
PHYSICAL REVIEW B 108, 155148 (2023)

Lifshitz transition in the phase diagram of two-leg t-J ladder systems at low filling
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We use a combination of numerical matrix product states (MPS) and analytical approaches to investigate
the phase diagram of the two-leg t-J ladder in the region of low to intermediate fillings. We choose the same
coupling strength along the leg and rung directions, but study the effect of adding a nearest-neighbor repulsion
V . We observe a rich phase diagram and analytically identify a Lifshitz-type band-filling transition, which can be
associated to a numerically observed crossover from s-wave- to d-wave-like superconducting quasi-long-range
order. Due to the strong interactions, the Lifshitz transition is smeared into a crossover region which separates
two distinct Luttinger theories with unequal physical meaning of the Luttinger parameter. Our numerically exact
MPS results spotlight deviations from standard Luttinger theory in this crossover region and are consistent with
Luttinger theory sufficiently far away from the Lifshitz transition. At very low fillings, studying the Friedel-
type oscillations of the local density identifies a precursor region to a Wigner crystal at small values of the
magnetic exchange interaction J/t . We discuss analytically how tuning parameters at these fillings modify the
phase diagram, and find good agreement with MPS results.
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I. INTRODUCTION

A particularly interesting system of strongly correlated
electrons is the t-J model, which was originally introduced
as a simplification for the strong coupling limit of the Hub-
bard model, as already realized in the 1970s by Spałek et al.
[1,2] and later in the context of cuprate superconductivity
[3,4]. It possesses a rich phase diagram, and is believed to
be a basic model for the study of high-temperature super-
conductivity [5] (see, e.g., [6]). In the context of the latter,
it has been subject to numerous studies, but despite these
efforts, its lack of integrability [7] allows the phase diagram
to be well known only for one-dimensional systems [8]. More
recently, the advent of ultracold polar molecules [9–16] on
optical lattices [17] inspired a generalization of the original
t-J model with fully tunable interactions [18,19]. While its
experimental realization is an ongoing challenge, progress has
been made to demonstrate that spin exchange can be realized
in these setups [20–22], so that future investigations of the t-J
model in such experiments is envisaged. On a chain, the phase
diagram of variants of this model are well studied numerically,
e.g., using matrix product states (MPS) [8,23]. The full tun-
ability of interactions and the long-range nature of the dipolar
interactions in the polar molecule setups show that interesting
modifications can be achieved, e.g., an enhanced supercon-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

ducting phase [18,24,25], or topological SC [26]. However,
the step towards exploring two-dimensional systems remains
a major challenge. Recent progress has been reported using
iPEPS [27–34], and also by treating multileg ladder systems
(see, e.g., [35–42]). In this context, the simplest nontrivial
extension of the chain system is to treat two-leg ladder sys-
tems (see, e.g., [43–52]), which lately have been proposed
to describe organic crystals, e.g., doped crystals of terphenyl
[53]. The phase diagram has been investigated in some detail,
but with an apparent focus on higher densities. Here, we aim
at complementing these studies by considering two direc-
tions of interest: (i) investigate in more detail the behavior at
low densities; (ii) investigate the effect of tuning interaction
strengths as previously studied in chain systems. We pursue
this goal by combining field theory, analytical considerations
at very low fillings, and from a detailed numerical study using
state-of-the art MPS methods. One important aspect is the
two-band nature of the two-leg ladder systems, leading to
band-filling transitions [54]. We show that such Lifshitz-type
transitions are relevant for understanding the phase diagram
at low fillings. Notably, here it leads to a more complicated
field theory interpolating between two known low-energy field
theories. In particular, in the two field theories the dependence
of observables on the Luttinger parameter Kc differs, so that
in the crossover regime it is unknown how precisely the ob-
servables depend on Kc.

It is necessary to numerically compare in detail the behav-
ior of observables such as the algebraic decay of correlation
functions in order to map out the phase diagram. This is
done in the following for two variants of the t-J model,
which allows us to study the effect of adding a Coulomb-type
repulsion. This has been found to enhance superconducting
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phases [25,55], and here we can investigate the interplay
with the Lifshitz-type transition. These considerations are
complemented by an analytical treatment at very low den-
sities, far below the Lifshitz transition, which allows us to
estimate the extension of the phases when tuning parameters
of the model, which can be useful in the context of future polar
molecule experiments.

The paper is organized as follows. In Sec. II A, we intro-
duce the model and briefly discuss the two phase diagrams
which are presented in Fig. 1. This is followed up in Sec. II B
by a presentation of analytical considerations regarding an
appearing Lifshitz transition and the low-energy field theory
in means of bosonization. In Sec. II C, we introduce the ob-
servables that we investigate to explore the ground-state phase
diagram. In Sec. III, we present details to how we obtain the
phase diagrams from the DMRG data. In addition, in Sec. IV
we discus how an analytical treatment of two electrons can be
used to estimate the size of the superconducting phase in the
zero density limit. We conclude with a summary in Sec. V.
The Appendixes contain further details of the discussions and
results presented in the main part of the paper.

II. OUR SETUP: MODELS, METHODS, OBSERVABLES,
AND PHASE DIAGRAM

A. Variants of the t-J model on the two-leg Ladder geometry

In the following model, Eq. (1), we consider the usual t-J
model [1,4,6,56], but allow for a variable nearest-neighbor
Coulomb repulsion V , which has been studied before (see,
e.g., [18,25,55]). On the two-leg ladder systems treated by us
it reads as

HtJV
ladder = Ht + HJV

leg + HJV
rung (1)

with

Ht = −t
∑
i,l,σ

Ps[c
†
i,l,σ ci+1,l,σ + H.c.]Ps

− t
∑
i,σ

Ps[c
†
i,1,σ ci,2,σ + H.c.]Ps,

HJV
leg = J

∑
i,l

[
�Si,l �Si+1,l − V

4
ni,l ni+1,l

]
,

HJV
rung = J

∑
i

[
�Si,1 · �Si,2 − V

4
ni,1ni,2

]
.

Here, l = 1, 2 is the leg index, i labels the rung, σ the
spin direction, Ps projects out double occupancies, ci,l,σ is a
fermionic annihilation operator acting on site (i, l ) and spin-
direction σ , ni,l = ∑

σ c†
i,l,σ ci,l,σ is the occupation operator,

and �Si,l = c†
i,l,σ �σσσ ′ci,l,σ ′/2. We set the lattice constant equal

to unity and work in units in which h̄ ≡ 1.
In the following, we treat antiferromagnetic spin exchange

J > 0. For V = 1, we obtain the usual t-J model as obtained
from second-order perturbation theory in the strong coupling
limit of the Hubbard model.

In the following we will call this case the regular t-J
ladder. Furthermore, we treat the system with V = 0, which
is obtained by adding the corresponding nearest-neighbor
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FIG. 1. Ground-state phase diagrams of (top) the regular and
(bottom) the V = 0 two-leg t-J ladder (1) obtained using MPS and
the Hartree-Fock approach to the band-filling transition of Sec. II B 1.
SDW stands for a two-channel Luttinger liquid (LL; with central
charge c = 2 as indicated) with dominant spin-density-wave corre-
lations; CDW stands for a LL with dominant charge-density-wave
correlations; SC stands for a c = 1 LL with dominant pairing cor-
relation functions. s wave and d wave indicate for the corresponding
type of SC as discussed in Sec. II C. The precursor region to a Wigner
crystal is identified via 4kF contributions to Friedel-type density
oscillations. PS stands for phase separation, identified by a diverging
compressibility. At very low fillings, the s-wave SC phase is identical
to a gas of free electron pairs. The bold red line denotes the occur-
rence of a Lifshitz transition according to the Hartree-Fock ansatz
(9). The dashed red lines estimate the crossover region around the
Lifshitz transition connecting the two different field theories at high
and low densities, respectively. In this region, the Luttinger parame-
ter Kc (orange circles indicate the line at which Kc = 1 as obtained
from the charge structure factor, see Secs. II C 3 and II C 4) cannot
uniquely be determined using standard approaches. All boundaries
between the different LL phases are estimated by directly comparing
the exponents of the different correlation functions. The blue line
denotes the opening of the spin gap. The black horizontal line at
n = 0.5 indicates the opening of a charge gap inducing a symmetry-
broken CDW insulator (CDWI) phase. The two points at zero density
are taken from the calculation in Sec. IV.

Coulomb repulsion to the original t-J model. This case will
be referred to as the V = 0 t-J ladder.

One important effect of adding a Coulomb repulsion is
that it suppresses phase separation, and can lead to enhanced
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superconducting phases [55]. Here, we revisit its effect in the
low-density regime of the two-leg ladder system.

In Fig. 1 we present our main results and show the phase
diagrams of both variants as obtained using MPS and the
analytical approaches discussed further below. As can be seen,
the phase diagrams are quite similar to each other: both show
a sequence from a gapless Luttinger-liquid (LL) phase with
central charge c = 2 and dominant spin correlations (SDW)
at small values of J/t to a c = 1 LL with finite spin gap and
dominant pairing correlation functions. At even larger values
of J/t , phase separation sets in. These features and sequences
of phases are very similar to the findings in t-J chains, in par-
ticular at very low densities. At the density n = 0.5, a charge
gap opens for small J/t and a charge density wave insulator
(CDWI) is formed. The V = 0 t-J ladder has an enhanced SC
phase, which has been observed also for the corresponding
chain system [25] (note that throughout the paper we denote
by SC a phase with dominant pairing correlation functions,
i.e., a phase with SC quasi-long-range order). In particular,
the size of the spin-gap region before phase separation is
substantially increased. However, in contrast to the chain,
where the sequence of phases is not altered for V = 0, here at
a density around n = 0.3 an additional c = 2 LL phase with
dominant CDW correlations is realized. A CDW phase has
also emerged in [25] for a t-J chain with only XY interactions,
V = 0, and next-nearest-neighbor interactions. Therefore, it is
conceivable to see such a phase in the ladder system which can
be seen as a chain with longer-range interactions. This raises
the question, if and how changing V in further t-J systems
[e.g., broader ladder systems or in two dimensions (2D)] can
lead to new features in the phase diagram. Both systems show
at low densities and small values of J/t a precursor region to
a Wigner crystal, which is similar to the findings in Hubbard
chains reported in Ref. [57]. In the spin-gap region, the s-wave
SC at very low densities is identified to be a gas of elec-
tron pairs, which was previously reported also for the chain
systems [8].

In the following, we explain in some detail how these
phase diagrams were obtained and describe the field theoret-
ical treatment around the Lifshitz transition line, which we
estimate using a simple Hartree-Fock ansatz.

B. Analytical considerations: Lifshitz transition

In this section we summarize the analytical expectations
for our system, Eq. (1). We consider a Hubbard-Heisenberg
ladder instead of the constrained t-J ladder, i.e., we consider

HUJV
ladder = Ht

0 + HU + HJV
leg + HJV

rung (2a)

with

Ht
0 = −t

∑
i,l,σ

[c†
i,l,σ ci+1,l,σ + H.c.] (2b)

− t
∑
i,σ

[c†
i,1,σ ci,2,σ + H.c.], (2c)

HU = U/2
∑

i,l

ni,l (ni,l − 1), (2d)

and all other terms as in Eq. (1). The Hubbard-Heisenberg lad-
der is equivalent to the t − J ladder only in the limit U → ∞.

Following a similar strategy to the one successfully applied
in the literature [48] for high densities, we here study the
Hubbard-Heisenberg ladder at small and intermediate U/t us-
ing perturbation theory and bosonization. Clearly, there is no
guarantee that our results would reproduce the U → ∞ limit
of the Hubbard-Heisenberg model, and of course perturbation
theory and Gutzwiller projection do not commute.

1. Lifshitz transition at the Hartree-Fock-level

The noninteracting tight-binding Hamiltonian on a ladder
with nearest-neighbor hopping can be solved exactly by the
basis transformation

ci,0/π,σ = 1√
2

(ci,1,σ ± ci,2,σ ) (3)

which decouples the system into two independent chains and
brings the Hamiltonian into the form

Ht = −t
∑
i,a,σ

[c†
i,a,σ ci+1,a,σ + H.c.] − t

∑
i

(ni,0 − ni,π ), (4)

where a = 0, π . Each chain can independently be diagonal-
ized resulting in dispersion relations

ε0/π (k) = −2t cos(k) ∓ t . (5)

Thus, a Lifshitz transition occurs when the Fermi energy
hits EF = −t , which corresponds to an electron density of
n = 〈ni〉 = 1

2 per site (quarter filling). Hence, based on the
noninteracting estimate, there is a Lifshitz transition at the
upper edge of the phase diagram presented in Fig. 1.

We now discuss interaction-induced shifts of the position
of this transition as displayed in Fig. 1. Using a Hartree-Fock
calculation (details are relegated to Appendix A) we obtain an
effective quadratic Hamiltonian

Ht = −t∗
‖

∑
i,a,σ

[c†
i,a,σ ci+1,a,σ + H.c.] − t∗

⊥
∑

i

(ni,0 − ni,π ).

(6)

Under the assumption that only the lower band is occupied we
find

t∗
‖ = t + J

sin(πn)

8π
(3 − V ), (7a)

t∗
⊥ = t + J

n

8
(3 − V ) (7b)

and the dispersion

ε0/π (k) = −2t∗
‖ cos(k) ∓ t∗

⊥. (8)

Note that the Hubbard U does not enter t∗
‖ or t∗

⊥, but merely
leads to an overall energy shift in the spectrum. This fact
is used as we push the Hartree-Fock calculation beyond the
limits of its validity when we send U → ∞ to enforce the
equivalence between Hubbard-Heisenberg and t-J models. By
assumption of filling only the lower band we further employ
kF = πn for the Fermi energy so that the Lifshitz transition is
defined by the condition

−2t∗
‖ cos(πn) − t∗

⊥ = −2t∗
‖ + t∗

⊥. (9)

This condition is displayed as a solid red curve in Fig. 1.
Effectively, the spin interaction increases the splitting by t∗

⊥
of the bands.
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FIG. 2. Two-particle Green’s function in the upper subband.
(a) Diagrammatic representation of Eq. (10). (b) Diagrammatic rep-
resentation of Eq. (11).

2. Lifshitz transition beyond Hartree-Fock

Lifshitz transitions in interacting one-dimensional systems
are nontrivially affected by the interactions in the system
[54,58–61]. We here briefly review this physics from different
standpoints: First, when the chemical potential is far below
the upper band, the effect of interband interactions only leads
to virtual processes renormalizing the Luttinger liquid (LL) in
the lower band, which can be treated using perturbation the-
ory. There is a typical energy scale Ep where this perturbation
theory breaks down, i.e., the single-band LL physics is inap-
plicable when the chemical potential is closer than Ep to the
upper band. As we explain in more detail below, this energy
scale can also be estimated from the immediate vicinity of the
Lifshitz transition. Second, when the chemical potential is far
in the two-band regime, one may study the multiband system
using perturbative RG. Again, these RG equations break down
inside a window of size Ep above the bottom of the upper
band. Third, we now discuss the physics inside this window,
concentrating on a chemical potential μπ → 0− right below
the Lifshitz transition. Then, the free two-particle propagator
in the upper subband takes the form D(0)

π (k, ω) = −i
√

m/4ε+,
with ε+ = ω − k2/4m + 2μ0 + i0 (in our case, 2m = 1/t∗

‖ ).
In the presence of an intrasubband interaction V within the
upper band (but for the moment neglecting interband interac-
tions), particles repeatedly scatter off each other resulting in
an exact inverse two-particle Green’s function [Fig. 2(a)]

[Dπ (k, ω)]−1 = [
D(0)

π (k, ω)
]−1 − V . (10)

Clearly, the second term always dominates for on-shell excita-
tions ω = k2/4m as soon as |μπ | < Ep ≡ mV2/8. Differently
said, the particles at the Lifshitz transition are always strongly
interacting and form a so-called “impenetrable electron gas,”
in which the two-electron wave function has nodes at equal
particle positions even for opposite spin. As a consequence,
when the lower band is coupled to this impenetrable gas,
pair tunneling of singlet Cooper pairs is strongly suppressed
and it was shown that also spin-spin interband interactions
are marginally irrelevant. It was found in Ref. [54] that the
lower subband remains a LL and ultimately screens the single-
particle excitations in the upper subband thereby suppressing
their quasiparticle weight. It is thus reasonable to think of a
Lifshitz transition of polarons instead of electrons.

The interaction V is the most relevant perturbation at the
critical point [54] and defines the crossover scale Ep. We
estimate this coupling for the model (2), keeping in mind that
we want to ultimately push our theory to the U → ∞ limit.
To leading order, V ∼ U and we dropped weaker intersite

interactions. The interaction constant V is screened and for
μπ → 0− only the filled subband can contribute to static
screening. Using the Dzyaloshinski-Larkin theorem [62,63],
according to which the random-phase approximation (RPA) is
exact for a linearized spectrum in 1D, we obtain the following
effective interaction [Fig. 2(b)]:

Veff (ω, k)−1 = V−1 + �(ω, k), (11)

with �(ω, k) = vF,0k2/π [(ω + i0)2 − v2
F,0k2] and vF,0 =

2t∗
‖ sin(πn). This interaction enters the ladder resummation,

Eq. (10), and we exploit that for on-shell two-particle exci-
tations in the upper band the static screening approximation
is justified, i.e., �(ω = k2/4m, k) � 1/πvF,0. Physically, this
follows from the much faster dynamics in the lower as com-
pared to the upper subband. In summary, we find V � πvF,0

and Ep = π2t∗
‖ sin2(πn)/2.

We also comment on the regime of partially, but dilute,
filling of the upper subband. It is theoretically harder to de-
scribe, yet the same crossover scale Ep is believed to limit
the strongly interacting regime for positive μπ , as well [54].
Approaching μπ → Ep from above, we estimate the screening
of the bare interaction by Eq. (11) and �(ω, k) ≈ 1/πvF,0 +
1/πvF,π which is determined by the Fermi velocities of both
filled bands.

Using Ep = mV2/8 both above and below the Lifshitz tran-
sition, the window of impenetrable electron gas is bounded by

−2t∗
‖ cos(πn) − t∗

⊥ = −2t∗
‖ + t∗

⊥ ± Ep. (12)

These conditions are displayed as dashed red lines in Fig. 1.
We remark in passing that above the Lifshitz transition πn =
kπ

F + k0
F , we will use this relationship in the remainder of the

paper.

3. Low-energy field theory

Interacting one-dimensional fermionic systems are field
theoretically suitably captured by means of bosonization [63]
in the limit when the important energy scales are small with
respect to the Fermi energy counted from the edges of a given
band (xi = αi, where we have introduced the lattice constant
α for clarity), i.e.,

ci,a,σ ∼
∑
±

e±ika
F xi−i[±	a,σ (xi )−
a,σ (xi )]. (13)

Here, 	a,σ (x),
a,σ (x), are conjugate fields which are slow
on the scale of the lattice constant and ka

F is the Fermi momen-
tum in band a = 0, π . It is convenient to introduce bosonic
fields in the charge and the spin channels c and s, respectively,

	a,c/s = 	a,↑ ± 	a,↓√
2

(14)

so that, in bosonic language, the kinetic part of the action takes
the form

Skin =
∑
ζ=c,s
a=0,π

1

2πKζ ,a

∫
dτ dx

[
	̇2

a,ζ

vζ ,a
+ vζ ,a	

′
a,ζ

2

]
. (15)

Here, Kζ ,a is the Luttinger parameter and vζ ,a the Luttinger
velocity, respectively, of the corresponding degree of free-
dom. In the noninteracting limit Kζ ,a = 1 and, of course, the
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bosonic fields in the a = π subband only exist above the
Lifshitz transition.

In the presence of interactions, the situation is more subtle
as some of the bosonic degrees of freedom gap out. It is
customary to summarize these interacting phases by the label
CnSm where n and m denote the number of gapless bosonic
modes in the charge and spin channel, respectively [64]. A
means to efficiently extract the total number of gapless modes
numerically is to measure the central charge c = n + m. Nu-
merically, this can be done by analyzing the spatial behavior
of the von Neumann entanglement entropy, which for systems
with open boundary conditions is given by [65–67]

S (x) = c

6
ln

[
L

π
sin

(πx

L

)]
+ d, (16)

where x is the position of the bipartition and d a nonuniversal
constant. S (x) is easily computed by MPS [23]. However,
the open boundary conditions (OBC) lead to additional os-
cillations in S (x), which can be understood in terms of the
oscillations of the local kinetic energy [68]. These are of the
form [69] B[t (l, i) − t̄], where B is a free constant that needs
to be fitted, t (l, i) = ∑

〈(l,i),(h, j)〉 〈c†
(h, j)c(l,i)〉 is the local kinetic

energy and t̄ is the mean value of t (l, i) in the bulk. The
resulting central charge is indicated in the phase diagrams
of Fig. 1; more details of our procedure can be found in
Appendix B.

We now review the analytical expectations, and first con-
sider μπ < −Ep. In this limit, the a = π band may be
disregarded and the effective low-energy theory is a spinful
interacting single-band model in the band of a = 0 orbitals.
The charge mode remains gapless with nonuniversal Kc,0. The
spin mode is gapless with K0,s = 1 for small J/t (a C1S1
phase with c = 2) but gaps out for sufficiently large spin in-
teractions leading to a C1S0 phase. Technically, this is defined
by the condition that the interaction constant mixing chiral and
antichiral spin currents changes sign [63,70].

Next, consider the regime μπ > Ep. In this limit, the
bosonization of the two-leg Hubbard model is justified for
moderate U and weak coupling. Renormalization group cal-
culations [48,64] predict that out of the four bosonic modes,
only the field describing the total charge,

	+,c = 	0,c + 	π,c√
2

, (17)

remains gapless. This corresponds to a C1S0 phase with
action

SC1S0 = 1

2πKc,+

∫
dτ dx

[
	̇2

+,c

v+,c
+ v+,c	

′
+,c

2

]
, (18)

with Kc,+ and v+,c the corresponding LL parameter and
velocity.

Finally, in the regime −Ep < μπ < Ep of the impenetrable
electron gas around the Lifshitz transition, a direct bosoniza-
tion approach is challenging. Indeed, in the regime 0 < μπ <

Ep the interaction energies are large as compared to the chem-
ical potential μπ of the upper subband, while in the regime
−Ep < μ0 < π , the perturbative inclusion of virtual interband
processes breaks down. Yet, one may hope that qualitative
aspects of the physics above and below the Lifshitz transition

TABLE I. Summary of expected coefficients in the power-law
(28) in the low- and high-density limit, respectively. All power laws
in the Cooper channels (rr, rl, ll) are expected to be equal. The low-
density limit displays both a C1S1 phase and a C1S0 phase (results
for the latter being quoted in brackets).

Charge Spin Cooper

Alow −Kc,0/π
2 −1/π 2 0

αlow 2 2 N/A
βlow Kc,0 + 1 (Kc,0) Kc,0 + 1 (gap) 1/Kc,0 + 1 (1/Kc,0)
Ahigh −2Kc,+/π 2 0 0
αhigh 2 N/A N/A
βhigh gap gap 1/2Kc,+

persist in the impenetrable crossover regime and this work
constitutes a numerical exploration thereof. Indeed, our nu-
merical results indicate that the central charge continues to be
either 1 or 2, so that also in this intermediate regime the phases
can be characterized as CnSm phases. However, this regime
realizes a crossover region of two different effective field the-
ories, Eqs. (15) and (18), respectively. Usually, extracting the
LL parameter from the numerics is possible and the results can
be used to characterize the different phases. However, in such
a crossover region of two different low-energy field theories,
this approach is not as straightforward in the following way:
as discussed further below, the structure factor follows the
expectation from bosonization (in particular a linear behavior
at small momenta k), so that the usual procedure allows one to
extract a numerical value for the LL parameter in the charge
sector. This is the value plotted in the phase diagrams of
Fig. 1. However, following Table I, the linear coefficient of
the structure factor has to interpolate between Kc,0 and Kc,+
of the field theories (15) and (18) with an unknown function.

How does this affect observables? Schematically, the
electronic operators are ci,σ ∼ ∑

± ei[∓	0,c+
0,c]/
√

2 below
the Lifsitz transition, but ci,σ ∼ ∑

± ei[∓	+,c+
+,c]/2 above the
transition. Thus, exponents stemming from 〈	c(x)	c(0)〉 cor-
relators, which are ∼1/Kc,0 below the transition become
∼1/2Kc,+ above the transition, while those exponents stem-
ming from 〈
c(x)
c(0)〉 correlators change from ∼Kc,0 to
Kc,+/2. The latter correlators, however, do not show up in the
observables we study, see below.

We remark in passing that the commensurate filling at
density n = 1

2 is special as it allows for a charge density
wave state with gapped charge sector (charge density wave
insulator, CDWI).

C. Observables and analytical expectations

In this section, we introduce the calculated observables we
used to determine the phase diagrams, based on the approach
of Refs. [8,25].

1. Global observables

We define the spin gap as

�S = E0
(
N, Sz

total = 1
) − E0

(
N, Sz

total = 0
)
, (19)
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where E0 is the ground-state energy of a finite system with L
lattice sites and N particles in the corresponding spin sector
Sz

total. We extrapolate to the thermodynamic limit (TL) by
keeping the density n = N/L fixed and taking L → ∞.

In a similar fashion also a charge gap can be defined via

�C = μ+ − μ−,

where μ+ and μ− are the energies needed to add or remove a
particle, respectively. However, since adding or removing one
particle would necessarily change Sz

total by one, this quantity
can be influenced by the behavior of the spin gap. Therefore,
we define the charge gap by adding and removing two parti-
cles to keep Sz

total = 0, i.e.,

�C = E0
(
N + 2, Sz

total = 0
) + E0

(
N − 2, Sz

total = 0
)

− E0
(
N, Sz

total = 0
)
. (20)

Again, we perform a finite-size extrapolation to obtain the
charge gap in the TL. Furthermore, we test for the appearance
of phase separation (PS) by computing the inverse compress-
ibility,

κ−1 = n2 ∂2e0

∂n2
≈ n2 e0(n + �n) + e0(n − �n) − 2e0(n)

�n2
,

(21)

where e0 = E0/N is the ground-state energy per particle com-
puted for a system with L lattice sites and with Sz

total = 0. We
choose �n = 0.05, which gives a sufficient approximation to
the derivative in Eq. (21).

2. Correlation functions

In order to determine which kind of quasi-long-range order
(QLRO) is predominant we compute the correlation functions
in the charge, spin, and Cooper channels.

First, we consider the correlations in total and relative
charge density

N (i, j)± = 〈n̂±
i n̂±

j 〉 − 〈n̂±
i 〉 〈n̂±

j 〉 , (22)

with n̂±
i = n̂i,1 ± n̂i,2. The corresponding structure factor is

computed via

N±(k) = 1

R

R∑
i, j=1

eik(i− j)N±(|i − j|), (23)

where R is the total number of rungs and i, j denote the ith
and jth rung, respectively.

Similarly, we consider correlations of the rung spins

S(i, j) = 〈
Sz,+

i Sz,+
j

〉 − 〈
Sz,+

i

〉 〈
Sz,+

j

〉
(24)

with Sz,+ = Sz
i,1 + Sz

i,2.
Finally, we study singlet pairing correlations of rung

and leg pair creation and annihilation operators �r
S (i) =

1√
2
(ci,1,↓ci,2,↑ − ci,1,↑ci,2,↓), and the leg pairing operator

�l
S (i, l ) = 1√

2
(ci,l,↓ci+1,l,↑ − ci,l,↑ci+1,l,↓):

Prr
S (i, j) = 〈(

�r
S (i)

)†
�r

S ( j)
〉
, (25)

Pll
S (i, j) = 〈(

�l
S (i, l )

)†
�l

S ( j, l )
〉
, (26)

Prl
S (i, j) = 〈(

�r
S (i)

)†
�l

S ( j, l )
〉
. (27)

Since our ladder model is a quasi-one-dimensional system,
we assume that the correlation functions are predicted by
bosonized field theory, i.e., that they are of the form [63]

C(|i − j|) = A

|i − j|α + B
cos(k|i − j| + ϕ)

|i − j|β ; (28)

in our numerical approach, the parameters A, B, α, β, k, and ϕ

can be used as free parameters to be fitted (they are then sup-
plemented by subscripts c, s, rr, ll, rl in the corresponding
charge, spin, and Cooper channels). In the field theory, the val-
ues can be expressed using the corresponding LL parameter
(see Table I and the detailed discussion in the next Sec. II C 3).
Note that in Eq. (28), for the sake of simplicity we ignore any
kind of logarithmic correction and take only one harmonic
into account. If one of the pairing correlation functions has the
slowest decay, we identify SC quasi-long-range order and call
the system superconducting. On the other hand, if either the
density or the spin correlations are dominant, we will speak
respectively of charge density wave (CDW) and spin density
wave (SDW) quasi-long-range order.

In the SC phases, we distinguish between s- and d-wave
pairing by means of the relative sign of leg-leg and leg-rung
correlators. However, we emphasize that in the ladder ge-
ometry the s- and d-wave channels correspond to the same
irreducible representation of the symmetries of the system and
consequently mix.

3. Analytical expectation for correlation functions

The exponents entering these correlation functions are re-
lated to the Luttinger parameter in charge and spin sector,
respectively. In Table I we summarize the analytical expec-
tations for this relationship. In the following we comment on
the results.

First, we consider correlations in the charge channel,
Eq. (22). From the definition of fermionic creation and an-
nihilation operators in the band of 0/π orbitals, Eq. (3), it
is evident that n̂−

i = c†
i,0ci,π + H.c. is gapped throughout the

phase diagram. In contrast, the correlations of the total charge
are gapless and we use the field theory expression for the total
density [63]:

n̂+
i � 2n −

∑
a=0,π

[√
2

π
	′

a,c

+ 2n
[
ei(2ka

F xi−
√

2	a,c ) cos(
√

2	a,s) + H.c.
]

+ 2n
[
ei(4ka

F xi−
√

8	a,c ) + H.c.
]]

. (29)

Because of spin interactions, the operator for 4kF oscillations
is generally expected to be effectively independent of 	a,s

[63]. The bosonized expression for the total density has multi-
ple implications for the density correlator (22), where we use
the form given by Eq. (28). To begin with, we concentrate
on the low-density limit μπ < −Ep below the lower dashed
line of Fig. 1. The first term in Eq. (29) leads to αc = 2
and Ac = −Kc,0/π

2. As long as the spin sector is gapless,
both k = 2k0

F and k = 4k0
F oscillations are possible and decay
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with βc = Kc,0 + 1 and βc = Kc,0, respectively. In contrast,
when the spin sector is gapped and 	σ,0 ∈ 2πZ/

√
8 (a singlet

superconductor), the cosine in the density operator orders and
2k0

F oscillations dominate the result.
The situation is different when μπ > Ep; here only 	c,+

is gapless. While αc = 2 persists, Ac = −2Kc,+/π2. The
density-density correlators do not display power-law corre-
lated oscillations, yet, the correlator of (n̂+

i )2 does [48].
Next, we review the spin channel [63]. In full analogy to

the above said, the z component of the total magnetization is

Sz,+
i � −

∑
a=0,π

[√
2

π
	′

a,s

− 2n
[
ei(2ka

F xi−
√

2	a,c ) sin(
√

2	a,s) + H.c.
]]

. (30)

In the single-band limit μπ < −Ep, we expect two phases. In
the C1S1 phase, αs = 2 with As = −1/π2 and predominant
k = 2k0

F oscillations with βs = Kc,0 + 1. When the spin sector
is gapped and 	σ,0 ∈ 2πZ/

√
8, the spin correlator quickly

vanishes on length scales larger than the inverse spin gap.
This gapped behavior is expected to qualitatively persist to the
large density limit μπ > Ep where we expect a single bosonic
mode in the total charge sector.

Finally, we review the Cooper channel (see also Ap-
pendix C). The rung and leg pair annihilators take the
bosonized form

�r
S (i) � −i√

2

∑
a

(−1)ae−i
√

2
a,c cos(
√

2	a,s), (31a)

�l
S (i) � −i√

2

∑
a

cos(ka)e−i
√

2
a,c cos(
√

2	a,s), (31b)

where (−1)a = 1 [(−1)a = −1] for a = 0 (a = π ). Note that
the operator content of these bosonized expressions is the
same, but the relative sign changes below and above the Lif-
shitz transition: For low densities, cos(k0) > 0, while for large
densities when both bands are populated cos(ka) ∝ −(−1)a.
This accounts for the transition from s-wave to d-wave
pairing.

In summary, we expect correlation functions with A = 0
for all Cooper correlators (rr, ll, rl). We only considered k = 0,
for which β = 1/Kc,0 + 1 in the C1S1 phase and β = 1/Kc,0

in the C1S0 phase. At large densities far above the Lifshitz
transition, there is only a C1S0 phase with gapless 	c,+
mode. Again, A = 0 = k but β = 1/(2Kc,+). In contrast to
the low-density limit, where Kc,0 > 1 implies the dominance
of superconducting correlations, for large enough filling the
condition becomes Kc,+ > 1

2 .

4. Determining the Luttinger parameter from the charge
structure factor

In field theory, Luttinger parameters are defined by means
of the prefactor of the action in Eqs. (15) and (18). While the
Luttinger parameter of the spin modes is Ks = 1 whenever
a gapless spin mode is present in our phase diagram, we
here briefly summarize how we determine the nonuniversal
Luttinger parameter in the charge sector.

As we find that throughout the phase diagram there is only
one gapless charge mode, we numerically obtain the Luttinger
parameter in charge space by studying the structure factor of
the density correlation functions (22). Using the form (28) and
αc = 2, for small values of the momenta k this leads to

N (k) = −πAc|k|. (32)

In the one-band (two-band) regime Ac = −Kc,0/π
2 (Ac =

−2Kc,+/π2). Hence, the Luttinger parameter can be obtained
by fitting Eq. (32) for k → 0 to the numerically obtained
structure factor. The slope is then equal to −πAc, and apply-
ing the corresponding relation gives the Luttinger parameter.
Throughout the paper, we use the relation for Alow to obtain
the value of Kc. This is the value displayed in the phase
diagrams of Fig. 1. However, as discussed in Sec. II B 3, in
the crossover region around the Lifshitz transition we expect
the numerical value of the slope to be given by an unknown
mixture of Kc,0 and Kc,+, so that its interpretation is more
involved than in the respective high- or low-density case, and
the so-obtained numerical value cannot directly be used to
characterize the phase diagram. We therefore suppress the
index + or 0 in Kc since this aspect becomes only relevant
outside the crossover region.

5. Friedel oscillations and precursor Wigner crystal

In Ref. [57] Friedel-type oscillations were used to identify
a precursor region to a Wigner crystal in low-filled Hubbard
chains. The 4k0

F = 4πn term, which has a similar origin as
the 4k0

F in Eq. (29), is interaction induced and is prominent
at smallest density and values of J/t in Fig. 1. Here, we
apply the same analysis to our t-J ladder systems and use the
bosonization prediction for the density in the one-band regime
[57]:

n(xi ) = n − F1
sin(2πnxi )[

sin
(

πxi
L+1

)] Kc,0+1

2

− F2
sin(4πnxi − φ)[

sin
(

πxi
L+1

)]2Kc,0
. (33)

It is also possible to estimate the value of the Luttinger pa-
rameter by fitting Eq. (33) at very low densities. For the C1S1
phase, the results are consistent with the ones obtained from
the structure factor. However, in the C1S0 phase the fits are
much more difficult to control, so that we will not further
discuss this approach.

Fitting Eq. (33) allows us to identify the precursor region
of the Wigner crystal, for which the ratio F2/F1 is finite, but
vanishes outside this region. An exemplary fit of the local
electron density in the Wigner crystal regime as well as F2/F1

as a function of J/t are presented in Appendix D. As can be
seen there, we do not obtain a sharp transition, but a crossover
region in which the value F2/F1 gradually decreases.

D. Details on the MPS calculations

We used the MPS code contained in the SYMMPS package
[71] to calculate the ground-state energies, local observables,
and correlation functions. Both variants of the model were
calculated with open boundary conditions on systems with
up to 200 lattice sites. We used 22 sweeps to ramp up to
the maximal bond dimensions χmax = 2000, and afterwards
continue with further sweeps until convergence is reached
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using this value of χmax (a sweep is going once through the
lattice). This is done by setting the SYMMPS control parameter
for the ground-state energy (which roughly corresponds to
the absolute error in the ground-state energy [72]) to 10−10.
Usually, this threshold is reached after 30–50 sweeps, in more
difficult cases we went up to 200 sweeps. Also in these
more difficult cases, a SYMMPS error of the energy ∼10−9

is obtained. In addition, the parameters are set such that a
discarded weight of 10−12 is obtained. However, in particular
at the higher values of the filling treated by us (n ∼ 0.4–0.5),
the entanglement in the system is so high that the discarded
weight in the final sweep is ∼10−6. As a reference, it would
be interesting to compare our numerical results to approaches
using the full SU(2) symmetry of the systems, or by reducing
the entanglement, e.g., using the mode transform discussed in
Refs. [73,74]. In the context of our paper, the results shown at
the higher values of n will have a larger numerical error, and
we will show only the results, for which we have the highest
confidence.

III. NUMERICAL RESULTS

A. Global observables

Figure 3 shows examples for our results for the inverse
compressibility as well as for the spin and charge gap of the
regular t-J ladder after extrapolating to the TL as a function
of J/t at densities n = 0.15, 0.30, and 0.50. The value of J/t
at which the inverse compressibility κ−1 vanishes marks the
onset of phase separation. For n = 0.50 the system undergoes
the transition to phase separation at J/t ≈ 2.3 while it happens
at J/t ≈ 3.0 and J/t ≈ 3.4, respectively, for n = 0.30 and
0.15. Note that in the phase separation region the numerics
become unstable due to the high degeneracy of the ground
state, so that we do not display results inside the PS region.

The spin gap opens exponentially slowly, which makes it
difficult to estimate the exact position of the critical point.
We make a conservative estimate for the numerical accuracy
of the values of the spin gap in the TL to be ∼10−3 (see,
e.g., [75] for an estimate of the accuracy that can be ob-
tained when determining a gap in spin ladders using MPS).
In Refs. [18,25], a similar threshold was used to identify the
line at which the spin gap opens. In this way, we estimate at
n = 0.50 the spin gap to open at J/t ≈ 0.7 while for n = 0.15
it opens at J/t ≈ 2.4. In the case of the intermediate densities
n = 0.30, the spin gap opens at a later point J/t ≈ 2.8. The
inset in Fig. 3(b) illustrates our approach: it shows the spin
gap for n = 0.15 close to the critical point determined by the
spin gap. The estimated error is marked by a gray-colored
interval around 0. We find the value of the spin gap exceeds
the error estimate for J/t � 2.4 which is, thus, our estimate
for the critical point.

The charge gap is zero for almost all investigated densities
and all values of J/t , within an accuracy of ∼10−3. Only the
density n = 1

2 forms an exception for which a commensurate
filling allows for a charge gapped, CDW ordered insulating
phase, which we denote by CDWI in order to distinguish
from the CDW LL phase. In the regular t-J model, this phase
extends at n = 0.5 from J/t = 0 to J/t ≈ 1.5 while for the
V = 0 case the phase ends at J/t ≈ 2.4.

0

1

2

3

κ
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1
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n = 0.15 n = 0.30 n = 0.50
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FIG. 3. Comparison of the inverse compressibility (top), the spin
gap (middle), and the two-particle charge gap (bottom) for the regular
t-J ladder in the TL as function of J/t for the densities n = 0.15
(blue), n = 0.3 (orange), and n = 0.5 (green). The inset in the central
panel displays the spin gap at n = 0.15 close to its opening point.
It also shows the estimated numerical accuracy of 10−3, indicated
by the gray region. The spin gap is considered to be finite if its
value exceeds 10−3. The insets in the lower and upper panels show,
respectively, an example for the finite-size scaling of the charge gap
and inverse compressibility. Red and blue dots denote the values with
J/t = 1 for systems where the number of lattice sites divided by two
is even or odd, respectively.

In order to extrapolate our data into the TL, we performed a
finite-size scaling by fitting a second-order polynomial to the
numerical results for different system sizes L as a function of
1/L. Examples of such fits are shown in the insets of Figs. 3(a)
and 3(c). Thereby, we encountered an even-odd effect. Every
time L/2 is an odd number, we artificially remove one electron
to ensure that there are as many spin-up electrons as there are
spin-down electrons, and our system stays in the subspace of
zero magnetization. Interestingly, the systems sizes for which
this was necessary show a different scaling behavior than the
other systems. However, in both cases, the numerical results
scale to the same value in the TL within an accuracy of 10−3,
consistent with the discussion above.

We compute the central charge according to the procedure
outlined in Sec. II C 3 and Appendix B for finite systems up
to L = 200 sites with a subsequent finite-size extrapolation.
We obtain a value for the central charge of c ≈ 2 in the C1S1
phases and c ≈ 1 in the C1S0 regions of the phase diagrams
of both systems treated. This transition is in good agreement
with the position of the line at which the spin gap opens. These
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k
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N
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2kF

n = 0.2

(a)

J/t = 1.0
J/t = 2.0
J/t = 3.0
linear fit

0 π/2 π

k

(b)

N+(k)

N−(k)

FIG. 4. Examples for the structure factor of the total density
correlation functions N+ at n = 0.2 for the regular t-J ladder for
systems with 200 lattice sites and different values of J/t . (a) Structure
factor of N+ for J/t = 1 (SDW phase), J/t = 2 (close to the phase
transition), and J/t = 3 (deep in the superconducting phase). The
black dashed line denotes the wave number 2kF for n = 0.2, while
the red solid line is an example of a linear fit to the values corre-
sponding to the six smallest k values. (b) Comparison between the
structure factor for the N+ and N− correlation functions for J/t = 1.

findings are in agreement with the results for the spin and
charge gaps described before. A more detailed discussion of
these findings and of the accuracy estimated by us is found in
Appendix B.

B. Luttinger parameter

Figure 4(a) shows an example for the structure factor of
N (|i − j|)+ for different values of J/t at density n = 0.20.
As it can be seen, the structure factor goes linearly to 0
(with an accuracy ∼10−11) for k → 0. This is in agreement
with the expectations from bosonization and can be used to
estimate the value of the Luttinger parameter according to
Eq. (32). Furthermore, one can observe that the structure
factor develops a kink at 2kF when the system approaches
the spin gapped phase. An exception to this behavior forms
the structure factor for very small densities and low J/t where
we observe a discontinuity in the derivative of the structure
factor at 4kF , indicating the existence of such oscillations in
the correlation function and therefore in the particle density.
As Ref. [57] argued, strong interactions between the electrons
cause 4kF oscillations, which indicate the appearance of a
precursor phase towards a Wigner crystal.

In Fig. 4(b) we compare the structure factors of the N±(|i −
j|) correlation functions. The structure factor N−(|i − j|)
does not vanish for k → 0 and has a vanishing derivative at
k = 0. Therefore, in contrast to N+(|i − j|), the N−(|i − j|)
correlations contain contributions of gapped modes and sup-
port the results obtained by the central charge that at least one
charge mode must be gapped.

The Luttinger parameter of the ungapped mode can be
obtained by a linear fit of the structure factor for values close
to k = 0 and multiplying the slope with π [compare Eq. (32)].
For our analysis, we waive a finite-size scaling and only use
the structure factor of the largest system size we investigated
(i.e., L = 200) since the lattice size seems not to play an im-
portant role, as further discussed in Appendix D. Even though

the structure factors in Fig. 4 seem completely linear close
to k = 0, they still contain slight oscillations. This might be
an artifact caused by finite-size effects. Therefore, to average
out these oscillations, the fit must be performed through more
than just the closest two values to k = 0 as one would expect.
It turns out that using the six closest values to k = 0 reproduce
the results in Ref. [49] for n = 0.25 very well, so that we used
this for all other cases as well. An exemplary fit is shown in
Fig. 4(a).

Usually a Luttinger parameter larger than one indicates
attractive interactions in the low-energy field theory and one
expects SC. However, in the crossover region around the Lif-
shitz transition indicated by the dashed lines in Fig. 1, this is
not reproduced. We associate this discrepancy to the compli-
cations discussed in Sec. II B 3, so that the characterization
of the phase diagram is only possible by carefully analyzing
the behavior of correlation functions and the aforementioned
global observables.

C. Correlation functions and superconductivity

An important aspect to characterize the different phases
is to determine the dominant correlation function, i.e., the
algebraically decaying correlation function with smallest
exponent. Based on the bosonization results discussed in
Sec. II C 2, we use the fit function

D(|i − j|) = A

|i − j|α + B
cos(k1|i − j| − φ)

|i − j|β

+ C
cos(k2|i − j| − ψ )

|i − j|γ , (34)

where we neglected logarithmic corrections, and fit the nu-
merical results for the correlation functions for the total
density (c), the total spin (s), for rung-rung pairing (rr), leg-
leg pairing (ll), and rung-leg pairing (rl). Note that in Eq. (28)
we only took one harmonic into account, while in Eq. (34)
we allow for two oscillating contributions with different k
values. However, it turned out that for all pairing and for the
spin correlations, the main contributions in the oscillatory part
come from 2kF oscillations. If we keep all three terms, the fit
routine becomes more unstable even though it mostly finds
only 2kF contributions. Therefore, these correlations are only
fitted with one of the two oscillatory terms, as in Eq. (28).
For the fit of the total density correlation function, we used,
however, all three terms if also 4kF contributions are relevant,
i.e., if we were in the precursor Wigner crystal region.

We introduce the notation for the smallest (i.e. dominant)
exponent of all correlation functions via

xξ = min(αξ , βξ , γξ ), ξ ∈ {c, s, rr, ll, rl}. (35)

If the total density or the total spin correlation functions
dominate, we consider the system to be in a CDW or SDW
phase, respectively. If, on the other hand, one of the pairing
correlations dominates, we call the system superconducting.

Note that for the leg-leg pairing correlation functions we
only calculated intraleg correlations. Furthermore, in order
to average out possible contributions from the boundary, we
apply a running average by choosing a window of six sites
around the center of the system. The average is then taken
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FIG. 5. Exemplary fit of the total density correlation function N+
at n = 0.15 and J/t = 2.8

for each possible distance |i − j| over the six different initial
positions i ∈ [L/2 − 3, L/2 + 2].

An exemplary fit of the total density correlation function
is shown in Fig. 5. As can be seen, it deviates from a purely
algebraic decay at large distances. This can hint to logarithmic
corrections, boundary, or finite-size effects, or difficulties in
the convergence of the MPS and shows that it is difficult
to obtain the value of the exponents with a high accuracy.
Typically, in order to minimize the effect of these artifacts,
we restrict our fit to consider only the first 10–30 data points.
As further discussed below, we estimate the relative error in
our values of the exponents to be between 10%–20%.

Figure 6 shows our results for the regular t-J model for
xξ as a function of J/t for different correlation functions
at densities n = 0.1 and 0.45. We do not show the expo-
nents for the rung-leg correlation functions since the fits are
numerically unstable and give different qualitative behavior
depending on the number of oscillatory terms we keep. This
is further discussed in Appendix D, where we find the Fourier
spectrum of these correlation functions not to contain sharp
2kF oscillations, in contrast to the other pairing correlation
functions, so that is much more difficult to obtain meaningful
fits using expression (34). Note that for n = 0.45 we show our
results for xll only in the C1S1 phase. For larger values of J/t ,
we find the fits to become unstable. This can be due to the
lower accuracy obtained in this region of the phase diagram,
as discussed in Sec. II D.

Figure 6(a) demonstrates that below the crossover region
of the Lifshitz transition the expectations from bosonization
are fulfilled: for Kc < 1, the spin correlations decay slowest,
while for Kc > 1 the pairing correlations dominate, irrespec-
tive of the presence of a spin gap. This is the same behavior
as observed for chains at low fillings [8,25]. In addition, the
different pairing channels are degenerate.

In contrast, at n = 0.45 the value of J/t ≈ 1.7 at which
Kc = 1 and the value of J/t ≈ 1.3, at which the pairing
correlations become dominant, clearly disagree. This further
illustrates that in the vicinity of the Lifshitz transition the
value of Kc as obtained by us cannot be used to directly char-
acterize the phase diagram. The pairing correlations become

FIG. 6. Smallest exponent xξ of the total density (orange), the
total spin (blue), the rung-rung pairing (green), and the leg-leg pair-
ing (red) correlation functions as a function of J/t for the regular
t-J model. (a) Results for V = 1 and density n = 0.10; (b) results
for V = 1 and for n = 0.45; (c) results for V = 0 and for n = 0.10;
(d) results for V = 0 and for n = 0.35. The graphs stop where the
system enters phase separation. In addition, the total spin correlation
function stops where the system develops a spin gap. The black line
denotes the value of J/t for which the Luttinger parameter Kc = 1,
determined by the structure factor of the total density correlation
function. The dashed red line indicates where the spin gap opens and
the spin correlations start to decay exponentially.

dominant as soon as the spin gap opens. A similar picture
arises for the V = 0 t-J ladder. However, around n ∼ 0.3, a
c = 2 CDW phase also appears as a precursor to the super-
conducting phase. This can clearly be seen in Fig. 6(d) where
between J = 2.8 and 3.2, the density correlation function
decays the slowest.

For small J/t the nonoscillating term in the density cor-
relation function dominates (αc) at both values of the filling
shown. According to Table I, one expects xc = 2. While for
n = 0.45 this is obtained in good accuracy, at n = 0.1 we
find xc ∼ 1.85, clearly deviating from the expected value. This
allows us to estimate a relative error of ∼10% for this quantity.
This difference of 0.15 can be used as conservative estimate
of the error on the values of the exponents, as further detailed
in the Appendix. The phase boundaries (white blurry lines)
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FIG. 7. Comparison of the different pairing correlation functions
at parameters n = 0.10 and J/t = 2.5 (a), n = 0.35 and J/t = 2.0
(b), and n = 0.45 and J/t = 2.0 (c) in the superconducting phase of
the regular t-J model.

shown in Fig. 1 are determined using this approach and serve
as guide to the eye.

We distinguish between s-wave-like and d-wave-like pair-
ing based on the discussion in Ref. [76]. We find that in the
superconducting phases, the rung-rung correlation functions
are strictly positive. Thus, the sign of the rung-leg pairing
reveals if a rung and a leg pair have a relative phase. If Prl

s
has the same sign as Prr

s (i.e., positive), we call the phase
(extended) s-wave SC, while for different sign (i.e., negative
values of Prl

s ) we call the phase d-wave SC. This classification
is inspired by the definitions of s- and d-wave SC on a square
lattice. As can be seen in Fig. 7, the relative sign between
Prr

s and Prl
s depends on the filling n. At low filling (n = 0.1),

both have positive sign. At intermediate filling (n = 0.35),
Prr

s remains strictly positive, but Prl
s oscillates around zero.

At higher filling (n = 0.45), we see that for large distances
|i − j| Prr

S and Prl
S have a different sign for all distances,

illustrating the crossover from s-wave-like to d-wave-like SC
when increasing the densities.

D. Gas of electron pairs

The formation of a spin gap at very low densities can be
explained by electrons forming a gas of free-electron pairs.
We follow the description of such a gas given in Ref. [8].
Figure 8 shows a comparison of the ground-state energy per
particle for different densities and for the exact solution of
a single two-particle bound state (cf. Sec. IV). For n = 0.05
both energies match well in the spin gapped region. This
suggests that at n = 0.05 the ground state consists of a set of
bound electron pairs that are strongly diluted. Note, however,
that the dashed lines show the transitions in the zero-density

1.5 2.0 2.5 3.0 3.5 4.0

J/t

−3.4

−3.3

−3.2

−3.1

−3.0

−2.9

−2.8

−2.7

E
0
/N

SDW gas of electron

pairs Δs �= 0

n=0.05

n=0.15

n=0.25

exact solution

FIG. 8. Ground-state energy per particle as a function of J/t for
the densities n = 0.05, 0.15, and 0.25 in a ladder with 200 sites as a
function of J/t . The black line is the exact ground-state energy per
particle of two particles on an empty infinite lattice with respect to the
Hamiltonian (1) with V = 1. The blue diagonal shows the ground-
state energy per particle of the Heisenberg part of the regular t-J
ladder for n = 1. The left and right dashed lines mark, respectively,
the onset of the spin gapped phase and phase separation predicted by
the low-density limit. The blue and green array below the blue graph
denotes the SDW and spin gap phase for n = 0.05, respectively.

limit and the deviations already indicate weak interaction
corrections. The noninteracting pair gas picture clearly breaks
down at higher densities. For n = 0.15, one can argue that the
qualitative behavior of the ground-state energy as a function
of J/t is still consistent with the low-energy picture but with
an already strong energy shift.

IV. ZERO-DENSITY LIMIT

In order to obtain a more detailed analytical picture of
the lower edge of the phase diagram, we revisit an energetic
argument first put forward by Emery et al. [77]. It relies on the
exact expression for the energy of a two-particle bound state
[78–80]. The argument goes like this: Consider the ground
state of two electrons in an infinite t-J system. For small
J/t the electrons behave like free particles up to a value of
J (1)

c /t , above which a bound two-particle state with energy EB

becomes energetically favorable. In the (very) dilute limit and
under the assumption that bound states of a higher number of
particles play no role, this yields the boundary from SDW to
the “gas of electron pairs” at the bottom of the phase diagram
in Fig. 1. The transition point to phase separation, J (2)

c /t , is
obtained from comparing the energy of two electrons in a
hole-free “island” to the singlet bound state. Since in the TL
these islands will still be very large, one can use the average
electron energy of a Heisenberg model ground state. How-
ever, similar to the treatment in the polar molecule quantum
simulators [18,25], we allow in the following also for an XXZ
anisotropy,

ĤXXZ = J

2

∑
〈i, j〉

(S+
i S−

j + H.c.) + Jz

∑
〈i, j〉

Sz
i Sz

j,

and introduce the anisotropy parameter α = Jz/J .
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FIG. 9. Width J (2)
c − J (1)

c (in units of the hopping t) of the
superconducting region in the phase diagram of the Hamiltonian

H = Ht + J
∑

〈i, j〉 [ 1
2 (S+

i S−
j + H.c.) + αSz

i Sz
j − V

4 nin j] in the zero-
density limit. (a) Anisotropy α = 1 (standard case in this paper);
(b) J (2)

c − J (1)
c (color coded) as a function of both α and V . A reduced

value of α increases the superconducting region at negative V .

In one spatial dimension the bound-state energy of the con-
ventional t-J model is given by E1D

B = −J − 4t2/J . Adapting
the 2D calculation by Lin [78] to the ladder geometry (cf.
Appendix E) yields an implicit equation of the form

−12t2

Es
= 1

I0(EB)
− EB, (36)

where Es is the energy of a singlet and

I0(E )
L→∞= −1

2

(
1√

(E − 2t )2−(4t )2
+ 1√

(E + 2t )2−(4t )2

)
.

(37)

We obtain J (1)
c upon equating EB

!= −6t , i.e. the kinetic energy
of two free electrons. As I0(EB → −6t ) diverges, we need to

solve −12t2/Es = −EB = 6t . This results in Es
!= −2t . In the

general case with anisotropy, the energy of a singlet is given
by Es = ( − 1

2 − α
4 − V

4 )J yielding

J (1)
c = 8t

2 + α + V
. (38)

For the conventional t-J model this yields J (1)
c = 2t . We note

that the same formula holds true in extended 1D and 2D sys-
tems. The transition point to phase separation, J (2)

c , is obtained
from the comparison of EB with the energy of two electrons
in the ground state of the hole-free model. In this case the
kinetic term does not contribute and the V term only shifts
the energy. We therefore calculated the ground-state energy of
the spin-exchange term numerically with MPS. The dark blue
line in Fig. 8 shows the resulting energy of two electrons in
the phase separation, while the black line is the energy of the
two-particle bound state (36). Hence, J (2)

c is the point where
both lines intersect. For values of J between J (1)

c and J (2)
c , it is

most favorable for the electrons to form bound pairs giving
rise to the gas of electron pairs in the phase diagram. The
numerical results for density n = 0.05 are consistent with this
prediction but show already some renormalization of the Jc.

In Fig. 9 we plot the width J (2)
c − J (1)

c of the supercon-
ducting region in the phase diagram for varying values of V
and the anisotropy α. At α = 1 (left plot) the lower edges of
the phase diagrams in Fig. 1 are well reproduced. One can
clearly see that a low or negative value of V enhances the

superconducting parameter range. In addition, a value 0 <

α < 1 can also broaden it further.

V. SUMMARY

Using a combination of numerical MPS and analytical
methods, we investigate the ground-state phase diagram of
two variants of the two-leg t-J ladder for densities below n =
0.5. The difference between both variants is the strength of the
nearest-neighbor Coulomb repulsion V , which is known from
previous work on chains [18,25,55] to enhance SC phases.

We numerically compute the spin and charge gaps, and the
inverse compressibility, which we extrapolate to the TL. In ad-
dition, we compute for finite systems with up to L = 200 sites
the central charge, the Luttinger parameter, and correlation
functions. We determined the Luttinger parameter by calcu-
lating the density correlation structure factor. We complement
this by an analytical treatment of the band-filling Lifshitz-type
transition using a simple Hartree-Fock ansatz. At J/t = 0, the
Lifshitz transition, where the Fermi surface changes from two
to four Fermi points, happens at n = 0.5. Using the Hartree-
Fock approximation, we estimated the position of the Lifshitz
transition as a function of J/t . This band-filling transition is
meaningful for the phase diagram of both models, it manifests
itself as a crossover between two effective field theories in
which the physical meaning of the bosonic charge mode and
of the Luttinger parameter is of different nature. Around this
Lifshitz transition, we estimate the size of the crossover region
using RPA. While a field theory at the Lifshitz transition
[54] had been developed before, important predictions such
as the crossover function of the Luttinger parameter are still
unknown.

For example, at low densities, the numerically obtained
Luttinger parameter is in good agreement with the behavior
of correlation functions and the phase boundary or crossover
between phases, as known for t-J chain systems [8,25]. In
contrast, while in the crossover region it is still possible to
numerically obtain values for a Luttinger parameter, its be-
havior and phase boundaries are incompatible with standard
bosonization theory. We associate this to the aforementioned
unknown crossover between the two different field theories at
large and low densities, respectively, which makes it difficult
to obtain meaningful numerical results for the characterization
of the phase diagram. Therefore, we analyze in detail the de-
cay of different correlation functions in order to characterize
the phase diagram.

For small J/t , both variants of the t-J ladder possess dom-
inant SDW correlations in a gapless C1S1 phase. Within this
phase, at low fillings and for small J/t , we identify a precur-
sor of a Wigner crystal, similar to the findings in Hubbard
chains [57]. For larger values of J/t both systems develop a
spin gapped phase (C1S0). This observation is supported by
the computed value of the central charge, which drops from
two to one once the C1S0 phase is entered. For the lowest
densities, the spin gapped phase can be understood as a gas
of free-electron pairs. The system with V = 0, however, has
an additional CDW LL phase in the vicinity of the Lifshitz
transition before opening the spin gap. Such a significant
change of the phase diagram was not observed in chains
[18,25]. This opens the question if and how changing V in
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higher-dimensional t-J systems (e.g.. broader ladder systems
or in 2D) can lead to new features in the phase diagram.

The crossover region from s-wave-like SC, in which the
sign of rung-rung and rung-leg pairing correlators is the same,
to a d-wave-like SC phase in which these correlators have
different sign, falls into the crossover regime of the Lifshitz
transition. This raises the question if in a more accurate treat-
ment of the Lifshitz transition a connection between both
could be seen. This could be investigated, e.g., by computing
the electronic spectral functions of the model as a function of
the filling, which will allow to determine the precise point of
the band-filling transition.

One key observation of this paper is that the supercon-
ducting phase and the spin gapped phase seem to coincide
in the n → 0 limit. Setting V = 0 leads to an enhanced SC
phase, whose width can be obtained in this limit in an ex-
act calculation of the binding energy of two electrons and a
comparison between the exact ground-state energy and the
ground-state energy of a Heisenberg chain. In addition, we
exemplarily show for the lower edge of the phase diagram
how an XXZ anisotropy in the spin exchange can modify this
phase. Both, tuning V and the XXZ anisotropy can be relevant
for experiments with ultracold polar molecules on optical
lattices, which should allow full tunability of the interactions
in the t-J model.

It will be interesting to study the Lifshitz transition and its
impact on the phase diagram when increasing the number of
legs in ladder systems. There might be multiple crossovers at
which the system may qualitatively change its behavior. Also,
it will be interesting to study such broad ladder systems for
the Hubbard model or for magnetically frustrated systems like
ladders with next-nearest-neighbor interactions.
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APPENDIX A: ANALYTICAL PHASE DIAGRAM

In this Appendix we present details on the interaction-
induced suppression of the Lifshitz transition, as summarized
in Sec. II B 1 of the main text.

In all of the following, we will use the expansion in 0 and
π orbitals across the rungs, Eq. (3), to find

c†
i,l,σ ci,l ′,σ ′ = (−1)l+l ′nδσσ ′/2, (A1)

under the assumption that we are below the Lifshitz transition
and thus 〈∑σ c†

i,0,σ ci,0,σ 〉 = 2n with n the density per site.
We start by studying the Hubbard U term, Eq. (2d). The

calculation of the Hartree-Fock self-energy leads to (normal

ordering is taken before contractions)

Heff
U = U

∑
i,l,σ,σ ′

: c†
i,l,σ ci,l,σ c†

i,l,σ ′ci,l,σ ′ :

+ U
∑

i,l,σ,σ ′
: c†

i,l,σ ci,l,σ c†
i,l,σ ′ci,l,σ ′ :

= Un

2

∑
i,l,σ

c†
i,l,σ ci,l,σ . (A2)

We employ Einstein summation convention for spin indices.
Note that we neglect possible mean-field decoupling in the
spin and pairing channels. Thus, the Hubbard U term only
leads to an overall shift in the chemical potential for both
bands. This effect is trivial and thus disregarded in the main
text.

Next, we study the term stemming from intrarung interac-
tions

Heff
rung = J

4

[
�σσ1,σ

′
1
· �σσ2,σ

′
2
− V δσ1,σ

′
1
δσ2,σ

′
2

]
×

∑
i

[(
: c†

i,1,σ1
ci,1,σ ′

1
c†

i,2,σ2
ci,2,σ ′

2
: +1 ↔ 2

)

+ (
: c†

i,1,σ1
ci,1,σ ′

1
c†

i,2,σ2
ci,2,σ ′

2
: +1 ↔ 2

)]
= −JV n

4

∑
i,l

c†
i,l,σ ci,l,σ

+ Jn

8
[3 − V ]

∑
i

(c†
i,1,σ ci,2,σ + H.c.). (A3)

Apart from yet another contribution to the overall chemical
potential, this result is the derivation of Eq. (7b).

Finally, we evaluate nearest-neighbor intrachain interac-
tions,

Heff
intra = J

4

[
�σσ1,σ

′
1
· �σσ2,σ

′
2
− V δσ1,σ

′
1
δσ2,σ

′
2

] ∑
i,l

× [(
: c†

i,l,σ1
ci,l,σ ′

1
c†

i+1,l,σ2
ci+1,l,σ ′

2
: +i ↔ (i + 1)

)
+ (

: c†
i,l,σ1

ci,l,σ ′
1
c†

i,l,σ2
ci,l,σ ′

2
: +i ↔ (i + 1)

)]
= −JV n

4

∑
i,l

c†
i,l,σ ci,l,σ

− J

4
C[3 − V ]

∑
i,l

(c†
i,l,σ ci+1,l,σ + H.c.), (A4)

where

C = 1

4

∑
l,σ

〈c†
i,l,σ ci+1,l,σ 〉 = 1

2

∫ kF,π

−kF,π

dk

2π
eik

= sin(kF,π )

2π
= sin(πn)

2π
. (A5)

This is the origin of Eq. (7a) of the main text.
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FIG. 10. Exemplary fit of the entanglement entropy in the reg-
ular t-J ladder at n = 0.10 and J/t = 2.0. The plot only shows the
entanglement entropy for bisections between the rungs.

APPENDIX B: ENTANGLEMENT ENTROPY
AND CENTRAL CHARGE

Since we treat systems with OBC, for which the MPS is
more efficient, we need to take into account oscillatory terms
in the entanglement entropy. A typical example is shown in
Fig. 10, together with the fitting as explained in Sec. II B 3.
In the shown case, a good quality of the fit is obtained for the
largest system size treated by us (L = 200), and the numerical
value of the central charge is c ≈ 1.9, which is close to the
expected value c = 2.

In Fig. 11 we present a finite-size extrapolation of the
obtained values for c in the C1S1 and the C1S0 phases,
respectively. We see that in both cases finite-size effects are
rather small, and that an extrapolation leads closer to the
expected values c = 2 and 1, respectively. However, in par-
ticular for the largest system sizes, a deviation from the linear
extrapolation is seen. This can have different reasons, one of
them being the convergence being more difficult to control for
the ladder system than for chains, in which this approach was
used to obtain the central charge with high precision. Note
also that the oscillations complicate the fitting procedure; it
would be preferable to use periodic boundary conditions, in
which these oscillatory terms do not appear. However, this
case is more difficult to control with MPS, in particular also
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FIG. 11. Exemplary finite-size scaling for the central charge in
the regular t-J ladder. The right panel presents a finite-size scaling in
the C1S1 phase while the left panel shows a finite-size scaling in the
C1S0 phase.
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FIG. 12. Color-map plot of the central charge in the regular (top)
and V = 0 (bottom) two-leg t-J ladder. The red line denotes where
the spin gap becomes finite while the black line marks the onset of
phase separation. In the phase separated region, the numerical data
were set to zero. The filling n = 0.05 is left out since the fits were
difficult to control.

for the ladder systems treated here. It would be desirable to
improve the MPS approach, e.g., using the mode transform
of Refs. [73,74], in order to reach a higher accuracy in the
vicinity of the Lifshitz transition. Here, a small error margin
remains in our treatment. Therefore, our results in the TL do
not show a sharp drop in the value of c from 2 to 1 at the
phase boundary, but more a smooth transition. Also note the
exponentially small opening of the spin gap, which indicates a
large length scale in the vicinity of the critical points. This also
influences the accuracy in the determination of the value of c,
and much larger system sizes would be needed to obtain the
central charge with higher precision, which again is difficult
to achieve using MPS for the present ladder systems, so that
we refrain from doing so at this point.

Figure 12 displays the so-obtained values of the central
charge for both phase diagrams shown in Fig. 1. Note the
difference between the region in which c = 1 and the line of
opening of the spin gap; while we cannot fully rule out addi-
tional effects playing a role, the aforementioned difficulties
in reaching a higher precision in the estimation of c make
it plausible that throughout the phase diagrams in the TL
either a value of c = 2 (C1S1 phase) or c = 1 (C1S0 phase)
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is realized, and that at the phase boundaries this value shows
a sharp drop in the TL, in accordance with the expectations
from the field theory of Sec. II B 3.

APPENDIX C: FOURIER TRANSFORMATION
OF PAIRING CORRELATION FUNCTIONS

In this Appendix we summarize details about the pairing
correlation functions quoted in Sec. II C 3. The rung pairing
annihilator is

�r
S (i) = −i

√
2

3

(
cT

i,1, cT
i,2

)
σy

(
0 1
1 0

)(
ci,1

ci,2

)

= −i
√

2
3

(
cT

i,π , cT
i,0

)
σy

(−1 0
0 1

)(
ci,π

ci,0

)
. (C1)

In contrast, the symmetric leg pairing operator is∑
l

1

2
�l

S (i) = −i
√

2
3

(
cT

i,1, cT
i,2

)
σy

(
1 0
0 1

)(
ci,1

ci,2

)

= −i
√

2
3

(
cT

i,π , cT
i,0

)
σy

(
1 0
0 1

)(
ci,π

ci,0

)
, (C2)

while its antisymmetric counterpart is

∑
l

(−1)l

2
�l

S (i) = i
√

2
3

(
cT

i,1, cT
i,2

)
σy

(
1 0
0 −1

)(
ci+1,1

ci+1,2

)

= i
√

2
3

(
cT

i,π , cT
i,0

)
σy

(
0 1
1 0

)(
ci+1,π

ci+1,0

)
.

(C3)

We next use the continuum limit ci,a,σ � Ra,σ (x)eikaxi +
La,σ (x)e−ikaxi , where R, L are continuum fields of right and left
movers. We omit any pair density wave, which implies that
the antisymmetric component of the leg pairing operator is
dropped. Using (−1)a = 1 [(−1)a = −1] for a = 0 (a = π )
we find

�r
S (i) � −i√

2

∑
a

(−1)aRa,σ (xi )σyLa,σ (xi ), (C4)

�l
S (i) � −i√

2

∑
a

cos(ka)Ra,σ (xi )σyLa,σ (xi ). (C5)

APPENDIX D: FURTHER NUMERICAL RESULTS

1. Fourier transform of the pairing correlation functions

Figure 13 displays the Fourier transform of the three pair-
ing correlation functions treated by us. As can be seen, the
rung-leg correlator shows a smooth behavior around 2kF ,
while the other two correlators show a kink in the Fourier
transform, indicating oscillations in real space with wave
number 2kF . This indicates that further effects influence the
behavior of the rung-leg correlator in real space, which make it
difficult to use the ansatz (34) for obtaining meaningful values
of the exponents for this quantity.

2. Compressibility, spin gap, and charge gap for V = 0

Figure 14 shows the same quantities as Fig. 3, but for the
case V = 0. As can be seen, the overall behavior is similar,

0 π
2

π

k

0.05

0.10

0.15

0.20

0.25

R
eF

(P
ξ s
)

J = 2.0 n = 0.30 L = 200

ξ = rr

ξ = ll

ξ = rl

2kF

FIG. 13. Real part of the Fourier transformation of the rung-rung,
rung-leg, and leg-leg pairing correlation functions for J/t = 2.0 and
n = 0.30. In contrast to the rung leg, the rung-rung and leg-leg
correlation functions show a clear kink at 2kF .

but the values of the phase transition points differ between
both models.

3. Charge structure factor for different system sizes

Figure 15 shows a comparison of the results for the sym-
metric part of the density structure factor for system sizes
L = 80, . . . , 200. As can be seen, finite-size effects are not
playing an important role for the case displayed. Therefore,
we focus on the behavior of the structure factor for the largest
system sizes treated by us.
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FIG. 14. Comparison of the inverse compressibility (top), the
spin gap (middle), and the two-particle charge gap (bottom) for
the V = 0 t-J ladder in the TL as function of J/t for the densities
n = 0.15 (blue), n = 0.30 (orange), and n = 0.50 (green).
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FIG. 15. Comparison between the structure factor of the sym-
metric density correlation function for different system sizes for the
regular two-leg t-J ladder. Note that for L < 200 the SYMMPS energy
convergence was set to 10−8.

4. Precursor Wigner crystal

Figure 16 shows an exemplary fit of the local electron
density according to Eq. (33) in the Wigner crystal regime at
n = 0.10 and J/t = 1 where 4k0

F oscillations play an impor-
tant role. Figure 17 shows the ratio F1/F2, i.e., the dominance
of the 4k0

F oscillations for n = 0.05 as a function of J/t .

APPENDIX E: SOME DETAILS ON THE DETERMINATION
OF THE TWO-PARTICLE BOUND STATES AT VERY LOW

DENSITIES

The general calculation idea was outlined by Lin [78]. It
makes use of a wave-function ansatz

|�〉 =
∑
i1,i2

	(i1, i2)c†
i1↑c†

i2↓ |0〉 (E1)

and the explicit solution of the stationary Schrödinger equa-
tion [note the missing brackets in Eqs. (9) to (11) in [78]!]
The energy of the two-particle bound state is determined by

0 20 40 60 80 100

rung

0.02

0.04

0.06

0.08

0.10

0.12

<
n̂

i
>

n = 0.10, J/t = 0.1

DMRG

Fit

FIG. 16. Expectation value of local electron density for n = 0.10
and J/t = 0.1 on one leg as function of the rung position. The black
line denotes a fit applied to the data enclosed within the two dashed
lines.

1.0 1.5 2.0 2.5 3.0 3.5

J/t

0.0

0.2

0.4

0.6

0.8
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n=0.05

|F2/F1|
threshold

FIG. 17. Ratio between the amplitudes, via fits of the local elec-
tron density, of the 2kF (F1) and 4kF (F2) term in Eq. (33) as function
of J/t . The dashed line denotes a threshold where the 4kF term
becomes negligible.

an implicit equation of the form

rt2

J
= 1

I0(E )
− E , (E2)

where r = 8 for a chain and r = 16 for a square lattice. The
integral I0(E ) is defined (in the s-wave case for total momen-
tum �Q = 0) as follows:

I0(E ) = 1

2π

∫ π

−π

d �q
E − 2ε�q

. (E3)

Although in our case we cannot assume the 90◦ rotation sym-
metry, we can make a connection to the original calculation by
taking the parity eigenbasis in the y direction (corresponding
to momenta 0 and π ) and halving of the respective matrix
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J/t
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x
ξ

(b)

V = 0, n = 0.10

FIG. 18. Uncertainty of the exponents of the spin and rung-rung
pairing correlation functions. (a), (b) correspond to (a) and (c) in
Fig. 6. The shaded areas indicate the uncertainty of the exponents.
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element t . This yields

I0(E ) = 1

2π

∫ π

−π

dqx

(
1

E + 2t + 4t cos(qx )

+ 1

E − 2t + 4t cos(qx )

)
(E4)

and consequently Eq. (37). Furthermore, we find that in the
case of the ladder r = 12 in (E2).

APPENDIX F: DISCUSSION OFF THE ERROR BY
DETERMINING THE PHASE BOUNDARIES IN FIG. 1

The phase boundaries displayed in Fig. 1, indicated by
white lines, are determined by comparing the decay of several

correlation functions with each other (see Sec. III C). We
assumed the uncertainty of the smallest exponent to be of
the order of ∼10%–20%. In Fig. 18, we show panels (a) and
(d) with the uncertainty, symbolized by the shaded areas, for
the relevant correlation functions, namely, the spin and the
rung-rung pairing correlations. For both cases (V = 1 and 0),
we assumed an uncertainty of 0.15. The region of confidence
for the phase boundary is now given by the range of J for
which the shaded areas of the spin and pairing correlation
functions overlap. For instance, for V = 1 at n = 1.0, one
obtains Jc ∈ [1.7–2.2], while V = 0 at n = 0.10 yields Jc ∈
[2.3–3.0]. We are confident that the phase transition happens
within this window. However, the exact error in determining
the phase boundary is unknown. Therefore, and to improve
the readability of the phase diagram, we have chosen not to
display error bars in Fig. 1.
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