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Entanglement signatures of multipolar higher-order topological phases
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We propose a procedure that characterizes free-fermion or interacting classes of higher-order topological
phases via their bulk entanglement structure. To this end, we construct nested entanglement Hamiltonians by
first applying an entanglement cut to the ordinary many-body ground state, and then iterating the procedure
by applying further entanglement cuts to the (assumed unique) ground state of the entanglement Hamiltonian.
We argue that some classes of nth-order topological phases can be characterized by the features of their nth-
order nested entanglement Hamiltonian, e.g., degeneracy in the entanglement spectrum. We explicitly compute
nested entanglement spectra for a set of higher-order, free and interacting, fermionic and bosonic multipole and
boundary obstructed phases and show that our method successfully identifies such phases.
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I. INTRODUCTION

The presence of protected gapless modes on the
(d − 1)-dimensional edge of a gapped d-dimensional sys-
tem is one of the key signatures of topologically nontrivial
phases of matter. Recently this paradigm was expanded to in-
clude higher-order symmetry-protected topological (HOSPT)
phases in fermionic [1–14] and bosonic [15–18] systems. A
feature that unifies all of these phases is the existence of
symmetry-protected topological features, such as zero modes
or fractional charge, localized at the subdimensional bound-
aries of the lattice (e.g., at corners or hinges where multiple
surfaces intersect).

One interesting complication that arises in this context is
that since the edges of HOSPT phases are gapped, they can
themselves harbor lower-order symmetry-protected topologi-
cal (SPT) phases. This idea was investigated in Refs. [2,19],
where the notion of boundary obstructions was introduced for
free-fermion models. These boundary-obstructed phases can
be characterized using the spectrum of the Wannier Hamil-
tonian, which shares some of its spectral structure with the
Hamiltonian at a physical edge [1,20]. Moreover, computing
topological invariants constructed from the gapped edge or
Wannier bands yields a refined topological classification that
can identify some types of higher-order topology in noninter-
acting band theories.

The topological properties of the Wannier bands act as a
bulk proxy for the topology of the boundary Hamiltonian.
While this approach has proved fruitful when examining lat-
tice models of free fermions, it is no longer applicable once
interactions are taken into account. Seeing that both free and
interacting models of HOSPT phases share many features and,
in some cases, can be mapped onto each other [16], it is
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natural to search for a more generically applicable method that
will allow the identification of HOSPT phases and boundary-
obstructed HOSPT phases from the bulk many-body wave
function alone. Furthermore, topologically ordered phases in
two dimensions can have gapped, topological edges and/or
interfaces and can exhibit corner modes, and entanglement
measures may be useful in this context as well [21,22].

We can make some progress by observing that a particu-
lar subset of higher-order models shares a rich hierarchical
spatial structure. This structure was first demonstrated in
the quadrupole topological insulator [1] (QTI), where the
topological quadrupole phase, having nonvanishing bulk
quadrupole moment qxy, is protected by a pair of anticommut-
ing mirror symmetries, or by C4 symmetry. The consequences
of a bulk quadrupole moment can be seen by taking a square-
shaped sample having open boundaries. In such a sample,
two edges, parallel to x̂ and ŷ, respectively, that intersect at
a corner can be polarized, and the system generically obeys
the equation

Qcorner − Pedge
1 − Pedge

2 = −qxy, (1)

where Pedge
1,2 are the edge polarizations for the two intersect-

ing edges, Qcorner is the corner charge, and qxy is the bulk
quadrupole moment.

Interestingly, a similar relationship was shown to hold
between the Z2 indices of lower-dimensional SPT phases
appearing at the edges of a two-dimensional (2D) bosonic,
second-order quadrupolar SPT phase [16], and the protected
degrees of freedom localized at the corner. This observation
suggests that Eq. (1) can be understood as a type of quadrupo-
lar bulk-boundary correspondence that relates the topological
indices of a hierarchy of topological phenomena in descend-
ing dimensions, and defines a certain subclass of second-order
SPT phases.

To make further progress let us turn our attention to the
entanglement structure of the ground state, which is known to
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serve as a bulk indicator of topological edge properties [23].
In particular, a relevant result for our work is that one obtains
a protected, degenerate entanglement spectrum when cutting
nontrivial one-dimensional (1D) SPT phases [24]. More so,
the entanglement Hamiltonian itself has been shown to be in
direct correspondence with the Hamiltonian of the physical
edge [25–27]. Hence, for HOSPT systems we would expect
to find that the entanglement spectrum would have a unique,
gapped ground state since the edge spectrum is gapped. In-
deed, quite recently, the entanglement Hamiltonian computed
for the ground state of the QTI model was shown [28] to repro-
duce all of the crucial features of the physical edge, allowing
one to relate the gap in the entanglement spectrum and the
Berry phase or polarization of the entanglement ground state
with the corresponding quantities at the physical edge.

These observations inspire us to further investigate the
applicability of entanglement Hamiltonians to access the
topological properties of some classes of many-body HOSPT
systems. Specifically, we define a characterization using a
series of nested entanglement Hamiltonians (NEHs) which,
as we show, can be used as a tool to access the essential
boundary physics purely from the ground-state wave function
of a completely periodic d-dimensional system. The concept
of nested entanglement entropy has been first introduced in
Ref. [29], and subsequently the spectrum of the nested re-
duced density matrix was used in Refs. [3,28] to characterize
noninteracting 2D and three-dimensional (3D) HOSPT sys-
tems. In our work, as described in detail in Sec. II, we perform
a series of n entanglement cuts that intersect on a (d − n)-
dimensional subspace. We begin with the ground state of the
physical Hamiltonian and make an entanglement cut. We can
then study the associated entanglement Hamiltonian and its
spectrum. If it is gapped, or can be gapped with suitable
symmetry-preserving perturbations, we can then extract the
entanglement ground state for the first entanglement Hamil-
tonian. Assuming this ground state does not spontaneously
break the protective symmetries, we can perform a second
cut, etc. Hence, we define an nth-order NEH recursively as
an entanglement Hamiltonian computed for a spatial cut of
the ground state of the (n − 1)th entanglement Hamiltonian.
The ground state of the physical Hamiltonian serves as a base
for this recursive procedure.

In this article we illustrate this characterization procedure
using a series of noninteracting and interacting fermionic
and bosonic models. By studying classes of HOSPT models
that maintain some residual symmetry at the boundary, we
show that the entanglement cuts produce either a gapped
entanglement Hamiltonian that itself hosts an SPT phase,
or a gapless entanglement Hamiltonian that hosts protected
degenerate states. This observation prompts us to consider
entanglement features, e.g., protected degeneracy of the nth
nested entanglement Hamiltonian ground state, along with
the uniqueness of the ground states of every (n − k)th NEH
for k = 1, 2, . . . (n − 1), as a characteristic of some HOSPT
phases that can be applied to free and interacting systems. For
the models we study here, the nested entanglement Hamilto-
nians and their low-lying spectral properties provide useful
characterizations of the associated HOSPT phases. For more
generic models, especially in 3D systems where other sub-
tleties in the nested 2D spectra can arise [21,22,30], one may

have to consider additional features of the entanglement spec-
trum to find a completely generic entanglement classification
scheme for HOSPT systems (see Ref. [31] for some further
discussion).

Our article is organized as follows. We begin with a de-
tailed presentation of our method in Sec. II. Then we proceed
to Sec. III, where we apply our proposed construction to a va-
riety of lattice models that are known to develop quadrupolar
and octupolar topological phases in the ground state. We ex-
plicitly compute eigenspectra of their second- and third-order
nested entanglement Hamiltonians and show that these spectra
turn out to be degenerate for the nontrivial quadrupolar and
octupolar HOSPT phases, respectively. Finally, we conclude
in Sec. IV.

II. METHOD OF NESTED ENTANGLEMENT
HAMILTONIANS

A. Proposed method

In this section we will describe the notion of a nested
entanglement Hamiltonian (NEH) and what information we
can expect to extract from some types of HOSPT phases.
We can define the (n + 1)th NEH, denoted as HE ,n+1, re-
cursively: HE ,n+1 is the entanglement Hamiltonian computed
from a bipartitioned reduced density matrix of the ground state
(assumed to be nondegenerate) of the nth NEH HE ,n. The
resulting reduced density matrix ρn+1 encodes the (n + 1)th
NEH via ρn+1 = exp(−HE ,n+1). The base of this recursive
procedure is the physical Hamiltonian of the system, i.e.,
HE ,0 ≡ H . For the purpose of characterizing d-dimensional
HOSPT phases we choose that the set of n spatial cuts used
to generate the series of NEHs is represented by surfaces
of codimension 1 that have a nontrivial intersection over a
(d − n)-dimensional manifold. For instance, to define a third-
order NEH in three spatial dimensions we need to consider
three consecutive planar cuts that all have at least one common
point. In practice, we will consider lattice models where en-
tanglement cuts are represented by a series of codimension-1
planes.

To briefly motivate the usefulness of this construction,
and to set our expectations for the detailed examples in the
next section, let us imagine a two-dimensional quadrupolar
HOSPT phase with the Hamiltonian H . To construct the series
of NEHs, we first we make an entanglement cut 1© (shown
in Fig. 1) and compute the reduced density matrix, and cor-
responding entanglement Hamiltonian, for the ground state
|� (0)〉 of H :

ρ
(1)
AB = TrCρ (0) = exp

(−HE ,1
AB

)
, (2)

where ρ (0) = |� (0)〉〈� (0)| is the full ground-state density
matrix, and ρ

(1)
AB is the reduced density matrix for the entangle-

ment cut that separates region AB from region C (see Fig. 1).
For the next step we consider a system described by the

entanglement Hamiltonian HE ,1
AB which acts only on the part

of the Hilbert space corresponding to degrees of freedom
located in the physical regions labeled by A and B. In some
simple cases we can readily identify this Hamiltonian as that
of a gapped SPT state living on the entanglement cut. If a
boundary SPT is not plainly apparent, then one can proceed

155138-2



ENTANGLEMENT SIGNATURES OF MULTIPOLAR … PHYSICAL REVIEW B 108, 155138 (2023)
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FIG. 1. A two-dimensional system with two successive entan-
glement cuts. The first cut, shown in red, results in a gapped SPT
phase at the entanglement edge (black line); the second cut, shown in
blue, ends up splitting the SPT phase, leading to a doubly degenerate
entanglement spectrum.

by trying to characterize the ground state of the entangle-
ment Hamiltonian using additional entanglement cut(s). For
this procedure to be unambiguous we need the ground state
of HE ,1

AB to be unique. If the ground state is not unique
(generically) then we would expect either the entanglement
ground state might spontaneously break some symmetry, or
the system may already have some type of first-order SPT
structure that leads to protected boundary or entanglement cut
states that will obscure the identification of any higher-order
topology.

For higher-order phases we expect the physical edges to be
gapped, and the (first-order) entanglement ground state to be
unique. Therefore, the requirement of a unique ground state is
precisely what one would expect for a HOSPT system. Hence,
to proceed we calculate the ground state of the entanglement
Hamiltonian HE ,1

AB , and then make a second entanglement cut,
e.g., the one labeled as 2© in Fig. 1. Tracing out the region B,
we find a reduced density matrix from which we can extract
the second nested entanglement Hamiltonian:

ρ
(2)
A = TrBρ

(1)
AB = exp

(−HE ,2
A

)
. (3)

For some second-order HOSPT phases we will find that the
ground state of HE ,2

A has protected degeneracy. Indeed, as
we will see below, the quadrupolar HOSPT phase has a
doubly degenerate second-order entanglement spectrum (see
Fig. 2). Intuitively this arises because the initial entanglement
Hamiltonian HE ,1

A , which is supported on an effectively one-
dimensional (1D) region, represents a first-order 1D SPT. The
second entanglement cut then reveals the entanglement degen-
eracy corresponding to this SPT (expected for 1D SPTs from
Ref. [24]). Hence, we propose that this procedure can serve
as an important many-body characteristic for some HOSPT
systems.

B. Discussion of proposed method

In this section we want to comment on the choice of the en-
tanglement cut and the region of applicability of this method.

We note that the choice of cut is crucial for our proce-
dure as the cut must respect the symmetries protecting the
boundary phase. In other words, an analysis of the point group
symmetry and the crystal structure may be necessary to decide

1 2

34

λ t

π

A

B
C

FIG. 2. Left: QTI model with two consecutive entanglement cuts
displayed by red and blue lines. Right: Single-particle entanglement
spectra of the entanglement Hamiltonians obtained after performing
the first (red) and the second (blue) cuts. These spectra were com-
puted for the quadrupole model with t/λ = 0.5 on a periodic 20 × 20
lattice. The entanglement spectrum of the entanglement Hamiltonian
obtained after making the first cut is gapped at half filling, while
spectrum of the second nested entanglement Hamiltonian is gapless.

on the relevant cuts. This is similar to how, for example,
one studies entanglement properties of inversion-symmetric
systems by making cuts halfway through the system such
that subsystem A is mapped to subsystem B under inversion
[32,33]. In this case we need the cut to satisfy a symmetry
where A is mapped to itself, e.g., mirror symmetry. Other
cuts may also generate entanglement indicators for HOSPT
phases, and could lead to interesting new directions, but for
our current work we only employ a special set of cuts.

For the applicability of our method, heuristically, we ex-
pect that the nested entanglement Hamiltonian (based on
position-space cuts) can tell us whether or not a spatial subsys-
tem of the Hamiltonian is topological, even if the total system
is trivial. Hence, this method should work for a wide class
of systems including many types of higher-order topological
phases, all boundary obstructed phases [19], and all embedded
topological phases [34].

In general, the starting point for our entanglement analysis
is a gapped entanglement ground state. It is difficult to find
necessary and sufficient conditions for a gapped entanglement
ground state in general, but we can make some comments.
In general, one clear condition for a gapped “first” entan-
glement Hamiltonian is that the first-order, strong topology
must vanish. Crucial early work by Ref. [24] demonstrates
that 1D topological phases exhibit degenerate, i.e., gapless,
entanglement ground states. Additionally, a large body of
work, starting with Ref. [23], has shown results for quantum
Hall and topological insulators in two and three dimensions
that indicate gapless, spectral flow in the single-particle en-
tanglement spectrum which implies a gapless entanglement
ground state, and would prevent us from defining a NEH.
Hence we expect that we cannot apply our method to strong
topological phases for any spatial cut, or to weak and topo-
logical crystalline phases for cuts that preserve the relevant
crystal symmetries.
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For noninteracting systems we can say a bit more. We
know that an entanglement cut in position space is like form-
ing a physical edge [35], and so a gapped entanglement
ground state is related to the properties of a particular type
of physical edge. However, even requiring a gapped physical
edge is not sufficient to guarantee a nondegenerate entan-
glement ground state. Indeed, there are examples where the
entanglement Hamiltonian has more, or different, symmetry
than the actual Hamiltonian. For example, the single-particle
entanglement Hamiltonian for an inversion-symmetric cut of
an inversion-symmetric system will have a kind of particle-
hole symmetry that the original Hamiltonian does not exhibit.
This particle-hole-like symmetry can protect gapless modes in
the entanglement spectrum that are not protected on a physical
edge (see Ref. [32]).

III. RESULTS

In this section we will illustrate the usefulness of our
procedure by explicitly computing second- and third-order
nested entanglement Hamiltonians for a series of models that
are in quadrupolar and octupolar HOSPT phases, respectively.
We will consider a variety of bosonic and fermionic models,
both free and interacting. In every case we will show that the
first-order entanglement Hamiltonian bears the same spectral
structure as the Hamiltonian of the physical boundary. In par-
ticular, we show that, for the systems we study, the (n − 1)th
nested entanglement Hamiltonian HE ,n−1 represents a gapped,
nontrivial SPT phase, in analogy to what is found in some
HOSPT phases. Consequently, when further cut, such phases
will yield an nth-order NEH that has a protected, doubly
degenerate eigenspectrum.

A. QTI model

We begin with the QTI model first introduced in Ref. [1]. It
is a free-fermion, tight-binding model defined on a square lat-
tice with four spinless fermion orbitals per unit cell. Hopping
amplitudes are dimerized in both the x and y directions, and
π fluxes are threaded through each plaquette of the lattice.
The real-space structure of this model is shown in Fig. 2,
where λ and t denote the amplitudes of the dimerized hop-
pings. For a system at half filling this model is generically
gapped, and can be tuned to two distinct HOSPT phases
with the trivial insulating phase occurring for |t | > |λ|, and
the topologically nontrivial phase (exhibiting fractional corner
charges on open boundaries) for |t | < |λ|. The entanglement
structure of this model was thoroughly studied in Ref. [28] (at
least at the single-particle level), where it was shown that the
ground state of the entanglement Hamiltonian is gapped, and
its unique ground state develops a Zak-Berry phase (polariza-
tion). This matches the expectations arising from considering
the physical edge of this system, which has a quantized charge
polarization in the presence of mirror symmetry, and the
nested Wilson loop formalism [1].

Our goal in this section is to apply our proposed method to
the many-body ground state of this model to directly com-
pute the first and second nested entanglement spectra for
the QTI model. As a first simple exercise, let us work out
the ground-state entanglement structure for this model in a

zero-correlation-length limit where the intracell hopping am-
plitude t vanishes. Here we will consider our model on an
open infinite plane, although our discussion can be straightfor-
wardly extended to finite or periodic lattices. The Hamiltonian
in our case decomposes into a collection of disjointed π -flux
plaquettes (four-site periodic chains) each at half filling. They
are described by the Hamiltonian (see site labels in Fig. 2)

H� = c†
1c2 − c†

2c3 + c†
3c4 + c†

4c1, (4)

where we have enforced C4 symmetry such that λx = λy ≡
λ = 1. Each of these clusters has a unique ground state:∣∣ψ (0)

�
〉 = 1

2
√

2
(|1100〉 + |0110〉 − |1001〉 − |0011〉)

+ 1

2
(|0101〉 − |1010〉), (5)

where we have used the occupation basis. Therefore, the
ground state of the overall Hamiltonian is also unique as it
is given by the tensor product of the ground states on each of
the disjoint clusters:

|� (0)〉 =
⊗

i

∣∣ψ (0)
�,i

〉
, (6)

where the index i runs over all four-site clusters.
To carry out our procedure, let us first make an entangle-

ment cut shown by the red line in Fig. 2. The reduced density
matrix is given by a tensor product of reduced density matrices
for each individual cluster:

ρ
(1)
AB = TrCρ (0) =

⊗
i

ρ
(1)
AB,i, (7)

where ρ (0) is the density matrix of the ground state |� (0)〉,
ρ

(0)
AB,i = TrC (ρ (0)

i ), and the index i runs over all individual
clusters. Let us denote by C the set of all individual clusters,
and let CA denote the subset of clusters that are completely
contained in region A, and similarly for other subsets of the
lattice. Additionally, by CA∩B we will denote clusters that over-
lap sites from both regions A and B, but not any other region,
i.e., clusters that lie directly on the boundary between A and
B. First, note that for a cluster i that is completely contained
in AB (i.e., the region inside the first entanglement cut) we
have ρ

(1)
AB,i ≡ ρ

(0)
i , since we are taking a partial trace over sites

that are not included in cluster i. Second, for clusters that com-
pletely lie in C (i.e., i ∈ CC) we have ρ

(1)
AB,i ≡ 1, as those groups

of sites are traced out completely. Finally, there is a set of clus-
ters that are split by the entanglement cut. The reduced density
matrix for one of these clusters can be directly computed
in the occupation number basis {|00〉 j, |01〉 j, |10〉 j, |11〉 j}
with |01〉 j ≡ c†

4, j |00〉 j , |10〉 j ≡ c†
1, j |00〉 j , where the operator

c†
α, j creates a fermion on the αth site of the jth cluster.

The aforementioned reduced density matrix written in this
basis is

ρ
(1)
AB, j = 1

8

⎛
⎜⎜⎝

1 0 0 0
0 3 −2

√
2 0

0 −2
√

2 3 0
0 0 0 1

⎞
⎟⎟⎠, (8)

where the index j belongs to one of the plaquettes lying
directly on the cut (i.e., j ∈ CAB∩C). The total reduced density
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matrix is then

ρ
(1)
AB =

⊗
i∈CAB

ρ
(0)
i

⊗
j∈CAB∩C

ρ
(1)
AB, j . (9)

As we are working with disjoint clusters, the entanglement
Hamiltonian (2) constructed from this reduced density matrix
is given by a tensor product of HE ,1

AB,i = − log(ρ (1)
AB,i ) over all

clusters i that are included in the product above. The ground
state of the total entanglement Hamiltonian is then simply a
tensor product of the ground states for each individual HE ,1

AB,i.
For clusters contained entirely in AB we have

HE ,1
AB,i = − log

(
ρ

(0)
i

) = − log(e−H�,i ) = H�,i, (10)

with H�,i being exactly the Hamiltonian (4) acting on the ith
plaquette [36]. Thus, the ground state of HE ,1

AB,i for i ∈ CAB is

simply |ψ (0)
� 〉i as in Eq. (5). Now, for clusters lying directly on

the cut we have HE ,1
AB, j = − log(ρ (1)

AB, j ) for the density matrix
(8); therefore, we can directly compute

HE ,1
AB, j =

⎛
⎜⎜⎝

log(8) 0 0 0
0 log(8) log(3 + 2

√
2) 0

0 log(3 + 2
√

2) log(8) 0
0 0 0 log(8)

⎞
⎟⎟⎠
(11)

for j ∈ CAB∩C . The ground state of this entanglement Hamil-
tonian is unique and is given by

|ψ (1)〉 j = 1√
2

(|01〉 j − |10〉 j ). (12)

From this analysis we find that the total entanglement
Hamiltonian is a tensor product of individual entanglement
Hamiltonians acting on every cluster that remains in the phys-
ical region AB after we have taken the partial trace over sites
contained in region C:

HE ,1
AB =

⊗
i∈CAB

H�,i

⊗
j∈CAB∩C

HE ,1
AB, j . (13)

Its ground state takes the form

|� (1)〉 =
⊗
i∈CAB

|ψ�〉i

⊗
j∈CAB∩C

|ψ (1)〉 j, (14)

where the index j runs over clusters that lie on the edge of the
entanglement Hamiltonian. Hence, the edge state of HE ,1

AB is
given by ∣∣� (1)

edge

〉 =
⊗

j∈CAB∩C

1√
2

(|01〉 j − |10〉 j ), (15)

which is exactly the ground state of a dimerized Su-Schrieffer-
Heeger (SSH) [37] chain in the zero-correlation length limit.
Therefore, the entanglement Hamiltonian computed for the
ground state of the QTI model hosts a one-dimensional SPT
phase at the entanglement edge (protected by the residual
mirror symmetry on the edge).

To complete our analysis, let us now carry out the second-
order (nested) entanglement cut as indicated by the blue line
in Fig. 2. From this we will compute the entanglement Hamil-
tonian HE ,2

A by cutting the ground state |� (1)〉 of HE ,1
AB . The

analysis here is exactly identical to the one laid out in the pre-
vious paragraphs. The nested entanglement Hamiltonian HE ,2

A

is given by the tensor product of entanglement Hamiltonians
computed for individual clusters. For clusters entirely con-
tained in A we have HE ,2

A,i ≡ H�,i. Similarly, the entanglement
Hamiltonian computed for a cluster lying across the second
cut, and entirely contained in AB, is given by the matrix
(11). Finally, for the single cluster lying at the intersection
of both cuts, as shown in Fig. 2, we find that its entanglement
Hamiltonian in the basis {|0〉, |1〉} is

HE ,2
A,CA∩B∩C

=
(

log(2) 0
0 log(2)

)
. (16)

Hence, the total second-order nested entanglement Hamilto-
nian is

HE ,2
A =

⎡
⎣⊗

i∈CA

H�,i

⊗
j∈CA∩B∪CA∩C

HE ,1
A, j

⎤
⎦ ⊗ HE ,2

A,CA∩B∩C
, (17)

where HE ,1
A, j is Hamiltonian (11) acting on the cluster j that

lies across one entanglement cut, and HE ,2
A,CA∩B∩C

is the contri-
bution to the second-order NEH for the cluster that lies at
the intersection of both cuts. To compute the eigenspectrum
of HE ,2

A,GA∩B∩C
we simply need to diagonalize each individual

term in the tensor product. We indeed find that the presence
of the last term in Eq. (17) renders the entire spectrum doubly
degenerate.

As we noted above, the ground state of the first entangle-
ment Hamiltonian contained an SPT phase localized at its
edge. Indeed, we found the total entanglement ground state
can be split in two parts:

|� (1)〉 = ∣∣� (1)
bulk

〉 ⊗ ∣∣� (1)
edge

〉
. (18)

The second cut will split both the bulk and the edge. Similar to
the first cut, the bulk part will reveal a gapped SPT on the cut.
However, the cut also splits the edge SPT phase |� (1)

edge〉 and,
thus, we naturally expect [24] to find that the entanglement
spectrum computed for this cut has double degeneracy. Con-
sidering this model on a finite lattice with periodic boundary
conditions, we will have to make two subsequent pairs of
parallel entanglement cuts: The first will cut out a cylinder to
find an entanglement Hamiltonian that hosts two SPT phases
localized on the opposite edges. The second pair of cuts splits
both of these SPT phases at two points, resulting in a total
degeneracy of the entanglement Hamiltonian spectra to be
24 = 16, as there will be exactly four clusters that lie on
the intersection of two subsequent cuts. However, while the
ground states of both bulk and boundary clusters contain one
electron per two sites, each of the corner Hamiltonians admits
both states |0〉 and |1〉 in its ground state. By projecting to
the half-filled subspace of the Hilbert space we find that the
degeneracy of the spectrum computed for the second NEH
reduces to 6, for the half-filled particle sector, as there will
be two electrons that need to be distributed between the four
corner clusters.

To verify that these features of the entanglement struc-
ture of the QTI model are still present even away from the
zero-correlation-length limit, we numerically study the single-
particle entanglement spectrum [38] of the QTI model on a
20 × 20 (unit cell) periodic lattice with t/λ = 0.5, and find
that the first-order entanglement spectrum for the red cut is
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gapped at half filling (red spectrum in Fig. 2). After perform-
ing the second cut, this time using the unique ground state
of the entanglement Hamiltonian, we find the second nested
entanglement spectrum to be gapless as shown by the blue
spectrum in the right part of Fig. 2. At half filling, two of the
four midgap states are filled, rendering the overall degeneracy
of the ground state to be exactly 6 as we predicted at the
end of the previous paragraph. We note that this calculation
is in agreement with the results of Ref. [28], which argued
that the entanglement edge of the QTI model has a nontrivial
Berry phase or polarization. In Appendix A we compare the
QTI results with another free-fermion model having corner
charges, but not a quadrupolar structure [2]. We indicate that
our method fails to produce a result for this model because the
first-order entanglement cut has a ground-state degeneracy, in
analogy with what one would expect from the nested Wilson
loop analysis [2].

B. Ring-exchange model

Let us now consider an interacting model that also has a
quantized quadrupole moment: a quadrupolar ring-exchange
model [14,18]. The ground state of this model is an example
of a second-order SPT phase protected by C4 symmetry that
is augmented by a set of (fine-tuned) U (1) subsystem sym-
metries that impose charge conservation along every row and
every column of the square lattice. Once again, the model is
defined on the square lattice with four fermionic degrees of
freedom per unit cell as shown on the left of Fig. 2. Instead of
constructing our model from dimerized hopping terms as in
the QTI model, let us couple clusters of four neighboring sites
by alternating ring-exchange terms. These terms act either
on four sites belonging to a single unit cell (represented by
dashed squares) or on four sites belonging to four neighboring
unit cells (represented by solid squares). The Hamiltonian can
be written as

(19)

where | 〉 indicates a state of a four-site plaquette with an
electron sitting at the upper right corner and one on the lower
left corner. The index p runs over all ring-exchange terms
acting on plaquettes (solid squares on the left side of Fig. 2),
while s runs over ring-exchange terms acting on site (dashed
squares on the left side of Fig. 2).

While we cannot explicitly solve for the ground state of
this model for arbitrary values of t and λ, we can analyze
this model in the limit with t = 0. In this case the model sim-
ply decomposes into a collection of decoupled ring-exchange
terms that we can consider individually in order to compute
the entanglement spectrum of the ground state. The analysis
we need to do in this simple case is exactly analogous to
one performed in the previous section and the second-order
NEH has the same structure as Eq. (17). Explicitly, let us first
compute the entanglement Hamiltonian for a plaquette that
is split between two regions (e.g., AB and C). After making
the first cut (shown in red in Fig. 2), we find that the re-
duced density matrix for a single plaquette j ∈ CAB∩C takes the
following form in the {|00〉 j, |01〉 j, |10〉 j, |11〉 j} occupation

(a)

E

δ

10.50

(b)
ζ

δ

10.50

FIG. 3. (a) Energy and (b) the ground-state entanglement spec-
tra as we interpolate between the ring-exchange Hamiltonian and
a free-fermion quadrupole topological insulator Hamiltonian. We
can see that upon adding the U (1) subsystem symmetry-breaking
hopping terms the degeneracy of the entanglement ground states is
immediately lifted.

number basis:

ρ
(1)
AB, j = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠. (20)

The corresponding entanglement Hamiltonian in the basis
{|01〉 j, |10〉 j} is

HE ,1
AB, j =

(
log(2) 0

0 log(2)

)
, (21)

with the two states |00〉 j and |11〉 j having infinite energy, and
thus effectively being projected out.

Interestingly, unlike the fermion QTI model, this result in-
dicates that the eigenspectrum of HE ,1

AB, j is doubly degenerate.
Hence, the eigenspectrum of the full first-order entanglement
Hamiltonian HE ,1

AB thus has a massive degeneracy of 2N with
the N being the number of plaquettes lying directly on the cut.
However, one can observe that this degeneracy in the entan-
glement spectrum is protected by the set of U (1) subsystem
symmetries that conserve charges on rows that end on the cut.
These fine-tuned symmetries may be broken while preserving
the C4 and mirror symmetries that protect the bulk quadrupole
phase. We can do so by adding a small perturbation of strength
ε, in the form of (quadratic) hopping terms, to each intercell
link of the lattice that runs parallel to the cut. This modifies
the entanglement Hamiltonian of a single cluster on the cut to
the following form:

H̃E ,1
AB, j =

(
log(2) ε

ε log(2)

)
(22)

having eigenvalues log(2) ± ε. Thus, this perturbation imme-
diately breaks the degeneracy [see Fig. 3(b)], and yields a
unique ground state,

|ψ (1)〉 j = 1√
2

(|01〉 j − |10〉 j ), (23)

for the first-order entanglement Hamiltonian of the cluster
j. This is exactly the same ground state we found at the
entanglement edge of the QTI model. We remark that, when
considering an actual physical edge which is realized by turn-
ing off a line of ring-exchange plaquette terms, one similarly
finds the massive degeneracy in the spectrum of the physical
Hamiltonian due to the presence of the edge modes. However,
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at the physical edge, such edge modes can be gapped out
without breaking U (1) subsystem symmetries: one simply has
to add intracell hopping terms between the dangling fermionic
sites. However, when the entanglement edge is considered,
adding intracell hopping terms does not lift the degeneracy, at
least perturbatively. To see this, let us consider a pair of edge
clusters with the single intracell term that connects them. Such
a hopping term necessarily maps the ground-state subspace of
two clusters {|01〉1, |10〉1} ⊗ {|01〉2, |10〉2} to {|00〉1, |11〉1} ⊗
{|00〉2, |11〉2}, which is the part of the Hilbert space that is
projected out by the entanglement Hamiltonian (21).

With the intercell hopping terms turned on, the entan-
glement Hamiltonian computed after making the first cut is
given by

HE ,1
AB =

⊗
i∈CAB

H�,i

⊗
j∈CAB∩C

H̃E ,1
AB, j . (24)

with H�,i = | 〉〈 | j + H.c., and HE ,1
AB, j given by

Eq. (22). Since this entanglement Hamiltonian has a unique
ground state, we can move on to perform the nested en-
tanglement cut and compute the second-order entanglement
spectrum. Following the logic from the previous section that
dealt with the QTI model, we can write the second NEH in the
following form:

HE ,2
A =

⊗
i∈CA

H�,i

⊗
j∈CA∩B∪CA∩C

H̃E ,1
A, j ⊗ HE ,2

A,CA∩B∩C
, (25)

where we perturbatively added both vertical and horizontal
intercell hopping terms to break all of the U (1) subsystem
symmetries. Finally, we need to compute the second NEH for
the dimer lying at the intersection of both cuts. We find the
reduced density matrix for this dimer to be ρ

(2)
A,CA∩B∩C

= 1
2I2×2,

and thus the second entanglement Hamiltonian HE ,2
A,CA∩B∩C

=
log(2)I2×2 and the full second NEH for the ring-exchange
model thus has a doubly degenerate eigenspectrum.

To gain further intuition about this model we also showed
that the ground state of the ring-exchange model in the
zero-correlation-length limit is adiabatically connected to the
ground state of the QTI model, while preserving, e.g., C4 and
U (1) charge conservation symmetries. Explicitly we study the
following interpolation Hamiltonian for a single plaquette:

H�(δ) = δHQT I
� + (1 − δ)HRE

� , (26)

where HQT I
� is the Hamiltonian for an elementary plaquette of

the QTI model, and HRE
� is the ring-exchange Hamiltonian for

the same plaquette. In Figs. 3(a) and 3(b) we show the energy
spectrum of H�(δ) and entanglement spectrum as we increase
the parameter δ from 0 to 1. The entanglement cut traces out
half of the plaquette sites in the ground state of H�(δ). We
hence see that these models are adiabatically connected (while
preserving the protective symmetries), and this confirms our
result that the nested entanglement spectra should show the
same features as long as the subsystem symmetries are
broken.

C. Bosonic XY model

The next model we consider is a second-order HOSPT spin
model [16]. It is a direct bosonic counterpart of the QTI model

considered above. This model is defined on the same lattice
as the QTI, where we simply replace fermionic orbitals with
spin-1/2 degrees of freedom coupled via antiferromagnetic
XY interaction terms instead of fermionic hopping terms. The
lattice structure exactly matches the one shown in Fig. 2.
Once again, working in a zero-correlation-length limit we
can compute the second NEH for disjoint spin clusters. Each
individual cluster has the following Hamiltonian:

H� =
∑

a=x,y

(
λxσ

a
1 σ a

2 + λyσ
a
2 σ a

3 + λxσ
a
3 σ a

4 + λyσ
a
4 σ a

1

)
. (27)

This calculation is very similar to the derivation of HE ,2
A for

the QTI model in the zero-correlation-length limit, and so we
present the technical details in Appendix B and just summa-
rize the results here.

For the XY model we find that the first- and second-order
NEHs exhibit a similar overall structure to the correspond-
ing entanglement Hamiltonians of the QTI model given by
Eqs. (13) and (17). Once again, the bulk structure of both
NEHs is indistinguishable from the bulk of the original physi-
cal Hamiltonian. The interesting pieces of the reduced density
matrix are located at the entanglement edge, for which we
need to focus our attention on spin clusters located either
on one of the cuts, or at the intersection(s) of both entan-
glement cuts as depicted in Fig. 2. We find the entanglement
Hamiltonian for any cluster lying on one of the cuts to have a
unique ground state, leading to a unique ground state for the
full first-order NEH. The part of the entanglement Hamilto-
nian that is localized at the entanglement edge represents the
Hamiltonian of an intercell dimerized spin-1/2 chain, which
has an SPT ground state protected by the Z2 × Z2 symmetry
group generated by

P1 =
∏

i

σ x
i , P2 =

∏
i

σ
y
i , (28)

where the index i runs over each spin of the edge chain.
Performing the second (nested) cut we find that the second-
order NEH computed for the cluster lying at the intersection
of both cuts has a doubly degenerate eigenspectrum leading to
a doubly degenerate spectrum of the full second-order NEH.

Once we tune the couplings away from the zero-
correlation-length limit, this model is no longer exactly
solvable and doing the exact diagonalization is intractable for
large 2D systems. However, we can still provide a perturbative
argument showing that the claimed features of the entangle-
ment structure of the ground state are still present even away
from the zero-correlation-length limit.

The goal of the next two paragraphs will be to demonstrate
that the edge of the first entanglement Hamiltonian HE ,1

A stays
in the same SPT phase even when the perturbative corrections
are taken into account. Let us tune the intracell coupling value
tx = ty = t to be nonzero. Then, consider an entanglement cut
made along the x̂ axis that splits our system in two halves
A and B, as shown in Fig. 4. To compute the entanglement
Hamiltonian HE ,1

A up to first-order corrections it is sufficient
to consider the set of terms around the cut:

H cut = λxHX + λyHY + tHA + tHB, (29)
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tx
ty

λx

λyA

B

FIG. 4. Partition of a single line of plaquettes in two halves.

where HX and HY are intercell XY couplings across the cut,
and HA and HB describe sets of intracell XY couplings on
opposing sides of the cut, as shown in Fig. 4.

Now, we are going to imbalance the value of the intercell
couplings in different directions, so that λy � λx � t . Cru-
cially, the offset in strengths of λx and λy leaves the model
in the same topological phase since tuning λy � λy preserves
both the bulk and the edge gaps, provided that |λy| > |t |.
Performing an entanglement cut, and treating both HX terms
and intracell couplings tHA + tHB perturbatively with the
small parameter t = ε, we find that the first-order perturbative
correction to the entanglement Hamiltonian HE ,1

A retains the
structure of the dimerized spin-1/2 chain (see Appendix B for
details). This implies that a nontrivial edge SPT survives even
after we perturbatively tune away from the zero-correlation-
length limit. Hence, making a second-order (nested) cut that
splits this 1D SPT phase will still result in a second-order
NEH with a doubly degenerate eigenspectrum.

3D XY model. It is possible to extend the 2D XY model
to construct an octupolar HOSPT phase in three dimensions.
Once again, we consider a direct counterpart of the 3D
fermionic octupole model [1,2], where we replace fermions
with spins and fermionic hopping terms with XY interactions.
This model has gapped surfaces and hinges but has gapless
corner modes (more precisely, fractional charges). Therefore,
we expect the third-order nested entanglement Hamiltonian
to have a doubly degenerate spectrum, while the first- and
second-order NEHs will have a unique ground state. In a
zero-correlation-length limit, we can directly work out the
entanglement structure of the ground state. Having intracell
coupling values t set to zero, this model decomposes into a
collection of disjoint cubes, and we can compute the entan-
glement Hamiltonian separately for each cube. For a single cut
we find that the entanglement Hamiltonian computed for each
of the dissected cubes represents a Hamiltonian for a single
XY plaquette, having exactly the same structure as the 2D
version of this model. Therefore, the entanglement Hamilto-
nian hosts a second-order HOSPT model at the entanglement
cut which leads us to conclude that the third-order NEH HE ,3

C
for the cube C located at the intersection of three consecutive
cuts is proportional to the identity matrix and yields a doubly
degenerate eigenspectrum, while the HE

C , computed for any
other cube sliced by either zero, one, or two cuts, has a unique
ground state. Therefore, the full third-order NEH HE ,3 has
a doubly degenerate entanglement spectrum while both HE ,1

and HE ,2 have a unique ground state. This indicates that the
ground state of this model is in an octupolar HOSPT phase.

We can also turn on the intracell couplings t and perform
the same perturbative analysis we did for the 2D XY model
to show that the entanglement Hamiltonian structure of the
octupolar ground state is perturbatively stable away from the
zero-correlation-length limit.

D. Z2 × Z2 model

Now, let us see how our characterization works for another
bosonic quadrupolar second-order SPT. Consider the Z2 × Z2

HOSPT model introduced in Ref. [16]. This is a simple 2D
model consisting of a collection of pairs of Z2 × Z2 chains
[39–41], each described by a bosonic Hamiltonian

HZ2×Z2 = −
N−1∑
i=1

(
Za

i X b
i Za

i+1 + Zb
i X a

i+1Zb
i+1

)
, (30)

where pairs of chains (which we denote as A and B) in neigh-
boring unit cells are coupled by a set of additional “vertical”
terms:

HV = −
N∑

i=1

(
Za

i,AZa
i,B + Zb

i,AZb
i,B

+ Za
i,AX b

i,AZa
i,BX b

i,B + X a
i,AZb

i,AX a
i,BZb

i,B

)
, (31)

such that, on an open lattice, both horizontal edges end up
carrying a single dangling Z2 × Z2 SPT chain [16]. On a
periodic lattice, this model represents a set of coupled pairs
of periodic Z2 × Z2 SPT chains, where every chain has a
partner. As was shown in Ref. [16], this system is invariant
with respect to C4 rotations which is important for protecting
corner modes.

To simplify our derivations, we can pick the first entangle-
ment cut to run along the Z2 × Z2 chains. Since chains are
coupled only in pairs, to obtain the edge part of the entangle-
ment Hamiltonian, all we need to consider is one such pair
where we denote the Z2 × Z2 chain that lies above the cut by
A and the one below it by B. The full Hamiltonian we need to
consider consists of three blocks:

H = HA + HB + HV , (32)

where HA and HB are both given by Eq. (30) acting on chains A
and B, respectively. To obtain the entanglement Hamiltonian,
we are going to treat HA and HB perturbatively relative to the
HV . Similarly to the XY model case, this offset in strength
of horizontal and vertical couplings leaves the ground state in
the same phase. For such a system we can employ the result
obtained in Ref. [42], which showed that if the following three
conditions are true, then the entanglement Hamiltonian will
be proportional to the Hamiltonian of the upper chain, i.e.,
HE ,1

A ∝ HA:
(i) HA and HB only couple the ground state |ψ0〉 of HV to

excited states |ψk〉 with the same gap � = Ek − E0.
(ii) Both HA and HB have the same matrix elements in the

eigenbasis of HV : 〈ψk|HA|ψ0〉 = 〈ψk|HB|ψ0〉.
(iii) The reduced density matrix for the unperturbed

ground state is proportional to the identity matrix ρ0
A =

TrB|ψ0〉〈ψ0| ∝ I.
As HV represents a collection of terms acting on disjointed

clusters of four spins, we can directly verify, through exact
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FIG. 5. Topological plaquette paramagnet lattice model. Spin-
1/2 degrees of freedom τ and σ are associated with red and blue
sites, respectively. Two dashed lines indicate two sets of spins on
which two different Z2 subsystem symmetry operators act. The light
blue frame represents one of the stabilizers of the model, while the
blue wedge depicts one of the terms that we have to add to break the
subsystem symmetry and gap out the entanglement edge.

diagonalization, that all three conditions are satisfied for our
model. The entanglement Hamiltonian for this cut is therefore
proportional to the Hamiltonian of a single Z2 × Z2 SPT
chain, which means that the ground state of the entanglement
Hamiltonian is the well-known Z2 × Z2 SPT phase which is
exactly the same phase that appears on the one-dimensional
edge of the two-dimensional Z2 × Z2 HOSPT model. Conse-
quently, if we make an entanglement cut in the entanglement
Hamiltonian we will find the eigenspectrum of the second
nested entanglement Hamiltonian to be doubly degenerate,
indicating a quadrupole-like HOSPT.

E. Topological plaquette paramagnet (TPP) model

Let us consider another Z2 × Z2 model that additionally
has a set of (fine-tuned, for our purposes) subsystem symme-
tries as described in Ref. [15]. This is a bosonic model defined
on a square lattice with spin degrees of freedom σ and τ living
on two different square sublattices governed by the following
commuting-projector Hamiltonian:

HT PP = −
∑
i∈a

τ x
i

∏
j∈Pi

σ z
j −

∑
i∈b

σ x
i

∏
j∈Pi

τ z
j , (33)

where a and b denote the red and blue sublattices, respectively
(arranged as depicted in Fig. 5).

All individual terms in the Hamiltonian commute with
every other term, and every individual term squares to 1. There
is exactly one spin degree of freedom per stabilizer operator,
and since there are no additional nonlocal constraints, this
model is exactly solvable and has a unique ground state on
a periodic lattice. As noted, in addition to the global Z2 × Z2

symmetry generated by the operators

∏
i∈bulk

σ x
i and

∏
i∈bulk

τ x
i , (34)

this model has a set of subsystem Z2 symmetries generated by∏
i∈row/column

σ x
i and

∏
i∈row/column

τ x
i , (35)

where the product now runs over the spins located on the same
row or column of the lattice.

We can gain an understanding of the ground state of this
model working in the τ z and σ x basis. There, the second set
of terms in Eq. (33) requires that for any plaquette Pi of τ spins
centered around a single σ spin, we must have

∏
i∈Pi

τ z
j equal

to +1 or −1 when the spin in the center of Pi is in the state
with σ x

i equal to +1 or −1, respectively. Thus, one can see that
any configuration of τ z

i = ±1 across the lattice is acceptable
in the ground state as long as any corners of domain walls
between τ z “spin-up” and “spin-down” regions are decorated
by σ x = −1 states. The first set of operators in Hamiltonian
(33) simply maps between different configurations of corner-
decorated domains allowed by the second set of terms, as it
flips the value of a single τ z spin operator along with the
values of four σ x operators around it. Let us introduce a set
of all possible products of τ x

i

∏
j∈Pi

σ z
j operators, where i ∈ a.

These operators form an Abelian group which we denote as
G. Starting from the state |0〉 which has all τ z = +1 and all
σ x = +1 we can write down the ground state of Eq. (33) as

|� (0)〉 = 1

|G|
∑
g∈G

g|0〉, (36)

which is simply the equal-weight superposition of all possi-
ble configurations of τ z = ±1 with corner-decorated domain
walls. |G| is the rank of the group G.

Let us now make an entanglement cut running along one of
the diagonals of the lattice that splits the system into two re-
gions A and B, as shown in Fig. 5. To derive the entanglement
Hamiltonian, we employ the method described in Ref. [43].
There it was shown that to derive the reduced density matrix
ρ

(1)
A for this type of commuting-projector model we need to

focus on the contributions that are coming from only the
subspace H∂A ⊗ H∂B, of the total Hilbert space H, i.e., the
subspace located near the cut.

In our case the Hilbert subspace of interest corresponds to
two pairs of lines of τ and σ spins located above and below
and cut. We define a quotient group GAB = G/[GA × GB]
where GA and GB are subgroups of G having elements which
have support on only region A or B, respectively. Any element
of GAB corresponds to a set of operators which have support
simultaneously on both A and B regions. Clearly, from each
coset in GAB we can pick a single representative element g
that has support on only the spins living near the boundary,
i.e., that acts nontrivially on only the H∂A ⊗ H∂B subspace of
H. Furthermore, every such representative operator g ∈ GAB

can be decomposed as a product of two operators acting on
spins located on different sides of the cut: g = gA ⊗ gB. As
was shown in Ref. [43], the reduced density matrix is then
given by

ρ
(1)
A = 1

|GAB|
∑

g∈GAB

gA|0〉A〈0|AgA, (37)

where |0〉A is the restriction of |0〉 to the A region of the lattice.
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Applying this prescription to the TPP model, we find that
the resulting entanglement Hamiltonian at an edge is repre-
sented by the sum of gA terms, from which we see

HE ,1
A =

∑
i∈a∈∂A

σ z
i−1τ

x
i σ z

i+1, (38)

where the index i runs over the sites of sublattice a lined up
along the entanglement cut depicted in Fig. 5 on the region
A side. This Hamiltonian HE ,1

A has a 2N degenerate ground-
state subspace, where N is the number of τ spins near the cut.
Evidently, the entanglement edge of the TPP model is gapless,
just as the physical edge of this model. One can show that
gapless modes at the entanglement edge have exactly the same
nature as the gapless modes that would appear at the edge if
we were making a physical cut instead.

Importantly, Ref. [15] showed that the physical edge’s gap-
less states are protected by a set of Z2 subsystem symmetries
acting along the columns of τ x spins. These modes can be
gapped by introducing a set of subsystem symmetry-breaking
terms at the physical edge. Let us add these same terms to
our Hamiltonian and study their effects on the structure of
the ground state. Consider the following perturbation to the
original Hamiltonian (33):

V = −
∑

i∈b∈∂A

τ z
i−1σ

x
i τ z

i+1, (39)

where the index i runs over sites located at the A region’s
edge of the cut (for this model the terms added in the bulk
away from the cut do not have an effect on the entanglement
properties of the ground state). Let us now study the ground
state |�̃ (0)〉 of the perturbed Hamiltonian

H̃T PP = HT PP + εV, (40)

where the parameter ε is taken to be small. As we show
in Appendix C, first-order perturbative correction to the en-
tanglement Hamiltonian is simply proportional to V . The
resulting collection of terms appearing at the entanglement
edge forms a commuting-projector Hamiltonian with a unique
ground state:

H̃E ,1
A = HE ,1

A + δV, (41)

where δ is the proportionality coefficient.
We have now shown that the modified entanglement

Hamiltonian near the cut is in fact the Hamiltonian of a
one-dimensional Z2 × Z2 chain, where different species of
stabilizers have different coefficients. However, the offset in
the couplings’ strengths does not change the structure of the
ground state; hence it has the exact same properties as the
ground state of the well-known Z2 × Z2 SPT chain (that we
also discussed above). This is exactly the same Hamiltonian
one would obtain at the physical edge of this model after
breaking the subsystem symmetries. Moreover, as the entan-
glement Hamiltonian computed for the TPP model having
broken subsystem symmetries hosts a nontrivial SPT phase
near the entanglement cut, the second NEH HE ,2 then nec-
essarily has a twofold-degenerate eigenspectrum. This allows
us to place the TPP model with broken subsystem symme-
tries into the same category as the Z2 × Z2 HOSPT model
discussed in the previous section.

FIG. 6. 3D CZX model. With each cube C of the lattice we
associate a term in the Hamiltonian that is a product of the cubic
term HC , 6 boundary plaquette terms HP (one of which is shown in
the figure in red), and 12 boundary bond terms HB (one of which
is shown in the figure in blue). These terms are explicitly written in
Eq. (42).

3D TPP model. We can also see how our approach works
for the 3D version of the TPP model [15]. There we find that
after making the first cut, the entanglement edge Hamilto-
nian supports gapless modes protected by a set of subsystem
symmetries. Breaking these symmetries by introducing a set
of boundary terms to gap out the physical edge of the 3D
TPP model [15], we obtain a 2D TPP model at the entan-
glement edge (see Appendix B). This is the same phase one
expects to see at the physical edge of this model after breaking
subsystem symmetries. Crucially, after breaking subsystem
symmetries, we find that the entanglement edge Hamiltonian
is exactly the Hamiltonian of the 2D TPP model (33)—a
second-order HOSPT system. From this point we can see
that making two subsequent nested entanglement cuts, while
breaking appropriate subsystem symmetries as we did while
considering the 2D model, yields a Hamiltonian HE ,3 that has
a doubly degenerate eigenspectrum. Therefore, the 3D TPP
model with broken subsystem symmetries provides us with
another example of an octupolar-like HOSPT phase.

F. 3D CZX model

The final model we consider represents a three-
dimensional HOSPT system with additional subsystem sym-
metries [17]. It is defined on a 3D cubic lattice with eight
spin degrees of freedom per unit cell as shown in Fig. 6.
The interaction terms in the Hamiltonian involve eight spin
degrees of freedom from the sites at the corners of each cube
C, 24 spins from 6 plaquettes P neighboring the faces of the
cube, and 24 spins from 12 bonds B neighboring the cube’s
edges:

H = −
∑

C

⎡
⎣HC ⊗

∏
P∈plaq(∂C)

HP ⊗
∏

B∈bond(∂C)

HB

⎤
⎦,

HC = |1〉〈1|C + |1〉〈0|C + |0〉〈1|C + |0〉〈0|C,

HP = |1〉〈1|P + |0〉〈0|P, HB = |1〉〈1|B + |0〉〈0|B, (42)

where by |0〉C (|1〉C) we denote a state which has all eight
spins belonging to cube C in the spin-down (spin-up) state,
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i.e., |0〉C ≡ |00000000〉C (|1〉C ≡ |11111111〉C), and corre-
spondingly for states of four spins on a plaquette P, and states
of two spins belonging to a bond B. Each term in Hamiltonian
(42) commutes with every other term, and the ground state is
given by a tensor product over the states at each cube [15]:

|GS〉 =
⊗

C

1√
2

(|1〉C + |0〉C ). (43)

This model is a second-order 3D topological phase, and has
hinge modes protected by a combination of C4 rotation sym-
metry and an on-site CZX symmetry group Z2. We expect,
therefore, that the ground state of the entanglement Hamilto-
nian will be unique and have the structure of a conventional
(first-order) SPT state on the 2D entanglement cut. The re-
duced density matrix for a single cube that is split in half by
the entanglement cut running parallel to one of its faces is
given by

ρ = 1
2 (|0000〉〈0000| + |1111〉〈1111|), (44)

which yields an entanglement spectrum that is degenerate.
This goes against our naive expectations, but as one might
also expect from the preceding discussions, this degeneracy
exists because of subsystem symmetries. These symmetries
are fine tuned (not required to protect the HOSPT state), and
can be broken by introducing perturbations preserving the
required C4 × Z2 symmetry. Explicitly, we can add a set of
plaquette terms on the plane S neighboring (and inside) the
entanglement cut:

HS = h
∑
P∈S

(|1〉〈1|P + |0〉〈1|P + |1〉〈0|P + |0〉〈0|P ). (45)

For small h these terms modify the entanglement Hamiltonian
perturbatively, in a manner that gaps the entanglement Hamil-
tonian. The resulting entanglement ground state is unique and
has the following form at each plaquette on the entanglement
surface:

|�〉E =
⊗
P∈S

(|1〉P + |0〉P ). (46)

Importantly, this is the 2D SPT ground state of the conven-
tional CZX model [44], and represents the 2D SPT phase
one will obtain at a physical edge after breaking subsystem
symmetries. Now, we can take the next step and perform
a second entanglement cut, this time on the entanglement
ground state. The cubes in the bulk that are cut, i.e., those
away from the first entanglement surface, contribute to a
gapped second-order entanglement spectrum. However, the
second entanglement cut splits some of the plaquettes of the
2D CZX model, and hence yields a second-order NEH HE ,2

that is doubly degenerate and does not possess any residual
symmetries other than those required to protect the HOSPT
phase of the 3D CZX model. For this model we were able
to directly identify that the entanglement ground state is a
first-order SPT state. For more generic 3D Hamiltonians that
exhibit the same 3D HOSPT phase one may have to consider
more sophisticated properties of the entanglement spectrum
to identify the HOSPT since (i) the entanglement ground state
may not be the full story [45], and (ii) degeneracies of the
nested entanglement cut of an effectively 2D entanglement

surface may be spurious [30] and require further analysis to
identify the possible SPT state living on the initial entangle-
ment cut.

IV. CONCLUSION

In this article we proposed using entanglement as a way to
access the higher-order boundary physics of HOSPT phases
from the bulk wave functions. Our characterization method
can be applied to many-body systems, and employs a series
of nested entanglement Hamiltonians that can be used to
recover the topological properties of some HOSPT phases.
We have shown that it is possible to characterize a class of
multipolar HOSPT phases in both interacting and noninteract-
ing models using the entanglement structure of their ground
states. We considered a series of models falling into this
category and showed that the sequence of nested entangle-
ment Hamiltonians of order 1, . . . , n − 1 are gapped, while
the nth nested entanglement Hamiltonian is gapless. In our
considerations we always found that an nth-order multipolar
HOSPT phase has a gapped entanglement Hamiltonian that
hosts an (n − 1)th HOSPT phase at the entanglement edge.
We also considered a series of HOSPT phases having addi-
tional subsystem symmetry. In order to apply our method we
had to break subsystem symmetry (effectively gapping out
the boundaries). After breaking the subsystem symmetries,
and leaving the global symmetry that protects the HOSPT
untouched, we demonstrated that the corresponding nested
entanglement Hamiltonian method could be applied and that
these models fall into the category of multipolar-like HOSPT
phases.

Our proposed algorithm that utilizes higher-order entangle-
ment spectra with a hierarchy of spatial cuts provides us with
a powerful characterization method to probe HOSPT phases
without referring to details of boundary terminations, but sim-
ply relying on the bulk ground-state wave function. This could
help pave the way for understanding the crucial many-body
features of some classes of HOSPT phases. As an additional
complication, studying the boundary-obstructed quadrupole
model protected by mirror symmetries or C4 symmetry (with
both mirrors preserved) yields the same results, but the former
is an extrinsic HOSPT, and the latter is an intrinsic HOSPT
(based purely on what symmetries are preserved). Hence, our
method does not naturally distinguish between these classes.
These things show the necessity for further refinement of
many-body HOSPT indicators as we expect there will be
difficulties when trying to extract universal information about
HOSPTs from more generic models and, furthermore, the
specific method we apply here may not work for all types of
HOSPTs, e.g., those that fall out of the boundary obstructed
paradigm. This will be an exciting direction for future work.

Note added. Recently we became aware of a related over-
lapping work by You et al. [31]. These works were completed
independently.
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APPENDIX A: SECOND-ORDER SPT PHASE
WITHOUT A BULK QUADRUPOLE MOMENT

To provide a contrasting free-fermion example to the QTI,
let us consider an interesting variation of the QTI model
which hosts modes at the physical corner, but was shown to
develop a ground state that is qualitatively distinct from the
ground state of the QTI model. This model is constructed
from the QTI model by removing the π flux going through
the plaquettes and slightly offsetting the strength of hopping
amplitudes in different directions. On a rectangular-shaped
lattice, this model is gapped both in its bulk and at its one-
dimensional edges, and hosts gapless modes in the corners of
the lattice. The distinction between the ground states of these
Hamiltonians can be directly seen from the nested Wilson
loop construction [1,2]; here, however, we will briefly show
that this difference is also picked up by our nested entangle-
ment Hamiltonian construction. Once again, let us work in
the zero-correlation-length limit with the intercell couplings
offset: λy > λx. The analysis here will be exactly analogous
to the one performed in the previous discussions on the free-
fermion QTI. After making the first cut that runs along ŷ, as
shown in Fig. 2, the total entanglement Hamiltonian takes a
familiar form:

HE ,1
AB =

⊗
i∈CAB

H�,i

⊗
j∈CAB∩C

HE ,1
AB, j, (A1)

where H�,i = λxc†
1,ic2,i + λyc†

2,ic3,i + λxc†
3,ic4,i + λyc†

4,ic1,i

and the entanglement Hamiltonian for a cluster j lying
directly across the cut is HE ,1

AB, j = log(4)I4×4 in the basis
{|00〉 j, |01〉 j, |10〉 j, |11〉 j}. The ground state of the first
entanglement Hamiltonian is thus massively degenerate,
rendering it impossible to unambiguously define the
second-order NEH.

APPENDIX B: ENTANGLEMENT EDGE
OF THE 2D XY MODEL

In this Appendix we provide a detailed derivation of the
first-order correction to the entanglement Hamiltonian for the
bosonic XY model with intracell couplings turned on, albeit
kept perturbatively small. We start with the set of terms in the
direct vicinity of a straight horizontal cut as shown in Fig. 4:

H cut = λxHX + λyHY + tHA + tHB, (B1)

where HX and HY are the collections of all intercell coupling
terms oriented in the x̂ and ŷ directions, respectively, while
HA and HB are the intracell coupling terms which are entirely
located either in the A or B subregions of the lattice. For t = 0
the ground state can be written as a tensor product of three
states: one that is entirely contained in A, one that lies directly
on the cut, and one that is contained within the region B:

|GS〉 = |GS〉A ⊗ |GS〉AB ⊗ |GS〉B. (B2)

In the zero-correlation-length limit, the ground state of this
system remains in the nontrivial HOSPT phase even if we
tune the values of the intercell couplings λx and λy to be very
different, as such transformations do not break the Z2 × Z2

symmetry that protects the HOSPT phase, and they do not
close the bulk gap. This can also be double checked by
computing the spectrum of the second NEH for a single-spin
plaquette with, for example, λy � λx and verifying that it is
indeed doubly degenerate.

The entanglement cut running along the x̂ direction slices
through a set of λy intracell couplings, as shown in Fig. 4.
Let us turn off every set of couplings in the system except
the HY . We then compute the entanglement Hamiltonian for
the system containing only HY and then treat the rest of the
couplings

V = λxHX + t (HA + HB) (B3)

as a perturbation with the small parameter ε, so that the
Hamiltonian under consideration is H̃ cut = λyHY + εV .

The ground state |GS(0)〉 of HY is simply a collection of
disjoint spin-singlet states on each dimer. Let us consider the
first-order correction to the ground state:

|G̃S〉 = |GS(0)〉 − ε
∑
k 
=0

|ψk〉 〈ψk|V |GS(0)〉
Ek − E0

. (B4)

The energy gap between the ground state and every excited
state connected to |GS(0)〉 by any single term in V is the same,
Ek − E0 ≡ �, and since 〈GS(0)|V |GS(0)〉 = 0 we simply have

|G̃S〉 = |GS(0)〉 − ε

�
V |GS(0)〉. (B5)

We can use this first-order corrected state to compute the
corresponding density matrix:

ρ̃ = ρ (0) − ε

�
(V ρ (0) + ρ (0)V ). (B6)

To compute the reduced density matrix ρ̃A, we need to trace
out the degrees of freedom on subregion B. Note that every
single coupling term in V has the form σ a

i σ a
j with two spins

i and j belonging to different singlets. As those terms do not
have a projection back to the ground state, we find that out
of all the coupling terms that are contained in region B, the
nontrivial contribution to ρ̃A will be given by only those terms
that act on a pair of dimers directly at the entanglement cut.
As one can check, terms in region B that are aligned directly
at the cut have exactly the same matrix elements as their
counterparts that are mirrored on the “A” side of the cut. This
allows us to rewrite the set of terms in V that have a nontrivial
contribution to ρ̃A in a way that does not have any explicit
action on region B:

HX = HX
A + HX

∂A, HB = H∂A, (B7)

where HX
A is the set of all intercell couplings oriented along

x̂ that are entirely contained in A, HX
∂A is a subset of intercell

couplings along x̂ that lie at the entanglement cut, and each
term in HX

∂A acts simultaneously at two singlets crossing the
cut, and similarly for H∂A. Note that we have already thrown
away terms that do not contribute to ρ̃A. The relevant part of
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V is then

V ∗ = λxHX
A + λxHX

∂A + t H̃A + tH∂A. (B8)

The resulting V ∗ acts trivially on the subregion B. Therefore,
after taking the partial trace over B, in the first order of the
perturbation theory, we have

ρ̃A = ρ
(0)
A − ε

�

{
V ∗, ρ (0)

A

}
. (B9)

To obtain the corresponding entanglement Hamiltonian,
we need to take a logarithm of this expression. Using the
analog of the Baker-Campbell-Hausdorff formula for the anti-
commutator, we find that the entanglement Hamiltonian along
with the first-order correction is simply given by

H̃E
A = HE (0)

A − 2
ε

�
V ∗. (B10)

HE (0)
A is easy to compute directly: it is simply a set of dimers in

the bulk of the subregion A, just as in the original Hamiltonian
HY , along with the set of free spin-1/2 degrees of freedom
right beside the cut. Clearly then, the sum HE (0)

A − 2 ε
�

V ∗
represents a Hamiltonian of a bosonic XY HOSPT model with
a physical edge right where we drew the entanglement cut.
Therefore, the first-order corrected entanglement Hamiltonian
describes the original 2D XY model with a physical edge
which is a 1D SPT phase [16].

APPENDIX C: TOPOLOGICAL PLAQUETTE
PARAMAGNET MODEL

1. Ground state of a 2D TPP model

Consider the TPP model on a periodic lattice with a hori-
zontal cut as shown in Fig. 5. Let us now divide our cylinder
into two halves A and B by making a cut which runs diagonally
with respect to primitive vectors of the lattice as shown in
Fig. 5. Let us consider first a physical cut: we simply drop any
stabilizers that are not fully supported on A out of Eq. (33).
This yields a system with a boundary, which, as was explored
in Ref. [15], has a highly degenerate ground state. We can see
this by noticing that we can associate a pair of anticommuting
operators with each site at the edge, that all commute with the
Hamiltonian:

P1
i = τ z

i−1σ
x
i τ z

i+1, P2
edge = σ z

i . (C1)

Gapless modes associated with these operators are protected
by a set of subsystem symmetries generated by

∏
i∈diag σ x

i

and
∏

i∈diag τ x
i . We can break these symmetries by adding a

potential term to the Hamiltonian:

εV = −ε
∑

i∈edge

P1
i = −ε

∑
i∈edge

τ z
i−1σ

x
i τ z

i+1. (C2)

On one hand, this term lifts the ground-state degeneracy, leav-
ing a unique ground state in the system with open boundaries.
On the other hand, it commutes with the symmetries that
protect the HOSPT phase in our system.

Let us now, instead of a physical cut, make an entangle-
ment cut and study its properties. First of all we need to write
down the ground state of our system. Since we are working
with a stabilizer Hamiltonian (having stabilizers denoted by

Oi ), our ground state must satisfy

Oi|� (0)〉 = |� (0)〉, ∀ Oi ∈ H. (C3)

In our model we have two different types of stabilizers: ones
that are centered around sites belonging to sublattice a, i.e.,
Oa

i = τ x
i

∏
j∈Pi

σ z
j where i ∈ a, and the others that are centered

around sites belonging to b, i.e., Ob
i = σ x

i

∏
j∈Pi

τ z
j where i ∈

b. Hence, the Hamiltonian is just

H = −
∑
i∈a

Oa
i −

∑
i∈b

Ob
i . (C4)

Similar to Kitaev’s toric code, we can express the ground
state of the system by starting with the ground state for one
subset of stabilizers. The mutual ground state for stabilizers
Ob is easy to find: we need all of the “red” spins to be “up”
in the x̂ basis, and all of the “blue” spins to be “up” in the ẑ
basis, so we write

|0〉 =
⊗
i∈a

1√
2

(
1
1

)
i

⊗
j∈b

(
1
0

)
j

. (C5)

Now we form an Abelian group G with generators being Oa

stabilizers and the ground state can be written as

|� (0)〉 = 1

|G|
∑
g∈G

g|0〉. (C6)

When one of the stabilizers Oa
i acts on a state |0〉, it flips

the corresponding τ z
i as well as its surrounding σ x’s. Heuristi-

cally, we can think of the ground state as a superposition of all
possible configurations of {τ z

i } with corners of domain walls
between different τ z decorated with σ x

i = −1.

2. Entanglement edge of the 2D TPP model
with broken subsystem symmetries

Let us compute the first-order correction to the entangle-
ment Hamiltonian in the presence of perturbation (C2):

εV = −ε
∑

i∈b∈∂A

τ z
i−1σ

x
i τ z

i+1. (C7)

First, note that for every term in V a state |�i〉 =
τ z

i−1σ
x
i τ z

i+1|� (0)〉 is an eigenstate of the Hamiltonian HT PP

given by Eq. (33). The energy of |�i〉 relative to the ground
state |� (0)〉 [Eq. (C6)] is � = Ei − E0 = 8, as there are ex-
actly four stabilizers in HT PP that anticommute with the
τ z

i−1σ
x
i τ z

i+1 operator. With this in mind we can, similarly to the
perturbed 2D XY model case considered above, write down
the first-order correction to the ground density matrix:

ρ̃ = ρ (0) − ε

�
(V ρ (0) + ρ (0)V ). (C8)

Since V acts nontrivially only on the subregion A, it is left
untouched when we take a partial trace over the subregion B.
The perturbed reduced density matrix then reads

ρ̃A = ρ
(0)
A − ε

�

(
V ρ

(0)
A + ρ

(0)
A V

)
. (C9)

As was the case with the 2D XY model, we use the anticom-
mutator version of the Baker-Campbell-Hausdorff formula to
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take the logarithm of the expression for ρ̃A and obtain the
perturbed entanglement Hamiltonian:

H̃E
A = HE

A − 2
ε

�
V. (C10)

With the perturbative correction taken into account we can see
that the entanglement edge Hamiltonian is the Hamiltonian of
a well-known Z2 × Z2 SPT chain.

3. 3D TPP model

This model is a natural extension of the 2D TPP model
discussed in the previous paragraphs to three dimensions. It
is defined on a body-centered-cubic lattice with the following
Hamiltonian:

H = −
∑
i∈a

τ x
i

∏
j∈Ci

σ z
j −

∑
i∈b

σ x
i

∏
j∈Ci

τ z
j , (C11)

where a are the sites of the cubic lattice, b are the sites of the
dual lattice, and Ci is the cube which has the site i as its center.
Let us write down the ground state in the τ z and σ x basis.
Starting with the state |0〉 that has all τ z = +1 and all σ x =
+1 we introduce a group G generated by the set of stabilizers
Oi = τ x

i

∏
j∈Ci

σ z
j , where index i belongs to the a sublattice.

The ground state is then given by

|� (0)〉 = 1

|G|
∑
g∈G

g|0〉. (C12)

Let us make an entanglement cut perpendicular to the ẑ axis
by a plane that lies slightly above a plane which has sublattice
a sites only and splits the lattice into A (bottom) and B (top)
regions. Tracing out the top region to form a reduced density
matrix, we find a contribution to the entanglement Hamilto-
nian that is localized right on the cut:

HE ,1
∂A = −

∑
i∈a∈∂A

τ x
i

∏
j∈Pi

σ z
j . (C13)

This cut-localized Hamiltonian is a 2D commuting-projector
model that has a large ground-state degeneracy. We can see
the degeneracy by noticing that to every site i ∈ b ∈ ∂A we
can associate a pair of anticommuting operators that perfectly
commute with the cut-localized entanglement Hamiltonian:

Qi,1 = σ x
i

∏
j∈Pi

τ z
j , Qi,2 = σ z

i . (C14)

The gapless modes encoded by this algebra are pro-
tected by subsystem symmetry generated by the operators∏

i∈a∈column τ x. Therefore, to proceed with our calculation to
arrive at a second-order entanglement spectrum, we need
to break these subsystem symmetries and gap out the cut-
localized entanglement Hamiltonian. We can do so by using
the same approach as in the 2D TPP model, e.g., by adding
the set of terms

�H =
∑

i∈b∈∂A

σ x
i

∏
j∈Pi

τ z
j . (C15)

Indeed, we see that the total edge Hamiltonian HE ,1 + �H
is nothing but a 2D TPP model, which was already shown
to be a quadrupolar HOSPT phase augmented by subsystem
symmetries. Thus, we see that the third-order NEH HE ,3 of the
3D TPP model will have a doubly degenerate eigenspectrum
after we break all the necessary subsystem symmetries.

APPENDIX D: XY CLUSTER

Let us consider a cluster of four spins with the following
Hamiltonian:

H =
∑

a=x,y

σ a
1 σ a

2 + σ a
2 σ a

3 + σ a
3 σ a

4 + σ a
4 σ a

1 . (D1)

The ground state of this Hamiltonian is

|ψ (0)〉 = 1

2
√

2
(|↑↑↓↓〉 + |↓↑↑↓〉 + |↓↓↑↑〉

+ |↑↓↓↑〉) − 1

2
(|↓↑↓↑〉 + |↑↓↑↓〉). (D2)

Now, let us compute the reduced density matrix for the entan-
glement cut that eliminates spins 3 and 4 and splits the initial
plaquette into a pair of dimers. The reduced density matrix is
then

ρ{1,2} = |v1〉〈v1| + |v2〉〈v2| + |v3〉〈v3| + |v4〉〈v4|, (D3)

where

|v1〉 = 1

2
√

2
|↑↑〉, |v2〉 = 1

2
√

2
|↓↑〉 − 1

2
|↑↓〉,

|v3〉 = 1

2
√

2
|↑↓〉 − 1

2
|↓↑〉, |v4〉 = 1

2
√

2
|↓↓〉. (D4)

In the basis {|↓↓〉, |↓↑〉, |↑↓〉, |↑↑〉} the reduced density ma-
trix takes the form

ρ{1,2} = 1

8

⎛
⎜⎜⎝

1 0 0 0
0 3 −2

√
2 0

0 −2
√

2 3 0
0 0 0 1

⎞
⎟⎟⎠, (D5)

and the entanglement spectrum is given by { 1
8 (3 −

2
√

2), 1
8 , 1

8 , 1
8 (3 + 2

√
2)} and therefore the entanglement

Hamiltonian has a unique ground state given by

|ψ (1)〉 = 1√
2

(|↑↓〉 − |↓↑〉). (D6)

This is the easily recognizable ground state of a single phys-
ical XY dimer, and so it is evident that the second nested
entanglement Hamiltonian will have a doubly degenerate
spectrum as the reduced density matrix is simply

ρ
(2)
{1} = 1

2

(
1 0
0 1

)
, (D7)

meaning that the eigenspectrum of HE ,2 = − log(ρ (2)
{1} ) is sim-

ply {log(2), log(2)}.
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