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Rotor/spin-wave theory for quantum spin models with U(1) symmetry
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The static and dynamical properties of finite-size lattice quantum spin models which spontaneously break
a continuous U(1) symmetry in the thermodynamic limit are of central importance for a wide variety of
physical systems, from condensed matter to quantum simulation. Such systems are characterized by a Goldstone
excitation branch, terminating in a zero mode whose theoretical treatment within a linearized approach leads to
divergencies on finite-size systems, revealing that the assumption of symmetry breaking is ill defined away from
the thermodynamic limit. In this work we show that, once all its nonlinearities are taken into account, the zero
mode corresponds exactly to a U(1) quantum rotor, related to the Anderson tower of states expected in systems
showing symmetry breaking in the thermodynamic limit. The finite-momentum modes, when weakly populated,
can be instead safely linearized (namely treated within spin-wave theory) and effectively decoupled from the
zero mode. This picture leads to an approximate separation of variables between rotor and spin-wave ones,
which allows for a correct description of the ground-state and low-energy physics. Most importantly, it offers
a quantitative treatment of the finite-size nonequilibrium dynamics—following a quantum quench—dominated
by the zero mode, for which a linearized approach fails after a short time. Focusing on the 2d XX model with
power-law decaying interactions, we compare our equilibrium predictions with unbiased quantum Monte Carlo
results and exact diagonalization; and our nonequilibrium results with time-dependent variational Monte Carlo.
The agreement is remarkable for all interaction ranges, and it improves the longer the range. Our rotor/spin-wave
theory defines a successful strategy for the application of spin-wave theory and its extensions to finite-size
systems at equilibrium or away from it.
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I. INTRODUCTION

Lattice quantum spin models [1,2] occupy a central spot
in the field of many-body quantum physics, offering a quan-
titative description of magnetism in insulating materials, as
well as a set of paradigmatic models for quantum statistical
mechanics. More recently, the study of quantum spin models
has entered a new dimension in the field of quantum simu-
lation [3], as such models can be implemented in systems of
interacting qubits (S = 1/2 spins) or qudits (S > 1/2 spins),
realized by ultracold atoms in optical lattices [4–8], trapped
ions [9], arrays of Rydberg atoms [10], or superconducting
circuits [11], to cite a few relevant platforms.

Quantum simulation introduces two new fundamental as-
pects to the study of quantum magnetism: (1) quantum
simulators realize mesoscopic spin assemblies (with particle
numbers N ranging from ∼10 to ∼104, depending on the
platform), whose finite-size nature is a fundamental feature
and not necessarily a limitation; and (2) quantum simulators
naturally realize unitary nonequilibrium dynamics of quantum
spin models over times that are sufficiently long for the finite-
ness of the system size to play a role in the dynamics. The
faithful theoretical study of nonequilibrium quantum dynam-
ics requires the ability to describe the evolution of correlations
and entanglement; and in particular to do that accounting for
nonlinearities, which are essential in finite-size dynamics—as
we will further elaborate below. In the context of quantum spin
models, the simplest approach to deal with quantum correla-
tions and entanglement beyond the mean-field level is linear
spin-wave (LSW) theory [1,12], which approximately maps

the quantum spin problem onto a quadratic bosonic Hamil-
tonian describing linearized quantum fluctuations around a
classically ordered state. LSW theory rests on the assumption
of spontaneous symmetry breaking (SSB), namely the picture
by which the dynamics of a physical system remains con-
fined in the vicinity of the classically ordered configuration,
developing weak oscillations around the ordered state. This
picture, allowing for the linearization of the dynamics, is fully
justified in the thermodynamic limit, in which SSB is properly
realized. On the other hand the image of linear fluctuations
around an ordered state can substantially fail in finite-size
systems, implying the disruption of classical order and the
appearance of fully nonlinear quantum effects; such effects
result typically in richer forms of entanglement than those
allowed for by linear quantum fluctuations.

The dynamical disruption of long-range order in finite-
size systems is particularly serious in the case of continuous
symmetries—and in this work we will focus on translationally
invariant systems with U(1) symmetry, namely on uniform
planar magnets, in which two spin components are equally
coupled, and this coupling dominates the energetics of the
system at low energies. Systems breaking a U(1) symmetry
possess a gapless Goldstone branch of excitations (correctly
accounted for by LSW theory), which terminates in a zero
mode—namely a zero frequency mode at zero wave vector,
associated with the dynamical restoration of the U(1) symme-
try. The failure of conventional LSW theory for a finite-size
system is signaled by the significant difficulties encountered
in the treatment of this zero mode. First and foremost, a fully

2469-9950/2023/108(15)/155130(18) 155130-1 ©2023 American Physical Society

https://orcid.org/0000-0001-6853-5931
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.155130&domain=pdf&date_stamp=2023-10-18
https://doi.org/10.1103/PhysRevB.108.155130


ROSCILDE, COMPARIN, AND MEZZACAPO PHYSICAL REVIEW B 108, 155130 (2023)

gapless spectrum is not allowed for a finite-size system in the
absence of accidental degeneracies. In fact, the low-energy
spectrum of a system breaking a continuous symmetry is well
known to feature instead an Anderson tower of states (ToS),
namely a discrete spectrum of nonlinear excitations akin to
that of a quantum rotor [13–15]. Ignoring this aspect, and
including naively the gapless zero mode in the system, leads
to divergencies in the momentum-space sums that determine
some of the most basic predictions of LSW theory, above all
the magnitude of the order parameter.

In the face of this problem, three strategies can be con-
templated in order to formulate a finite-size LSW theory:
(1) Zero-mode removal: The zero mode can be simply
eliminated from the treatment, on the account that in the
thermodynamic limit its contribution to the momentum-space
integrals would vanish. This approach is justified as a way
to mimic the thermodynamic limit using a finite-size system,
but it fails to capture the specific aspects brought about by a
finite size. (2) Gapping out the zero mode: The zero mode can
be still included in the LSW description, but its pathological
aspects are cured by the application of a field coupling to
the order parameter, which gaps the mode out [16–18]. This
approach is also at the basis of nonlinear extensions of LSW
theory (namely the so-called modified spin-wave theory [19]).
(3) Separate treatment of the zero mode: In translationally
invariant systems the zero mode can be formally separated
from the rest of the modes within LSW theory, as it stems from
bosonic operators creating and destroying zero-momentum
bosons, which to quadratic order are decoupled from finite-
momentum operators because of momentum conservation.
The zero-momentum bosons can be treated differently from
the finite-momentum ones, and they can be cast in terms of
bosonic quadratures instead of being Bogolyubov diagonal-
ized; this approach has been put forward in Refs. [20–22], and
successfully applied to SU(2)-symmetric Heisenberg antifer-
romagnets.

In this work we adopt the third strategy of a separate
treatment of the zero mode, namely of the zero-momentum
operators; and we push this approach far beyond the picture
of a quadratic bosonic Hamiltonian, so as to account for the
quantum nonlinearities associated with the disruption of clas-
sical order in a finite-size system. Here is a summary of our
main results:

(i) We show that all the (linear and nonlinear) terms in the
bosonic Hamiltonian involving exclusively zero-momentum
bosons reconstruct the Hamiltonian of a U(1) quantum-rotor
variable, namely a giant spin of length NS, with moment of in-
ertia ∼N . The quantum-rotor Hamiltonian exhibits the energy
spectrum of the Anderson ToS, expected in a finite-size sys-
tem. The equilibrium low-energy configurations of finite-size
systems, as well as the nonequilibrium ones reached during
quench dynamics, imply a depolarization of the rotor, corre-
sponding to a macroscopic population of the zero-momentum
bosons,1 and therefore the treatment of its nonlinearities is
essential.

1We would not call this phenomenon a condensation of zero-
momentum bosons, as the bosons in question are quasiparticles
whose number is not conserved, and which can dynamically go

(ii) On the other hand, the finite-momentum bosonic
modes can be assumed to remain only weakly populated
[O(1) populations]; therefore the Hamiltonian, as well as all
the observables of interest, can be meaningfully expanded in
powers of the finite-momentum bosons. The lowest nontrivial
contribution from the finite-momentum modes corresponds
to LSW theory, in which the finite-momentum modes are
decoupled from the zero-momentum one. Therefore, retaining
only this contribution, one obtains a picture of an approximate
separation of variables between the nonlinear quantum-rotor
variable (zero-momentum bosons) and the finite-momentum
spin waves.

In the following we shall dub our approach the rotor/spin-
wave (RSW) theory. We specify our theory to the treatment
of XXZ models with power-law decaying interactions. Using
quantum Monte Carlo results as benchmark, we show that
RSW theory provides a quantitative account of the ground-
state physics of the models in a way similar (and on some
accounts superior) to LSW theory with gapped-out zero mode.
But our most important result is the description of the ex-
citation spectrum and nonequilibrium dynamics. Comparing
our results with exact diagonalization, we show that RSW is
the only spin-wave-based approach that can correctly account
for the low-energy excitation spectrum of a finite-size system,
describing together the Anderson ToS and the spin-wave ex-
citations. The correct description of the low-energy excitation
spectrum ensures the ability of the method to describe low-
energy quench dynamics starting from a fully polarized spin
state. Comparing our results with time-dependent variational
Monte Carlo based on a pair-product wave function, we show
that RSW theory is the only spin-wave-based approach that
allows for a quantitative description of the dynamics, due
to the correct treatment of all the nonlinearities of the zero-
momentum bosons. A complementary, extensive discussion of
the success of the RSW approach in treating quench dynamics
is offered by our companion paper, Ref. [23]. The quantitative
accuracy of our results for the spectral and dynamical proper-
ties fundamentally shows that the picture of an approximate
separation of variables between a zero-momentum rotor vari-
able and finite-momentum spin-wave ones is a very fruitful
playground to understand the behavior of finite-size quantum
magnets.

Our article is structured as follows. Section II illustrates
the spin-boson mapping and the conventional approach to
finite-size spin-wave theory; Sec. III discusses the approx-
imate rotor/spin-wave separation and RSW theory; Sec. IV
compares the predictions of conventional spin-wave theory,
RSW theory, and quantum Monte Carlo for the ground state
of two-dimensional long-range XXZ models; Sec. V discusses
the low-energy spectrum; and Sec. VI illustrates the problems
of conventional spin-wave theory and the success of RSW
theory when describing the nonequilibrium dynamics. Con-
clusions are drawn in Sec. VII.

from zero to a macroscopic value. In the latter situation long-range
order is disrupted in the system; hence the picture of a condensate,
which is associated instead with long-range phase coherence, may be
confusing.
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II. SPIN-TO-BOSON MAPPING AND SPIN-WAVE
THEORY FOR XXZ MODELS

A. Spin Hamiltonian

In this work we focus our attention on XXZ models with
interactions decaying as a power law of the distance (hereafter
called α-XXZ models),

Hα−XXZ = −
∑
i< j

Ji j
(
Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j

)
. (1)

Here Sμ
i (μ = x, y, z) are quantum spin operators of arbitrary

length, S2
i = S(S + 1); the i and j indices run over the lattice

sites (of coordinates ri and r j) of a periodic Bravais lattice
which is otherwise arbitrary. The hypothesis of a Bravais
lattice is not essential and it is only a simplifying one: Our
treatment can be readily generalized to non-Bravais lattices.
The couplings Ji j have a power-law decaying structure with
the intersite distance,

Ji j = J

|ri − r j |α , (2)

with exponent α � 0; J > 0 is the ferromagnetic coupling for
the x and y spin components; and � is the coupling anisotropy.

In the rest of this work we shall be concerned with
systems which, in their ground state, develop long-range fer-
romagnetic order in the xy plane. This imposes fundamental
conditions on the lattice dimensionality as well as on the value
of �. An easy-plane anisotropy, namely |�| < 1, guarantees
that the xy plane hosts the strongest spin-spin correlations; and
the correlation function

C(μμ)
i j = 〈

Sμ
i Sμ

j

〉
(3)

is long ranged in the ground state for μ = x or y up to a
finite critical temperature under the condition that α < 2d in
d = 1, 2, and for any α when d = 3, guaranteeing the viola-
tion of Mermin-Wagner theorem [24]. For any value of α as
well, the quantum easy-plane ferromagnet features long-range
order in the ground state when d � 2. Long-range order for
the x and y spin components can also be present for � < −1,
namely for a dominant antiferromagnetic interaction of the z
spin components, provided that this interaction is sufficiently
frustrated by the lattice geometry and/or by the long-range
nature of the interactions; see, e.g., Ref. [18] for the mean-
field phase diagram of the α-XXZ model on the square lattice.

The α-XXZ model is not only very relevant for the descrip-
tion of magnetism in the solid state (especially so in the limit
of short-range interactions), but it is also implemented (even
in its long-range versions) in many platforms of quantum
simulation, going from trapped ions [9,25] to Rydberg atoms
in optical tweezer arrays [10,26,27] to ultracold molecules [8]
as well as magnetic atoms [5,7] in deep optical lattices.

B. Spin-boson transformation and spin-wave theory

The crucial step of our approach consists in mapping the
spin model onto a bosonic model by using the well-known
Holstein-Primakoff (HP) transformation [28], with quantiza-
tion axis chosen along the x axis (namely in the xy plane, in

which long-range order appears):

Sx
i = S − ni

Sy
i = 1

2
(S+

i + S−
i ) = 1

2
(
√

2S − ni bi + b†
i

√
2S − ni )

Sz
i = 1

2i
(S+

i − S−
i ) = 1

2i
(
√

2S − ni bi − b†
i

√
2S − ni ). (4)

Here the raising and lowering operators, S+
i and S−

i re-
spectively are referred to the x axis, and bi, b†

i are bosonic
operators, with ni = b†

i bi.
If the Hamiltonian of Eq. (1) has ferromagnetic long-range

order in the xy plane, then the mean-field approximation to
such a ground state is the coherent spin state (CSS) with
all spins aligned along, e.g., the x axis, |CSSx〉 = |→x〉⊗N

,
corresponding to the vacuum of the HP bosons.

Under the HP transformation, the α-XXZ Hamiltonian
takes the form

Hα−XXZ = −
∑
i< j

Ji j[H(xx)
i j + H(++)

i j + H(+−)
i j ], (5)

where

H(xx)
i j = (S − ni )(S − n j )

H(++)
i j = 1 − �

4
(
√

2S − ni bi

√
2S − n j b j + H.c.)

H(+−)
i j = 1 + �

4
(
√

2S − ni bib
†
j

√
2S − n j + H.c.) (6)

Because of the presence of the square roots in the HP
transformation, the above Hamiltonian is highly nonlinear.
Yet, on expanding the square roots, it is easy to recognize that
it contains only terms which are of even order in the bosonic
operators, namely

Hα−XXZ = ECSS + H2 + H4 + · · ·, (7)

where

ECSS = −
∑
i< j

Ji jS
2 (8)

is the energy of the CSS (or the mean-field energy), while

H2 = −
∑
i< j

Ji jS
[
−(ni + n j ) + 1 − �

2
(bib j + b†

i b†
j )

+ 1 + �

2
(b†

i b j + b†
jbi )

]
(9)

is the Hamiltonian describing quadratic fluctuations around
the mean field, which is at the basis of the spin-wave approx-
imation.

Introducing the HP bosons in momentum space

bi = 1√
N

∑
q

eiq·ri bq, (10)

where the q wave vectors run over the Brillouin zone of
the periodic lattice, one obtains the following form for the
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quadratic Hamiltonian,

H2 = 1

2

∑
q

(
b†

q

b−q

)T (
Aq Bq

Bq Aq

)(
bq

b†
−q

)
− 1

2

∑
q

Aq, (11)

where

Aq = S[J0 − Jq(1 + �)/2]

Bq = −JqS(1 − �)/2 (12)

and where we have introduced the Fourier transform of the
spin-spin couplings,

Jq = 1

N

∑
i j

eiq·(ri−r j ) Ji j . (13)

The quadratic Hamiltonian can be Bogolyubov diagonal-
ized by introducing the operators aq and a†

q such that bq =
uqaq − vqa†

−q, with

uq =
√

1

2

(
Aq

εq
+ 1

)
vq = sgn(Bq)

√
1

2

(
Aq

εq
− 1

)
, (14)

leading to the form

H2 =
∑

q

εqa†
qaq + 1

2

∑
q

(εq − Aq), (15)

where

εq =
√

A2
q − B2

q = S
√

(J0 − Jq)(J0 − �Jq). (16)

These results form the basis of standard LSW theory. In par-
ticular the ground-state energy within this theory is given by

E0 = ECSS + 1

2

∑
q

(εq − Aq). (17)

C. Regularization of LSW theory by application
of a field (LSW + h approach)

The spin-wave dispersion relation εq vanishes for q = 0:
The existence of this zero mode leads to a singularity in the
Bogolyubov transformation of Eq. (14), calling for a separate
treatment of the b0, b†

0 operators.
A possible strategy—pursued, e.g., in Refs. [16–18]—to

fix the singularity of the Bogolyubov transformation for the
zero mode is to gap it out by applying a uniform magnetic field
which couples to the order parameter. This implies adding a
term Hh = −h

∑
i Sx

i = −hSN + h
∑

i ni to the Hamiltonian,
which leads to an extra term −hSN in the mean-field en-
ergy, and an extra term in the quadratic Hamiltonian, which
amounts to a shifted value of the Aq coefficient,

Aq = S[J0 − Jq(1 + �)/2] + h. (18)

As a consequence a gap appears at q = 0, εq=0 =√
2A0h + h2. The size of the added field is a priori arbi-

trary: Yet a sensible criterion is to choose h such that the
average order parameter is zero in the ground state (or more
generally in the equilibrium state) of the system. Denot-
ing with 〈. . . 〉h the equilibrium averages in the presence of
the applied field, one requires that 〈Sx

i 〉h = 0. Given that

〈Sx
i 〉h = S − N−1 ∑

q[(u2
q + v2

q )nq + v2
q], where nq = (eβεq −

1)−1 is the Bose distribution at inverse temperature β =
(kBT )−1, the condition on h reads

1

N

∑
q

(2nq + 1)Aq

2εq
= S + 1

2
. (19)

This means that the contribution at q = 0 to the above sum is
not divergent, but it leads to a term at most of O(1), namely
(2n0 + 1)A0/ε0 ∼ O(N ). At low fields such that βε0 � 1,
one has n0 ≈ kBT/

√
2A0h. As a consequence the above con-

dition reads

2kBT√
2A0h

+ 1
√

h
∼ N, (20)

implying that h ∼ O(N−2) at T = 0 and h ∼ O(N−1) for
T > 0 [and T > O(N−1)]. The scaling of the gap at T = 0
as

√
h ∼ O(N−1) interestingly reflects the exact finite-size

scaling of the lowest energy excitations in a system which
breaks a continuous symmetry in the thermodynamic limit
[17], namely the scaling of the Anderson tower-of-state ex-
citations that we shall discuss below. In the following we
shall refer to this strategy of regularization of LSW theory as
“LSW + h.”

III. ZERO MODE AS A QUANTUM ROTOR,
AND ROTOR/SPIN-WAVE SEPARATION

Our strategy to cure the zero-mode problem of LSW the-
ory consists in treating the bosons b0, b†

0 separately from
the finite-momentum ones, in the spirit of Ref. [20]. As al-
ready mentioned, at a technical level this is called for by
the singularity of the Bogolyubov transformation, Eq. (14),
for q = 0. Yet the singularity in question is signaling a deep
flaw of LSW theory in the presence of gapless modes when
applied to finite-size systems. The linearization of the HP
transformation, Eq. (5), leading to the quadratic Hamiltonian
H2, is only valid under the assumption that the gas of HP
bosons is dilute, namely 〈ni〉 = N−1 ∑

q〈b†
qbq〉 � 2S (in a

translationally invariant system). This in turn would generally
imply 〈b†

qbq〉 � 2NS for all q’s–and in fact 〈b†
qbq〉 � 2S for

most of the modes. Clearly this assumption cannot hold for
q = 0, as 〈b†

0b0〉 ∼ 1/ε0 → ∞ if the q = 0 mode is gapless.
This flaw signals the fundamental fact that the assumption
of spontaneous symmetry breaking, and of small quantum
fluctuations around a classically ordered state, is untenable on
finite-size systems.

The fact that the population of the q = 0 bosons 〈b†
0b0〉

cannot be considered as small calls in turn for a treatment
of the nonlinear terms involving the b0, b†

0 bosons appearing
in the bosonic Hamiltonian, Eq. (5). Our strategy consists
in resumming the nonlinear terms including exclusively the
zero-momentum bosons to all orders, therefore taking their
nonlinearity fully into account. In so doing, we reconstruct the
true nature of the zero-momentum excitations in a finite-size
system, which are not linear bosonic quasiparticles, but rather
the nonlinear excitations of a macroscopic quantum rotor, as
we shall illustrate below.
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A. Reconstruction of the quantum-rotor variable

The central insight of our approach consists in the idea that
the b0, b†

0 operators give parametrically larger contributions
to the bosonic Hamiltonian than the operators bq �=0, b†

q �=0, as,

for all states of interest, 〈b†
0b0〉 � 〈b†

q �=0bq �=0〉. This in spirit is
similar to the hypothesis of Bose condensation which is the
basis of Bogolyubov theory for the diluted Bose gas [29]. Yet,
unlike in that theory, we shall not treat the q = 0 bosons via
a classical-field approximation, as this would bring us back
to the assumption of spontaneous symmetry breaking. On the
contrary, we shall fully retain the quantum nature of the q = 0
bosonic mode.

In view of the presence of a possibly macroscopic number
of q = 0 bosons, we shall isolate in the Hamiltonian the part
that contains uniquely the b0, b†

0 operators. This amounts to
expressing the full bosonic Hamiltonian, Eq. (5), in momen-
tum space, and discard all terms containing some bq �=0, b†

q �=0
operators. Due to the nonlinear nature of the Hamiltonian, this
may appear as a rather arduous task; yet, to the contrary, the
task is rather elementary.

1. Zero-momentum/finite-momentum decomposition of operators

First of all, let us introduce the zero-momentum/finite-
momentum decomposition of an operator O = O({bi, b†

i }) as

O = [O]ZM(b0, b†
0) + [O]FM, (21)

where the first (zero-momentum) term contains uniquely
b0, b†

0 operators, while the second (finite-momentum, FM)
term is a sum of products of bosonic operators containing
at least one bosonic operator at finite momentum. For in-
stance, the bosonic operator in real space decomposes as
bi = [bi]ZM + [bi]FM where, quite simply,

[bi]ZM = b0√
N

(22)

and

[bi]FM = 1√
N

∑
q �=0

eiq·ri bq. (23)

Let us now move to the spin operators of length S, whose
μ (= x, y, z) component is expressed via the bosonic ones
as Sμ

i = f μ
S (bi, b†

i ), with the functions f μ
S given by the HP

transformation of Eq. (5). For those operators, it is immediate
to verify the property that

[
Sμ

i

]
ZM = f μ

S

(
b0√
N

,
b†

0√
N

)
= f μ

NS (b0, b†
0)

N
= Kμ

N
, (24)

namely the zero-momentum component of spin-S Sμ operator
is equivalent (up to a rescaling factor of N−1) to another spin
operator Kμ, of macroscopic length NS, which is related via
the HP transformation to the b0, b†

0 operators, namely

Kx = NS − b†
0b0

Ky = 1

2
(
√

2NS − b†
0b0 b0 + H.c.)

Ky = 1

2i
(
√

2NS − b†
0b0 b0 − H.c.). (25)

2. Zero-momentum Hamiltonian as a planar-rotor Hamiltonian

The decomposition of all operators into a zero-momentum
part and a finite-momentum one can be readily applied to
the α-XXZ Hamiltonian, to reconstruct its zero-momentum
component

[Hα−XXZ]ZM = − 1

2

∑
i j

Ji j
([

Sx
i

]
ZM

[
Sx

j

]
ZM + [

Sy
i

]
ZM

[
Sy

j

]
ZM

+ �
[
Sz

i

]
ZM

[
Sz

j

]
ZM

)
= − Jq=0

2N
[(Kx )2 + (Ky)2 + �(Kz )2], (26)

which, in terms of the macroscopic spin, K = (Kx, Ky, Kz )
has the form of a quantum-rotor Hamiltonian. It can be
even more explicitly cast in that form by using the fact that
(Kx )2 + (Ky)2 = K2 − (Kz )2 with K2 = NS(NS + 1), so that
the Hamiltonian takes the one-axis-twisting (OAT) [30] form

[Hα−XXZ]ZM = HR = E0,R + (Kz )2

2Ĩ
, (27)

where

E0,R = −S
(
S + 1

N

)
2

∑
i j

Ji j (28)

is the rotor ground-state energy, and the extensive moment of
inertia Ĩ of the planar rotor is given by

1

2Ĩ
= Jq=0 (1 − �)

2N
. (29)

The moment of inertia becomes negative for � > 1. This
signals the breakdown of the construction of a bosonic Hamil-
tonian relying on the HP transformation with quantization axis
along x, which is obvious when considering that for � > 1 the
exact ground state of the Hamiltonian is in fact a CSS aligned
with the z axis.

We remark already at this stage that the definition of the
rotor Hamiltonian will be further refined [to order O(1/N )]
in Sec. III D. We would also like to stress that the K quan-
tum spin is a distinct variable from the collective spin J =∑N

i=1 Si, whose length J2 is not fixed, as the collective spin
takes contributions from the finite-momentum bosons as well.
Yet their behaviors are strongly related, as we shall see in
Sec. III F.

B. Finite-momentum bosons: Spin-wave Hamiltonian
and coupling to the rotor

As seen in the previous section, the zero-momentum/finite-
momentum decomposition of the α-XXZ Hamiltonian,
Hα−XXZ = [Hα−XXZ]ZM + [Hα−XXZ]FM leads to the identifi-
cation of the zero-momentum part as a quantum-rotor Hamil-
tonian for the macroscopic spin K. The finite-momentum
part, [Hα−XXZ]FM is the sum of all terms containing at least
one finite-momentum bosonic operator bq �=0, b†

q �=0; and it de-
scribes the energetics of the finite-momentum excitations as
well as their coupling to the zero-momentum ones, namely to
the quantum rotor. The general structure of [Hα−XXZ]FM reads
as

[Hα−XXZ]FM = [H2]FM + [H4]FM + · · · . (30)
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The finite-momentum quadratic Hamiltonian corresponds
to the spin-wave Hamiltonian without the zero mode, namely
[H2]FM = HSW with

HSW = 1

2

∑
q �=0

(
b†

q

b−q

)T (
Aq Bq

Bq Aq

)(
bq

b†
−q

)
− 1

2

∑
q �=0

Aq, (31)

differing from Eq. (11) by the absence of the q = 0 terms.
Hence this Hamiltonian can be Bogolyubov-diagonalized
without any pathology.

The next-order term, containing the lowest-order non-
linearity for the finite-momentum bosons, as well as their
coupling to the zero-momentum ones, is represented by the
finite-momentum part [H4]FM of the quartic Hamiltonian:

H4 = −1

2

∑
i j

Ji j

[
b†

i b†
jbib j

− 1 − �

8
(b†

i bibib j + b†
jb jb jbi + H.c.)

− 1 + �

8
(b†

i bibib
†
j + b†

jb
†
jb jbi + H.c.)

]
. (32)

In principle [H4]FM contains terms which are cubic, quadratic,
linear, and of zeroth order in the zero-momentum bosonic
operators b0, b†

0. Nonetheless, in translationally invariant lat-
tices only momentum-conserving terms are allowed: A term
in [H4]FM which is cubic in b0, b†

0 is clearly not mo-
mentum conserving, as the creation/destruction of a boson
at finite momentum cannot be momentum-matched by the
creation/destruction of zero-momentum ones. Therefore the
terms in [H4]FM contaning the highest number of b0, b†

0 are
quadratic in the latter operators.

C. Approximate rotor/spin-wave separation

In summary, the total Hamiltonian reads

Hα−XXZ = HR + HSW + [H4]FM + · · · . (33)

It is then instructive to compare the order of magnitude of
the various terms appearing in the above Hamiltonian. Our
treatment rests on the assumption that, for the low-energy
states of interest, or during the nonequilibrium time evo-
lution, finite-momentum bosons form a dilute gas, namely
〈b†

q �=0bq �=0〉 � 2S, such that the operators b(†)
q /

√
2S can be

considered as parametrically small. On the other hand, we
expect that the population of zero-momentum bosons 〈b†

0b0〉
can rise up to O(NS), when the symmetry of inversion along
the quantization (x) axis is partially or totally restored. There-
fore we have that the operator b(†)

0 /
√

2NS can be considered
as larger than b(†)

q �=0/
√

2S—in the sense that, for most of the

states of our interest,
√

〈b†
qbq〉/(2S) �

√
〈b†

0b0〉/(2NS) � 1.
In fact the last inequality is always true, due to constraint on
the Hilbert space of the b0, b†

0 bosons.
We observe that

HR = (2S)2N

{
O(1) + O

(
b2

0

2NS

)
+ O

[
b4

0

(2NS)2

]
+ · · ·

}

HSW = (2S)2N O
(

b2
q �=0

2S

)

[H4]FM = (2S)2N

{
O

(
b2

q �=0

2S

b2
0

2NS

)
+ O

[
b4

q �=0

(2S)2

]

+ O
[

b3
q �=0

(2S)3/2

b0√
2NS

]}
. (34)

This means that neglecting the coupling terms between the
spin waves and rotor, namely neglecting the term [H4]FM and
higher-order ones, amounts essentially to neglecting terms

of order O
( b2

q �=0

2S
b2

0
2NS

)
(the lowest-order ones in [H4]FM—see

discussion in the previous section) with respect to terms of

order O
( b2

q �=0

2S

)
(contained in the spin-wave Hamiltonian).

This approximation leads to a separation of variables
between the rotor variable and the finite-momentum linear
spin waves. Its justification is physical, descending from the
above considerations; as well as technical, as it gives rise
to a workable theory, describing harmonic variables coex-
isting with a quantum-rotor one, all of which are exactly
solvable with a moderate computational cost scaling polyno-
mially with N .

D. Improved derivation of zero-momentum/
finite-momentum decomposition of operators:

projection onto the Dicke-state sector

The above decomposition of the Hamiltonian into zero-
momentum and finite-momentum components is mathemat-
ically very transparent, but it has an immediate drawback: It
does not reproduce correctly the vacuum expectation value,
i.e., the expectation value of the full Hamiltonian on the
coherent spin state aligned along x, 〈CSSx|Hα−XXZ|CSSx〉 =
ECSS, with ECSS given in Eq. (8). Indeed, since |CSSx〉 =
|0〉 for the bosons, one immediately finds that, accord-
ing to the definition of the zero-momentum Hamiltonian in
Eq. (27):

〈CSSx|[Hα−XXZ]ZM|CSSx〉 = ECSS − S

4N

∑
i �= j

Ji j (1 + 2�),

(35)
while 〈CSSx|H2|CSSx〉 = 0, because the quadratic Hamilto-
nian, Eq. (9), is normal ordered. Hence the correct expectation
value is missed by an error of order O(1/N ) compared to the
correct term.

The origin of this problem is rather clear: If one were
to normal-order the whole finite-momentum component of
the Hamiltonian, Eq. (30), then this would produce terms
[of relative order O(1/N )] that would add to the zero-
momentum Hamiltonian. This is already apparent in the
quartic Hamiltonian given by Eq. (32), which is clearly
not normal-ordered, and which, under normal ordering and
Fourier transformation, would contain terms involving exclu-
sively the b0, b†

0 operators. Therefore the correct prescription
for the zero-momentum/finite-momentum decomposition of
the Hamiltonian is

[Hα−XXZ]ZM = Hα−XXZ− : [Hα−XXZ]FM :, (36)

where : (...) : indicates normal ordering for the bosonic oper-
ators. This may suggest that, in order to reconstruct correctly
the zero-momentum Hamiltonian, one should examine (and
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normal-order) the whole series of terms which have been ne-
glected in the definition of the finite-momentum Hamiltonian,
Eq. (30)—a rather arduous task.

Yet, luckily, one can get around this difficulty and fully
eliminate all the the problems at order O(1/N ) by real-
izing that a fundamental property of the zero-momentum
Hamiltonian is that it is fully symmetric under permutation
of sites, because so are by construction the b0, b†

0 opera-
tors. Moreover the b0, b†

0 operators live on a Hilbert space
of dimensions 2NS + 1 (because of the constraint of the
bosonic occupation coming from the physics of the spins).
Therefore the correct identification of the zero-momentum
Hamiltonian is that of the projection of Hα−XXZ on the
(2NS + 1)-dimensional sector of Hilbert space spanned by
the symmetric Dicke states |Jtot = NS, M〉. Introducing the
total spin

J =
N∑

i=1

Si, (37)

the Dicke states are eigenstates of J2 and Jz with eigenvalues
Jtot (Jtot + 1) and M, respectively, where Jtot takes its maxi-
mum value Jtot = NS and M = −Jtot, . . . , Jtot .

Therefore we redefine the zero-momentum component of
a generic operator O as

[O]ZM =
∑
M,M ′

〈Jtot, M|O|Jtot, M ′〉 |Jtot, M〉〈Jtot, M ′|. (38)

This definition, along with the definition of the finite-
momentum component as being normal-ordered, leads to the
general decomposition

O = [O]ZM+ : [O]FM :, (39)

which guarantees that the expectation value on the CSS is
correct, since (1) the CSS lives in the Dicke subspace and
(2) the normal ordering of the FM component ensures the
vanishing of the FM contribution to the expectation value on
the CSS.

The zero-momentum operator of Eq. (38) can then be
expressed as a function of the components Kμ for a spin of
length NS, which can be simply viewed as tools to express all
operators acting on the Dicke subspace, namely

Kμ = [Jμ]ZM

=
∑
M,M ′

〈Jtot, M|
∑

i

Sμ
i |Jtot, M ′〉 |Jtot, M〉〈Jtot, M ′|. (40)

Therefore we can write

[
Sμ

i

]
ZM = Kμ

N
(41)

and, for i �= j,

[
Sμ

i Sν
j

]
ZM = 1

N (N − 1)

(
KμKν −

∑
l

[
Sμ

l Sν
l

]
ZM

)
, (42)

where [Sμ

l Sν
l ]ZM is again defined as in Eq. (38).

The U(1) symmetry of the Hamiltonian makes it diagonal
on the Dicke subspace, so that

[Hα−XXZ]ZM =
∑

M

〈J, M|Hα−XXZ|J, M〉 |J, M〉〈J, M|

= J0

2(N − 1)

{−N (N − 1)S2 + (1 − �)(Kz )2

− (1 − �)
[(

Sz
i

)2]
ZM

}
= ECSS − J0(1 − �)

2(N − 1)

[(
Sz

i

)2]
ZM + (Kz )2

2I
= HR

(43)

where we have introduced the refined definition of the mo-
ment of inertia

1

2I
= J0(1 − �)

2(N − 1)
(44)

differing from the previous definition, Eq. (29), by cor-
rections of order O(1/N ). The last line of Eq. (43)
defines the rotor Hamiltonian HR, and it replaces the
previous definition of Eq. (26). In particular, since
〈CSSx|[(Sz

i )2]ZM|CSSx〉 = 〈CSSx|(Kz )2|CSSx〉/N = S/2, we
obtain that 〈CSSx|[Hα−XXZ]ZM|CSSx〉 = ECSS, in agreement
with what mentioned above.

Calculating [(Sz
i )2]ZM is trivial for S = 1/2, since in that

case one has simply that [(Sz
i )2]ZM = 1/4. On the other hand,

it is not trivial at all for S > 1/2 spins. Since the results of this
work (presented in Secs. IV and VI) focus on S = 1/2 spins,
we shall postpone this problem to future work.

E. RSW separation and Hilbert-space extension

In the previous subsection we described how one can
identify the zero-momentum degrees of freedom as resulting
from a projection of the Hamiltonian, as well as of any other
operator, onto the Dicke subspace of states with maximum
collective spin length. The rotor/spin-wave separation at the
heart of RSW theory involves then the approximate separation
between a rotor variable which lives in the Dicke subspace,
and spin-wave degrees of freedom, which describe in turn
the projection of the state of the system onto the sectors
which are orthogonal to the Dicke subspace. This construction
clearly introduces an extension to the mathematical structure
of the Hilbert space H of the many-body spin system. Indeed,
H is the direct sum of orthogonal subspaces with different
collective-spin length Jtot, HJtot

H = ⊕Jtot
HJtot . (45)

On the other hand, by assuming a separation between vari-
ables living in HNS and variables living in the orthogonal
subspaces, we are tacitly assuming that the Hilbert space is
extended to a tensor-product structure:

H → HNS ⊗ (⊕Jtot<NS HJtot ). (46)

Moreover, by linearizing the Hamiltonian for finite-
momentum bosons, the orthogonal subspaces are
approximated as an (infinite-dimensional) bosonic subspace,
leading to further extension—which is anyway at the heart of
most bosonization approaches. Embedding a specific problem
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into a larger space is a rather typical step in order to introduce
approximations—see, for instance, conventional spin-wave
theory, slave-boson approaches [31], Schwinger-boson
approaches [1], etc. In the case of RSW theory, this has minor
consequences when evaluating standard observables, because,
as we will see, such observables do admit an additive structure
in terms of rotor/spin-wave variables when neglecting terms
of the same kind as those neglected in the Hamiltonian.
The consequences are slightly more serious when evaluating
instead entanglement entropies, which, as we will see in
Sec. IV D, are going to be overestimated in some cases, as an
immediate consequence of the enlargement of Hilbert-space
dimensions. We shall comment on this aspect further.

F. Observables under rotor/spin-wave separation

The zero-momentum/finite-momentum decomposition de-
fined in Sec. III D, Eq. (39), can be applied systematically
to all observables of interest. Within the framework of
RSW theory, the finite-momentum part is treated in an ap-
proximate manner by retaining only quadratic terms in the
finite-momentum bosons and neglecting all couplings to the
zero-momentum ones.

1. Hamiltonian and its spectrum

The approximate separation of variables between zero-
momentum ones (rotor) and finite-momentum ones (spin
waves) defines the additive structure for the Hamiltonian,

Hα−XXZ ≈ HR + HSW, (47)

where the rotor Hamiltonian is defined as in Eq. (43). The
spin-wave Hamiltonian for finite-momentum bosons takes the
following form after Bogolyubov diagonalization:

HSW =
∑
q �=0

εqa†
qaq + 1

2

∑
q �=0

(εq − Aq), (48)

with eigenvectors |{n(a)
q }〉 corresponding to Fock states for the

Bogolyubov (a) quasiparticles.
The spectrum of the Hamiltonian under RSW theory takes

therefore the form

ERSW
(
MK ,

{
n(a)

q

}) = Egs + M2
K

2I
+

∑
q �=0

εqn(a)
q , (49)

with MK = −NS, . . . , NS. The associated approximate eigen-
states possess the factorized rotor/spin-wave form |K =
NS, MK 〉 ⊗ |{n(a)

q }〉—see Sec. III E. Egs is the RSW ground-
state energy, whose expression reads

Egs = ECSS − J0(1 − �)

2(N − 1)

[(
Sz

i

)2]
ZM + 1

2

∑
q �=0

(εq − Aq). (50)

This contains the zero-point energy of the rotor (correspond-
ing to the mean-field energy for large N), as well as the
zero-point energy of the finite-momentum modes. This ex-
pression nearly coincides with that of LSW + h, Eq. (17),
with the second term on the right-hand side playing the role
of the (ε0 − A0)/2 term, removed from the last sum within
RSW. Please notice that the actual spectrum calculated in
Sec. V will differ slightly with respect to the one described
here because of a deformation of the rotor Hamiltonian aimed

at obtaining a vanishing average magnetization in the ground
state, as detailed in Sec. IV A.

Here and in the following we denote with 〈. . . 〉R the av-
erage over the (equilibrium or nonequilibrium) state of the
rotor and with 〈. . . 〉SW the average over the state of the spin
waves. Hence the corresponding average energy takes the
form 〈H〉 = 〈HR〉R + 〈HSW〉SW.

2. Average total spin

The average x component of the total spin J is given by

〈Jx〉 = NS −
∑

q

〈b†
qbq〉, (51)

while the other two components systematically vanish in all
the cases that we shall consider below. Within RSW theory,
the above average acquires the additive form

〈Jx〉 = 〈Kx〉R −
∑
q �=0

〈b†
qbq〉SW. (52)

3. Correlation functions and total-spin covariance matrix

We consider generic spin-spin correlation functions

Cμν
i j = 1

2

〈{
Sμ

i , Sν
j

}〉
= 1

2N

∑
q

eiq·(ri−r j )
〈{

Sμ
q , Sν

−q

}〉
, (53)

where we have introduced the Fourier decomposition of spin
operators

Sμ
i = N−1/2

∑
q

eiq·ri Sμ
q . (54)

Using the prescription of Eqs. (39) and (42), the correlation
function is decomposed as

Cμν
i j ≈ 1

2

〈[{
Sμ

i , Sν
i

}]
ZM

〉
R δi j

+ 〈{Kμ, Kν}〉R − ∑
l

〈[{
Sμ

l , Sν
l

}]
ZM

〉
R

2N (N − 1)
(1 − δi j )

+ 1

2N

∑
q �=0

eiq·(ri−r j )
〈

:
{
Sμ

q , Sν
−q

}
:
〉
SW, (55)

where the term 〈: {Sμ
q , Sν

−q} :〉SW is to be understood as the
expectation value on the SW state of the (normal-ordered)
harmonic approximation to the {Sμ

q , Sν
−q} operator when ex-

pressed in terms of HP bosons. The detailed expression of
the correlation functions for μ, ν = x, y, z is provided in
Appendix A.

The covariance matrix elements for the collective spin,
obtained by integrating the expressions in Appendix A over
space, take then the form

Var(Jx ) ≈ Var(Kx )R − 2(NS − 〈Kx〉R)NFM − N2
FM

Var(Jy) ≈ Var(Ky)R

Var(Jz ) ≈ Var(Kz )R

Cov(Jx, Jy) ≈ 1
2 〈{Kx, Ky}〉R

Cov(Jx, Jz ) ≈ 1
2 〈{Kx, Kz}〉R

Cov(Jy, Jz ) ≈ 1
2 〈{Ky, Kz}〉R, (56)
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where Var(Jα ) = 〈(Jα )2〉 − 〈Jα〉2 is the variance,
Cov(Jα, Jβ ) = 1

2 〈{Jα, Jβ}〉 − 〈Jα〉〈Jβ〉 is the covariance, and
NFM = ∑

q �=0〈b†
qbq〉SW is the population of finite-momentum

bosons.
From the above expression we observe that, within RSW

theory for a translationally invariant system with average spin
〈J〉 = (〈Jx〉, 0, 0), the covariance matrix of the collective spin
coincides with that of the rotor—apart from the term Var(Jx )
which also receives a contribution from the spin waves.

4. Entanglement entropy

As already mentioned above, physical states within RSW
theory factorize into rotor and spin-wave part: |ψ〉 = |ψR〉 ⊗
|ψSW〉. As a consequence, the entanglement entropy of a sub-
system has an additive structure, with a contribution from the
rotor variable and one from the finite-momentum spin waves.

The contribution from the spin waves can be calcu-
lated from the knowledge of the covariance matrix of the
finite-momentum bosons, namely from the matrices Gi j =
〈b̃†

i b̃ j〉 and Fi j = 〈b̃ib̃ j〉, where the b̃i, b̃†
i operators only con-

tain finite-momentum components b̃i = [bi]FM as defined in
Eq. (23). As a consequence,

Gi j = 1

N

∑
q �=0

e−iq·(ri−r j )〈b†
qbq〉

Fi j = 1

N

∑
q �=0

eiq·(ri−r j )〈bqb−q〉.

Strictly speaking, the b̃i, b̃†
i operators satisfy a slightly modi-

fied bosonic commutation relation

[b̃i, b̃†
j] = δi j

(
1 − 1

N

)
, (57)

where the −1/N correction comes from the absence of the
q = 0 component. Yet for N � 1 we can safely ignore this
aspect and treat the b̃, b̃† operators as regular bosonic ones.

Since within RSW theory the physical states of the finite-
momentum bosons are Gaussian states, the reduced density
matrix of any subsystem A (comprising NA sites) is also a
Gaussian state, namely the exponential of a quadratic form of
the b̃i, b̃†

i operators, fully reconstructed from the knowledge of
the GA and FA matrices, which are the G and F matrices with
indices restricted to i, j ∈ A. The one-body eigenfrequencies
of the quadratic form defining the reduced state of the subsys-
tem are obtained from the diagonalization of the 2NA × 2NA

matrix [17], (
−1A − G∗

A FA

F ∗
A GA

)
, (58)

whose diagonal form reads diag({−1 − nα}, {nα}) where α =
1, . . . , NA and nα � 0. The entanglement entropies (von Neu-
mann and second Rényi, respectively) are then obtained as

S(vN)
A,SW = −

∑
α

[nα log(nα ) − (1 + nα ) log(1 + nα )]

S(2)
A,SW =

∑
α

log(1 + 2nα ). (59)

According to the construction of Sec. III D, the entangle-
ment contribution from the rotor degree of freedom is the
entropy of a subsystem A of NA spins of length S which
are involved in a N-spin collective symmetric spin state of
maximum total spin length Jtot = NS or, equivalently, of a
subsystem of 2SNA spins of length S = 1/2 within a system of
2NS spins in a symmetric spin state with the same total spin
length. The generic state of such a system is a superposition
of Dicke states |J, M〉,

|ψR〉 =
Jtot∑

M=−Jtot

cJtot,M |J, M〉, (60)

which in turn admit a Schmidt decomposition into subsystem
Dicke states [32],

|Jtot, M〉 =
2JA∑

nA=0

√
pnA |JA, nA − JA〉|JB, M − nA − JA〉, (61)

where JA = NAS, JB = (N − NA)S,

pnA =
(

2JA

nA

)(
2JB

n − nA

)/(
2Jtot

n

)
(62)

and n = M + Jtot.
The reduced density matrix of subsystem A is readily built

as a (2JA + 1) × (2JA + 1) matrix from the Schmidt decom-
position of the state |ψR〉 which results from the combination
of Eqs. (60) and (61). Its diagonalization leads then to the
entanglement entropy.

The resulting entanglement entropy for the A subsystem is
then estimated within RSW theory as

SA ≈ SA,R + SA,SW. (63)

Because of the extension of the Hilbert space implicit in RSW
theory (see Sec. III E), we generally expect this entropy to
overestimate the actual entanglement entropy of the state of
interest.

IV. GROUND-STATE PROPERTIES

In this section we discuss the predictions of RSW theory
for the ground-state properties of U(1) symmetric systems.
Throughout the rest of this work we shall specialize our at-
tention to the long-range XX model (hereafter referred to as
the α-XX model), namely Eq. (1) with � = 0 and a variable
α exponent. In particular we will concentrate on the case of a
square-lattice geometry with N = L × L spins, guaranteeing
that the ground state of the system exhibits long-range order
for all values of α.

Conventional LSW theory can be applied as well to the
equilibrium physics of this model in the thermodynamic limit;
and its regularized version (LSW + h) allows for the treat-
ment of finite-size effects. In the following we shall conduct
a systematic comparison of RSW theory with LSW + h one,
as well as with quantum Monte Carlo (QMC) results obtained
via the Stochastic Series Expansion approach [33].

A. Hamiltonian modification to set the order parameter to zero

The exact equilibrium state of a finite-size system does
not exhibit spontaneous symmetry breaking; namely the order
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FIG. 1. Density of finite-momentum bosons (nFM) and zero-
momentum ones (n0) in the ground state of the S = 1/2 2d α-XX
model with variable α. Here we show the predictions of both RSW
and LSW + h theory. The calculation has been performed for a L × L
lattice with L = 20.

parameter m = 〈Jx〉/N is strictly zero at any temperature. In
the RSW expression for the order parameter, Eq. (52), one
has that m = mR + δmSW with mR = 〈Kx〉R = 0 in thermal
equilibrium for the rotor Hamiltonian Eq. (27), given its U(1)
symmetry. On the other hand one has in general that δmSW =
−N−1 ∑

q �=0〈b†
qbq〉SW < 0, because of the finite population of

FM bosons in any equilibrium state of the system, including
the ground state. This means that RSW theory would naively
predict m < 0, which is unphysical. This results reveals the
fact that it is impossible to build a quadratic theory of el-
ementary excitations around a ground state which is fully
symmetric under U(1) rotations.

This apparent problem with RSW theory can be easily
corrected for by slightly modifying the rotor Hamiltonian,

HR → HR − hKx, (64)

with the addition of a finite field h, such that the rotor con-
tribution to the order parameter mR becomes finite, and it
compensates the SW one, resulting in m = 0. Given that
the rotor spectrum is made of a tower of state separated by
energies of order O(1/N ), a field scaling as h ≈ h0/N is
a priori sufficient to induce a macroscopic magnetization in
it by admixing low-lying Hamiltonian eigenstates. In practice
we observe that h0 � 10−3J for the models of interest to this
work.

We shall make use of this slight modification of the ro-
tor Hamiltonian only in the equilibrium calculations. In the
nonequilibrium ones the original U(1) symmetric Hamiltonian
shall be used instead.

B. Exactness of RSW theory for α → 0

A fundamental remark concerns the small-α limit. In this
limit, the SW contribution to all quantities vanishes within
RSW, as can be seen in Fig. 1. There we plot the density of
finite-momentum bosons,

nFM = 1

N

∑
q �=0

〈b†
qbq〉, (65)

which is seen to vanish as α → 0. This implies that in this
limit RSW theory recovers the physics of a planar rotor for
all system sizes, namely the exact description of the α = 0
limit. This property is not shared with spin-wave theory in
its finite-size formulation, namely LSW + h. While the finite-
momentum bosons disappear on decreasing α (their value is
nearly identical to that of RSW theory, as shown in Fig. 1),
the only degree of freedom that remains active is the q = 0
mode, whose population alone must satisfy the condition of
a vanishing order parameter, 〈b†

0b0〉 → NS. This implies that,
in the limit α → 0, the ground state of the rotor Hamiltonian
(α = 0), which is exactly a Dicke state |J, M〉 = |NS, 0〉, is
approximated within LSW + h theory by a state of a single
bosonic mode with a macroscopic population, corresponding
to a density n0 = 〈b†

0b0〉/N → S – see Fig. 1. It remains rather
surprising that the linearization of such a mode, at the basis of
LSW + h theory, can lead at all to quantitative predictions,
for any value of α. Moreover the LSW + h ground state
breaks explicitly the U(1) symmetry of rotation around the
z axis, while this symmetry is instead recovered exactly by
construction within RSW theory when α → 0; and it is nearly
respected for small α (modulo the small symmetry-breaking
field h discussed in the previous section).

C. Ground-state energy and correlations of the 2d α-XX model

Figure 2 shows the predictions of RSW theory for the
ground-state properties of the α-XX model as a function of α

and of the size N = L × L of the lattice with periodic bound-
ary conditions. In particular we focus on the ground-state
energy per spin eGS = 〈H〉/(NJ ); as well as on the correlation
function at maximal distance,

CL/2 = 1
2

〈
Sx

i Sx
i+L/2 + Sy

i Sy
i+L/2

〉
, (66)

where i + L/2 indicates a site translated with respect to an
arbitrary reference site i by a distance L/2 along one of the
two coordinate axes of the lattice. The net magnetization in
the equilibrium state of a finite-size system is zero—an exact
result, imposed by construction within RSW theory as well
as LSW + h theory. Hence, in the absence of a net magneti-
zation, CL/2 plays the role of a squared order parameter. The
results of RSW theory are compared with those of LSW + h
theory, as well as with QMC, offering the numerically exact
reference. In particular QMC simulations are conducted at
temperatures T ∼ O(1/L) guaranteeing that thermal effects
are eliminated from the finite-size results.

Figures 2(a) and 2(b) show that RSW theory and LSW + h
theory provide nearly equivalent results on a sufficiently large
lattice (L = 20 in the figure in question) across a large spec-
trum of α values, from the long-range regime strictly defined
(α < d = 2) to the short-range one (α � d), and that the
results of the two theories are also in very good agreement
with QMC.2

2We remark in passing that within LSW + h theory the two corre-
lation functions 〈Sx

i Sx
i+L/2〉 and 〈Sy

i Sy
i+L/2〉, building up the expression

of CL/2 in Eq. (66), are widely different, and they may even take
unphysical values; it is only their average which, somewhat mag-
ically, reproduces correctly the QMC correlation function. On the
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FIG. 2. Ground-state properties of the 2d α-XX model. [(a) and
(b)] Ground-state energy per spin eGS (a) and correlations CL/2 (b) for
a 20 × 20 lattice as a function of α. Here and in all the other panels
we compare the predictions of RSW and LSW + h theory with the
numerically exact results from QMC; [(c) and (d)] size dependence
of eGS and CL/2 for the dipolar α-XX model (α = 3); [(e) and (f)]
same as in (c) and (d) but for the nearest-neighbor interacting model
(α = ∞).

In Figs. 2(c)–2(f) we show the finite-size scaling of the
above-cited quantities for two physically relevant values of
α: α = 3, corresponding to dipolar interactions, and α = ∞,
corresponding to nearest-neighbor interactions. In both cases,
we observe that the ground-state energies predicted by the
two theories are nearly identical. In particular we remark that
both theories reproduce very well the ground-state energy
for α = 3 but less so for α = ∞. Remarkably, both theories
capture correctly the change in the scaling of the energy from
decreasing with system size (for α = 3) to increasing (with
α = ∞), due to the change in the nature of the interactions
from power-law decaying to short ranged. On the other hand
correlations predicted by RSW theory and LSW + h theory
differ from each other on small system sizes, and they con-
verge to the same value only for large sizes. Which theory
best reproduces the QMC results seems to depend on the size
range, but it is fair to say that RSW results are globally closer

other hand, within RSW theory the two correlation functions always
take physical values, they become identical as α → 0, and they are
closer to each other the smaller α.

α = ∞
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FIG. 3. Ground-state entanglement entropy of the 2d α-XX
model. (a) Geometry of the subsystem A whose entropy is shown
in the following panels; (b) scaling of the entanglement Rényi en-
tropy from RSW theory as a function of the linear dimension LA of
the subsystem. The calculations have been performed for a system
with nearest-neighbor interactions (α = ∞) with linear dimension
L = 50. We show the SW contribution, the rotor one and their sum
(giving the total entropy). The dashed line is a logarithmic fit; [(c) and
(d)] scaling of the entanglement Rényi entropy from RSW theory
(c) and LSW + h theory (d) for various values of α; other parameters
as in panel (b); (e) scaling of the entanglement Rényi entropy with
the subsystem perimeter length lA for a lattice with L = 36. The
predictions of RSW and LSW + h theory are compared with QMC
results from Ref. [34].

to the numerically exact ones. In particular RSW theory cap-
tures the nonmonotonic size dependence of the long-distance
correlations for α = 3.

D. Entanglement entropy

We now move to a more advanced level of scrutiny of the
predictions of RSW theory for the ground-state properties,
and we focus on the ground-state entanglement entropy for a
bipartition. In particular we consider a subsystem A which is a
LA × LA square inside the L × L system, as shown in Fig. 3(a).
For the ground state of Hamiltonians breaking a continuous
symmetry in the thermodynamic limit, the entanglement en-
tropy is expected to scale as

S(2)
A = aLA + b log LA + · · · , (67)
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where a is the coefficient of the dominant area-law term,
while b is the coefficient of the subdominant logarithmic
term, which can be associated to the existence of NG gapless
Goldstone modes. In the case of a d-dimensional system with
Goldstone modes exhibiting a linear dispersion relation be-
tween frequency and wave vector, ω ∼ k, one has b = NG(d −
1)/2 [35]. If instead the Goldstone mode acquires a nonlinear
dispersion relation, ω ∼ kz, then the b coefficient is modified
as b = NG(d − z)/2 [18]. In the α-XX model this occurs
for α < d + 2: indeed z = (α − d )/2 for d < α < d + 2 and
z = 0 for α � d [36].

The RSW expression for the entanglement entropy of RSW
theory, Eq. (63), provides a natural decomposition into two
differently scaling terms: As shown in Fig. 3(b), the spin-wave
term exhibits area-law scaling, while the rotor term exhibits a
logarithmic scaling. Unfortunately the prefactor of the loga-
rithmic scaling term is close to the subsystem entanglement
entropy of a Dicke state |Jtot = NS, M = 0〉, even after the
deformation of the rotor ground state by the application of a
field [as in Eq. (64)] aimed at giving a net zero magnetization.
Such an entropy is

S(2)
A,R ≈ 1

2
log NA = d

2
log LA, (68)

where NA = Ld
A is the volume of the A subsystem. This means

that in the case of the α-XX model with NG = 1, the prefactor
of the logarithmic term is d/(d − z) times the one expected
for α > d , and it only coincides with the expected prefactor
for α � d (namely when z = d), exhibiting again the fact that
the predictions of RSW theory become exact in the small-α
limit.

The fact that the entanglement entropy of RSW theory
overestimates systematically the logarithmic term for d > α

is not surprising, in light of the discussion of Sec. III E.
It is a rather natural result of the extension of the Hilbert
space with respect to that of the spin model of origin. As
already discussed in Ref. [35], our result is a consequence
of the sharp decoupling between the rotor variable and the
spin-wave ones, which are postulated by RSW theory to give
additive contributions to the entanglement entropy. The result
b = NG(d − 1)/2 for the prefactor of the logarithmic term
of Ref. [35] descends instead from taking into account the
interplay between the rotor (or ToS) spectrum of a subsystem
and the lowest-energy spin waves coupling the subsystem to
its complement. On the other hand, LSW + h theory is able
to capture the correct prefactor of the logarithmic term, as
shown in several recent works [16,18]. In spite of the fact
that LSW + h theory fails to reproduce correctly the ToS
spectrum—as we will further show in Ref. V—it has the
merit of treating the contributions of the zero mode and of
the finite-wave-vector modes to the entanglement entropy in
a coupled manner. This appears to be sufficient to correctly
recover the mechanism that leads to the appearance of the
universal logarithmic contribution.

Figures 3(c) and 3(d) shows the scaling of the second
Rényi entropy as a function of subsystem size in the 2d α-XX
model for various values of α, comparing the RSW predic-
tions [Fig. 3(b)] with those of LSW + h theory [Fig. 3(c)].
The two theories predict an increase of the area-law term on
growing α, but within LSW + h theory the prefactor of the

logarithmic term decreases with α, leading to a nonmonotonic
α dependence of the subsystem entropies for sufficiently small
subsystem sizes. The discrepancy between the predictions of
the two theories is once again to be largely attributed to the
logarithmic term. This is particularly well seen in Fig. 3(e),
which shows the subsystem entanglement Rényi entropy as
a function of the perimeter lA = 4(LA − 1) in the case of
the XX model with nearest-neighbor interactions: α = ∞.
When compared with QMC data from Ref. [34], one sees
that RSW theory overestimates the numerically exact results,
while LSW + h theory underestimates them. Yet the entropy
per perimeter unit SA/lA of both theories appears to converge
to the exact result asymptotically, indicating that they can both
reproduce the correct dominant area-law scaling term.

V. EXCITATION SPECTRUM

Next we analyze the low-energy spectrum of the two-
dimensional α-XX model with dipolar interactions, α = 3,
comparing the exact result on a small (L = 4) system with the
predictions of RSW and LSW + h theory. Figure 4(a) shows
the energy levels of the exact spectrum plotted as a func-
tion (Jz )2, which is a good quantum number given the U(1)
symmetry of the problem. The spectrum resolved in terms
of the (Jz )2 quantum number clearly exhibits the existence
of a branch of low-energy excitations with energy linear in
(Jz )2—the Anderson’s ToS, already cited in Sec. I, composed
of the ground states of the Hamiltonian in each Jz sector. The
energy spectrum of the ToS is, to a very good approximation,
given by

EToS(Jz ) ≈ Egs,ex + (Jz )2

2IToS
, (69)

where Egs,ex is the exact ground-state energy and IToS should
be thought of as the effective moment of inertia of a planar-
rotor variable having the same spectrum as that of the ToS.
A further, striking feature of the spectrum is the fact that the
same, nearly linear dependence on (Jz )2 can be found for
further groups of higher-energy states, forming approximate
towers which are just shifted by a constant with respect to the
low-energy ToS.

This picture is clearly compatible with the one offered by
RSW theory, Eq. (49), for which the energy shifts between
successive towers of states is given by sums of spin-wave
frequencies. As such it is therefore strongly suggestive of
an (approximate) additive structure of the spectrum, resulting
from the sum of a rotor contribution and a SW one. The
quantitative correspondence between the low-energy part of
the RSW spectrum and the exact one is indeed shown in
Fig. 4(a); while the same RSW spectrum is repeated for clarity
in Fig. 4(b). The RSW energies are plotted as a function of
〈(Jz )2〉 ≈ 〈(Kz )2〉, where 〈. . . 〉 is the average on the excited
state. This average replaces the quantum number (Jz )2 since
we slightly broke the U(1) symmetry of the rotor Hamiltonian
by applying a transverse field term which compensates the SW
magnetization in the ground state, as discussed in Sec. IV A.
As it is apparent in the figure, the values of 〈(Jz )2〉 remain
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FIG. 4. Low-lying energy spectrum of the 2d XX model with dipolar interactions. (a) Exact spectrum for a L × L lattice with L = 4,
plotted as a function of the (Jz )2 quantum number. The RSW data of panel (b) (for the rotor spectrum, with addition of one-SW and two-SW
excitations) are also shown for comparison; (b) RSW prediction for the spectrum, plotted as a function of 〈(Jz )2〉. The different symbols
highlight the low-lying rotor spectrum; and the same spectrum with addition of one-SW energies, two-SW energies, and three-SW energies.
(c) LSW + h prediction for the spectrum. Same significance of the symbols as in (b), with the difference that the rotor spectrum is replaced by
the harmonic zero-mode spectrum. Inset: Zoom on the spectrum at small 〈(Jz )2〉.

very close to squares of integer numbers.3 As expected from
the rotor contribution, the energy levels depend linearly on
〈(Jz )2〉, with a slope given by 1/(2I ).

As shown in Fig. 4(a), the “bare” moment of inertia of the
rotor I predicted by RSW theory, Eq. (29), does not perfectly
coincide with the one emerging from the ToS of the exact
spectrum IToS. In fact we observe in general that I > IToS. For
the N = 16 data in Fig. 4, I = 2.47J−1 and IToS = 2.42J−1,
and hence the difference is rather small in this case. But, as
shown by us in Ref. [37], the discrepancy between the two mo-
ments of inertia grows with α, e.g., for α = ∞, I = 3.75J−1

while IToS = 3.45J−1. This can be readily interpreted as a
renormalization effect due to the residual interactions of the
rotor with the finite-momentum spin waves, which we neglect
within RSW theory. Taking into account this renormalization
in a scalable way is indeed possible, as further discussed by
us in Ref. [23].

In Fig. 4(b) we group the excited states into bands of
“towers,” representing the low-lying (or strictly defined) ToS
shifted by one SW excitation, two SW excitations, three SW
excitations, etc. The comparison with Fig. 4(a) shows that
one can clearly identify the one-SW-excitation branch in the
exact spectrum, separated by a gap from the branches with

3In principle the construction of Sec. IV A leading to a vanishing
total magnetization should be done for each excited state, resulting in
an energy-dependent transverse field—yet for simplicity we plot the
spectrum obtained using a field which cancels the 〈Jx〉 magnetization
only in the ground state, which implies that the excited states have in
fact a net magnetization. This choice is coherent with the fact that,
when studying the dynamics, we do not apply any field, so that the
excitation spectrum shown in Fig. 4 is essentially the one that will
manifest itself in the time evolution of observables.

a higher number of SW excitations [at least for sufficiently
small (Jz )2]. The distinction between branches with more
than two spin-wave excitations is instead lost in the exact
spectrum.

Finally, Fig. 4(c) shows the prediction of LSW + h the-
ory for the spectrum. Within this theory the lowest-energy
excitations are obtained by populating the zero mode at en-
ergy εq=0 ∼ N−1 (see Sec. II C) and have energies E0 + nεq=0

with n = 1, 2, . . . , where E0 is the LSW + h ground-state
energy given by Eq. (17). The higher-energy states are ob-
tained by adding finite-momentum spin waves to each sector
with n zero-mode excitations, resulting in the group of states
with one SW, two SWs, etc., as indicated in Fig. 4(c).4

As it is clear from the picture, the SW “bands” are cor-
rectly reproduced, as one should expect, since the spin-wave
spectrum at finite momentum is essentially the same as in
RSW theory. But the ToS structure is completely incorrect,
given that the zero mode is represented as a (linear) har-
monic oscillator in LSW + h theory, and as such it cannot
provide an accurate approximation for the (nonlinear) rotor
spectrum of the actual low-lying ToS, if not for the very
first excitation. In particular the values of 〈(Jz )2〉 for the ex-
cited states are completely wrong, because of the incorrect
treatment of this zero mode beyond the description of the
ground state.

4Similarly to our treatment of the RSW spectrum, we choose a field
h leading to a vanishing magnetization (see Sec. II C) only in the
ground state, and we show the rest of the spectrum as calculated at
the same fixed field. In principle one should find a field h leading to a
vanishing magnetization for each energy level, but for simplicity we
did not pursue this calculation. In the same spirit as for the remark
made above on RSW theory, the spectrum without any h field is in
fact the one relevant for the dynamics.
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The ability of RSW theory to correctly reproduce the low-
lying excitation spectrum is the key aspect behind its success
in reproducing the low-energy nonequilibrium dynamics ini-
tialized in the CSS, as we will discuss in the next section.

VI. QUENCH DYNAMICS

In this section we test the physical picture underpin-
ning RSW theory—the approximate separation between
a nonlinear zero-mode degree of freedom and linearized
finite-momentum spin waves—in the case of nonequilibrium
dynamics. Given that RSW theory describes the low-energy
properties of the system, we choose to examine a very sig-
nificant instance of low-energy quench dynamics, namely the
dynamics of the dipolar XX model (α = 3) initialized in
the coherent spin state (CSS), representing the vacuum of
Holstein-Primakoff bosons (Sec. II). A detailed study of this
dynamics has been presented by us in the companion paper,
Ref. [23]. The goal of this section is to compare RSW pre-
dictions with the results of time-dependent variational Monte
Carlo (tVMC), which offers a very accurate solution to the
dynamics of the system, as shown by us in Ref. [38], and to
contrast them with the predictions of standard LSW theory,
which amounts to linearizing the zero mode.

A. Nonequilibrium RSW theory and OAT dynamics

Within RSW theory, the dynamics of the XXZ model is
simply represented as the independent nonlinear dynamics of
the rotor, described by the one-axis-twisting Hamiltonian [30]
of Eq. (43) and that of linear spin waves at finite momentum.
Both dynamics can be calculated efficiently: The rotor vari-
able lives in a (2NS + 1)-dimensional Hilbert space, while
studying the dynamics of linear spin waves amounts to solving
O(N/2) pairs of coupled differential equations for the regular
and anomalous correlators Gq = 〈b†

qbq〉 and Fq = 〈bqb−q〉 as-
sociated with two HP-boson modes at opposite momenta q
and −q. The equations are given in Appendix B, along with
their analytical solution via Bogolyubov diagonalization at
finite momentum [36].

For RSW theory to be valid, the density of finite-
momentum bosons NFM/N must remain very low along the
dynamics, so as to justify the assumption of decoupling be-
tween spin waves and rotor. On the other hand the rotor
dynamics is completely arbitrary, since its nonlinearities are
fully accounted for. If the rotor/spin-wave decomposition
of all observables, as defined in Sec. III F, is dominated
by the rotor contribution, then the dynamics of the entire
system is akin to that of the one-axis-twisting model [30],
which features in particular the appearance of scalable spin
squeezing at short times, signaled by the spin-squeezing
parameter [39]

ξ 2
R = N minθ Var(Jθ )

〈Jx〉2
, (70)

where Jθ = cos θJy + sin θJz, so that

Var(Jθ ) = cos2 θ Var(Jy) + sin2 θ Var(Jz )

+ 2 sin θ cos θ Cov(Jy, Jz ). (71)

Spin squeezing is associated with the condition ξ 2
R < 1, which

witnesses the presence of entanglement [40]; in particular the
OAT dynamics features minimal squeezing parameter attained
at times tsq ∼ N1/3 and scaling as (ξ 2

R )min ∼ N−2/3 (for very
large N) [30].

According to the discussion of Sec. III F, within RSW
theory the spin-squeezing parameter is simply given by

ξ 2
R ≈ N minθ Var(Kθ )R

(〈Kx〉R − NFM)2
, (72)

namely it differs from the spin squeezing parameter of the
OAT model by the fact that the average spin is renormalized
by the spin-wave contribution.

B. Nonequilibrium LSW theory and squeezing dynamics

Nonequilibrium LSW theory amounts essentially to treat-
ing the rotor variable as a linearized zero-momentum HP
boson at the same level as the finite-momentum HP bosons.
When dealing with (short-time) nonequilibrium dynamics,
one can ignore the complication associated with the Bo-
golyubov diagonalization of the zero-momentum bosons (see
Sec. II C) and simply extend the linearized equations of mo-
tion for the HP bosons (Appendix B) to the q = 0 one. A
similar approach has been used in a variety of recent studies,
and it is successful for systems that do not possess the zero-
mode pathology descending from U(1) symmetry [41–45].
For systems with U(1) symmetry, gapping out the zero mode
as in LSW + h theory is not an option away from equilib-
rium, because the application of a field is only justified when
requesting the average collective spin to vanish. The latter
average is instead maximal at t = 0 in the particular quench
scheme that we are considering. Hence the zero-mode pathol-
ogy necessarily limits the validity of LSW theory to short
times when dealing with finite-size systems.

As already shown in Eq. (11), the Hamiltonian gov-
erning the linearized dynamics of the q = 0 boson has
the form

H0 = A0b†
0b0 + B0

2
[(b†

0)2 + (b0)2], (73)

which is a squeezing Hamiltonian as known in quantum
optics [46]. Indeed, as can be verified from their expres-
sions in Sec. II B, one has that A0 = −B0 = SJ0(1 − �)/2 =
NS/2Ĩ , so that, introducing the (dimensionless) P quadra-
ture of the bosonic field, P = (b0 − b†

0)/(i
√

2), one has
that H0 = NS/(2Ĩ ) P2 + const ≈ (Jz )2/2Ĩ + const, where we
have used the linearized HP transformation Jz ≈ √

2SN (b0 −
b†

0)/(2i) = √
NSP. The H0 ∼ P2 Hamiltonian evolves the

initial vacuum state—which in the position eigenbasis is a
Gaussian wave packet corresponding to the ground state of
a harmonic oscillator—via an indefinite free expansion. The
latter leads to squeezing of a quadrature of the field [47],
intermediate between P and X = (b0 + b†

0)/
√

2 ≈ Jy/
√

NS,
corresponding to the squeezing of one collective-spin compo-
nent in the yz plane. This is expected as H0 is the quadratic
approximation to the OAT Hamiltonian. Nonetheless, at the
same time the fluctuations of X grow unboundedly under free
evolution, which implies that the number of zero-momentum
bosons N0 = 〈b†

0b0〉 = 〈X 2〉 + 〈P2〉 − 1/2 also grows without
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FIG. 5. Collective-spin dynamics after a quench in the 2d dipolar XX model. (a) Relaxation of the average collective spin for a square
lattice with L = 10. The panel compares the prediction of RSW and LSW theory with the results of tVMC; (b) minimum variance of the
collective-spin components transverse to the average orientation; (c) spin squeezing parameter. For panels (b) and (c) there is the same lattice
geometry and significance of symbols as in (a).

limits, driving a runaway of the average spin 〈Jx〉 = NS −
N0 − NFM. Here NFM is the number of finite-momentum
bosons, as defined in Sec. III F. This proliferation of HP
bosons at zero momentum exposes again the zero-mode
pathology of LSW in the dynamics.

C. Results

Figure 5 offers a comparison between the results of RSW
theory, LSW theory, and tVMC based on a pair-product wave
function [37,38,48] for the quench dynamics of the S = 1/2
2d dipolar XX model initialized in the CSS. We focus on a
square lattice comprising N = 100 sites. Figure 5(a) shows
the depolarization dynamics of the average collective spin,
which is very well reproduced by RSW theory, because the
rotor contribution to it obeys the nonlinear dynamics of the
OAT Hamiltonian. On the other hand, the dynamics of zero-
momentum bosons is governed by the linear Hamiltonian of
Eq. (73) within LSW theory, which leads to an unbounded
proliferation of such bosons, and therefore to a much-too-fast
depolarization of the collective spin.

Concomitantly, one of the transverse components of the
collective spin develops a squeezed uncertainty below the
shot-noise limit Var(Jθ )/N = S/2 = 1/4 of the initial state.
As shown in Fig. 5(b), this behavior is well reproduced by
both RSW and LSW theory at short times. But at longer
times the two theories depart from each other. RSW theory
predicts that minθ Var(Jθ ) obeys the same dynamics as that
of the squeezed spin component of the OAT model—and
this prediction is confirmed by tVMC. On the other hand the
minimum variance within LSW theory continues decreasing
indefinitely, because squeezing occurs here on the infinite
quadrature plane, as opposed to spin squeezing, which occurs
on the finite Bloch sphere.

The squeezing parameter ξ 2
R of Eq. (70) is then built from

the ratio between the two quantities considered so far. While
the RSW results are in excellent agreement with the tVMC,
we see that the LSW results only reproduce the squeezing
at the beginning of the evolution and until the minimum of
the ξ 2

R parameter. Successively, the LSW prediction for ξ 2
R

continues decreasing below the actual minimum, driven by

the unbounded decrease of the minimum variance; until the
vanishing of the average spin leads to a sharp, unbounded
increase in ξ 2

R .
These results show that the LSW dynamics ceases to

be quantitative after a short time. On the other hand RSW
dynamics remains quantitative up to macroscopic times
∼O(N ), as discussed in details in our companion paper
Ref. [23].

VII. CONCLUSIONS

In this work we have introduced a new approach—RSW
theory—to treat the finite-size equilibrium and nonequilib-
rium behavior of quantum spin systems with U(1) symmetry.
Similarly to conventional spin-wave theory, our approach
maps spin deviations with respect to a classical reference state
onto a gas of bosonic quasiparticles. Yet, unlike spin-wave
theory, it only assumes that this gas is dilute at finite mo-
menta. Zero-momentum bosons are instead treated with all
their nonlinearities within RSW theory, and they are shown
to reconstruct a quantum-rotor degree of freedom, which in
principle can take arbitrarily nonclassical states. The spec-
trum of the quantum rotor reconstructs the Anderson tower
of states of excitations, characteristic of finite-size systems
which spontaneously break a U(1) symmetry in the thermo-
dynamic limit. Hence our theory can account simultaneously
for linear spin-wave excitations at finite momentum as well
as for the nonlinear ToS excitations, fully reconstructing the
low-energy spectrum.

RSW theory reproduces very well the ground-state proper-
ties for U(1)-symmetric systems displaying long-range order,
in a way which is similar (and on some accounts superior)
to conventional spin-wave theory modified for finite-size sys-
tems. But it proves to be far superior to spin-wave theory in
describing the low-energy spectrum, as well as the nonequi-
librium dynamics. In particular it is able to correctly describe
the highly nonlinear quantum dynamics by which a finite-
size system effectively restores its U(1) symmetry broken in
the initial state by relaxing towards an unpolarized (i.e., non-
classical) state. In this work we have applied the RSW theory
to U(1)-symmetric S = 1/2 spin systems. Yet the theory is
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readily generalizable to arbitrary spin lengths [49], and it can
be extended to higher symmetries [e.g., SU(2)], as we will
discuss in a future work.

The physical picture emerging from RSW theory is that of
an effective separation of variables between zero-momentum
degrees of freedom (representing the quantum-rotor
variable) and finite-momentum ones, corresponding to
linear spin waves. This picture appears to be valid when
the finite-momentum spin waves form a very dilute gas, but
it is expected to become less and less accurate for higher
densities of such spin waves, corresponding to increasingly
strong fluctuations (classical or quantum) of the spins at
finite momentum. Restricting to pure states, the strength
of these finite-momentum (quantum) fluctuations can be
controlled by the connectivity of the lattice, i.e., the range
of the interactions and/or its dimensionality. RSW theory
becomes asymptotically exact in the limit of infinite-range
interactions/infinite dimensions, while it is less accurate for
short-range interactions. Systematic improvement on RSW
theory can be achieved by taking into account explicitly the
coupling between the rotor variable and the finite-momentum
spin waves. Pushing forward this program completely would
be as hard as exactly diagonalizing the system; but one can
envision to take into account the coupling of the rotor with
only a subset of finite-momentum modes, thereby increasing
progressively the computational complexity of the approach.

Another challenging aspect for our approach is to gener-
alize it beyond the case of translationally invariant systems
treated here. Breaking of translational invariance introduces
a coupling between the rotor and the finite-momentum spin
waves at quadratic order in the bosonic operators, which can-
not be reasonably neglected, unless it is a boundary term in
a large system. Taking into account explicitly the coupling
between rotor and spin waves (or a subset thereof) is there-
fore necessary to extend the theory to treat, e.g., disordered
systems.

The ability of RSW theory (and of its potential future
extensions) to deal with highly nonclassical states of spin
systems with very light computational resources can offer a
very valuable guidance for experimental quantum simulation
of dynamics of lattice quantum spin systems—based, e.g., on
arrays of Rydberg atoms, of trapped ions, of neutral atoms
in optical lattices, or of superconducting qubits, to cite some
relevant examples. Its physical content is very transparent, and
it allows one to reach very large system sizes, comprising up
to thousands of spins, in a very short computational time. It of-
fers therefore a valuable alternative to more sophisticated and
computationally demanding approaches for the equilibrium
and nonequilibrium properties of quantum simulators, such as
semi-classical methods [50] or variational ones [37,51,52].
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APPENDIX A: CORRELATION FUNCTIONS
WITHIN RSW THEORY

This prescription of Eq. (55) for the correlation functions
within RSW theory leads to the formulas

Cxx
i j ≈ 〈[(

Sx
i

)2]
ZM

〉
R
δi j + 〈(Kx )2〉R − ∑

l

〈[(
Sx

l

)2]
ZM

〉
R

N (N − 1)

× (1 − δi j ) − 2S

N

∑
q �=0

〈b†
qbq〉SW, (A1)

Cyy
i j ≈ 〈[(

Sy
i

)2]
ZM

〉
R
δi j

+ 〈(Ky)2〉R − ∑
l

〈[(
Sy

l

)2]
ZM

〉
R

N (N − 1)
(1 − δi j )

+ S

2N

∑
q �=0

eiq·(ri−r j )(〈b†
qbq〉SW + 〈b†

qb†
−q〉SW + c.c.),

(A2)

Czz
i j ≈ 〈[(

Sz
i

)2]
ZM

〉
R δi j

+ 〈(Kz )2〉R − ∑
l

〈[(
Sz

l

)2]
ZM〉R

N (N − 1)
(1 − δi j )

+ S

2N

∑
q �=0

eiq·(ri−r j )(〈b†
qbq〉SW − 〈b†

qb†
−q〉SW + c.c.),

(A3)

Cxy
i j ≈ 1

2

〈[{
Sx

i , Sy
i

}]
ZM

〉
R δi j

+ 〈{Kx, Ky}〉R − ∑
i

〈[{
Sx

i , Sy
i

}]
ZM

〉
R

2N (N − 1)
(1 − δi j ), (A4)

Cxz
i j ≈ 1

2

〈[{
Sx

i , Sz
i

}]
ZM

〉
R δi j

+ 〈{Kx, Kz}〉R − ∑
i

〈[{
Sx

i , Sz
i

}]
ZM

〉
R

2N (N − 1)
(1 − δi j ), (A5)

Cyz
i j ≈ 1

2

〈[{
Sy

i , Sz
i }]ZM

〉
R
δi j

+ 〈{Ky, Kz}〉R − ∑
i

〈[{
Sy

i , Sz
i

}]
ZM

〉
R

2N (N − 1)
(1 − δi j )

+ S

2iN

∑
q �=0

eiq·(ri−r j )(〈bqb−q〉SW − 〈b†
qb†

−q〉SW). (A6)

It is immediate to verify that the above expressions capture
correctly the CSS expectation values, i.e., Cxx

i j = S2, Cyy
i j =

Czz
i j = (S/2)δi j , and Cxy

i j = Cxz
i j = Cyz

i j = 0.

APPENDIX B: EQUATIONS OF MOTION FOR THE
HOLSTEIN-PRIMAKOFF BOSONS WITHIN LSW

Here we provide the equations of motion for the correlators
Gq = 〈b†

qbq〉 and Fq = 〈bqb−q〉 under the dynamics governed

155130-16



ROTOR/SPIN-WAVE THEORY FOR QUANTUM SPIN … PHYSICAL REVIEW B 108, 155130 (2023)

by the linear Hamiltonian Eq. (31). These correlators describe
completely the Gaussian state of linearized HP bosons. The
equations read:

dGq

dt
= −2 Bq Im(Fq)

dFq

dt
= −i[2AqFq + Bq(1 + Gq + G−q)]. (B1)

For finite momenta, these equations can be solved
via the Bogolyubov transformation of Sec. II B,

to give

Gq(t ) = 2u2
qv

2
q[1 − cos(2εqt )]

Fq(t ) = uqvq
(
u2

qe−2iεqt + v2
qe2iεqt − 2v2

q − 1
)
. (B2)

For zero momentum the Bogolyubov transformation becomes
singular; yet the equations for F0 and B0 reduce to those of
a single bosonic mode subject to the squeezing Hamiltonian
Eq. (73). As mentioned in the main text, the solution to
the dynamics is the same as that for the free expansion of
the minimal-uncertainty Gaussian wave packet, which corre-
sponds to the vacuum state of b0, b†

0 bosons when expressed
in the basis of the position operator X = (b0 + b†

0)/
√
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