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Elementary excitations in the hybrid Bose-Fermi system induced by circularly polarized light
in a two-dimensional gas of charge carriers with different masses

V. M. Kovalev ,1,2,* M. V. Boev ,1 and O. V. Kibis 1

1Department of Applied and Theoretical Physics, Novosibirsk State Technical University,
Karl Marx Avenue 20, Novosibirsk 630073, Russia

2Abrikosov Center for Theoretical Physics, MIPT University, Dolgoprudny 141701, Russia

(Received 4 August 2023; revised 30 September 2023; accepted 12 October 2023; published 24 October 2023)

We developed a theory describing elementary excitations in the Bose-Fermi system induced by circularly
polarized light in a two-dimensional (2D) gas of charge carriers with different masses. In such a hybrid system,
the Fermi subsystem is a degenerate Fermi gas, whereas the Bose subsystem is a condensate of the light-induced
composite bosons consisting of two fermions (electrons or holes) with different effective masses. The interaction
of the single-particle excitations and the collective excitations (plasmons) in the Fermi subsystem with the
Bogoliubov collective modes (bogolons) in the Bose subsystem is analyzed. The renormalization and damping
(lifetime) of the excitations are calculated, and the possibility of their experimental observation is discussed.
The developed theory can be applied to describe 2D condensed-matter structures containing charge carriers with
different effective masses, including transition metal dichalcogenide monolayers and semiconductor quantum
wells.
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I. INTRODUCTION

All-optical control of electronic properties of condensed-
matter structures by a high-frequency off-resonant electro-
magnetic field, which is based ideologically on the Floquet
theory of periodically driven quantum systems (Floquet en-
gineering), has become an established research area during
the last decades [1–12]. Since the off-resonant field cannot
be absorbed by electrons, it only dresses them, producing the
composite electron-field states with unusual physical prop-
erties. Particularly, it has been demonstrated that such a
dressing field can crucially modify electronic characteris-
tics of various condensed-matter nanostructures, including
semiconductor quantum wells [13], quantum rings [14],
quantum dots [15], topological insulators [16–19], carbon
nanotubes [20], graphene, and related two-dimensional (2D)
materials [21–27].

Among many phenomena induced by a dressing field, the
Floquet engineering of electron behavior in various potential
reliefs takes deserved place. If the field is both strong and
high frequency, the electron dynamics can be described by the
effective dressed potential which can be obtained from a bare
potential by its averaging along the classical electron trajec-
tory under the field over the field period. The most pronounced
modification of the potentials takes place in low-dimensional
electronic systems. Particularly, the 2D repulsive Coulomb
potential under a circularly polarized dressing field acquires
an attractive area in its core [28], which leads to confinement
of conduction electrons at repulsive potentials in quantum
wells [29]. The same field-induced attraction can manifest
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itself in the processes of electron-electron interaction. Re-
cently, it was demonstrated theoretically that the circularly
polarized irradiation of 2D conducting systems can produce
composite bosons consisting of two electrons with different
effective masses [28], which are stable due to the Fermi sea
of conduction electrons [30]. As a result, an optically induced
mixture of paired electrons and normal conduction electrons
(the hybrid Bose-Fermi system) appears. Since the optically
induced hybrid Bose-Fermi system [30] is interesting from
the viewpoint of possible light-induced superconductivity and
superfluidity, the aim of this paper is to study elementary
excitations there.

Physical properties of nanostructures and their response
to external perturbations are determined by the spectrum
of elementary excitations. Evidently, the type of elementary
excitations existing in various physical systems depends on
the quantum statistics of initial bare particles filling the sys-
tem. In the past, only two quantum systems of the Fermi
type were known: the electron gas in metals (or semicon-
ductors) and liquid helium 3He. As to the Bose-type liquid,
its typical example was 4He. All these quantum objects
have the rich spectra of elementary excitations determining
their unique physical properties at low temperatures [31–33].
Other interesting quantum systems are presented by the
mixtures of the Bose and Fermi gases. In such mixtures,
new interaction channels appear due to the interactions be-
tween bosons and fermions. As an example, a new type of
paring between fermions due to the exchange by the exci-
tations of the Bose subsystem may occur, including s-type
[34,35] and p-type [36] Fermi particles pairing. Historically,
all these types of hybrid Bose-Fermi systems were initially
considered to be applied to cold atomic systems [37–43].
However, the technological achievements in the design and
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FIG. 1. Sketch of the system under consideration: A two-
dimensional system containing heavy electrons (large circles) and
light electrons (small circles) under irradiation by a circularly polar-
ized electromagnetic wave. As a result of the irradiation, the hybrid
Bose-Fermi system consisting of composite bosons (paired heavy
and light electrons) and the degenerate Fermi gas of normal electrons
appears.

fabrication of nanostructures have recently stimulated in-
tensive theoretical discussions about physical phenomena
in condensed-matter Bose-Fermi mixtures [44–49]. Particu-
larly, a possibility of experimental realizations of long-living
2D dipolar exciton systems or 2D exciton-polariton gases
opens a way to create condensed matter Bose-Fermi mix-
tures where the Bose subsystem is either an exciton or
exciton-polariton gas. Thus, the physics of hybrid Bose-Fermi
systems in low-dimensional structures is an established re-
search area of modern science, which forms the basis for this
paper.

The specific renormalization of the Coulomb interaction
between charged particles by a dressing field [28,30] opens
a way to form the mixture of two subsystems, where the first
one is the degenerate Fermi gas of light and heavy normal
electrons, whereas the second one is the Bose gas consisting
of the bound two-electron composite bosons. At low tem-
peratures, the latter may form the Bose-Einstein condensate
(BEC), where composite bosons interact via the short-range
potential due to a strong screening of their direct Coulomb
interaction by normal electrons. Thus, under the external ir-
radiation by a circularly polarized electromagnetic field (see
Fig. 1), light electrons attractively interact with heavy elec-
trons to form the two-electron composite bosons being in the
BEC regime, whereas the remaining unpaired electrons form
the degenerate Fermi gas. Certainly, it should be kept in mind
that BEC in real systems depends on many additional physical
factors (see, e.g., Ref. [50]) which should be analyzed care-
fully for samples planned to be studied experimentally. In this
paper, we consider the renormalization of physical properties
of individual excitations in the Fermi subsystem of unpaired
electrons and study the properties of various collective modes
in a light-induced Bose-Fermi mixture, including the polaron
effect, the quasiparticle lifetime, the renormalization of the
collective mode dispersion laws, and their damping.

This paper is organized as follows. In Sec. II, we describe
the model under consideration and introduce the Hamilto-
nian describing the interaction between normal electrons (the
Fermi subsystem) and the light-induced Bose subsystem con-
sisting of paired electrons with different masses. In Sec. III,
the single-particle and collective modes in the optically in-
duced hybrid Bose-Fermi systems are analyzed. The last
section contains the conclusions, and the Appendix contains
derivation of the interaction Hamiltonian for two electrons
with different effective masses.

FIG. 2. Structure of the conduction band in MoS2 monolayer:
The electron energy spectrum in the two valleys (K and K ′) consists
of the branches of heavy (h) and light (l) electrons with the mutually
opposite spin orientation (the solid and dashed lines), where μ is the
Fermi energy.

II. MODEL

As noted above, the light-induced Bose-Fermi system may
occur in nanostructures containing charge carriers with dif-
ferent effective masses. For definiteness, we consider the
electronic system in such a transition metal dichalcogenide
material as the MoS2 monolayer, which is under active study,
showing unique optical and transport properties [51]. The con-
duction band of this material consists of the two nonequivalent
valleys in the K and K ′ points of the Brillouin zone, where
each valley contains the two spin-split electron branches cor-
responding to the heavy electrons with mass mh = 0.46m0

and the light electrons with mass ml = 0.43m0, where m0 is
the free electron mass (see Fig. 2). As a consequence, the
circularly polarized irradiation of the monolayer may form the
Bose subsystem consisting of two electrons with different ef-
fective masses [28,30], which can be considered as composite
bosons with the effective mass M = mh + ml and the charge
2e, where e = −|e| is the electron charge. In the following, we
will assume the boson density to be small enough to consider
the Bose subsystem as a gas of weakly interacting composite
bosons. For the Fermi level plotted in Fig. 2, the Fermi sub-
system contains unpaired light and heavy electrons. However,
the density of light electrons much exceeds the density of
heavy electrons since the ground branch corresponds to light
electrons. To simplify the consideration of the light-induced
Bose-Fermi mixture, we will neglect the contribution of heavy
electrons to the Fermi subsystem and will assume that the
Fermi subsystem consists only of light electrons with mass
m = ml . Another simplification of the model is related to the
two-valley structure of the MoS2 Brillouin zone. Namely, we
will not consider the intervalley scattering processes because
they require an extremely large momenta transfer between in-
teracting particles, whereas all phenomena taken into account
below occur in the long-wavelength limit corresponding to
very small momenta.

Since the Hamiltonian describing the light-induced elec-
tron pairing was analyzed earlier [28,30] (see Appendix for
details), the following analysis is devoted to the Hamilto-
nian describing the interaction processes in the light-induced
Bose-Fermi system. Conventionally, the interactions of charge
particles in various 2D structures are described by the 2D
Coulomb potential (see, e.g., Refs. [52,53]). Therefore, the
interaction Hamiltonian for the considered hybrid Bose-Fermi
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system can be written as a sum of three terms H = HBF +
HFF + HBB, where the term:

HBF =
∫

S
d2r

∫
S

d2R n̂(r, t )UBF (r − R)N̂ (R, t ), (1)

describes the interaction between the Fermi and Bose subsys-
tems with the 2D Coulomb potential:

UBF (r − R) = 2e2

ε|r − R| , (2)

the term:

HFF = 1

2

∫
S

d2r
∫

S
d2r′ n̂(r, t )UFF (r − r′)n̂(r′, t ), (3)

describes the interactions of fermions within the Fermi sub-
system with the 2D Coulomb potential:

UFF (r − r′) = e2

ε|r − r′| , (4)

the term:

HBB = 1

2

∫
S

d2R
∫

S
d2R′N̂ (R, t )UBB(R − R′)N̂ (R′, t ), (5)

describes the interactions of composite bosons within the
Bose subsystem screened by normal electrons with the 2D
screened Coulomb potential:

UBB(R − R′) =
∫

d2k
(2π )2

UB(k) exp[ik(R − R′)], (6)

the Fourier image of the screened potential is

UB(k) = 8πe2

ε(k + ks)
, (7)

where ks = 2/as is the Thomas-Fermi screening wave num-
ber, as = ε h̄2/me2 is the effective screening length, ε

is the effective dielectric constant accounting for all ef-
fects of medium, n̂(r, t ) = ψ†(r, t )ψ (r, t ) and N̂ (R, t ) =
ϕ†(R, t )ϕ(R, t ) are the density operators of the Fermi and
Bose subsystem, respectively, R = (x, y) is the plane radius
vector of composite boson, r = (x, y) is the plain radius
vector of normal electron, and S is the area of the 2D
system.

We will restrict the following consideration to the case of
extremely low temperatures, assuming that composite bosons
form BEC, whereas the remaining unpaired electrons form the
normal degenerate Fermi gas. In the following, we will also
assume that the BEC density nc is small enough to satisfy
the condition ncl2 � 1, where l is the boson-boson scatter-
ing length. In such a regime, BEC can be described by the
standard Bogoliubov theory of weakly interacting Bose gas.
Within this theory, the Bose operator ϕ(R, t ) = ϕ0 + δϕ(R, t )
consists of the uniform part describing BEC and the fluctuat-
ing part, where |ϕ0|2 = nc is the BEC density. As a result, the
interaction Hamiltonian in Eq. (1) can be rewritten as a sum

of the three terms:

H (0)
BF = nc

∫
S

d2r
∫

S
d2Rn̂(r, t )UBF (r − R),

H (1)
BF = √

nc

∫
S

d2r
∫

S
d2Rn̂(r, t )UBF (r − R)

× [δϕ∗(R, t ) + δϕ(R, t )],

H (2)
BF =

∫
S

d2r
∫

S
d2Rn̂(r, t )UBF (r − R)|δϕ(R, t )|2, (8)

where the first term, which describes the shift of the Fermi
energy of unpaired electrons, does not affect electronic prop-
erties and will be omitted in the following, whereas the second
and third terms describe the interaction of the Fermi subsys-
tem with the Bogoliubov excitations of BEC (bogolons). For
further developments, it is instructive to introduce the creation
and annihilation operators for bogolons [31] via the relations:

δϕ(R, t ) = 1√
S

∑
p

eipR(upbp + vpb†
−p),

δϕ∗(R, t ) = 1√
S

∑
p

e−ipR(u∗
pb†

p + v∗
pb−p), (9)

where up, vp are the standard Bogoliubov coefficients (here
and below, we use the system of units with h̄ = 1 and will
restore the Planck constant in the final expressions only).
Introducing the healing length ζ = 1/2Ms, the Bogoliubov
coefficients read

up, vp = ±
√

p2/2M + UBnc

2ωp
± 1

2
,

ωp = sp
√

1 + (pζ )2, (10)

where ωp is the bogolon dispersion, the parameter UB ≡
UB(k = 0) represents the strength of the boson-boson interac-
tion, and s = √

UBnc/M is the bogolon phase velocity. Using
the bogolon operators, the interaction terms in Eq. (8) can be
rewritten as

H (1)
BF =

√
nc

S

∑
p

U BF
p n̂−p[(up + v−p)bp + (u−p + vp)b†

−p],

(11)

and

H (2)
BF = 1

S

∑
k,p

U BF
p n̂−p(uk−pb†

k−p + vk−pbp−k )

× (ukbk + vkb†
−k ), (12)

where the term in Eq. (11) describes the fermion-boson inter-
action with a single bogolon, whereas the term in Eq. (12)
corresponds to the two-bogolon processes. Mathematically,
the interaction H (1)

BF is like the conventional electron-phonon
interaction in normal electronic systems (the only difference
is the Bogoliubov coefficients), whereas the second term H (2)

BF
essentially differs from the usual electron-phonon Hamilto-
nian. Nevertheless, the terms in Eqs. (11) and (12) are of the
same order and should be considered simultaneously.

The Feynman diagrams corresponding to the quantum am-
plitudes of the processes described by the Hamiltonians in
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FIG. 3. Vertex Feynman diagrams describing the amplitudes of
(a) the single bogolon and (b) the double bogolon emission by a
moving fermion. The solid lines correspond to fermions, the dashed
lines correspond to the Bogoliubov excitations, the wavy lines mark
the factor

√
nc, and the circles mark the boson-fermion interaction

potential.

Eqs. (11) and (12) are presented in Fig. 3. It should be noted
that these processes can be considered separately in the lowest
order with respect to the boson-fermion interaction potential
U BF

p . Then the correction to the bare fermion energy:

ξp = p2

2m
− μ, (13)

which appears due to the interactions in Eqs. (11) and
(12), is given by the self-energy contribution 
(ε, p) to
the pole of the fermion Green’s function G−1(ε, p) = ε −
ξp + iδsign(ξp). As to the renormalized fermion dispersion,
it is determined by the equation ε − ξp − 
(ε, p) = 0. The
self-energy 
(ε, p) = 
cn(ε, p) + 
nn(ε, p) makes the two
contributions in the second order of the fermion-boson inter-
action potential U BF

k , which are


cn(ε, p) = i
∑
ω,k

∣∣U BF
k

∣∣2G(ε − ω, p − k)Pcn(ω, k),

Pcn(ω, k) = nc[G(ω, k) + G̃(ω, k) + F (ω, k) + F̃ (ω, k)],

(14)

and


nn(ε, p) = i
∑
ω,k

∣∣U BF
k

∣∣2G(ε − ω, p − k)Pnn(ω, k),

Pnn(ε, p) = i
∑
ω,k

[G(ε, p)G(ε − ω, p − k)

+ G̃(ε, p)G̃(ε − ω, p − k)

+ F (ε, p)F̃ (ε − ω, p − k)

+ F̃ (ε, p)F (ε − ω, p − k)], (15)

where the Green’s functions of BEC read

G(ε, p) = ε + p2/2M + UBnc

ε2 − ω2
p + iδ

,

F (ε, p) = −UBnc

ε2 − ω2
p + iδ

, (16)

and G̃(ε, p) = G(−ε,−p), F̃ (ε, p) = F (−ε,−p). Physi-
cally, the self-energy 
cn(ε, p) describes the excitation of
BEC accompanied by transition of a boson to the noncon-
densed state [see Fig. 4(a)] and arises from the interaction
Hamiltonian in Eq. (11), whereas the self-energy 
nn(ε, p)
describes the polarization of noncondensed composite bosons
[see Fig. 4(b)] arisen from the interaction Hamiltonian in
Eq. (12).

FIG. 4. Self-energy diagrams: (a) Excitation of a boson to the
noncondensed state by a moving fermion; (b) polarization of non-
condensed bosons by a moving fermion; and (c) infinite series of
bubble diagrams contribution to Re 
nn. The solid lines correspond
to the electron Green’s functions, the dashed lines correspond to the
bogolon Green’s functions, the wavy lines represent the

√
nc factor,

the filled circles mark the boson-fermion interaction potential, and
the empty circles mark the boson-boson interaction potential.

The self-energy operators in Eqs. (14) and (15) read


cn(nn)(ε, p) = i
∑
ω,k

G(ε − ω, p − k)R(ω, k), (17)

where R(ω, k) is either |U BF
k |2Pcn(ω, k) or |U BF

k |2Pnn(ω, k).
In both cases, R(ω, k) is the even function of frequency ω and
depends on the absolute value of momentum k. Using this,
Eq. (17) can be simplified. Namely, using the expression:∫ 2π

0

dϕ

2π

1

a + b cos ϕ ± iδ

= sign(a)θ [|a| − |b|]√
a2 − b2

∓ i
θ [|b| − |a|]√

b2 − a2
, (18)

we arrive at


(ε, p) = i
∫ ∞

−∞

dω

2π

∫ ∞

0

kdk

2π
R(ω, k)[A(ω, k) − iB(ω, k)],

A(ω, k) = sign[ε + ω − ξp − k2/2m]√
(ε + ω − ξp − k2/2m)2 − v2k2

, (19)

B(ω, k) = sign[ε + ω]√
v2k2 − (ε + ω − ξp − k2/2m)2

.

In the vicinity of the Fermi level (p ≈ pF ) and on the mass
shell (ε = ξp), the small contribution of k2/2m can be ignored.
Then Eq. (19) can be written as

A(ω, k) = sign[ω]√
ω2 − v2

F k2
,

B(ω, k) = sign[ε + ω]√
v2

F k2 − ω2
. (20)

Correspondingly, Eq. (17) yields


(ε, p) = sign(ε)

2π2

∫ |ε|

0
dω

∫ ∞

ω/vF

kdk√
v2

F k2 − ω2
R(ω, k),

(21)
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whereas Eqs. (14) and (15) read


cn(nn)(ε, p) = sign(ε)

2π2

∫ |ε|

0
dω

×
∫ ∞

ω/vF

kdk
∣∣U BF

k

∣∣2√
v2

F k2 − ω2
Pcn(nn)(ω, k). (22)

The most interesting case corresponds to the long-wavelength
limit (kζ � 1), when the Bogoliubov excitations have the
linear soundlike dispersion ωk = sk. Applying the Debye ap-
proximation, we will assume the linear dispersion ωk = sk for
all wave vectors k. This simplification has a great advantage,
enabling the analytical treatment of the problems under con-
sideration below.

III. RESULTS AND DISCUSSION

A. Polaron effect

The polaron effect consists in the renormalization of the
fermion effective mass in the vicinity of the Fermi energy
due to the fermion-boson interaction and is described by
the real part of the self-energy Re 
(ε, p). The solution of
the equation ε − ξp − Re 
(ε, p) = 0 can be found in the
vicinity of the Fermi energy by the successive approxima-
tion ε = ξp + Re 
(ξp, pF ), where pF = √

2mμ is the Fermi
momentum. Assuming the polaron corrections to be small,
the terms Re 
cn(ξp, pF ) and Re 
nn(ξp, pF ) can be treated
independently as follows.

The first term reads

Re 
cn(ξp, pF ) = sign(ξp)

2π2

∫ |ξp|

0
dω

×
∫ ∞

ω/vF

kdk
∣∣U BF

k

∣∣2√
v2

F k2 − ω2
Re Pcn(ω, k),

Re Pcn(ω, k) = nc
k2

M

1

ω2 − ω2
k

, (23)

where vF = pF /m is the Fermi velocity. The integrals in
Eq. (23) can be easily evaluated in the vicinity of the Fermi
energy, where ξp → 0. Substituting ω = 0 into the integral
and considering the screened boson-fermion interaction po-
tential U BF

k = 4πe2/ε(k + ks), one can find Re 
cn(ξp, pF ) =
−bcnξp, where bcn is described by the expression:

bcn = nc

2π2Ms2vF

∫ ∞

0
dk

∣∣U BF
k

∣∣2

= nc

2π2Ms2

(4πe2)2

ε2h̄vF ks

= e2

επ h̄vF
, (24)

with the restored Planck constant. The second correction to
the fermion effective mass comes from the remaining self-

FIG. 5. Dependence of the ratio bnn/bcn on the ratio k0/ks.

energy part, which reads

Re 
nn(ξp, pF ) = sign(ξp)

2π2

∫ |ξp|

0
dω

∫ ∞

ω/vF

kdk
∣∣U BF

k

∣∣2√
v2

F k2 − ω2

× Re Pnn(ω, k), (25)

where the polarization operator for noncondensed bosons is

Pnn = − (Ms)2

4

[
1√

s2k2 − ω2
+ i

1√
ω2 − s2k2

]
. (26)

Substituting the real part of Eq. (26) into Eq. (25), one can
demonstrate that Re 
nn(ξp, pF ) ∝ ξp ln ξp. Such a logarith-
mic divergence at ξp → 0 means that the bubble diagrams
pictured in Fig. 4(b) give a large contribution in the vicinity of
the Fermi energy. Therefore, correct description of the inter-
action requires the summation of the infinite series of bubble
diagrams pictured in Fig. 4(c). As a result of the summation,
we arrive at the expression:

Re 
nn(ξp, pF ) = sign(ξp)

2π2vF

∫ |ξp|

0
dω

∫ ∞

0
dk

× ∣∣U BF
k

∣∣2 Re Pnn(0, k)

1 − U B
k Re Pnn(0, k)

, (27)

which again has the form Re 
nn(ξp, pF ) = −bnnξp, with
bnn = bcnF (k0/ks), where k2

0 = 2πe2(Ms)2/εsh̄3 ∝ √
nc, and

the function:

F (y) = y2
∫ ∞

0

dx

(x + 1)2(x + y2)
, (28)

describes the relationship between the BEC density nc and the
ratio bnn/bcn (see Fig. 5). Since the fermion energy reads ε =
(1 − bcn − bnn)ξp, the renormalized effective mass of fermion
is

m∗ = m

1 − bcn − bnn
≈ m(1 + bcn + bnn), (29)

where the coefficients bcn and bnn are defined by Eq. (24)
and Fig. 6. It follows from Eq. (29) that the fermion-boson
interaction leads to increasing the fermion effective mass
m∗ > m. Particularly, m∗ ≈ 1.52m for the MoS2 monolayer,
with the fermion and boson densities n = 5 × 1012 cm−2 and
nc = 108 cm−2, respectively. The polaron renormalization of
the effective mass will lead to decreasing electron mobility,
which can manifest itself in various transport phenomena.

It should be noted that the small parameter of the renormal-
ization theory developed above is the ratio e2/ε h̄vF , where
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FIG. 6. Dispersion of the collective modes for the different val-
ues of the Bogoliubov phase velocity: (a) s < vF and (b) s >

vF . Line 1 corresponds to the dispersion ω = vF k, line 2 is the
bare Bogoliubov mode dispersion ωk = sk, line 3 is the bare plas-
mon dispersion ωp, and line 4 is the hybridized plasmon-bogolon
mode ω1.

the Fermi velocity vF can be increased by the gate voltage
applied to a monolayer up to the electron density ∼1014 cm−2

(see, e.g., Ref. [54]), and the effective dielectric constant ε

can be increased if the monolayer is sandwiched by dielectric
materials with large dielectric constants. As a consequence,
the aforesaid parameter can be varied in a broad range to keep
the obtained results within applicability of the renormalization
theory. However, even if the calculated fermion mass lies near
the border of applicability of the renormalization theory, the
obtained results remain useful, at least for semiqualitative
estimations.

B. Quasiparticle lifetime

The imaginary part of fermion self-energy Im 
(ξp, pF )
= − defines the quasiparticle damping rate  = 1/2τe,
where τe is the quasiparticle lifetime. In the following, we will
analyze the damping rate:

 = cn + nn, (30)

coming from the two contributions to the self-energy. The first
contribution:

Im 
cn(ξp, pF ) = sign(ξp)

2π2

∫ |ξp|

0
dω

∫ ∞

ω/vF

kdk
∣∣U BF

k

∣∣2√
v2

F k2 − ω2

× Im Pcn(ω, k), (31)

Im Pcn(ω, k) = −πnc
k2

M
δ
(
ω2 − ω2

k

)
, (32)

yields

cn = sign(ξp)nc(4πe2)2θ [vF − s]

4πε2h̄2Ms
√

v2
F − s2

×
[

ln

( |ξp| + h̄sks

h̄sks

)
− |ξp|

|ξp| + h̄sks

]
, (33)

where θ [x] is the Heaviside step function (the Planck constant
is restored). The second contribution has the form:

Im 
nn(ξp, pF ) = − sign(ξp)(Ms)2

8π2

∫ |ξp|

0
dω

×
∫ ω/s

ω/vF

kdk
∣∣U BF

k

∣∣2√
v2

F k2 − ω2
√

ω2 − s2k2
. (34)

Since |U BF
k |2 ≈ |U BF

0 |2, for |ξp| � vF ks, Eq. (34) yields

nn = ξp
(Ms)2

16πvF sh̄4

(
4πe2

εks

)2

, (35)

where the Planck constant is restored. One can see that both
contributions are nonzero only if the fermion phase velocity
vF exceeds the velocity of Bogoliubov excitations s. Physi-
cally, this is the condition of bogolon emission by a fermion
(the particular case of the Cherenkov effect). Thus, the damp-
ing arises from the emission of bogolons which are real (in
contrast to the polaron effect discussed above, where the
Bogoliubov excitations dressing a fermion are virtual).

In the aforesaid, we considered only the bogolon damping
arisen for the bogolon-fermion interaction, although there is
also the bogolon-bogolon interaction channel giving the ad-
ditional contribution to the decay rate known as the Beliaev
dumping (see, e.g., Ref. [55]). However, the Beliaev dump-
ing is ∼k3 in the long-wavelength limit considered above,
whereas the dumping arisen from the bogolon-fermion inter-
action is ∼k there. Therefore, the Beliaev dumping can be
neglected as a first approximation.

It should be noted that the quasiparticle description holds
only if the damping is weak enough /ξp � 1. To validate
this condition, it should be noted that |ξp| � vF ks in the
vicinity of the Fermi energy. As a consequence, cn ∝ ξp|ξp|,
and therefore, cn/ξp � 1. Thus, the processes corresponding
to the boson transfer from the condensate into noncondensed
states due to the moving fermion [see Figs. 3(a) and 4(a)] do
not destroy the quasiparticle description of the Fermi subsys-
tem. Substituting the MoS2 monolayer parameters [51] into
Eq. (35), one can see that nn/ξp ∼ 0.04, and therefore, the
condition nn/ξp � 1 is also satisfied.

It should be noted also that the electron gas viscosity is
directly related to the electron-electron scattering time [56]. In
a degenerate 2D electron gas at zero temperature, the inverse
electron-electron scattering lifetime τ−1

ee ∝ ξ 2
p ln ξp turns into

zero at the Fermi surface (ξp → 0). In the case of the Bose-
Fermi mixture, the unpaired electron lifetime τe, which comes
from the electron-boson scattering, also makes a contribu-
tion to the viscosity. It follows from Eq. (35) that τ−1

e ∝ ξp,
and it turns into zero more slowly than τ−1

ee at ξp → 0. This
means that the Fermi subsystem viscosity is determined by
the fermion-boson scattering processes rather than by the
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fermion-fermion ones. As a consequence, one can expect that
the superfluid Bose subsystem will give the predominant con-
tribution to the intersubsystem viscosity in comparison with
the fermion-fermion interaction.

C. Collective modes

In the collective modes, the fermion density fluctuations
δnkω and the boson density fluctuations δNkω are coupled by
the system of equations:

δnkω = SkωU BF
k δNkω,

δNkω = PkωU BF
k δnkω, (36)

where U BF
k is the Fourier transform of the boson-fermion

interaction potential UBF (r),

Skω = �kω

1 − U F
k �kω

, Pkω = nck2/M

(ω + iδ)2 − ω2
k

(37)

are the Fermi subsystem response function and the Bose sub-
system response function, respectively, which describe the
reaction of the subsystems to an external perturbation,

�kω = −m

π

{
1 − |ω|θ[

ω2 − v2
F k2

]
√

ω2 − v2
F k2

− i
|ω|θ[

v2
F k2 − ω2

]
√

v2
F k2 − ω2

}

(38)

is the Fermi subsystem polarization operator written in the
long-wavelength limit (k � mvF ), and ωk = sk is the bogolon
dispersion. The poles of the response functions in Eq. (37)
give the dispersions of the corresponding collective modes
in the system. Namely, the Pkω pole ω = ωk defines the Bo-
goliubov mode, whereas the Skω pole defines the plasmon
mode. It should be noted that the plasmon mode exists only
within the frequency domain ω  kvF , where the imaginary
part of the polarization operator in Eq. (38) is Im �kω = 0,
and its real part can be written as Re �kω ≈ mv2

F k2/2πω2. As
a result, the denominator of the response function Skω reads
1 − U F

k Re �kω ≈ 1 − ω2
p/ω

2 and has the pole ω = ωp, where
ωp ≡ vF

√
ksk/2 is the plasmon dispersion.

The secular equation of the algebraic system in Eq. (36)
yields the dispersion equation describing the interaction be-
tween the plasmon and Bogoliubov modes:

1 − U F
k �kω − (

U BF
k

)2
�kωPkω = 0, (39)

which can be rewritten within the domain ω  kvF as(
ω2 − ω2

p

)(
ω2 − ω2

k

) − (ωpωk )2 ks

k
= 0. (40)

Solving Eq. (40), we arrive at the hybridized plasmon-bogolon
modes:

ω2
1,2 = ω2

p + ω2
k

2
± 1

2

√(
ω2

p − ω2
k

)2 + 4(ωpωk )2
ks

k
, (41)

written in the limit k � ks. It should be noted that the mode
ω2 does not exist physically since Re ω2 = 0. On the contrary,
the hybridized mode ω1 is not damped since Im �kω = 0 for
ω > kvF and Im Pkω ∝ δ(ω2 − ω2

k ) = 0 for ω1 �= ωk . The hy-
bridized ω1 mode is plotted for the cases of s < vF and s > vF

in Fig. 6. It follows from the plots that the hybridization of

the plasmon and Bogoliubov modes is most pronounced if
the Bogoliubov mode velocity exceeds the Fermi velocity, i.e.,
s > vF [see Fig. 6(b)]. In this case, the Bogoliubov mode (line
2) and the plasmon mode (line 3) are crossed, and therefore,
their interaction is most effective. In the opposite case s < vF ,
the intermode influence is relatively weak since the Bogoli-
ubov mode (line 2) and the plasmon mode (line 3) are widely
separated in frequencies [see Fig. 6(a)]. As a consequence,
the ultraviolet shift of the hybridized mode ω1 (line 4) with
respect to the bare plasmon dispersion (line 3) for s > vF [see
Fig. 6(b)] is much larger than the same shift for s < vF [see
Fig. 6(a)].

In the frequency domain ω < vF k, the bare plasmon does
not exist since the real part of the polarization operator Re �kω

does not depend on frequency. Therefore, only the Bogoliubov
mode survives there. However, the Bogoliubov mode experi-
ences damping in the region below the line ω = kvF [see the
lines 2 and 3 in Fig. 6(b)]. The imaginary correction to the
Bogoliubov mode dispersion, which arises from Im �kω �= 0,
can be easily found from the dispersion equation in Eq. (39)
in the limit of ω � vF k. In this limiting case, the fermion
polarization operator in Eq. (38) can be simplified as

�kω ≈ −m

π

[
1 − i

|ω|
vF k

]
. (42)

Then the dispersion equation:

1 − (
U BF

k

)2
Skω

nck2/M

ω2 − ω2
k

= 0, (43)

yields the imaginary correction to the frequency:

Im ω = (
U BF

k

)2 nck2

2Mωk
Im Sk,ω=ωk

= 2π
h̄2nc

mvF Ms
ωk, (44)

which describes the Bogoliubov mode damping. Depending
on the boson and fermion density values, the damping
can be both strong (limk→0 Im ω/ωk  1) and weak
(limk→0 Im ω/ωk � 1). An estimation for the MoS2

monolayer with the BEC density nc = 4 × 1010 cm−2

and the fermion density n = 4 × 1012 cm−2 results in
limk→0 Im ω/ωk = 0.035, which corresponds to the small
damping of the Bogoliubov modes.

The knowledge of the dispersion laws and the damping
of collective modes is the key thing in using the Bose and
Fermi systems as active elements of the plasmonics [57].
Since plasmons are accompanied by the electron gas polariza-
tion, they are extremely sensitive to external electromagnetic
fields. Therefore, the discussed field-induced effects can be
of interest for creating high-performance plasmonic devices
and technologies. In the case of light-induced hybrid Bose-
Fermi systems, both bare collective excitations (plasmons and
the Bogoliubov modes) and their hybrid counterparts can
be studied via the well-developed pump-probe experimental
technique, where the strong pump field produces the light-
heavy electron pairs, whereas the relatively weak probe field
may excite the hybrid modes. It should be noted that the bare
plasmons in conventional systems are sensitive to the electron-
impurity scattering which results in the plasmon damping and
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widening the plasmon resonance. One can expect that the
hybridized modes considered above will be less sensitive to
this destructive effect since the damping of the Bogoliubov
modes due to impurity scattering is weak [58]. It should be
noted also that the found structure of the collective modes will
be useful to describe the gauge-invariant current response of
the Bose-Fermi systems in the superconducting regime [59].

IV. CONCLUSIONS

We have developed the theory describing various phys-
ical characteristics—including the dispersion laws and the
damping (lifetimes) of both single-particle and collective
elementary excitations—in the hybrid Bose-Fermi system in-
duced by light in the 2D systems containing charge carriers
with different effective masses. It is shown particularly that
the interaction between the Bose and Fermi subsystems leads
to increasing effective mass of fermions (the polaron effect),
the bogolon emission by a moving fermion (the Cherenkov-
like effect), and the hybridization of collective modes in
the Fermi subsystem (plasmons) and the Bose subsystem
(bogolons). These effects can be observed in various 2D
structures containing charge carriers with different effective
masses, including MoS2 monolayers (where the conduction
band consists of the spin-split heavy electron subbands and
light electron subbands) and hole systems in quantum wells
based on semiconductor materials (where the valence band
consists of the heavy hole subbands and light hole subbands).
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APPENDIX: THE TWO-ELECTRON HAMILTONIAN

Let us consider a 2D structure containing the two elec-
tron subbands with the different effective masses ml and mh

(see Fig. 2), where the energy spectrum of the subbands is
εl (k) = −�0/2 + h̄2k2/2ml and εh(k) = �0/2 + h̄2k2/2mh,
k = (kx, ky) is the momentum of charge carrier in the 2D
plane, and �0 is the energy splitting of the subbands at k =
0. In the presence of a circularly polarized electromagnetic
wave incident normally to the 2D structure (see Fig. 1), the
Coulomb interaction of two electrons from the subbands εl (k)
and εh(k) is described by the Hamiltonian:

Ĥ = Ĥl + Ĥh + U (rl − rh), (A1)

where Ĥl,h = (p̂l,h − eA(t )/c)2/2ml,h are the Hamiltonians
of free electrons irradiated by the wave, rl,h = (x, y) are the
plane radius vectors of the electrons, p̂l,h = −ih̄∂/∂rl,h are
the plane momentum operators of the electrons, U (rl − rh) =
e2/ε|rl − rh| is the 2D Coulomb potential of the electron
interaction, ε is the dielectric constant,

A(t ) = (Ax, Ay) =
[

cE0

ω0

]
(cos ω0t, sin ω0t ) (A2)

is the vector potential of the wave, E0 is the electric field
amplitude of the wave, and ω0 is the wave frequency. The
Hamiltonian in Eq. (A1) is spinless since the exchange in-

teraction of the considered two electrons is absent due to
different masses of them, whereas their direct spin-spin inter-
action is relativistically small and can be neglected as a first
approximation [30]. Considering Eq. (A2), the Hamiltonian in
Eq. (A1) can be rewritten as

Ĥ = p̂2
l

2ml
+ p̂2

h

2mh
− eA(t )p̂l

cml
− eA(t )p̂h

cmh
+ ε0 + U (rl − rh),

(A3)

where

ε0 = e2E2
0

2mlω
2
0

+ e2E2
0

2mhω
2
0

(A4)

is the kinetic energy of electron rotation under the circularly
polarized field in Eq. (A2). To proceed, let us apply the
Kramers-Henneberger unitary transformation:

Û (t ) = exp

{
i

h̄

∫ t [
e

mlc
A(τ )p̂l − e2E2

0

2mlω
2
0

]
dτ

}

× exp

{
i

h̄

∫ t [
e

mhc
A(τ )p̂h − e2E2

0

2mhω
2
0

]
dτ

}
. (A5)

Then the transformed Hamiltonian in Eq. (A3) reads

Ĥ′ = Û †(t )ĤÛ (t ) − ih̄Û †(t )∂tÛ (t )

= p̂2
l

2ml
+ p̂2

h

2mh
+ U (rl − rh − r0(t )), (A6)

where

r0(t ) = (−r0 sin ω0t, r0 cos ω0t ) (A7)

is the vector defining the change of relative position of the two
electrons under the field, and

r0 = |e|E0(mh − ml )

mlmhω
2
0

(A8)

is the length of the vector. It should be noted that the field-
induced energy in Eq. (A4) results only in the energy shift
of all electronic states by the same energy. Since such a shift
does not affect electronic properties, the unitary transforma-
tion in Eq. (A5) removes the energy in Eq. (A4) from the
Hamiltonian in Eq. (A6). In the center-of-mass system, the
two-electron Hamiltonian in Eq. (A6) can be rewritten as

Ĥ′ = p̂ 2

2m∗ + U (r − r0(t )), (A9)

where r = rl − rh is the radius vector describing the relative
motion of electrons, p̂ = −ih̄∂/∂r is the momentum operator
corresponding to the relative motion, and m∗ = mlmh/(ml +
mh) is the reduced mass of the two-electron system.

It should be noted that the Hamiltonian in Eq. (A9)
with the periodically time-dependent potential U (r − r0(t ))
is still exact and describes the relative motion of two inter-
acting electrons under the field accurately. Next, let us apply
the high-frequency approximation which is well known in
the Floquet theory of periodically driven quantum systems
[3–6]. Namely, the periodically time-dependent potential in
the Hamiltonian in Eq. (A9) can be replaced approximately
with the time-averaged potential if the field frequency is high
enough [28–30]. Within this approximation, the periodically
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time-dependent Hamiltonian in Eq. (A9) turns into the effec-
tive stationary Hamiltonian:

Ĥ0 = p̂ 2

2m∗ + U0(r), (A10)

where the time-averaged potential:

U0(r) = 1

2π

∫ π

−π

U (r − r0(t )) d (ω0t )

=
⎧⎨
⎩

(2e2/πr0)K (r/r0), r/r0 � 1

(2e2/πr)K (r0/r), r/r0 � 1
(A11)

can be treated as the Coulomb potential dressed by the cir-
cularly polarized field, and the function K (z) is the complete
elliptical integral of the first kind. Since the dressed potential
in Eq. (A11) has a local minimum at r = 0 for ml �= mh,
the Schrödinger equation with the Hamiltonian in Eq. (A10)
yields the bound two-electron state localized near the min-
imum (composite boson) [28]. It should be noted that this
bound state is quasistationary since the potential minimum
at r = 0 is local. Therefore, a single composite boson has
a finite lifetime. However, it has been demonstrated that the
Fermi sea of normal electrons stabilizes the boson [30]. Such
a stabilization is physically like the stabilization of the Cooper
pair by the Fermi sea of conduction electrons in the conven-
tional BCS theory of superconductivity. As a consequence,
the light-induced composite bosons in the hybrid Bose-Fermi
system have infinite lifetimes, and the system as a whole is
stable [30].

It follows from Eq. (A11) that the dressed potential U0(r)
for ml = mh turns into the bare Coulomb potential U (r) =
e2/εr, which has no local minima and therefore cannot couple
interacting electrons. Physically, this follows from the fact
that the vector in Eq. (A7) turns into zero if ml = mh. As
a consequence, the field does not change the distance be-
tween interacting electrons in this case and, correspondingly,
does not affect the Coulomb interaction of them. Therefore,
the condition ml �= mh is crucial for the effects under con-
sideration. Among 2D structures satisfying this condition,
both MoS2 monolayers (where the conduction band consists
of the spin-split heavy electron subbands and light electron
subbands) and hole systems in quantum wells based on semi-
conductor materials (where the valence band consists of the
heavy hole subbands and light hole subbands) should be
noted.

Next, let us discuss interactions in the light-induced hy-
brid Bose-Fermi system, assuming the boson density is small
enough to consider the composite bosons as weakly in-
teracting independent particles. Since the dressed Coulomb
potential in Eq. (A11) turns into the bare Coulomb potential
for charge particles with identical masses, the boson-boson
interaction and the fermion-fermion interaction can be de-
scribed by the bare Coulomb potentials in Eqs. (4) and (6),
respectively. Since the boson and fermion masses are dif-
ferent, the boson-fermion interaction rigorously should be
described by the dressed Coulomb potential. However, the
dressed potential in Eq. (A11) substantially differs from the
bare Coulomb potential only for small distances r � r0, where
the length r0 defined by Eq. (A8) is the characteristic size of
composite boson [30]. Therefore, the boson-fermion interac-
tion for small boson densities can be described by the bare
Coulomb potential defined by Eq. (2).
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