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Quantum critical fans from critical lines at zero temperature
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Quantum critical phenomena influence the finite temperature behavior of condensed matter systems through
quantum critical fans whose extents are determined by the exponents of the zero temperature criticality. Here
we emphasize the aspects of quantum critical lines, as discussed previously, and study an exactly solved model
involving a transverse field Ising model with added three-spin interaction. This model has three critical lines.
We compute the spin-spin correlation function and extract the correlation length, and identify the crossovers:
quantum critical to quantum disordered, or renormalized classical regimes. We construct the quantum critical
fans along one of the critical lines. In addition, we also construct finite temperature dynamic structure factors.
We hope this model will become experimentally realizable in the future, and our results could stimulate studies
in many similar models.
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I. INTRODUCTION

The quantum critical point (QCP) [1–5] is a point in the
parameter space where a continuous phase transition takes
place at zero temperature. A significant part of research in
condensed matter physics is focused on describing various
quantum phases and transitions between them. Thus, the QCP
has become a widely studied subject. Exactly at the critical
point, we have quantum fluctuations taking place at all length
scales. It is interesting to probe these fluctuations and the
implied quantum behavior of the ground states. However, in
reality, all experiments are carried out at finite temperatures
and it is necessary to learn how such ground state properties
can be deduced from finite temperature measurements. This is
accomplished by measuring the finite temperature correlation
lengths, dynamic structure factors, and other physical proper-
ties. The QCP leaves fingerprints at nonzero temperatures of
these properties. Its influence can be felt in a broad regime,
called the quantum critical fan, whose extent depends on
the quantum critical exponents. This idea was successfully
exploited in [6,7] in the context of two-dimensional quantum
antiferromagnets.

As an example, suppose we have a cusplike quantum criti-
cal fan with Tx ∼ |g − gc|zν , where g is a tuning parameter, z is
a dynamical critical point, and ν is a critical exponent, and Tx

is the crossover temperature between two different quantum
phases. If zν is very large, this will make the quantum critical
fan very narrow and thus limit the ability to probe quantum
fluctuations at finite temperatures. On the other hand, If we
have quantum critical points with smaller values of zν, exper-
imental evidence of quantum criticality could be more easily
observed at finite temperatures.

The one-dimensional transverse field Ising model (TFIM)
is a classic example of QCP. Theoretically, the integrability
of the model gives us the power to study its properties in
detail. A complete discussion on that topic can be found in [4].
Experimentally, this model is well-captured by CoNb2O6 [8],
which illustrates the nature of quantum criticality.

Here, as in our recent paper, we consider an exactly solved
model which has three interesting critical lines that goes
beyond the notion of a critical point. It is a three-spin ex-
tension of the more familiar Ising model in a transverse field,
TFIM. The model is solved by Jordan-Wigner and Bogoliubov
transformations. The corresponding phase diagram was intro-
duced by Kopp and Chakravarty [9]. Later on, the critical lines
in this model were studied and their topological aspects were
discussed by Niu et al. [10]. Different phases were identified
by the number of Majorana modes on each end of an open
chain. Subsequently, we calculated the momentum, k, and
frequency, ω, dependent dynamical structure factor S(k, ω) in
pure and disordered versions of the model at zero temperature
in a recent paper [11]. However, the influence of temperature
on the phase diagram remained unexplored, especially from
the perspective of the quantum critical fans. This is what we
aim toward in this paper. It will be important in understand-
ing experimental observations, if and when such a model is
realized and studied in practice.

The paper is organized as follows. In Sec. II, we introduce
our model and the phase diagram, and discuss a few of the
properties in the context of quantum critical lines. In Sec. III,
we discuss three regimes that appear in finite temperatures and
review how correlation length behaves in each such regime. In
Sec. IV, we discuss the method for calculating the correlation
function using the Pfaffian method. In Sec. V we discuss our
results. The final section, Sec. VI, is a summary.

II. THE MODEL AND ITS PHASE DIAGRAM

The model we consider here is a three-spin extension of
the TFIM, studied previously by [9–11]. We first discuss its
phase diagram and several characteristics of its critical lines.
We will focus on topics that were not studied previously. The
Hamiltonian, H , is

H = −
∑

i

(
hiσ

x
i + λ′

2σ
x
i σ z

i−1σ
z
i+1 + λ′

1σ
z
i σ z

i−1

)
. (1)
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σ x and σ z are the standard Pauli matrices. Presently, we shall
set hi = h = const. The Hamiltonian after Jordan-Wigner
transformation [12,13]

σ x
i = 1 − 2c†

i ci, (2)

σ z
i = −

∏
j<i

(1 − 2c†
j c j )(ci + c†

i ) (3)

is

H = −
N∑

i=1

h(1 − 2c†
i ci ) − λ′

1

N−1∑
i=1

(c†
i ci+1 + c†

i c†
i+1 + H.c.)

− λ′
2

N−1∑
i=2

(c†
i−1ci+1 + ci+1ci−1 + H.c.). (4)

In contrast to the spin model, the spinless fermion Hamil-
tonian is actually a one-dimensional mean-field model of a
p-wave superconductor [14], when there are both nearest- and
next-nearest-neighbor hoppings, as well as condensates; note
the pair creation and destruction operators. The solution of
the corresponding spin Hamiltonian through Jordan-Wigner
transformation is, however, exact and includes all possible
fluctuation effects and is not a mean-field solution of any kind.

Imposing periodic boundary condition, the Hamiltonian
can be diagonalized by a Bogoliubov transformation,

H =
∑

k

2Ek

(
η

†
kηk − 1

2

)
. (5)

As usual, the anticommuting fermion operators ηk are suitable
linear combinations in the momentum space of the original
Jordan-Wigner fermion operators and respect charge symme-
try. The spectra of excitations are (lattice spacing will be set
to unity throughout the paper unless stated otherwise)

Ek = h
√

1 + λ2
1 + λ2

2 + 2λ1(1 − λ2) cos k − 2λ2 cos 2k. (6)

Here λ1 = λ′
1/h and λ2 = λ′

2/h are the scaled coupling con-
stants. Quantum phase transitions of this model are given by
the nonanalyticities of the ground state energy:

E0 = −
∑

k

Ek . (7)

The derivative of the ground state energy vanishes at
k = 0,±π and cos k = λ1(1 − λ2)/4λ2. The nonanalyticities
are defined by the critical lines where the energy gaps col-
lapse. The phase diagram can also be understood from the
Majorana zero modes, which we explain below. For the time
being refer to Fig. 1.

(1) For TIFM without a three-spin interaction, the gaps
collapse at the Brillouin zone boundaries, k = ±π at the self-
dual points λ1 = 1 and λ2 = 0.

(2) As we move along the critical line λ2 = 1 − λ1, there
are no additional critical points until we reach a multicritical
point λ2 = 1, where the gaps collapse at k = 0. At exactly
λ1 = 0 and λ2 = 1, we have the dynamical critical exponent
z = 1 due to the linearly vanishing spectrum at k = 0. Then
λ2 = 1 + λ1 constitutes a critical line with criticality at k = 0.

(3) Moreover, the gaps also collapse at incommensurate
points k = cos−1(λ1/2) for λ2 = −1 and 0 < λ1 < 2. This

FIG. 1. The phase diagram: n = 0, 1, 2, corresponds to regions
with n Majorana modes at each end of an open chain. There are
three quantum critical lines, λ2 = λ1 + 1, λ2 = 1 − λ1, and λ2 = −1
(0 < λ1 < 2). These lines denote the collapse of the energy gaps.
Points a and b are multicritical points with dynamical critical expo-
nent z = 1 and z = 2 respectively.

constitutes an unusual incommensurate critical line. Right at
λ1 = 2 and λ2 = −1, we have a non-Lorentz-invariant mul-
ticritical point with dynamical critical exponent z = 2. The
spectra vanish quadratically at ±π due to confluence of two
Dirac points.

In the spin representation, our model exhibits two phases:
ordered and disordered. These phases are distinguished by the
presence of long-range order. As shown in Fig. 3, the long-
range order is reflected in the equal-time correlation function
C(r, 0) from Eq. (19). Both λ2 = 1 + λ1 and λ2 = 1 − λ1 sep-
arate these phases. However, the line λ2 = −1 (0 < λ1 < 2)
cannot be understood from the symmetry breaking quantum
phase transition since it separates two quantum disordered
phases.

In the fermion language, the phase transitions are best
described by the number of Majorana zero modes, n, at each
end of an open chain, which can be determined numerically.

FIG. 2. A sketch of a quantum critical fan of a quantum critical
line λ2 = 1 − λ1. The black solid lines are quantum critical fans. The
blue dashed lines are the usual quantum critical fan from a critical
point which is a point of intersection between the critical line and the
blue dashed line. QC: quantum critical. RC: renormalized classical.
QD: quantum disordered.
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This was discussed in great detail in a previous paper [10]. So
λ2 = −1 (0 < λ1 < 2) is a line of topological transition sep-
arating n = 0 and n = 2 Majorana zero modes at each end of
the chain. The numbers of Majorana modes are also winding
numbers [15,16] explained in terms of the Anderson pseu-
dospin Hamilitonian [17], when the time-reversal symmetry is
preserved. More recently, the topological nature of the model
was explained from the notion of a curvature renormalization
group [18,19], which may be useful in higher-dimensional
systems.

Finally, this model has a dual representation in which it is
equivalent to an anistropic XY model with a magnetic field
in the z direction. It is possible that the XY version is better
realized in experimental systems. This dual representation is
defined by the dual spin operators μx, μy, and μz such that

μx(n) = σz(n + 1)σz(n), (8)

μz(n) =
∏
m�n

σx(m), (9)

which implies that

[μz(n), μx(n)] = −2iμy(n), (10)

μy(n) = −i

⎛
⎝∏

m�n

σx(m)

⎞
⎠σz(n + 1)σz(n). (11)

The Hamiltonian under duality transforms to

HD = − 2

1 + r

∑
n

[
1 + r

2
μx(n)μx(n + 1)

+ 1 − r

2
μy(n)μy(n + 1) + hzμz(n)

]
, (12)

where we have carried out the rotations μx(n) → μz(n),
μz(n) → μx(n), μy(n) → −μy(n). The parameters are re-
lated by

λ1 = 2hz

1 + r
, λ2 = r − 1

1 + r
. (13)

The critical line in the XY model, separating the disordered
phase from the ordered phase, is at hz = 1, which corresponds
to λ1 + λ2 = 1, separating the ordered phase from the disor-
dered phase. Since the ordered and the disordered phases are
exchanged under duality, the disordered phase of the three-
spin model is λ1 + λ2 < 1.

III. FINITE TEMPERATURE CROSSOVERS

In this section, we discuss quantum critical fans and their
crossovers at finite temperatures. Generically, as we raise the
temperature, the effect of quantum criticality from a QCP can
be felt in an extended region (quantum critical fan) of the
parameter space. The width and the shape of the quantum
critical fan depend on the critical exponents ν and z. In the
two-dimensional parameter space, one can approach a critical

FIG. 3. Representative equal-time correlation function C(r, 0)
at T = 0 in various regions which are labeled by the number of
Majorana zero modes n in Fig. 1. The distance r is expressed in
units of lattice spacing. The calculation of the correlation function
follows from the Pfaffian representation discussed in detail below.
Blue: (λ1 = 1.5, λ2 = 0), Red: (λ1 = 0.5, λ2 = 2). Black: (λ1 = 0.5,
λ2 = −0.5). Green: (λ1 = 2, λ2 = −1.5).

point in any direction. This leads to a conelike quantum criti-
cal fan for a critical point. In our model, with added three-spin
interaction, we have a quantum critical line made out of a line
of critical points. Referring to Fig. 2, the quantum critical
fan looks like a valley along the critical line in this case.
The blue planes denote the fans. These fans are crossover
lines that separate different regimes. These regimes can be
distinguished by the temperature dependence of the correla-
tion length ξ and the relative magnitudes of the energy scales.
The following delineates the regimes pertaining to quantum
criticality. Defining 	 to be the deviation from the critical
point (see, for example Fig. 2), which can be either positive
or negative (the notation is the same as in Ref. [4]) we find the
following regimes:

(1) Quantum critical (|	| � T ): In this regime, the phys-
ical properties of the model at finite temperatures are
completely determined by the quantum critical point at zero
temperature. The correlation length behaves as a power law
in T ,

ξ ∼ 1

T 1/z
, (14)

where z is the dynamical critical exponent of the QCP.
(2) Renormalized classical (	 � T ): In this regime, ξ

goes to ∞ exponentially fast as T goes to zero due to the
presence of long-ranged order at zero temperature. In general,
we expect the correlation length to have theform

ξ ∼ C1(T )eC2/T , (15)

where C2 is a positive constant and C1(T ) is a function of T .
The exact form of C1(T ) is not important to us since we are
only interested in the general form of ξ .

(3) Quantum disordered (	 � −T ): Since there is no
long-ranged order at T = 0, we expect the correlation length
to become temperature independent as T goes to aero,
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saturating to a value of order unity:

ξ ∼ const. (16)

There is one quantum disordered regime called the oscilla-
tory disordered regime that we will come back to later.

IV. FINITE TEMPERATURE CORRELATION FUNCTION

The signature of the quantum criticality may be discov-
ered by obtaining the correlation length in neutron scattering
experiments [20,21]. For this purpose, we compute spin-spin
correlation function. Here we discuss the method for calcu-
lating the correlation function and the correlation length. One
can consult our previous paper [11] if one is interested in a
fully detailed derivation.

Quite generally, the spin-spin correlation function Ci j (t ) is
defined as

C(r, t ) = 〈
σ z

i (t )σ z
j (0)

〉
, (17)

where i, j are lattice sites and r is the separation between
them. And the angular brackets represent a thermodynamic
average 〈(· · · )〉 = Tr[e−βH (· · · )]/Tr(e−βH ). The equal-time
correlation function is

C(r, 0) = 〈
σ z

i σ z
j

〉
. (18)

In a finite system of length L, we choose i, j in the middle
of the chain to reduce the boundary effects. Using the Jordan-
Wigner transformation, Eq. (3), we get

C(r, 0) =
〈(

i−1∏
m=1

(c†
m + cm)(c†

m − cm)

)
(c†

i + ci )

⎛
⎝ j−1∏

l=1

(c†
l + cl )(c

†
l − cl )

⎞
⎠(c†

j + c j )

〉
. (19)

Because of the free fermion nature of the Jordan-Wigner transformed Hamiltonian, we can apply Wick’s theorem [22] to C(r, 0).
After collecting all terms in Wick expansion, we get a Pfaffian:

C(r, 0) = P f (S). (20)

Here S is a 2(i + j − 1)-dimensional skew-symmetric matrix. If we identify Am = c†
m + cm and Bn = c†

n − cn, the matrix S is

S =

⎛
⎜⎜⎜⎜⎝

0 〈A1B1〉 〈A1A2〉 〈A1B2〉 · · · 〈A1Aj〉
−〈A1B1〉 0 〈B1A2〉 〈B1B2〉 · · · 〈B1Aj〉
−〈A1A2〉 −〈B1A2〉 0 〈A2B2〉 · · · 〈A2Aj〉

...
...

...
...

. . .
...

−〈A1Aj〉 −〈B1Aj〉 −〈A2Aj〉 −〈B2Aj〉 · · · 0

⎞
⎟⎟⎟⎟⎠. (21)

All we need to compute is the two-point correlation function
such as

〈[c†
m ± cm](c†

l ± cl )〉. (22)

This can be done by utilizing the free fermion operators ημ

and η†
μ from Eq. (5). The results are the following:

〈AiAj〉 =
L∑

p=1

φpiφp j, (23)

〈AiBj〉 =
L∑

p=1

φpiψp j tanh(βEp), (24)

〈BiAj〉 = −
L∑

p=1

ψpiφp j tanh(βEp), (25)

〈BiBj〉 = −
L∑

p=1

ψpiψp j, (26)

where β is 1/T . Three L × L matrices φ, ψ , and E come from
singular value decomposition (SVD) [23], and M is obtained
by rewriting H from Eq. (4) into a matrix with c† + c and
c† − c as its basis [here c† + c ≡ (c†

1 + c1, c†
2 + c2, . . . , c†

L +
cL )]:

M = φEψT , (27)

H = (c† + c c − c†)

(
0 MT

M 0

)(
c† + c
c† − c

)
. (28)

The exact form of M is

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h −λ1 −λ2

h −λ1 −λ2

h −λ1
. . .

. . .
. . . −λ2
. . . −λ1

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

The exact diagonalization of H is not numerically stable (suf-
fers from large errors) if the eigenvalues of H are close to 0.
Thus, instead of directly diagonalizing our 2L × 2L Hamilto-
nian, we chose to use SVD to diagonalize an L × L matrix.

We still need to deal with one last step. The computation
of a Pfaffian consumes a lot of time by standard methods for a
large-size system. One of the authors in collaboration invented
an efficient method for dealing with such a Pfaffian in [24].
Let X be a 2N × 2N skew-symmetric matrix which has the
form

X =
[

A B
−BT C

]
, (30)
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FIG. 4. Finite temperature S(k, ω). Thermal broadening is evi-
dent. Top left: (λ1 = 0.5, λ2 = −1, T = 0.01). Bottom left: (λ1 =
0.5, λ2 = −1, T = 0.1). Top right: (λ1 = 2, λ2 = −1, T = 0.01).
Bottom right: (λ1 = 2, λ2 = −1, T = 0.1).

where A is a 2 × 2 matrix, and B and C are matrices of
appropriate dimensions. Then we have the identity[

I2 0
BT A−1 I2N−2

]
X

[
I2 −A−1B
0 I2N−2

]

=
[

A 0
0 C + BT A−1B

]
(31)

where In is a n × n identity matrix, and

det(X ) = det(A)det(C + BT A−1B). (32)

This gives us an iterative method. We will get a 2 × 2 matrix
A at each iteration step; then we treat C + BT A−1B to be our
next X and keep doing this. Our det(X ) eventually becomes a
product chain of 2 × 2 matrices.

Generically, the equal-time correlation function C(r, 0)
decays exponentially at finite temperatures. This allows us
to determine the correlation length ξ by fitting C(r, 0) to an
exponential function,

C(r, 0) ∼ e−r/ξ , (33)

where the prefactor could be a constant or an oscillatory
function of r, as shown below in Sec. V.

V. COMPUTATIONAL RESULTS

A. T = 0, correlation function

First, we provide some results for C(r, 0) at T = 0. The
most remarkable result is the oscillatory quantum disordered
phase. A complex calculation [25] of the instantaneous spin-
spin correlation function showed that within the ferromagnetic
phase in the dual representation, Eq. (12), there is an oscil-
latory phase in which the connected correlation function has

FIG. 5. The correlation length ξ vs temperature T at two quan-
tum critical points λ1 = 1, λ2 = 0 (z = 1) and λ1 = 2, λ2 = −1
(z = 2). Ctop ∼ 2.38 and Cbottom ∼ 2.25.

oscillatory decay. The oscillatory phase in the XY model is
bounded by r2 + h2 � 1, which corresponds to λ2 � −λ2

1/4
in the three-spin model. Some of the representative C(r, 0) are
shown in Fig. 3.

B. Finite temperature S(k, ω)

We now turn to discussion of the finite temperature results.
This requires unequal time correlation functions, C(r, t ) [11].
The calculations in the following sections were performed on
a chain that has 300 lattice sites with free boundary conditions
at a number of temperatures; we show only the results at
two different temperatures. The temperature T is measured in
units of h. We show our finite temperature dynamical structure
factor at two critical points λ1 = 0.5, λ2 = −1 and λ1 = 2,
λ2 = −1 in Fig. 4.

C. Quantum critical to renormalized classical

Full construction of quantum critical fans along the three
critical lines is not necessary since the quantum critical fan
diagrams are quantitatively the same. Here we choose to
construct the quantum fan diagrams at two points: λ1 = 2,

FIG. 6. Quantum critical to renormalized classical. The cor-
relation length ξ vs temperature T at λ1 = 2.075, λ2 = −0.925
(	 = 0.3). C ∼ 3.81, C1 ∼ 22, and C2 ∼ 0.25.
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FIG. 7. Quantum critical fan diagrams. Black: Quantum critical.
Yellow: Renormalized classical. Top: d is the distance to the multi-
critical point λ1 = 1, λ2 = 0 (z = 1). Bottom: d is the distance to the
multicritical point λ1 = 2, λ2 = −1 (z = 2). Two white lines are the
deviations 	 at different d .

λ2 = −1 along the line λ2 = λ1 − 3 and λ1 = 1, λ2 = 0 along
the line λ2 = λ1 − 1. Referring to Fig. 5, at two critical points,
we see that the correlation length ξ scales as 1/T 1/z with z
the theoretical values 1 (2). Moving away from the critical
point (λ1 = 2, λ2 = −1) into the ordered phase along the line
λ2 = λ1 − 3, we see a crossover happens when we plot ξ vs
T in Fig. 6. At high T (T > 	), the temperature dependence
of the correlation length is characterized by a power law. At
low T (T < |	|), the correlation length grows exponentially
to infinity. Between these regimes, we have a crossover. From
that, we construct quantum critical fan diagrams along the
lines λ2 = λ1 − 1 and λ2 = λ1 − 3. These are shown in Fig. 7.
The colors in these plots represent the relative deviation from
the power law scaling. The white lines are obtained by com-
puting the energy gap at different d . Since we are considering
crossovers, not phase transitions, we do accept some misalign-

FIG. 8. Quantum critical to quantum disordered. The correlation
length ξ vs temperature T at λ1 = 1.8, λ2 = −1.2 (|	| ∼ 0.22).
C ∼ 1.69.

ments between the places where the color change happens and
the white lines.

D. Quantum critical to quantum disordered

Moving away from the critical point (λ1 = 2, λ1 = −1)
into the disordered phase, we also see that a crossover happens
when we plot ξ vs T in Fig. 8. At high T (T > |	|), the tem-
perature dependence of the correlation length is again a power
law. Interestingly, we see a bump in the intermediate region
(T ∼ |	|). We cannot differentiate whether the occurrence of
the bump is due to the model itself or uncertainty from the
fitting. At low T (T < |	|), we see a completely different
behavior. The correlation length saturates to a finite value. We
denote this value as ξ sat, and it depends on the distance d to
the critical point:

ξ sat ∼ d−ν, (34)

where ν is the critical exponent. It is clear from Fig. 9 that ν

are close to 1 (z = 1) and 1/2 (z = 2). Similarly, we construct
the other parts of the quantum critical fan diagrams along
the lines λ2 = λ1 − 1 and λ2 = λ1 − 3. These are shown in
Fig. 10. The colors in these contour plots again represent the
relative deviations from the power law scaling.

VI. SUMMARY AND DISCUSSION

In this paper, we have discussed several properties of an
exactly solved model that exhibits three interesting quantum
critical lines and two multicritical points. Two multicritical
points have different dynamical critical exponents z. The three
critical lines have their own unique characteristics. On one
line, the criticality is located at k = ±π . The other line has its
criticality located at k = 0. The criticality on the third line is
located at incommensurate k points. At finite temperatures,
quantum critical fans are built upon these critical lines so
the phase diagram splits into three regimes (quantum critical,
quantum disordered and renormalized classical). The correla-
tion length ξ obtained from the calculation in each regime has
its special behavior on temperature. In the quantum critical
regime, ξ scales as 1/T 1/z with z depending on the critical
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FIG. 9. The saturated correlation length ξ sat vs distance d in the
quantum disordered regime. Top: d is the distance to the multicritical
point λ1 = 1, λ2 = 0 (z = 1). Bottom: d is the distance to the multi-
critical point λ1 = 2, λ2 = −1 (z = 2). Ctop ∼ 0.25. Cbottom ∼ 2.34.

point. In quantum disordered regime, ξ becomes temperature
independent. But the saturated value of ξ sat scales as d−ν .
Both z and ν determine the size of the critical fan. In the renor-
malized classical regime, ξ grows as an exponential function
in terms of T as we approach zero temperature. Finally, we
construct the quantum critical fan along two different lines.

In the future, one could add further neighbor interaction
while still maintaining the integrability of the model. This

FIG. 10. Quantum critical fan diagrams. Black: Quantum crit-
ical. Yellow: Quantum disordered. Top: d is the distance to the
multicritical point λ1 = 1, λ2 = 0 (z = 1). Bottom: d is the distance
to the multicritical point λ1 = 2, λ2 = −1 (z = 2).

will make fine tuning a lot easier. Then one could explore the
quantum critical fan from a critical surface. However, such a
model may be difficult to realize in experiments.
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