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Phase classification in the long-range Harper model using machine learning
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In this work, we map the phase diagrams of one-dimensional quasiperiodic models using artificial neural
networks. We observe that the multiclass classifier precisely distinguishes the various phases, namely the
delocalized, multifractal, and localized phases, when trained on the eigenstates of the long-range Aubry-André
Harper (LRH) model. Additionally, when this trained multilayer perceptron is fed with the eigenstates of the
Aubry-André Harper (AAH) model, it identifies various phases with reasonable accuracy. We examine the
resulting phase diagrams produced using a single disorder realization and demonstrate that they are consistent
with those obtained from the conventional method of fractal dimension analysis. Interestingly, when the neural
network is trained using the eigenstates of the AAH model, the resulting phase diagrams for the LRH model
are less exemplary than those previously obtained. Further, we study binary classification by training the neural
network on the probability density corresponding to the delocalized and localized eigenstates of the AAH model.
We are able to pinpoint the critical transition point by examining the metric “accuracy” for the central eigenstate.
The effectiveness of the binary classifier in identifying a previously unknown multifractal phase is then evaluated
by applying it to the LRH model.
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I. INTRODUCTION

The application of machine learning (ML) techniques in
the field of condensed matter physics has been a subject
of great interest in recent times [1]. This interdisciplinary
field has rapidly gained popularity owing to the advantages
presented by machine learning [2–4]. As an actively evolv-
ing area of research, ML techniques have been used to
detect classical and quantum phase transitions [5–13], for
the acceleration of Monte Carlo simulations [14–16], and
for representation of states of quantum many-body systems
[17–25]. A popular subcategory of machine learning is su-
pervised learning [26], where one trains algorithms to utilize
labeled training data sets in order to classify new data or
make predictions accurately. This motivates its application
in condensed matter physics for classifying various phases
in strongly correlated systems [5,27], topological systems
[28–30], and quantum many-body systems [9,17].

Disordered quantum systems [31–36] have been a fascinat-
ing topic of study for a long time. In the 1D Anderson model
[31], the tiniest of disorder is known to localize single-particle
states exponentially. In contrast, the Aubry-Andrè-Harper
(AAH) [37,38] model, governed by a quasiperiodic disor-
der, exhibits a delocalization-localization transition even in
one dimension. Interestingly, instead of the exponential lo-
calization observed in the short-ranged model, the eigenstates
show algebraic localization [39–41] in the case of long-range
hopping. This has naturally led to exciting studies exploring
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the effects of quasiperiodic disorder in long-range systems
[42,43].

The interplay of power-law hopping (1/rσ ) and the
quasiperiodic potential results in a rich structure [42] in the
single-particle eigenstates. The self-duality of the quasiperi-
odic AAH model is broken, and mobility edges are observed
when the hopping is no longer restricted to nearest neighbors
only. While multifractal eigenstates are observed to coexist
with delocalized eigenstates for σ < 1, localized states exist
together with delocalized eigenstates for σ > 1 [42]. The lo-
calization characteristics of these single-particle eigenstates
have been determined [42,44] with the aid of several well-
known measures, such as fractal dimension [45,46], inverse
participation ratio [47,48], level spacing [49], and many more.
These methods depend on a physical understanding of the
nature of the regime.

In the present work, we construct a neural network for
characterizing the phase diagram beyond established meth-
ods in single-particle Hamiltonian models. We study the
one-dimensional long-range AAH (LRH) model, where mul-
tifractal (localized) eigenstates can coexist with delocalized
eigenstates for the long-range hopping parameter σ < 1
(σ > 1). The information required for classifying the delo-
calized, localized, and multifractal regimes is obtained from
the eigenstates which are used as inputs to the neural net-
work. The trained network is first used to classify all the
eigenstates of the LRH model for various values of the hop-
ping parameter σ . We then consider the case of σ → ∞,
i.e., the standard AAH model, and classify its eigenstates as
delocalized/localized/multifractal. We show that the phase
diagram obtained by feeding a single disorder realization in
the neural network is in good agreement with results obtained
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using conventional methods. We next train the same network
using the eigenstates of the AAH model. In this case, although
the network can identify the localized phase accurately, some
discrepancy is seen in the case of multifractal and delocalized
states. We also utilize binary classification to identify the
transition point of the AAH model by training the neural net-
work on its delocalized and localized eigenstates. While this
network precisely identifies the phase diagram for the AAH
model, it can also identify the multifractal phase (for which
no explicit training is given) of the LRH model, although this
is achieved only in a coarse manner.

This paper is organized as follows. Section II discusses the
details of the Hamiltonian model and carries an introduction
to the general setup of the neural network. In Sec. III, we
discuss the network architecture used for the classification as
well as the details of the input data. In Sec. IV, we present our
multiclass and binary classification results and compare them
against the results obtained through a conventional method.
We then summarize our results in Sec. V. The utilization of the
binary classifier trained on the data of a 1D model to predict
the phase diagram of a 3D model is discussed in Appendix A.

II. MODEL AND METHODS

A. Hamiltonian

We consider the one-dimensional long-range Harper
(LRH) model given by the Hamiltonian

Ĥ = −
N∑

i< j

(
J

rσ
i j

ĉ†
i ĉ j + H.c.

)
+ λ

N∑
i=1

cos(2παi + θp)ĉ†
i ĉi,

(1)
where ĉ†

i (ĉi ) represents the single-particle creation (destruc-
tion) operator at site i. The first term describes hopping,
where ri j = (N/π ) sin(π |i − j|/N ) is the geometric distance
between the sites i and j in a ring. The strength of the long-
range hopping is controlled by J , which we set to unity and the
long-range parameter in the hopping, namely σ . The second
term describes the quasiperiodic on-site energy, where the
strength of the quasiperiodic potential is λ, and the quasiperi-
odicity parameter α is taken to be an irrational number, set as
the golden mean (

√
5 − 1)/2 [50]. θp is an arbitrary global

phase chosen randomly from a uniform distribution in the
[0, 2π ] range. The total number of sites is N , and periodic
boundary conditions are assumed. In the limit σ → ∞, the
hopping is effectively nearest neighbor, and we recover the
standard AAH model [37,38]:

Ĥ = −J
N∑

i=1

(ĉ†
i ĉi+1 + H.c.) +

N∑
i=1

λ cos(2παi + θp)ĉ†
i ĉi.

(2)
It is well known [50] that all the energy eigenstates are
delocalized when λ < 2, and all the energy eigenstates are
localized when λ > 2. λ = 2 is the critical point where all the
eigenstates are multifractal [51]. It is known that the AAH
model is self-dual [37,52]; at the critical point λ = 2, the
AAH model in position space maps to itself in momentum
space. When long-range hopping is introduced (σ is finite),
the self-duality condition is broken.

B. Artificial neural network

The artificial neural network (ANN) is inspired by the
neuronal network in the biological brain [53,54]. The ANN
combines a series of linear maps and nonlinear functions
[55] that are successively applied to the input data in order
to obtain the final output. A mapping defines each layer of
the network, and the dimension of a layer corresponds to
the number of neurons in it. In this work, in the case of
multiclass classification, we utilize vectors {x} of dimension
m1 and train a map f (x) to map them to the target set
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}. One-hot vectors represent this
target set and deliver the final output in the form of entries
of the neurons of the output layer. The network is trained
on a data set called the training set, and its performance is
gradually improved by adjusting its parameters. In supervised
learning, the training set consists of labeled data; i.e., for each
input x, the output is already known to map to one of the
outcomes of the target set. The trained network then classifies
previously unseen data from the testing set.

We next describe the functioning of the neural network.
The “input layer” maps the initial vectors of dimension m1

to a space of dimension m2 with the help of a linear map
and a nonlinear activation function A [56]. Subsequently, the
mapping between the nth and the (n + 1)th layer is defined as

x(n) �→ x(n+1) = A(W (n+1,n)x(n) + B(n+1)). (3)

Here matrix-vector multiplication is implied between W (n+1,n)

(matrix of dimension mn+1 × mn) and x(n) (vector of dimen-
sion mn). The resulting vector x(n+1) is a vector of dimension
mn+1. The elements of the matrix W (n+1,n) are called the
weights, and the corresponding elements of the vector B(n+1)

are called the biases. The final layer of the ANN is referred
to as the “output layer,” with the number of nodes equal to
the number of expected outputs that the network is trained
for. The layers between the input and output layers are called
hidden layers, which can range from one to several. The
method of training neural networks with multiple hidden lay-
ers is referred to as deep learning [57]. Also, if the number
of neurons in a layer is huge, the network learns nonuniversal
features and unnecessary details for classification. This can
lead to overfitting of data. Thus in this study we employ
dropout regularization [58] to avoid the gradual accumulation
of neuronal weight configurations.

In the case of multiclass classification, the inputs to the
network consist of the amplitudes of an eigenstate of the
Hamiltonian of interest. For the hidden layers, we utilize the
leaky rectified linear unit (ReLU) activation function [59],
defined as

leaky ReLU: f (xi ) =
{

0.01xi, xi < 0,

xi, xi � 0.
(4)

In the output layer, we consider the softmax activation func-
tion [60], defined as

softmax: f (xi ) = e−xi∑
j e−x j

. (5)

The softmax function estimates the output corresponding
to each target set vector, which sums up to unity. These
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TABLE I. The activation functions in the hidden/output layer of the multiclass and binary classifiers.

Neural network Hidden layer activation function Output layer activation function

Multiclass classifier Leaky ReLU Softmax
Binary classifier ReLU Sigmoid

projections can be interpreted as the confidence of the network
to assign a class to the input data.

In the case of binary classification, since the probability
densities are considered as inputs, we utilize the ReLU activa-
tion function [61]:

ReLU: f (xi ) =
{

0, xi < 0,

xi, xi � 0,
(6)

in the hidden layers. In the output layer, we employ the sig-
moid activation function [60], defined as

sigmoid: f (xi ) = 1

1 + e−xi
, (7)

to obtain a single output. There are two main advantages
of the ReLU function: (a) it is computationally efficient as
it only involves a simple comparison, and (b) it introduces
nonlinearity in the model. On the other hand, the sigmoid
function has a smooth and continuous output, which makes
it easier to compute gradients during back-propagation and
to optimize the model using gradient-based methods such as
the stochastic gradient descent. The activation functions in
the hidden and output layers of both the neural networks are
compiled in Table I.

In order to correctly estimate various parameters such
as the weights and biases, the network utilizes a loss/cost
function [57] as well as an optimizer during the training
process. The cost function measures the distance between the
predicted outputs and their actual values. In general, cross
entropy is widely used as a loss function when optimizing
classification models. For classification problems, we utilize
the cross-entropy loss function,

LCE =
cn∑

i=1

Ti ln Si, (8)

where cn denotes the number of classes, {Si} are the probabili-
ties obtained from the softmax/sigmoid output layer, and {Ti}
are the true values, namely 0 or 1.

Another step involved in network training is back-
propagation [62], where the weights and biases are adjusted in
successive iterations to reduce the output of the loss function.
The updating rate of the parameters is called the learning
rate. This is done through the gradient descent optimization
algorithm, which is computationally expensive. To overcome
storage issues, the training data are broken down into small
batches, which can be easily fed to the model. When all the
training data are fed to the model in batches, this is called an
epoch. Thus, every batch in the training data set can update
the internal model parameters once during an epoch. In order
for the model to learn the gradient or the direction it should
take to minimize the loss function, we employ an adaptive
learning rate optimizer Adam [63], which incorporates adap-
tive estimates of the gradients and their squares. The neural

network evaluates the loss function on the training data set
at the end of each epoch; this is known as the training loss
[64]. An additional data set for validation is considered for
every epoch to determine whether or not the network is fully
trained, that is, whether it can generalize its knowledge to sets
of previously unseen data. The neural network is then made
to evaluate the loss function on the validation data set; this is
known as the validation loss. The training and validation loss
for a good fit should gradually reduce and converge to 0 as the
number of epochs increases.

III. NEURAL NETWORK APPROACH

We perform exact diagonalization on the Hamiltonian to
obtain the single-particle eigenstates. Our goal is to be able
to build an effective neural network that can classify these
eigenstates according to their localization properties. We build
and analyze two neural networks: a multiclass and a binary
classification network. While the amplitudes of the eigenstates
are utilized as inputs for the multiclass classification network,
the on-site probability densities drawn from the eigenstates
are taken to be the inputs in the case of the binary classification
network. We discuss both cases in detail below.

A. Multiclass classification

We consider a system with N = 510 sites, and obtain the
single-particle eigenstates of the LRH model [44] given by
Eq. (1). We then generate the training data by varying the
disorder strength λ in small steps (0.02) in the range of 0–5
for the long-range hopping parameter strengths σ = 0.5, 1.5,
and 3 for several disorder samples. As mentioned earlier, the
multifractal (localized) eigenstates coexist with delocalized
eigenstates for σ < 1 (σ > 1) in the LRH model; the chosen
parameters help us to obtain data corresponding to all three
classes, i.e., delocalized, multifractal, and localized.

In order to label the eigenstates required for network
training, we calculate a well-known quantity called fractal
dimension Dq [51,65,66] by coarse-graining the system into
boxes of length l . Given a normalized wave function |ψk〉 =∑N

i=1 ψk (i)|i〉 defined over a lattice of size N , we divide the
lattice into N/l segments of length l [67]. The fractal dimen-
sion is then defined as

Dq = 1

q − 1

ln
∑N/l

p=1

[∑pl
i=(p−1)l+1 |ψk (i)|2q

]
ln[l/N]

. (9)

The fractal dimension in the limit N → ∞ is given by [51]

D∞
q = limN→∞Dq. (10)

For a perfectly delocalized state, D∞
q = 1, while for a

localized state, D∞
q is vanishing, for all q > 0. For interme-

diate cases, 0 < D∞
q < 1, which is a sign that the state is

multifractal.
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FIG. 1. A schematic diagram of the neural network architecture
for multiclass classification of eigenstates. Here the input layer is
equal to system size N , and the output layer has 3 neurons, which
gives the confidence of the state being delocalized, multifractal, and
localized. Nonlinearities are introduced by the leaky rectified linear
unit (leaky ReLU). Dropout is included to increase classification
accuracy.

Here for each eigenstate, we calculate the fractal dimension
D2 and label it as follows:

D2 < 0.2, localized,

0.2 � D2 � 0.8, multifractal,

D2 > 0.8, delocalized. (11)

We first generate a training data set comprising 300 000
eigenstates of the LRH model belonging to each of the three
classes, by considering various values of σ , θ , and λ. A
schematic flowchart to describe the complete architecture
of the neural network performing multiclass classification is
shown in Fig. 1. The network comprises an input layer, sev-
eral hidden layers, and an output layer coupled to the linear,
leaky ReLU, and softmax activation functions, respectively.
We have also added dropout layers to the model to avoid
overfitting. The cost function is cross entropy, and the neural
network weights are optimized using the Adam optimizer.
We consider batch sizes of 500 samples, which add up to
900 000 samples per epoch, with an 80%-20% split between

FIG. 2. The training loss and training accuracy along with the
validation loss and validation accuracy versus the number of epochs
for the neural network trained using eigenstates of the (a) LRH model
and (b) AAH model. The stabilization in loss occurs around 50
epochs and beyond, indicating that the ANN is trained.

training and validation. We observe that fixing the number
of training epochs to 60 allows us to obtain an accuracy of
≈ 95% as shown in Fig. 2(a). Here accuracy is defined as
the ratio of eigenstates correctly classified to the total number
of eigenstates. Once the network is trained, the eigenvectors
from each point in the phase space of (λ, σ ) are fed to the
network. We obtain three values each of which lies between 0
and 1 and corresponds to the neural network’s confidence of
classifying the given input in each phase/class.

We next generate another training data set comprising
eigenstates of the AAH model given by Eq. (2). Once again
the training set consists of 300 000 eigenstates belonging to
each class classified as localized, multifractal, and delocal-
ized using D2 [see Eq. (11)]. The network architecture is
the same as before (see Fig. 1). The neural network weights
are tuned using an Adam optimizer, and the cost function is
cross entropy, as before. Here again 60 training epochs have
been considered, and the batch size is 500. The 80%-20%
split between training and validation is followed once again.
As demonstrated in Fig. 2(b), the network is trained to an
accuracy of ≈ 95%.

B. Binary classification

For binary classification, we train the network using the
on-site probability densities (PDs) of the delocalized and lo-
calized eigenstates of the AAH model. As mentioned earlier,
all the eigenstates are delocalized (localized) below (above)
a critical disorder strength λ = 2, at which the eigenstates
show multifractal behavior. For a system size of N = 510,
we consider 100 disorder realizations (θi) generating 51 000
samples separately for the delocalized and localized classes
by choosing disorder strengths λ = 0.5 and 4, respectively.
We construct a neural network which consists of an input
layer of size N and utilizes on-site probability densities of the
eigenstates as inputs. This is followed by a single hidden layer
with the number of neurons equal to the greatest integer less
than [N × (2/3)] + 1. The neurons are coupled to the ReLU
activation function and an output layer coupled to the sigmoid
activation function. The single output obtained is a number
that lies between 0 and 1; a value close to 0 indicates that the
state is delocalized while a value close to 1 indicates that it
is localized. The scheme of the neural network architecture
is shown in Fig. 3. Here the cost function is binary cross
entropy, and the optimizer is Adam. The batch size is 300
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FIG. 3. Neural network architecture for binary classification of
delocalized and localized eigenstates. Here nonlinearities are intro-
duced by the rectified linear unit (ReLU).

samples, and 5 training epochs are considered; we find that
this is sufficient to obtain an accuracy of ≈ 100%, when the

training and validation data set is split into an 80 : 20 ratio. We
use the metric “accuracy” to identify the phase transitions. By
training on two phases only, we also examine the ability of the
neural network to identify a previously unknown phase.

IV. RESULTS

In this section, we perform multiclass and binary clas-
sification using the eigenvectors and probability densities,
respectively. The results obtained using the neural network
approach are compared to the ones acquired from the con-
ventional multifractal analysis of Dq.

A. Multiclass classification

We begin our analysis by calculating the multifractal di-
mension Dq as a function of disorder strength λ for all the
single-particle eigenstates of the LRH Hamiltonian for σ =
0.5, 1.5, and 3.0 as shown in Figs. 4(a)–4(c), respectively. In
the case of σ = 0.5, with an increase in disorder strength, the
fraction of delocalized eigenstates decreases, and multifractal

FIG. 4. Fractal dimension D2 (whose value is represented by a color according to the code shown) as a function of disorder strength λ and
for increasing fractional eigenstate index i/N starting from the ground state for the long-range hopping parameter σ equal to (a) 0.5, (b) 1.5, and
(c) 3.0. Here averaging has been performed over 100 disorder realizations. Classification of the single disorder realization of the LRH model
using the network trained on the eigenstates of the LRH model for hopping parameter σ equal to (d) 0.5, (e) 1.5, and (f) 3.0. Classification of
the single disorder realization of the LRH model using the network trained on the eigenstates of the AAH model for hopping parameter σ (g)
0.5, (h) 1.5, and (i) 3.0. The color of each point (σ, λ) represents the confidence of the network for the delocalized (red), multifractal (orange),
and localized (purple) phases. Here system size is N = 510 in all cases.
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FIG. 5. Fractal dimension D2 (whose value is represented by a color according to the code shown) as a function of disorder strength λ and
increasing fractional eigenstate index i/N starting from the ground state. Here averaging has been performed over 100 disorder realizations.
Classification of the single disorder realization of the eigenstates using the network trained on the eigenstates of the (b) LRH model and
(c) AAH model. The color of each point indicates the confidence for the delocalized (red), multifractal (orange), and localized (purple) phases.
Here system size N = 510 in all cases.

states are observed to appear in blocks, as shown in Fig. 4(a).
Thus a delocalized-to-multifractal (DM) edge is observed in
the eigenstate spectrum, which changes in a steplike fashion
with increasing disorder strength λ. In the case of σ = 1.5
[see Fig. 4(b)] and σ = 3.0 [see Fig. 4(c)], we observe that
the delocalized eigenstates are separated from the localized
eigenstates, with a delocalized-to-localized (DL) edge which
changes in a steplike fashion as the number of delocalized
states decreases with increasing disorder strength λ. We also
observe the presence of multifractal states in the vicinity of
the DM/DL edges.

We next employ the multiclass classification algorithm for
a single disorder realization and compare its performance with
the multifractal analysis. First, the network (see Fig. 1) is
trained using the eigenstates of the LRH model generated over
multiple disorder realizations for various values of (σ, λ). We
assign the class to the vectors in the training data set with
the help of D2 using Eq. (11). The phase diagram obtained
as a function of disorder strength λ using the neural network
for a single disorder realization is shown in Figs. 4(d)–4(f)
corresponding to σ = 0.5, 1.5, and 3 respectively. The states
are classified as delocalized, multifractal, and localized with
confidence p1, p2, and p3, respectively. In all figures, we have
plotted the max(p1, p2, p3) where the red, orange, and purple
color codes are used to represent p1, p2, and p3, respectively.
Comparing Figs. 4(a)–4(c) with Figs. 4(d)–4(f), we observe
that the shape and location of the transitions agree very well
at all values of σ .

Next, we compare the neural-network-based transition
characterization when the same network (see Fig. 1) is trained
using the eigenstates of the AAH model. Although the exis-
tence of a critical disorder strength at which all eigenstates are
multifractal and separate the delocalized and localized eigen-
states is well known, we still assign the class to the vectors
in the training data set with the help of D2 using Eq. (11).
Once the network is trained, we utilize it to obtain the phase
diagrams of the LRH model as a function of disorder strength
λ using the neural network for a single disorder realization
as shown in Figs. 4(g)–4(i) corresponding to σ = 0.5, 1.5,
and 3 respectively. While the network can precisely predict
the location of the transitions/steps, the distinction between
the delocalized and multifractal states is not very sharp.

Nevertheless, we still observe the steplike features and the
distinct phases.

We next compute the multifractal dimension Dq as a
function of disorder strength λ for all the single-particle eigen-
states of the AAH model [see Fig. 5(a)]. All the eigenstates
are delocalized for λ < 2 while all eigenstates are localized
for λ > 2. At λ = 2, the eigenstates are multifractal [50,51].
We obtain the phase diagram of the AAH model using the
neural network trained on the eigenstates of the LRH model
[see Fig. 5(b)] and the eigenstates of the AAH model [see
Fig. 5(c)]. The neural network can accurately predict the phase
diagram using a single disorder realization in both cases. We
also checked that a network trained with a higher-order fractal
dimension like D6 is also able to faithfully reproduce the
phase diagram as shown in Appendix B.

B. Binary classification

In this subsection, we discuss the results obtained with a
binary classifier using the neural network shown in Fig. 3. The
training data set consists of the probability densities (PDs)
corresponding to the eigenstates of the two classes, i.e., de-
localized (λ = 0.5) and localized (λ = 4). Since we have a

FIG. 6. Neural network classification accuracy with increasing
disorder strength λ for the central eigenstate of the AAH model for
system size N = 510 averaged over 25 disorder realizations.
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FIG. 7. (a) Classification of the eigenstates for a single disorder
realization of the AAH model as a function of disorder strength λ

and for increasing fractional eigenstate index i/N starting from the
ground state. Here the network is trained on the delocalized (λ = 0.5)
and localized eigenstates (λ = 4) of the AAH model. The probability
of the state being localized is given by the single output P, whose
value is represented by a color according to the code shown. The
corresponding plot using fractal dimension Dq is shown in Fig. 5(a).
Here system size is N = 510. (b) The probability P of the state being
localized vs 1

ln(N ) in the delocalized phase λ = 0.5, at the critical
point λ = 2 and in the localized phase with λ = 4. Here, system sizes
range from N = 100 to N = 2000.

single neuron in the output layer, the output represents the
probability P of the state being localized, implying that 1 − P
is the probability of the state being delocalized. We may infer
that intermediate values of P indicate that the state exhibits
multifractal nature.

The information about the transition from the delocalized
to localized regimes is incorporated in the properties of the
eigenstates. We feed the central eigenstate (corresponding to
the energy EN/2 of the spectrum) to the trained network to
determine the transition point. In Fig. 6, we have plotted the
classification prediction as a function of disorder strength λ.
The transition point is revealed to be at λ = 2 as the network
learns the difference between the localized and delocalized
eigenstates. The transition point obtained agrees with the one
shown using multifractal dimension D2 in Fig. 5(a).

Next, we test this trained neural network, by inputting
the probability densities drawn from all the eigenstates of
the AAH model, as λ is varied across the transition. The
neural network gives a single output P, which signifies the
confidence of the network to classify the state as localized,

indicating that 1 − P is the probability of classifying the state
as delocalized. For a single disorder realization, the phase di-
agram obtained from the neural network shown in Fig. 7(a) is
consistent with the one obtained using multifractal dimension
D2 as shown in Fig. 5(a). We also note that at the transition
point where the multifractal states exist, the prediction P lies
roughly midway between 1 and 0, consistent with theoretical
results. In Fig. 7(b), we numerically study the system-size
dependence [35] of the probability P of the eigenstates be-
ing localized obtained using the binary classifier. While in
the delocalized phase at λ = 0.5, P remains close to 0, at
the multifractal point λ = 2, it lies between 0 and 1. In the
localized phase with λ = 4, P approaches unity. This analysis
is consistent with the ones obtained using conventional meth-
ods and can be utilized in classifying phases robustly against
increasing system sizes.

Next, we implement the binary classification algorithm on
the LRH model to investigate how well our neural network
can identify a previously unknown phase. Since the network
is trained exclusively on the delocalized and localized phases,
it is unfamiliar with the multifractal regime. In Figs. 8(a)–8(c),
we have plotted the phase diagram by feeding the eigen-
states of a single disorder realization of the LRH model to
the binary classifier corresponding to σ = 0.5, 1.5, and 3.0,
respectively. We observe that our network can indicate the
presence of a new phase (multifractal phase). In Fig. 8(a),
for σ = 0.5, while the network shows confusion in the mul-
tifractal phase, the steplike features that distinctly separate
the delocalized states can still be observed. In Figs. 8(b) and
8(c), for σ = 1.5 and 3.0, we observe that the delocalized and
localized states are classified and separated by steplike edges
along which multifractal states are observed with 0 < P < 1.
In other words, while the network identifies the delocalized
and localized phases, in the case of the multifractal phase, it
cannot clearly distinguish it from the localized phase. This
inability of the network to produce results similar to multi-
class classification is expected; as a matter of fact, the close
connection between the phase diagram obtained by the binary
classifier to the actual one is quite remarkable.

V. CONCLUSION

In this work, we explore the ability of artificial neural
networks to extract information about various phases from
single-particle states. We build a multilayer perceptron net-
work and employ it to classify the delocalized, multifractal,
and localized phases of the quasiperiodic long-range Harper
model. Our neural network produces phase diagrams that
align with theoretical predictions after being trained using the
data associated with the three phases. We establish that the
machine successfully learns each phase’s property from the
eigenstates. The machine has high confidence throughout all
the phases, which is an indication of good feature extraction.

We also build a binary classifier with a single hidden layer
having probability densities of the eigenstates of the AAH
model as inputs to identify the delocalized and localized
regimes. When we test this neural network with the AAH
model, we find that the resulting phase diagram agrees very
closely with the theoretically known phase diagram. Even
though the network is not trained with multifractal states,
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FIG. 8. Classification of the eigenstates for a single disorder realization of the LRH model as a function of disorder strength λ and with
increasing fractional eigenstate index i/N starting from the ground state for the long-range hopping parameter σ equal to (a) 0.5, (b) 1.5, and
(c) 3.0. Here the network is trained on the delocalized (λ = 0.5) and localized eigenstates (λ = 4) of the AAH model. The probability of the
state being localized is given by the single output P, whose value is represented by a color according to the code shown. The corresponding
plot using fractal dimension Dq is shown in Figs. 4(a)–4(c). Here system size is N = 510 in all cases.

the phase diagram obtained indicates the presence of multi-
fractal states, in a manner very similar to the actual phase
diagram. Subsequently, the network is applied to the LRH
model for detecting an unlearned phase. The neural network
shows confusion, whenever multifractal states are involved;
however the phase diagram obtained is remarkably close to
the actual one. In this work, we can obtain the phase diagrams
with reasonable accuracy by feeding a single disorder realiza-
tion to the trained neural network. Thus, the neural network
method provides an alternative to the known conventional
methods. Also, in recent times several works have explored
the implementation of machine learning techniques in the
context of many-body quantum systems [6,17,20,23–25]. A
possible extension of our current work would be to identify
and distinguish various phases in the many-body interacting
system once the neural network learns the characteristics of
the many-body wave functions in the different phases.

The phase classification problems in the literature have
primarily focused on binary classification. In this context,
investigating multiple phase transitions and training partially
blind networks to recognize unknown phases remains unex-
plored. The value of this multineuron output strategy will be
much more significant when dealing with novel phases for
which acceptable order parameters are not known in advance.
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APPENDIX A: 3D ANDERSON MODEL

In this section, we employ the binary classifier to plot the
phase diagram of the 3D Anderson model [31]. In particular,
we train the neural network (shown in Fig. 3) by utilizing the
eigenstate probabilities of the 1D AAH model [Eq. (2)] with
N = 512 sites. Since the dimension of the neural network’s
input layer is 512, we consider a cubic lattice with 83 = 512

sites to obtain the network’s prediction. The Hamiltonian of
the 3D Anderson model is

Ĥ = J
∑
〈i, j〉

(ĉ†
i ĉ j + H.c.) + �

∑
i=1

εiĉ
†
i ĉi, (A1)

FIG. 9. (a) Fractal dimension D2 (whose value is represented
by a color according to the code shown) as a function of disorder
strength � and increasing fractional eigenstate index i/N starting
from the ground state for the 3D Anderson model. Here, averaging
has been performed over 100 disorder realizations. (b) Classification
of the eigenstates using the network trained on the central eigenstates
of the AAH model of system size N = 512. The probability of the
state being localized is given by the single output P, whose value is
represented by a color according to the code shown. Here, the system
size of the 3D Anderson model is 83 = 512.
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FIG. 10. Fractal dimension D6 (whose value is represented by a
color according to the code shown) as a function of disorder strength
λ and for increasing fractional eigenstate index i/N starting from
the ground state for the long-range hopping parameter σ equal to
(a) 0.5, (c) 3.0, and (e) AAH model. Here, averaging has been
performed over 100 disorder realizations. Classification of the single
disorder realization of the LRH model using the network trained on
the eigenstates of the LRH model for hopping parameter σ equal to
(b) 0.5, (d) 3.0, and (f) AAH model. The color of each point (σ, λ)
represents the confidence of the network for the delocalized (red),
multifractal (orange), and localized (purple) phases. Here, the system
size is N = 510 in all cases.

where the on-site energies εi = [−1/2, 1/2] are drawn from a
uniform random distribution and � is the disorder parameter.
Here, J is set as unity.

In Fig. 9(a), we plot the phase diagram of the 3D Anderson
model, with increasing strength of disorder � and the color
denoting the multifractal dimension D2. Above the critical
disorder strength � ≈ 16.5 [69], all the eigenstates are ex-
ponentially localized with D2 close to zero. At subcritical
disorder strengths, localized and extended states are observed,
separated by some critical energy, dubbed the mobility edge

[70]. We employ the binary classifier by training it on all
the eigenstates of the AAH model at the disorder strengths
λ = 0.5 (delocalized phase) and λ = 4 (localized). The result-
ing network is then used to predict the phase diagram of the
3D Anderson model, as shown in Fig. 9(b). We observe that
the network precisely identifies the delocalized eigenstates
with P ≈ 0, the mobility edges with 0 < P < 1, separating
the delocalized and localized eigenstates as well as the critical
disorder strength � ≈ 16.5 beyond which all the eigenstates
are localized with P close to unity. Thus, the network predicts
the phase diagram of a system subjected to random disorder
with reasonable accuracy despite the fact that it was trained on
the eigenstates of a system with a quasiperiodic disorder and
whose geometry is set in a different dimension.

APPENDIX B: HIGHER-ORDER FRACTAL DIMENSION

In this section, we utilize higher-order fractal dimension D6

[see Eq. (9)] to label the eigenstates as delocalized, localized,
and multifractal in order to train the neural networks. For each
eigenstate, the fractal dimension D6 is calculated and labeled
as follows:

D6 < 0.2, localized,

0.2 � D6 � 0.8, multifractal,

D6 > 0.8, delocalized. (B1)

In Figs. 10(a) and 10(c) we have calculated D6 as a function
of disorder strength λ for all the single-particle eigenstates
for the long-range hopping parameter σ = 0.5 and 3.0. The
corresponding phase diagrams plotted using the multiclass
classification neural network trained using the eigenstates of
the LRH model where the class is assigned using D6 are
shown in Figs. 10(b) and 10(d). We next compute the mul-
tifractal dimension D6 as a function of disorder strength λ

for all the single-particle eigenstates of the AAH model [see
Fig. 10(e)]. The corresponding phase diagram obtained using
the neural network trained on the eigenstates of the LRH
model is shown in Fig. 10(f). We observe that even when
the network is trained on the eigenstates labeled using higher
moments, such as D6, it classifies the various phases with
reasonable accuracy, as well as precisely predicts the location
of the transitions/steps. This implies that any quantity which
reflects the localization properties of the system can be used
for labeling data in supervised machine learning.
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