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First-principles investigation of the impact of stress and lattice vibration on the hyperfine
interactions of the nitrogen-vacancy center in diamond
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The hyperfine interactions between the electronic spin of the nitrogen-vacancy (NV) center in diamond and
its surrounding nuclear spins are essential for quantum sensing and information processing. However, these
interactions can be influenced by strains and lattice vibrations, causing changes in the resonant frequencies and
thus the decoherence of multispin system. We used first-principles calculations to obtain the linear response of
the hyperfine tensors to all the independent strain components and then converted it to stress response using
the elastic tensor, which was obtained via first principles calculation as well. Additionally, we obtained the
thermal expansion relation V (T, P) for the NV center from first-principles calculations, rather than relying on
experimental data for pristine diamond. This enabled us to calculate the hyperfine tensors as a function of thermal
state variables T and P, i.e., A(T, P), with the previously overlooked volume-dependence of the vibrational
contribution included. For the 14N nucleus, the hyperfine interaction variation is mainly due to the vibrational
contribution Aph, which is insensitive to volume changes due to the near cancellation of two volume-dependent
terms. For the surrounding 13C nuclei, our calculations confirm previous findings that both the change of the static
term A0 by thermal expansion and the vibration term Aph are important. Our results reveal a complex interplay
among structural, electronic, and vibrational properties of the NV center system and present a comprehensive
method for calculating small variations of physical quantities due to external perturbation.
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I. INTRODUCTION

Detailed understanding of the properties of spin defects
in solids [1] is essential in developing and optimizing their
applications in quantum sensing [2], quantum computation
and networks [3]. Measuring the susceptibilities of target
defects to external perturbations such as magnetic fields, elec-
tric fields, strains and temperature enables detection of these
quantities and analysis of decoherence resulting from their
fluctuations. As one of the most prominent systems with its
various properties carefully investigated [4], nitrogen-vacancy
(NV) center in diamond has achieved several remarkable mile-
stones including single-molecule magnetic resonance [5–7],
nanoscale magnetic [8–10] and temperature [11,12] imag-
ing, and multinode quantum networks [13,14]. However, the
properties of NV centers are subject to the influence of en-
vironment, including temperature and stress, especially for
nanoparticles [11,12,15]. This can affect their performance in
quantum sensing and information processing applications. As
such, it is important to investigate how these external factors
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influence the spin-spin interactions in NV centers. One key
parameter that characterizes these interactions is the zero-field
splitting (ZFS), whose temperature and pressure dependencies
have been explored theoretically in previous works [16,17].
Other important parameters are related to the hyperfine inter-
action, which arises from the coupling of the electron spin
of the NV center with the nuclear spins of the surrounding
atoms, such as 14N and 13C. The hyperfine interaction can
be used to perform quantum operations such as initialization,
readout, and entanglement of nuclear spins. It consists of both
isotropic and anisotropic terms, which depend on the electron
spin density distribution and the relative orientation of the
electron and nuclear magnetic moments [18,19].

Currently, it is still challenging to resolve experimentally
all individual components of the hyperfine couplings, particu-
larly in the presence of strain or stress or at finite temperatures.
First-principles calculations based on density functional the-
ory (DFT) provide a valuable tool to obtain the quantum
mechanical spin-spin interactions for nuclei at 0 K. To extend
these calculations to the cases of finite temperatures or applied
stress, the vibrational contribution to the thermodynamics and
the perturbation of the ground-state wave function need to
be taken into account. In our previous work [20], we mea-
sured the temperature-dependent hyperfine couplings of NV
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FIG. 1. The illustration of the nuclei around NV center with the spin density function contour via (a) top view and (b) front view. The 14N
and 13C(1–5) nuclei equivalent by symmetry are marked in same color.

centers in diamond at room temperature with high precision.
We demonstrated the feasibility of describing the temperature
variation of hyperfine interactions by first-principles calcula-
tions with a rough model. In this work, we study how stress
affects the hyperfine interactions and how thermal expansion
modifies the vibrational contribution of the hyperfine interac-
tions. We use first-principles calculations to obtain the linear
response of the hyperfine tensors to normal and shear stress
components. Furthermore, we calculate the thermal expansion
relation V (T, P) for the NV center instead of relying on the
experimental data for perfect diamond like previous works
[17,20,21]. This allows us to determine the hyperfine tensors
A(T, P) for varying pressure by including the previously over-
looked volume-dependence of the vibrational contribution.

This work focuses on several important sites of nuclear
spins surrounding the NV center in diamond, as shown in
Fig. 1. The NV center is a point defect in the diamond lattice,
made up of a nitrogen atom and an adjacent vacancy. Its
ground state is a spin triplet, which can be optically initialized
and read out. The electronic spin of the NV center interacts
with the nuclear spins of the nitrogen and several carbon
atoms near the defect through hyperfine coupling. Due to the
C3v symmetry of the NV center, some nuclear sites are equiv-
alent and only one representative site for each symmetry class
is considered. The properties of other nuclei can be obtained
from those of the representative ones simply by coordinate
transformations.

II. THEORETICAL FRAMEWORK

For a macroscopic physical quantity A determined by the
thermal equilibrium properties of the solids, A(T, P), we can
also express A as a function of temperature and volume for the
ease of computation, as it is more convenient to deal with the
electron-phonon system at a series of volumes than pressures
in actual calculation. Assuming no phase transition occurs in
the range of solid states we consider, the function A(T, P) =
A(T,V (T, P)) should be smooth.

Microscopically, the hyperfine couplings of the NV cen-
ter in diamond are dependent on the structural configuration
of the system that specifies the atomic positions and the

electronic spin density. The instantaneous values of those
quantities fluctuate along the motion of atoms in the solids.
We need to focus on their ensemble average in a time interval
of the nanosecond scale, which is longer than in orders of
magnitudes that the time scale of the motion of electrons and
lattice vibrations in thermal equilibrium. We use the varia-
tion of phonon population to describe the atomic motions
at finite temperature with the harmonic approximation. The
phonon energy is much larger than the hyperfine coupling,
with a difference in orders of magnitude of 10 THz versus
10 MHz. This implies that the lattice vibrations evolve much
faster than the hyperfine couplings between the nuclear spins
and electronic spins, let alone the much larger energy scale
of electronic motions. We employ a Born-Oppenheimer-like
approximation [22] to separate the motions of vibration and
nucleus spins under hyperfine interactions, while neglecting
the impact of the hyperfine interaction on electron and phonon
states. We assume that lattice vibrations are always in thermal
equilibrium when measuring the hyperfine parameter, and that
the hyperfine parameter can be averaged over the thermal
equilibrium distribution of lattice vibrations.

For a specific geometric configuration of all the nuclei, the
hyperfine tensor can be expressed as the sum of an isotropic
part (the Fermi contact term) and an anisotropic part as
follows:

(
AI

iso

)
i j = 2

3

μ0γeγI

〈Sz〉 δi j

∫
δT (r)ρs(r + RI )dr, (1)

(
AI

ani

)
i j = μ0

4π

γeγI

〈Sz〉
∫

ρs(r + RI )

r3

3rir j − δi j r2

r2
dr, (2)

where ρs is the spin density, μ0 is the magnetic susceptibil-
ity of free space, γe the electron gyromagnetic ratio, γI the
nuclear gyromagnetic ratio of the nucleus at RI , and 〈Sz〉 the
expectation value of the z component of the total electronic
spin. ri is the ith component of r, and r is taken relative
to the position of the nucleus RI . δT (r) is a smeared out δ

function [23–25]. We do not include the contribution from
electron angular momentum in the anisotropic part. This is
because the spin-orbit coupling is deemed insignificant and
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thus overlooked, leading to such a contribution being zero
[24].

The Fermi contact term represents the magnetic interaction
between an electron and an atomic nucleus, which depends on
the value of the electron wave function at the nucleus. This
term is responsible for the appearance of isotropic hyperfine
coupling and is independent of orientation. The anisotropic
term of hyperfine coupling arises from dipole coupling be-
tween the electron and nuclear magnetic moments, reflecting
the spatial distribution of the electron spin density around the
nucleus. This term can be described by a 3 × 3 tensor that has
three diagonal and three off-diagonal independent elements.

A. The thermal equilibrium state of diamond

The relation V (T, P) can be obtained either through exper-
imental measurement or by fitting it to the equation of state
after computing the thermodynamic functions of the solid,
as we do in this work. All these parameters are determined
from the free energy F [T,V ] using first-principle calcula-
tions. Generally, the free energy F [T,V ] can be estimated by
the ground state energy Egrd[V ], and the temperature related
contributions due to electron excitation F el[T,V ] and lattice
vibrations F ph[T,V ] [26]. For diamond at least in the temper-
ature range of 0–500 K, the electronic contribution to the free
energy, F el[T,V ], and the anharmonic phonon contribution
are negligible and are therefore ignored here. The phonon
contribution to the free energy F ph[T,V ], can then be approxi-
mated by the quasiharmonic approximation as F qh[T,V ]. The
expression for F [T,V ] is given as follows [27]:

F [T,V ] = Egrd[V ] + F qh[T,V ] (3)

= Egrd[V ] +
3N−3∑
i=1

{
h̄ωi[V ]

2

+ kBT ln

[
1 − exp

(
− h̄ωi[V ]

kBT

)]}
, (4)

where the constant h̄ is the reduced Planck constant, kB is
the Boltzmann constant, N represents the number of atoms
in the supercell, and ωi is the frequency of the ith phonon
mode, with the three translation degrees of freedom excluded.
For insulators, the electronic term F el[T,V ] in Eq. (3) is
neglected, and the phonon term F ph[T,V ] is given explicitly
under the quasiharmonic approximation [28].

The state-parameter relationship V (T, P) is determined by
the equilibrium state of the system obtained from Eq. (4) by
setting P = −(∂F/∂V )T . Figure 2(a) shows the procedure for
actual first-principles calculations, where a series of V values
are artificially chosen and F [T,V ] is obtained via Eq. (4)
for any given Tj . A smooth F [Tj,V ] ∼ V curve can be de-
termined by fitting F as a function of V . The equilibrium
volume under condition (Pi, Tj) is then obtained by finding the
volume that satisfies ∂F/∂V = −Pi from the F [Tj,V ] ∼ V
curve, which corresponds to the V (T ) relationship at a specific
Pi. It should be noted that even at 0 K, where the phonon
number is zero, vibrations have an impact on the equilibrium
lattice parameters due to zero-point vibration, resulting in an
expansion of the lattice over the classical value obtained by
the energy minimum of about 0.37 % for diamond.

At typical temperatures of interest, thermal expansion can
be neglected compared to the elastic deformation of the
lattice. The P-V relationship, or more generally, the σ -ε re-
lationship, can be obtained from first-principles calculations
using either a finite differences approach [31] or density-
functional-perturbation theory. In the linear response region,
this relationship is given by

σi =
∑

j

Ei j · ε j, (5)

where stress σ (with σi it component) and strain ε (with ε j its
component) are symmetric rank-2 tensors with six indepen-
dent components and are usually expressed as six-dimensional
vectors that include normal and shear components. The rank-4
elastic tensor E is typically written as a 6 × 6 matrix with up
to 21 independent components Ei j , reflecting the symmetry
and anisotropy of the material. The detailed form of Eq. (5)
for the NV center is given in Appendix B. We can compare the
P ∼ V relationship from the generalized Hooke’s law with the
classical P(V ) that neglects the phonon term in Eq. (4), and
evaluate the accuracy of the equation of state for describing
the elastic properties of the solid.

B. The temperature and pressure dependencies of hyperfine
interactions

To conveniently describe the variation of hyperfine cou-
pling from various factors, A(T,V (T, P)) is divided into two
parts as follows:

A(T,V (T, P)) = A0(V (T, P)) + Aph(T,V (T, P)), (6)

A0(V ) = A0(V0) + [A0(V ) − A0(V0)], (7)

Aph(T,V ) = A(T,V ) − A0(V ), (8)

where A0(V ) denotes the static hyperfine coupling that
depends only on the lattice volume and the vibrational contri-
bution part Aph(T,V ) arises from the statistical contribution of
nuclei vibrations at temperature T and specific volume V . V0

represents a reference volume, which is usually taken as the
classical equilibrium volume of minimal vibration potential
energy or the total energy of the first-principles calculation. It
should be noted that A0(V ) differs from A(0,V ) by Aph(0,V ),
which is not zero due to zero-point vibration.

The hyperfine parameter A0(V ) can be further divided into
several components based on the cause of volume change.
This includes the hyperfine parameter at a standard volume
V0, the change in hyperfine interaction due to mechanical
volume change A0(V (0, P)) − A0(V0), and the change in hy-
perfine interaction due to thermal expansion A0(V (T, P)) −
A0(V (0, P)). In this context, V0 is considered as V (0, 0),
which is the equilibrium volume without external pressure
at 0 K. If we only consider a small range of lattice shape
changes, A0(V ) will have a linear relationship with volume
[20]. The volume-induced variation of hyperfine coupling can
be approximated as the linear coefficient dA0/dV multiplied
by the volume changes, which can be obtained from V (T, P)
in the previous section.

For realistic anisotropic mechanical cases, the volume and
pressure in Eq. (8) can be generalized to strain and stress
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FIG. 2. For diamond with an NV center, (a) the free energy of F (T,V ) calculated with Eq. (4), (b) the temperature dependent lattice scale
factor δL(T )|P/Lcls(0) under various pressures, (c) the pressure dependent lattice scale factor δL(T )|P/Lcls(0) under various temperatures,
and (d) the pressure dependence of the zero-point vibrational contribution on lattice expansion. For convenience, the uniform lattice strain is
described by the scale factor (δL/L) instead of volume in actual calculations. In (a), the black points are temperature and volume samples;
the black curves specify F (V ) from 0 to 1200 K with a step of 100 K and the free energy are fitted by the third-order Birch-Murnaghan
equation [29]; the vertical dashed line marks the classical volume under no external pressure Vcls(0) and the color lines represent the
V (T, P)′s. In (b), “diamond” is the case pristine diamond under no external pressure; “expt” is the experimental curve of diamond fitted
by the multifrequency Einstein model in a wide range of temperatures T [30].

tensors, respectively. Due to the high degree of freedom of
strain ε and stress σ , we simplify the problem by not consider-
ing ε(σ, T ) in calculating A0 together with Aph. We separately
consider the case of anisotropic stress when the temperature
effect is neglected, i.e., A0 without including Aph, and the case
of finite temperature with only hydrostatic pressure for A0 and
Aph.

At a specific volume V , the Aph(T,V ) term is handled
using the frozen-phonon method [32]. This method calcu-
lates the parameters of nuclear spin evolution when atomic
displacements are frozen in both time and space. A physical
quantity A0({Xi},V ) with displacement {δXi} can be expanded
to the second order in δXi as follows:

A0({δXi},V ) = A0(V ) +
∑

i

∂A0

∂Xi
δXi

+ 1

2

∑
i

∂2A0

∂X 2
i

(δXi )
2 +

∑
i< j

∂2A0

∂Xi∂Xj
δXiδXj

+ · · · . (9)

The hyperfine parameter A(T,V ) is then an ensemble average
of A({δXi},V ) at temperature T , where {δXi} are the normal

coordinates of the ith phonon mode. The form of Aph(T,V )
could be further given as follows:

Aph(T,V ) = A(T,V ) − A0(V ) (10)

= 1

2

∑
i

∂2A0

∂X 2
i

(V )
h̄

ωi(V )

(
〈ni〉T + 1

2

)
(11)

=
∑

i

ci

(
〈ni〉T + 1

2

)
. (12)

Here, 〈ni〉T = [exp(h̄ωi(V )/kBT ) − 1]−1 is the expectation
phonon number of mode i at temperature T , kB the Boltz-
mann constant, with ωi the phonon frequency of the ith
vibration mode and h̄ the reduced Planck’s constant. Within
quasiharmonic approximation, the linear 〈Xi〉T and cross
〈XiXj〉T terms are zero and the diagonal second-order term
in Eq. (9) can be evaluated via 〈X 2

i 〉T = (〈ni〉T + 1/2)h̄/ωi.
The mode-wise term ci = ∂2A0/∂X 2

i h̄/(2ωi ) as the ther-
modynamic contribution on hyperfine interaction for one
phonon of mode i. The diagonal second-order coefficients
∂2A0/∂X 2

i can be obtained by finite-difference in standard
frozen-phonon method or fitting the A0(Xi ) with a quadratic
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curve for any given i by first-principles calculation. It is
more complicated and will be avoided to obtain accurately
the nondiagonal second-order coefficients. We also noted that
the zero-point vibration not only has a contribution on lattice
strain but also has an effect on Aph, which equals to ci/2 =∑

i(∂
2A0(Xi,V )/∂X 2

i )h̄/(4ωi(V )).
The vibrational contribution term, Aph(T,V ), is dependent

on both temperature T and volume V . The volume change has
a weak effect on the phonon modes in terms of frequencies
and atomic motions. To determine the volume dependence of
Aph(T,V ), it is necessary to know the second-order coefficient
∂2A0/∂X 2

i as a function of volume and the volume-dependent
phonon frequencies. The weak volume dependence was ne-
glected in our previous work [20].

C. Computational details

The electronic and phonon calculations were carried out
with the projector augmented wave method [33] and finite
differences approach implemented in the Vienna ab initio
simulation package code (VASP) [34,35], respectively. The
hyperfine tensors for nuclei are calculated with Eq. (2) im-
planted in VASP, and the core electronic contributions to the
Fermi contact term are calculated in the frozen valence ap-
proximation as proposed by [25]. The supercells containing
4 × 4 × 4 of the diamond’s unit cell are adopted to represent
an isolated NV− center in diamond which is large enough for
phonon and hyperfine coupling calculation(see Fig. S1 for the
comparison between two supercells with different sizes). To
balance accuracy and computational cost, the lattice vibration
of the supercell at the 
 point are calculated with the PBEsol
(PBE for solids) density functional [36] and a 520 eV energy
cutoff to decrease the effect of “Pulay pressure” [37]. The
nuclear gyromagnetic ratios of 14N and 13C nuclei are from
Ref. [38].

One of the factors that may affect the vibrational properties
of diamond is the presence of 13C isotopes, which have a
larger mass than the more abundant 12C isotopes. However,
previous studies have shown that the mass difference has a
negligible impact on the phonon properties of the supercell
[39,40], and no effect on the spin density. Therefore, in our
practical calculations, we neglect the mass difference be-
tween 13C and 12C isotopes, and treat all the carbon nuclei as
12C. This approximation allows us to consider the vibrational
modes of the system in a single calculation, which simplifies
the problem and reduces the computational cost.

III. RESULT AND DISCUSSION

We present the results on the static hyperfine interaction A0

and its dependence on the volume V (T, P), or more generally,
on the strain. Then, the vibrational contributions to hyperfine
interaction Aph as a function of temperature and pressure via
the thermal equilibrium state V (T, P) were evaluated and the
hyperfine tensor A(T, P) and its responses to temperature and
pressured are discussed.

The static term A0 is achieved in actual calculation by

A0(V ) ≈ A0(Vcls(0)) + dA0

dV
[V (T, P) − Vcls(0)], (13)

where Vcls(P) refers to the classical equilibrium volume under
a certain pressure which ignores all the vibration effect, so it
is only related to the pressure. The actual volume V (T, P) can
be divided into four components by different contributions:
the classical volume at zero external pressure Vcls(0), the
variations induced by pressure Vcls(P) − Vcls(0), the thermal
expansion V (T, P) − V (0, P) and the zero-point vibration
V (0, P) − Vcls(P). The thermal expansion and the changes
of volume under pressure of interest in this work are much
smaller than the value Vcls(0) or V (0, 0), so that the linear
approximation in Eq. (13) holds.

By applying Eq. (2) to the equilibrium geometry of the
supercell, determined by energy minimization, we obtain the
hyperfine tensors A(0,Vcls(0)) for the nuclei surrounding the
NV center. The results are given in Appendix B. The NV
center reduces the original site symmetry of point group Td

to C3v. We choose a coordinate system such that the x, y, and
z axes are along (100), (010), and (001), respectively, with the
〈C3〉 axis along (111). The isotropic Fermi contact term dom-
inates these tensors, resulting in much larger diagonal values
than off-diagonal ones. To clearly illustrate and compare with
experimental measurements [20], we focus on the following
parameter:

A = sgn(n · A · n)|n · A|, (14)

where n = √
1/3(1, 1, 1) is the principal axis of the single

NV center and the function sgn(· · · ) is to take the sign.
The hyperfine parameters A(0,Vcls(0)) for 14N and 13C(1–5)
in MHz are respectively −1.6936(4), 128.18(3), 14.851(1),
13.918(1), −7.0160(5), and −5.652(2), which are almost the
same with our previous results [20] obtained with a different
density functional setting.

A. Static hyperfine interaction and lattice strain

Due to the high degree of freedom when applying strain
to the diamond lattice, we try to avoid considering both
strain and temperature effects simultaneously. According to
the V (T, P) obtained below, for the range of temperatures
and stress ranges we are interested in, the thermal effect
is found to be less important for the diamond lattice. By
neglecting thermal expansion, the pressure-induced volume
variation Vcls(P) − Vcls(0) or its generalized form εcls(σ) −
εcls(0) can be derived using classical mechanical calculations
with Eq. (5). The strain and stress are related by the elastic ten-
sor [41] as shown in Eq. (B1). For the independent elements in
the elastic tensor of pristine diamond under no external stress,
C11, C12 and C44 are respectively calculated to be 1080, 142,
and 581 GPa, comparable with the measured values of 1079,
124, and 578 GPa for perfect diamond [42]. The other terms
are zero due to the crystallographic point group of Oh. For
diamond with an NV center, C11, C12, and C44 show a linear
dependence on volume and the other three C45, C15, and C14

are below the accuracy limit of the calculations. Their values
at Vcls can be found in Appendix B.

The strain-dependence of hyperfine parameters A0(ε) are
acquired by linear fitting of calculated hyperfine tensors and
calculated using Eq. (14) (details can be referred to Figs. S2
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FIG. 3. The stress orientation dependence of hyperfine parameter derivative dA0/dσ of (a) 14N and (b)–(f) 13C nuclei.

and S3 in Ref. [43], which contains [20,44]), and their strain
derivatives ∂A0/∂ε can be found in Appendix C, which
indicates that our calculations respect the symmetry con-
straints automatically. It is noted that the strains not along
the 〈C3〉 axis break the C3v symmetry and cause the hyper-
fine parameters of the originally equivalent nuclei to differ.
According to Appendix C, the hyperfine parameter on 14N
nucleus is more sensitive to the shear strains than to the nor-
mal strains, on the contrary, the hyperfine parameter on 13C(2)
nucleus is more sensitive to normal strains. For the rest of the
nuclei, their hyperfine parameter responses to normal strains
and shear strains are comparable.

The linear relationship between hyperfine parameters and
strains results in the additivity of the hyperfine parameter
variations on strains. As shown in Table S1 in Ref. [43],
the verification is successful, with deviations mostly less
than 10%, except when values are very small. Figure 3
shows the variations of hyperfine parameters under stress
in all directions. The derivative dA0/dσ of the 14N nucleus
has a rotation axis that coincides with the 〈C3〉 axis. Under
normal stress along x, y or z axis, the hyperfine coupling
barely reacts, while for normal stress along 1/

√
3(1 1 1), i.e.,

(1/
√

3, 1/
√

3, 1/
√

3)T (1/
√

3, 1/
√

3, 1/
√

3) = 1/3(1 1 1;
1 1 1; 1 1 1) in the same coordinate (superscript “T” denoting
transposition), the derivative dA0/dσ reaches the maximum
since the hyperfine coupling of 14N is more sensitive to
shear strains than to normal ones and according to the
elastic tensor, the lattice is softer under shear stress. For
the normal stress perpendicular to (111), the stress can be
decomposed to unit normal stress minus unit shear stress, and
it results in a ring in Fig. 3(a) which has negative values. The
eigenvalues and the eigenvectors of dA0/dσ can be found in
Table I.

B. The temperature and pressure dependence of the static
hyperfine interactions

To obtain the temperature and pressure dependence of
the static hyperfine interaction, the free energy of diamond
with an NV center F (T,V ) is calculated using Eq. (4) and
fitted with the third-order Birch-Murnaghan equation [29],
as shown in Fig. 2(a). The orange curve labeled “0 GPa”
represents the equilibrium volume of F (T,V ) at P = 0, i.e.,

TABLE I. The eigenvalue and the eigenvector of the derivative
of hyperfine parameter with respect to stress ∂A0/∂σ (in units of
kHz/GPa).

Nuclei ∂A0/∂σ eigenvector

14N 12.3 (0.577,0.579,0.576)
−6.7 (0.654,−0.750,0.099)
−6.6 (0.489,0.320,−0.811)

13C(1) −492 (−0.424,0.639,0.642)
104 (0.906,0.297,0.303)

−29.0 (0.003,0.710,−0.704)
13C(2) 47.6 (1.000,−0.013,−0.027)

−16.1 (0.028,0.145,0.989)
−13.7 (0.009,0.989,−0.145)

13C(3) 19.0 (0.781,−0.439,−0.444)
−0.1 (−0.625,−0.563,−0.541)

3.6 (0.012,−0.700,0.714)
13C(4) 22.5 (−0.355,0.661,0.661)

−17.9 (0.935,0.252,0.250)
−11.4 (0.001,−0.707,0.707)

13C(5) −30.5 (0.924,0.013,0.382)
6.7 (−0.381,0.104,0.919)

−3.9 (0.028,0.995,−0.101)
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−∂F (T,V )/∂V = 0, while the black dashed line labeled
“classical” represents the equilibrium volume of total energy
E (0,V ). These two curves differ even at T = 0 K because the
former includes the effect of zero-point vibration, resulting
in a 0.37 % lattice expansion for diamond. Figure 2(b) shows
the thermal expansion of diamond with an NV center, along
with the experimental and calculated results for pristine dia-
mond. The lattice with an NV center exhibits more noticeable
thermal expansion compared to the pristine one, mainly due
to the carbon vacancy. As shown in Figs. 2(b) and 2(c), the
effect of temperature on volume change is insignificant at
low thermal regimes, but becomes comparable to the effect of
several gigapascals of hydrostatic compression at high tem-
peratures of around or above 500 K. Our method is based on
the harmonic approximation, which may not be valid at tem-
peratures above 1000 K, where anharmonic effects become
significant [45]. For a pressure change of 10 GPa, the varia-
tion in thermal expansion ε(T, σ ) − ε(0, σ ) is much smaller
than ε(0, σ ) itself. In Eq. (13), we consider the effect of
ε(0, σ ) − εcls(σ ) as V (0, P) − Vcls(P), which is much easier
to evaluate. Figure 2(d) shows a diagram of lattice expansions
due to zero-point vibration. Unlike lattice variations under
temperature and stress, the zero-point vibration part is quite
stable over a wide range of pressures and has a value com-
parable to the effect of a negative pressure of approximately
4 GPa or thermal expansion at 1200 K.

In our previous work [20], we predicted the variation of the
hyperfine parameter due to thermal expansion of lattice using
(dA0/dV )[Vexp(T ) − Vexp(0)], where the thermal expansion at
P = 0 of the supercell with an NV center was approximated
with the experimental data on perfect diamond Vexp(T ). In this
work, we obtain the lattice expansion of the supercell with an
NV center V (T, P) via first-principles calculation, allowing
us to discuss its temperature and pressure dependence based
solely on first-principles calculations. The dA0/V in Eq. (13)
can be obtained by linear fitting of hyperfine interactions A0

as a function of volumes V or lattice parameters.
The variation of the hyperfine tensor as a result of zero-

point vibration (dA0/dV )[V (0, P) − Vcls(P)] via lattice shape
change leads to a significant difference between hyperfine
parameters A0(V (0, 0)) and A0(Vcls ). As the temperature
increases, the thermal expansion creating a deviation of
A0(V (T, 0)) − A0(V (0, 0)) from zero. However, below 500 K,
this term is much smaller than that due to zero-point vibration
[see Figs. S4 and S5 in Ref. [43] for A0(V (T, P))′s and their
variations at finite temperature].

C. The vibrational contributions to hyperfine interactions and
their volume dependence

The unitcell of diamond contains eight carbon atoms, so
the pristine 4 × 4 × 4 supercell contains 512 carbon atoms,
and the supercell with a NV center, i.e„ two neighboring
carbons replaced by one N atom and one vacancy, contains
Natom = 511 atoms. The number of nonzero lattice vibration
modes at 
 point is 3Natom − 3 = 1530, and these modes
are indexed by i = 1–1530 in ascending order of phonon
energy. To obtain the phonon-contributed hyperfine param-
eter at a specific volume, all the 
-point vibration modes
of the supercell are calculated in a range of lattices. To

estimate the influences of anharmonic vibrations (at fixed
V ) on hyperfine interaction, the perturbation V ′ = β

(3)
i X 3

i is
considered for any given mode i. The value β

(3)
i is obtained

by fitting the vibration potential V (Xi ). The first-order per-
turbation to the phonon wave function was considered, and
then 〈Xi〉T is no longer zero but −3β

(3)
i h̄/ω3

i (〈ni〉T + 1/2).
Hence, the tensor ci in Eq. (12) was corrected by adding bi =
−(3h̄/2ω3

i )β (3)
i dA0/dXi. The first- and second-order deriva-

tive coefficients in respectively bi and ci were obtained by
fitting the calculated data of A0(Xi ) as quadratic functions
of Xi, instead of using finite-difference in standard frozen-
phonon method. The average phonon number at temperature
T is 〈ni〉T = [exp(h̄ωi/kBT ) − 1]−1. Calculations show that
the bi term is not important. Other anharmonic vibration terms
such as V ′′ = β

(3)
i j j XiX 2

j may also be considered. However,
judging from the excellence of the quasiharmonic approxi-
mation to the equation of state parameters, all those terms
are omitted in this calculation as they are extremely compu-
tationally costly. The quadratic fitting require a sufficiently
large range of Xi to curb the influence of the numerical errors
in A0(Xi ), so that the accumulation of fitting errors in bi, ci

do not ruin the results. The results presented in this work
were based on an adaptive range of � 1

√
amu Å to curb the

uncertainty due to the fluctuation of A0(Xi ). “amu” here stands
for the atomic mass unit, which is a unit of mass used to
express the masses of atoms.

√
amu Å here stands for the

mass weighted displacement of atoms, which is the unit for
canonical coordinates of vibrations.

The tensor ci for the Fermi contact term is a scalar ci and is
plotted in Fig. 4, illustrating the contribution of each phonon
mode to the hyperfine interaction on nuclei. The contribution
due to b′

is is about two or more orders of magnitude smaller
(see Fig. S6 for the diagram of bi similar to the form of ci in
Fig. 4). According to the phonon density of states, the number
of phonon states are sparse at low frequencies, while these low
frequency modes take the advantage of phonon number at the
usual temperature up to about 1000 K. Figure 4 indicates that
phonons with high-frequency is more important for 13C(1–3)
than 13C(4–5) and 14N, which is shown more clearly by the
mode-accumulated contribution in Fig. S7. The anharmonic
contributions are not important at room temperature since bi

are about two magnitudes smaller than the harmonic contribu-
tions ci and mostly concentrate at high frequencies. Eq. (12)
determines the Aph(T )′s and their temperature derivatives for
nuclei.

The vibrational contribution to the hyperfine tensor Aph is
a function of both temperature and pressure. In our previous
work [20], this dependence was ignored by approximating
V (T, P) = Vcls. As a result, the temperature dependence of hy-
perfine parameter variations and their temperature derivatives
were approximately obtained with A0(Vexp(T )) + Aph(T,Vcls )
(see Figs. S8 and S9 in Ref. [43] for the approximated hyper-
fine parameter). To assess the accuracy of the approximation,
we evaluate the volume dependence of Aph by separately
considering the volume dependence of phonon frequencies
ωi and second-order coefficients ∂2A0/∂X 2

i . In practice, they
are calculated for each phonon mode in a series of vol-
umes, similar to the process of obtaining V (T, P) with the
equation of state for diamond. To circumvent the challenge
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FIG. 4. The vibrational contribution per phonon on the Fermi contact term, i.e., ci on (a) 14N and [(b)–(f)] 13C(1–5) with the phonon density
of states and phonon number expectation at 300 K and Vcls(0). The ci parameters of near degenerate phonon modes in a range of 1 meV has
been summed for purely illustrative purpose.

of matching phonon modes across different volumes during
modewise calculations, we use the orthonormal atomic mo-
tions from the phonon calculations for Vcls(0) across a series
of volumes. Both phonon frequencies ωi and second-order
coefficients ∂2A0/∂X 2

i exhibit linear dependence on lattice
parameters within a small range of volume. Aph can then
be obtained as a function of both temperature and pressure
from Eq. (12). For all the nuclei we considered, the effects of
volume dependence from second-order coefficients ∂2A0/∂X 2

i
and phonon frequencies on Aph are comparable. For 14N, these
effects nearly cancel out each other coincidentally, and make
Aph insensitive to volume changes (see Fig. S10 [43] for the
effects of volume changes on Aph via phonon frequencies and
second-order coefficients).

The vibrational contribution to the hyperfine tensor
variation Aph can be separated into two parts calcu-
lated at the given V (T, P): the zero-point vibrational
contribution Aph(0,V (T, P)) and finite-temperature part
Aph(T,V (T, P)) − Aph(0,V (T, P)). The zero-point vibra-
tional contribution can be further separated into the zero-point
vibrational contribution at V (0, P), i.e., Aph(0,V (0, P)), and
the part due to volume change, i.e., Aph(0,V (T, P)) −
Aph(0,V (0, P)). These components of vibrational contribu-
tion to the hyperfine parameter of 14N nucleus are presented
in Fig. 5. As shown in Fig. 5(a), the zero-point vibrational
contribution Aph(0,V (T, P)) (calculated as change of A via
Eq. (14), same below) is sensitive to pressure but insensitive
to temperature via V (T, P). The temperature dependence of
Aph(T,V (T, P)) in Fig. 5(d) is composed of the zero-point
vibrational contribution in Fig. 5(b) and vibrational contribu-
tion in Fig. 5(c) at finite temperature. Comparisons among
Figs. 5(a)–5(d) show that the zero-point vibrational contri-
bution contributes more than that of the finite temperature

phonon to A(T, P), as the phonon population of the major-
ity modes at a temperature of interest is far less than 1/2;
while Aph(T,V (T, P)) − Aph(0,V (T, P)) contributes more to
∂A/∂T variation, since the phonon population 〈ni〉 is strongly
temperature dependent. The variation of Aph(0,V (T, P)) −
Aph(0,V (0, P)) is two orders of magnitude smaller than
Aph(T,V (T, P)) − Aph(0,V (T, P)), which indicates that the
zero-point vibration has a negligible effect on ∂A/∂T .

D. Hyperfine parameter as a function of thermal state variables

The temperature and pressure-dependent hyperfine param-
eter A(T, P) for nuclei around an NV center was obtained by
combining the volume-induced variation A0 and the phonon-
induced variation Aph, as shown in Fig. 6. For these selected
nuclei, the Fermi contact terms are dominant in hyperfine
couplings (see Fig. S11 [43] for the comparison of Fermi
contact term and hyperfine parameter for 14N nucleus), and
the Fermi contact term is a short-ranged interaction localized
around the nuclei. Therefore these nuclei can be classified into
two types according to their proximity to the high spin density
region, as shown in Fig. 1. The first type includes 14N, 13C(4),
and 13C(5), which are not localized at the relatively flat spin
density region; the second type includes 13C(1), 13C(2) and
13C(3), which are localized at the high spin density region.
As the phonon frequency increases, the nuclear motion 〈X 2

i 〉T

decreases, which together with Fig. 4 may explain why the
hyperfine interactions on 14N, 13C(4) and 13C(5) nuclei are
not sensitive to high-frequency phonon modes in the mode
accumulated temperature derivative of the Fermi contact term
(∂Aph, Fermi/∂T )|Vcls (0) (see detailed mode accumulated tem-
perature derivative of the Fermi contact term in Fig. S7 [43]).
The Fermi contact term variations are small for the first type
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FIG. 5. The vibrational contribution to the hyperfine parameter of 14N nucleus: (a) pressure dependence of zero-point vibrational
contribution, Aph(0,V (T, P)), (b) change in zero-point vibrational contribution due to thermal expansion, Aph(0,V (T, P)) − Aph(0,V (0, P)),
(c) finite-temperature vibration part, Aph(T,V (T, P)) − Aph(0,V (T, P)), and (d) overall temperature dependence of vibrational contribution to
hyperfine parameter under specific pressures, Aph(T,V (T, P)) − Aph(0,V (0, P)). Labels “cls” and “zp” in (b)–(d) represent results calculated
in fixed volume Vcls(0) and V (0, 0), respectively.

FIG. 6. Variation of hyperfine parameter A(T, P) − A(0, P) with T under specific pressures for (a) 14N and (b–f) 13C(1–5) nuclei. Labels
“cls” and “zp” represent results calculated in fixed volume Vcls(0) and V (0, 0).
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FIG. 7. Heatmap of hyperfine parameter A(T, P) relative to Acls = A0(Vcls(P = 0)), i.e., A(T, P) − Acls of (a) 14N and [(b)–(f)] 13C(1–5)
nuclei. The isolines are marked in white and their values are present in the ticks of the color bar on the right-hand side.

of nuclei and large for the others (the second type) when
the lattice is under pressure or stress, so the second type of
nuclei are more sensitive to pressure perturbation than the
first type. We also calculate the temperature derivatives of
A(T, P) numerically for a variety of pressure P. The results
at Vcls(P) are calculated at fixed volumes and correspond
to the results in our previous work [20] when P = 0. The
comparison of results at Vcls(P = 0) and V (T = 0, P = 0) in
Fig. 6 indicates that the effect of thermal expansion on the vi-
brational contribution is minimal. This confirms our previous
approximate calculations, which were consistent with existing
experimental data. We also found that the nuclei of the same
type exhibit a similar pattern in their temperature derivatives.
Detailed data on the temperature derivatives of A(T, P) are
included in Fig. S12 [43]).

Figure 7 displays the contour plot of A(T, P) within a
pressure (stress) range of ±1 GPa. The isolines illustrate how
pressure affects the variation of the hyperfine parameter with
temperature. Based on their patterns, nuclei can be divided
into two distinct types: the hyperfine parameter of the 14N nu-
cleus in Fig. 7(a) primarily displays temperature dependence,
while the hyperfine parameters of the 13C(4) and 13C(5) nuclei
also exhibit noticeable temperature dependence. 14N nucleus
is a better choice for temperature sensors than 13C(4) and
13C(5), as its hyperfine parameter’s temperature dependence
is more resistant to pressure disturbances. Figure 7 also sug-
gests that the 14N nucleus may function down to a temperature
of ∼150 K, whereas the temperature window for 13C(4) and
13C(5) nuclei is narrower. Below room temperature, the hyper-
fine parameters of 13C(1), 13C(2), and 13C(3) exhibit mainly
pressure (stress) dependence at the level of ±1 GPa. As higher
temperatures, the temperature dependence of these hyperfine
parameters becomes more pronounced.

When A(T, P) is known, its second-order partial deriva-
tives with respect to P and T can be calculated numerically,
allowing us to measure how pressure affects ∂A/∂T . For
most nuclei, the relative variations of ∂A/∂T due to pressure
(∂2A/∂T ∂P)(∂A/∂T )−1 are on the order of 10−2/GPa for
most of the T -P ranges. Generally, relative variations are
large at low temperatures and high pressures. The relative
variation of ∂A/∂P due to unit temperature can be analyzed
similarly. ∂A/∂P is far less affected by temperature in typical
experimental environments, indicating that they can be treated
independently (see Figs. S13 and S14 for details about the
scales of relative variation of ∂A/∂T and ∂A/∂P).

For 14N, our calculated first and second temperature
derivatives of the hyperfine parameters parallel (A|| ) and per-
pendicular (A⊥) to the (111) direction at 300 K are 191.8
Hz/K and 0.71 Hz/K2, and 132.9 Hz/K and 0.51 Hz/K2,
respectively, showing good agreement with experimental
values for 14N [46]. Table II summarizes the comparison
(see Fig. S15 for the temperature derivatives of hyperfine
parameters). The pressure derivatives of hyperfine parame-

TABLE II. The hyperfine parameter A (in MHz), its temperature
derivative dA/dT (in Hz/K) and the second derivative d2A/dT 2 (in
Hz/K2) of hyperfine parameters of 14N parallel or perpendicular to
(111) direction at 300 K. The experimental results are from Ref. [46].

A⊥ A||

calc expt calc expt

A −1.914 −2.635 −1.459 −2.165
dA/dT 132.9 154 191.8 197
d2A/dT 2 0.51 0.53 0.71 0.73
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ters are obtained in two ways: either by using the static
approximation dA0(Vcls(P))/dP, or by using the tempera-
ture and pressure dependent A(T, P), i.e., ∂A(T, P)/∂P (see
Table V and Fig. S16 for pressure derivatives of each nu-
cleus). For 13C(1), dA0(Vcls(P))/dP = 0.416 MHz/GPa and
∂A(T = 0, P)/∂P = 0.406 MHz/GPa are reasonably close to
the measured value of 0.35 MHz/GPa reported in Ref. [47],
considering we have not tried to optimize the calculation with
more accurate functionals that would require more compu-
tational resources. Moreover, we calculate the temperature
and pressure dependencies of the quadrupolar parameter [48]
using the same approach as in calculating hyperfine couplings,
while the nuclear quadrupole moment of 14N is 20.44 mil-
libarn [44]. Our result 28.46 Hz/K at 300 K agrees with the
35.0 Hz/K measured at 300 K in Ref. [20] (see Fig. S17
for the quadrupolar parameter results). Overall, our calculated
results are in reasonably good agreement with existing exper-
imental data, considering the fact that we did not specifically
optimize the functional and pseudo-potential choices for the
NV center system. Given that the PBE functional is known
to exhibit delocalization errors that can affect the accuracy
of hyperfine coupling [49], it may be worthwhile to consider
and benchmark a more localized functional in future work to
improve the accuracy of hyperfine coupling

IV. SUMMARY

The hyperfine interaction between the electron spin of
the NV center in diamond and a surrounding nuclear spin
is described with a tensor that is governed by the electron
spin density distributions around the nucleus. The tensor
at thermal equilibrium is treated as a macroscopic function
of thermal variables and is calculated by introducing strains,
thermal expansion, and lattice vibrations.

We calculated the hyperfine tensors’ responses to a series
of strains and found that they were linear within the range of
interest. We then converted these responses to stress using an
elastic tensor obtained from first-principles calculations. This
linearity holds at typical stress levels up to at least several gi-
gapascal. The temperature dependence of hyperfine coupling
can be determined by considering both thermal expansion
and vibrational contributions. The volume dependence that
was previously overlooked in vibrational contributions is now
included. The hyperfine tensor was calculated as a function
of thermal state variables T and P using V (T, P) obtained
from first-principles calculations on supercell with NV center
instead of the experimental thermal expansion function V (T )
of the pristine diamond at P = 0 GPa. It is worth mentioning
that zero-point vibration contributes to the change in hyperfine
tensors from its effect on equilibrium volume and distribution
over the vibration coordinate. It has a non-negligible effect on
the absolute value of hyperfine parameters but is not sensitive
to changes in volume arising from temperature and pressure
changes.

The hyperfine tensors of different nuclei have various sen-
sitivities to lattice vibrations and external stress, reflecting
the spatial distribution of electron spin density around the
nuclei. Nuclei can be classified into two categories based
on their onsite electron spin density. The hyperfine parame-
ters of carbon nuclei 13C(1–3), which locate in regions with

relatively high spin density, have a variation with temperature
that is more susceptible to stress disturbances, while other
nuclei studied, 14N and 13C(4–5), exhibit more stable temper-
ature dependence that is less perturbed by stress. For the 14N
nucleus, variation in hyperfine interaction is mainly due to
the vibrational contribution Aph. The two volume-dependent
effects on the vibrational contribution almost cancel out
each other, rendering the hyperfine parameter of the 14N
nucleus insensitive to volume changes. For all the surround-
ing 13C nuclei, our calculations confirm previous findings
that both thermal expansion and vibrational contributions are
significant.

The calculated hyperfine interactions as functions of tem-
perature and pressure were validated by comparing various
temperature or pressure derivatives with available experimen-
tal data. Our results reveal a complex interplay among the
structural, vibrational and spin properties of the NV center
system and provide a comprehensive method for calculat-
ing small variations of physical quantities due to external
perturbations.
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APPENDIX A: THE HYPERFINE TENSORS AT THE
STATIC CONFIGURATION MINIMIZING THE TOTAL

ENERGY

The hyperfine tensors calculated at the static configuration
that minimize the total energy of the Egrd are listed in units of
MHz as follows:

A(14N) =
⎛
⎝−1.9639 0.13506 0.13521

0.13506 −1.9641 0.13515
0.13521 0.13515 −1.9638

⎞
⎠, (A1)

A(13C(1)) =
⎛
⎝ 146.84 −27.499 −27.499

−27.499 144.32 26.095
−27.499 26.095 144.32

⎞
⎠, (A2)

TABLE III. The independent elements of elastic tensor of dia-
mond with an NV center in Eq. (B1) obtained at Vcls.

element C11 C12 C44 C45 C15 C14

value (GPa) 1081.0(8) 151(2) 593(3) −0.01(8) 0.14(9) 0.08(6)
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TABLE IV. The strain derivative of hyperfine tensor ∂A0/∂ε (in
units of MHz) under normal strains, shear strains and the relative
variation of lattice parameter δL/L, i.e. εxx = εyy = εzz = δL/L.

strain 14N 13C(1) 13C(2) 13C(3) 13C(4) 13C(5)

εxx −0.5(6) −66(4) 46.9(3) 14.1(5) −12.9(1) −27.6(3)
εyy −0.5(6) −255(3) −10.1(4) 8.4(3) 1.7(1) −7.7(2)
εzz −0.5(6) −256(3) −12.2(3) 8.5(3) 1.7(1) −3.2(2)
δL/L −1.6(1) −517(5) 24.8(2) 30.2(2) −8.6(1) −34.7(3)
εxy 7.5(1) 191(4) −1.0(4) −7.8(3) −11.2(1) −0.9(3)
εyz 7.4(1) 193(4) −2.0(3) −7.8(3) −11.2(1) −15.5(3)
εzx 7.5(1) −211(2) −0.4(3) 2.3(3) 17.1(2) 1.0(3)

A(13C(2)) =
⎛
⎝ 16.204 −1.9033 −2.0577

−1.9033 16.075 1.8803
−2.0577 1.8803 16.119

⎞
⎠, (A3)

A(13C(3)) =
⎛
⎝ 14.893 −1.7933 −1.7932

−1.7933 14.914 1.9352
−1.7932 1.9352 14.914

⎞
⎠, (A4)

A(13C(4)) =
⎛
⎝−8.4564 0.1931 0.1930

0.1931 −7.7301 1.1128
0.1930 1.1128 −7.7305

⎞
⎠, (A5)

A(13C(5)) =
⎛
⎝ −4.305 0.8166 −1.3614

0.8166 −4.773 −0.9158
−1.3614 −0.9158 −4.691

⎞
⎠. (A6)

APPENDIX B: THE ELASTIC TENSOR RESTRICTED
BY SYMMETRY

Both stress σ and strain ε are symmetric rank-2 tensors
with six independent components. Due to the symmetry of

TABLE V. The pressure derivatives of hyperfine parameter
− ∂A0

∂P = ∂A0
∂σxx

+ ∂A0
∂σyy

+ ∂A0
∂σzz

obtained at Vcls (in units of MHz/GPa).

nucleus 14N 13C(1) 13C(2) 13C(3) 13C(4) 13C(5)

∂A0/∂P 1.1 × 10−3 0.416 −0.0177 −0.0224 6.85 × 10−3 0.0277

the NV center being described by the point group C3v, the
number of independent modulus components relating stress
σ to strain ε is reduced from 21 to 6, which are given as
follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σyz

σxz

σxy

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 C14 C15 C14

C12 C11 C12 C14 C14 C15

C12 C12 C11 C15 C14 C14

C14 C14 C15 C44 C45 C45

C15 C14 C14 C45 C44 C45

C14 C15 C14 C45 C45 C44

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

2εyz

2εxz

2εxy

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(B1)

Their values are listed in Table III. For the pristine diamond,
the high crystallographic point group Oh restricts the ele-
ments C45, C15 and C14 in the elastic tensor to be strictly
zero.

APPENDIX C: THE STRAIN AND STRESS DEPENDENCE
OF THE HYPERFINE PARAMETERS

The strain and stress derivatives of the hyperfine
parameters, ∂A0/∂ε, are listed in Tables IV and V,
respectively.
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