ) → (n + 1, 1, λ). This
is reminiscent of the 2D Dirac fermion behavior in graphene
[45]. When the PHS is broken, the 0+ and 0− LLs will move
asymmetrically in energy. On one hand, such movements will
not change the topological property of the LLs, which can
explain the vanishing σxy at the Weyl nodes. On the other
hand, in the quantum oscillation regime, σxy is related to the
transition of n � 1 LLs, thus the LL movements will not affect
σxy and the linear relation; whereas in the quantum limit, σxy

is related to the transition of the zeroth LL to the n = 1 LL,
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FIG. 4. (a) The LL spectra and the chemical potential μ in the weak TI, with the LL index (nsλ) being labeled. The carrier density is fixed
at n0 = 1.25 × 1017 cm−3 and the critical fields are B0

w = 4 T, B1
w = 7 T, B2

w = 8.6 T, and B3
w = 10.85 T, as labeled by the dotted lines. The

dashed blue line helps to judge B3
w , and the inset shows the enlarged plot around zero energy. (b)–(e) The LL dispersions at the critical fields

B0,1,2,3
w , respectively, in which the red dotted lines denote the positions of μ.

and the LL movements will change σxy and destroy the linear
relation.

IV. WEAK TOPOLOGICAL INSULATOR IN HfTe5

In this section, we study HfTe5 and take the model pa-
rameters from the experiments [18]: M = 2.5 meV, (v, vz ) =
(4.5, 0) × 105 m/s, (ξ, ξz ) = (120,−200) meV nm2, g1 =
−6, and g2 = 10. Now the ground state of the system is a
weak TI that features the band inversion only in the x − y
plane. Under a weak magnetic field, the topological trivial
bands in the z direction will lead to a gap between the ze-
roth LLs and the system behaves as a gapped insulator. At
a fixed carrier density n0 = 1.25 × 1017 cm−3, the calculated
chemical potential μ is displayed in Fig. 4. The increasing
magnetic field B will drive the emergence of several critical
fields [Fig. 4(a)].

First, the quantum limit is achieved at the critical field
B0

w [Fig. 4(b)]. We see that the 0 + /− LL lies in the
valence/conduction band, which is different from the strong
TI. With increasing B, the 0+ and 0− LLs will move upwards
and downwards, respectively. Since both the uniform DOS
and local DOS increase with B, μ also decreases.

At the critical field B1
w, the zeroth LLs touch each other

at the � point so the gap is closed [Fig. 4(c)]. Then the
zeroth LLs cross each other at kz = ±kc, with the gap being
persistently closed. Note that kc has the same expression as
Eq. (15). When B further increases, the decreasing μ will
meet the 0+ LL at the critical field B2

w [Fig. 4(d)]. Meantime,
the Lifshitz transition occurs in the weak TI phase, where
the Fermi surface varies from incorporating two points to
four points. Correspondingly, the crossing points act as two
1D Weyl nodes. When B > B2

w, μ shows an upturn and then
decreases slowly. This is because the local DOS drops when
μ crosses the � point of the 0+ LL. Finally, μ will meet the
Weyl nodes at the critical field B3

w [Fig. 4(e)].
According to the above analysis, in the weak TI phase,

the magnetic field drives the zeroth LLs from being gapped
to cross each other. Correspondingly, the system turns from
topological trivial to nontrivial, which is opposite to the strong

TI. This is also seen from the fact that the critical fields B1
w,

B2
w, and B3

w have the same expressions as B4
s , B3

s , and B2
s ,

respectively. Note that chemical potential variations with B
in the weak TI phase are consistent with Ref. [18].

It is interesting to ask whether there exists the critical field
B4

w at which μ crosses the 0− LL. When it happens, B4
w

will have the same expression as B1
s . Now, since only the

0+ LL is occupied, the characteristic carrier density n1
w is

determined as

n1
w(B) =

∫ μ=ε0−(�)

0
D0+(ε)dε

= g

π

⎛
⎝

√
C − g2μBB/2

ξz
−

√
2C

ξz

⎞
⎠, (24)

which decreases with B. Clearly, B4
w will appear if the carrier

density satisfies n0 < n1
w(B) at a certain B. For the magnetic

field B1
w < B < Bm, the calculations show that n1

w lies in the
range (0.96 ∼ 5.45) × 1016 cm−3, which is far below the cho-
sen carrier density, thus B4

w would not appear.
We investigate the conditions for the Weyl nodes in the

weak TI phase. When the zeroth LLs get crossed, if the
chemical potential μ meets the � point of the 0+ LL,
the characteristic carrier density is

n2
w(B) =

∫ μ=ε0+(�)

0
[D0+(ε) + D0−(ε)]dε

= g

π

⎛
⎝

√
C − g2μBB/2

ξz
+

√
2C

ξz

⎞
⎠, (25)

which increases with the magnetic field. For the magnetic field
B1

w < B < Bm, n2
w is given in the range (5.45 ∼ 133.87) ×

1016 cm−3, which is quite broad. In the weak TI phase, the
condition for the Weyl nodes is that the carrier density satisfies
n1

w(B) < n0 < n2
w(B) at a certain B. Since this condition is

easily satisfied, the Weyl nodes are more likely to appear in
the weak TI phase.

Next we study the DOS and conductivities of the system.
The results are displayed in Fig. 5, where the critical fields
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FIG. 5. The DOS (a), longitudinal conductivity σxx (b), and Hall conductivity σxy (c) versus the magnetic field B in the weak TI, with the
parameters the same as Fig. 4(a) and the critical fields labeled by the dotted lines. (b) and (c) are plotted for different linewidths η. The inset
in (c) plots σxy versus the inverse magnetic field B−1 at η = 0, where the red dashed line shows the linear relation of σxy ∼ B−1, with the slope
extracted as k = 0.2055 m�−1cm−1T.

are labeled by the dotted lines. At the critical fields B0
w and

B2
w, the chemical potential crosses the (1 + −) and 0+ LL,

respectively, which leads to the asymmetric peaks in the DOS
as well as in the longitudinal conductivity σxx [Figs. 5(a) and
5(b)]. The Hall conductivity σxy decreases with B smoothly
and vanishes at the critical field B3

w [Fig. 5(c)]. Moreover, the
effects of the linewidth η on the conductivities are the same as
those in Fig. 3. Therefore, the signatures of the critical field
B0,2,3

w are clearly seen in the conductivities. In the inset of
Fig. 5(c), we plot σxy as a function of the inverse magnetic
field B−1 at η = 0. In the quantum oscillation regime, the
linear dependence of σxy on the inverse magnetic field B−1 is
seen. With the extracted slope k = 0.1993 m�−1cm−1T, the
carrier density is obtained as n0 = k

e = 1.244 × 1017 cm−3,
which agrees well with the chosen carrier density. But in the
quantum limit, σxy shows evident deviations from the linear
dependence. This observation can also be attributed to the
broken PHS caused by the g2-spin Zeeman term in the system,
which is similar to the above strong TI phase analysis. In
Ref. [18] of the longitudinal resistivity Rxx measurements, a
prominent linear behavior before saturating at high fields was
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FIG. 6. The LL dispersions versus kz when the magnetic field
B = 2 T in (a) and B = 7 T in (b), with the LL index (nsλ) being
labeled. The Fermi velocity vz = 5 × 104 m/s and the other parame-
ters are the same as Fig. 1(a). The saddle points of the zeroth LL, �,
and ζ0 are marked as asterisks.

observed but there were no evident peaks for the critical fields,
thus more dc transport measurements in HfTe5 are expected in
the future.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we focus on fixed carrier density n0. Now
we discuss the case of fixed chemical potential μ0, since it
can provide more insights to understand the exotic transport
behavior in pentatellurides, such as the 3D quantum Hall
effect [38,44,46]. In both strong and weak TIs, with fixed
μ0, the magnetic field can also drive the critical fields. In the
strong TI, the Weyl nodes appear when μ0 satisfies ε0+(�) <

μ0 < ε0−(�), which strongly depends on the carrier density;
while in the weak TI, the Weyl nodes appear when μ0 satisfies
ε0−(�) < μ0 < ε0+(�). The latter condition is easily satis-
fied, as the magnetic field drives the zeroth LLs to cross each
other and the 0+ LL move upwards. Therefore, we suggest
that the conclusions for the 1D Weyl nodes with fixed μ0 are
similar to those with fixed n0.

When the Fermi velocity vz is nonzero, the following
consequences will be induced: (i) The 1D Weyl nodes will
become gapped, thus the behavior of the zeroth LLs mimicks
the physics of the 1D massive Weyl nodes; (ii) the up spin
and down spin will be mixed and are no longer good quantum
numbers; and (iii) in the strong TI phase, the zeroth LLs may
avoid crossing each other, leading to the additional saddle
points [28,29]. Thus, in the DOS and longitudinal conductiv-
ity σxx, more peaks will be found when the chemical potential
crosses such saddle points. The details are presented in the
Appendix A 1. In addition, the effect of temperature on the
magnetotransport is briefly discussed in the Appendix A 2.

To summarize, our paper explores the conditions for the
magnetic field driven Weyl nodes and the dc transport prop-
erty in the quantum limit of the 3D pentatellurides. Although
the quantitative results depend on the model parameters, they
are qualitatively valid and can show guiding significance for
the experiments. We hope that the 3D pentatellurides under
a magnetic field can open an avenue for studying the inter-
actions of 1D Weyl fermions as well as the resulting various
strongly correlated electronic states.
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FIG. 7. The chemical potential μ (a), longitudinal conductivity σxx (b), and Hall conductivity σxy (c) versus the magnetic field B for
different temperatures T . The parameters are the same as Fig. 1(a) and the critical fields are labeled by the dotted lines. The legends are the
same in all figures.
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APPENDIX

1. LLs with nonzero vz

For a finite Fermi velocity vz, the zeroth LLs can still be
obtained analytically, with the energies

ε0λ(kz ) = λ

[(
M − ξzk

2
z − ξ

l2
B

+ 1

2
g1μBB

)2

+ v2
z k2

z

] 1
2

+ 1

2
g2μBB, (A1)

while the n � 1 LLs need to be solved numerically. Now,
although the 1D Weyl nodes are gapped, the LL spectra at
kz = 0 are unaffected by the finite vz in both strong and weak
TIs [Figs. 1(a) and 4(a)], thus the evolution of the zeroth LLs
with the magnetic field as well as the determined critical fields
remain unchanged.

In the strong TI, besides the saddle point � at kz = 0,
the additional saddle points ζn may appear [28,29,33]. For
example, when B = 2 T [Fig. 6(a)], in the zeroth LLs, the
additional saddle points ζ0 can be found and are located at

kz = ±( M+g1μB/2
ξz

− ξ

ξz l2
B

− v2
z

2ξ 2
z

)
1
2 . With increasing B, ζ0 moves

to � and will finally merge with it at the critical field B0c =
M−v2

z /2ξz

eξ−g1μB/2 � 6 T. When B > B0c, there are no additional saddle
points in the zeroth LLs [Fig. 6(b)].

2. Effect of temperature

Here we study the effect of temperature on the magneto-
transport in pentatellurides. At a finite temperature T , the con-
ductivity σαβ will be modified in two aspects: one is that T can
shift the chemical potential μ and another is that T directly
enters σαβ via the Fermi-Dirac distribution function f (x). By
multiplying the zero-temperature conductivity σαβ (T = 0) by∫ ∞
−∞ dεδ(ε − μ), the finite-temperature conductivity σαβ (T )

can be expressed as a weighted integration of σαβ (T = 0)
around the chemical potential μ and is written as [36]

σαβ (T ) =
∫ ∞

−∞
dεσαβ (T = 0, ε)

[
−∂ f (ε − μ)

∂ε

]
, (A2)

where the derivative of the Fermi-Dirac distribution function
is − ∂ f (ε−μ)

∂ε
= 1

2kBT (1+cosh ε−μ

kBT )
.

In Fig. 7, with the parameters the same as Fig. 1(a), we
display the results of the chemical potential μ, longitudinal
conductivity σxx, and Hall conductivity σxy for different tem-
peratures T . In Fig. 7(a), we see that with increasing T , when
B < B0

s in the quantum oscillation regime, the oscillations of
μ are weakened; when B > B0

s in the quantum limit, μ is
less affected at T � 20 K. When the temperature increases
to T = 100 K, μ even becomes negative, meaning that μ

shifts from the conduction band to the valence band. This
result is consistent with experimental observations [47,48] and
was believed to be the underlying physical mechanism of the
anomalous resistivity peak at a finite T in pentatellurides [35].
In Fig. 7(b), the peaks of σxx are smeared by temperature,
and in Fig. 7(c) σxy is gradually suppressed. Note that when
T = 100 K, σxx becomes a smooth curve, indicating that the
quantized LLs do not exist and the system enters the semiclas-
sical diffusive region.
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