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Slave fermion interpretation of the pseudogap in doped Mott insulators
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We apply the recently developed slave fermion approach to study the doped Mott insulator in the one-band
Hubbard and Hubbard-Heisenberg models. Our results produce several subtle features in the electron spectra
and confirm the key role of antiferromagnetic (AFM) correlations in the appearance of the pseudogap. Upon
hole doping, the electron spectra exhibit a single peak near the Fermi energy in the local approximation of the
Hubbard model where AFM correlations are not included. When AFM correlations are included through an
explicit mean-field Heisenberg interaction, a second peak emerges at slightly lower energy and pushes the other
peak to higher energy, so that a pseudogap emerges between the two peaks at small doping. Both peaks grow
rapidly with increasing doping and eventually merge together, where the pseudogap no longer exists. Detailed
analyses of the spectral evolution with doping and the strength of the Heisenberg interaction confirm that the
lower-energy peak comes from a polaronic mechanism due to the holon-spinon interaction in the AFM-correlated
background and the higher-energy peak arises from the holon hybridization to form the electron quasiparticles.
Thus, the pseudogap arises from the interplay of the polaronic and hybridization mechanisms. Our results are
in good agreement with previous numerical calculations using the dynamical mean-field theory and its cluster
extensions, but give a clearer picture of the underlying physics. Our work provides a promising perspective for
clarifying the nature of doped Mott insulators and may serve as a starting point for more elaborate investigations
in the future.
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I. INTRODUCTION

Despite tremendous efforts, the nature of the pseudogap
in underdoped cuprates remains unresolved [1]. This myste-
rious phenomenon was first discovered by nuclear magnetic
resonance (NMR) [2–5] and later confirmed by various other
probes [6], manifested as a suppression of the density of
states (DOS) far above the superconducting transition. In
theory, cuprate physics is often described by doped Mott
insulators [7], but it has been questioned whether or not the
pseudogap may involve extra factors like superconducting
phase fluctuations or other symmetry-breaking mechanisms
[8]. Nevertheless, a strong correlation effect must play an
essential role [7,9] and the doped Mott insulators have at-
tracted many studies using various numerical methods such
as the cluster extensions of the dynamical mean-field theory
(DMFT) [10–12] including the dynamical cluster approxima-
tion (DCA) [13,14] and the cellular DMFT (CDMFT) [15].
These methods find indeed a pseudogap in the quasiparticle
spectra of the one-band Hubbard model [16–33] and ascribe it
to short-range antiferromagnetic (AFM) correlations [16–18].
Explanations have been proposed from various different as-
pects such as the reconstructions of pole-zero structure of the
Green’s function [19–21], the “momentum-selective” Mott
transition [23–26], and the organizing principle of the Widom
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line [28–30]. Recent numerical works have provided further
evidence for the key role of AFM correlations in the pseu-
dogap phenomenon [31,34,35], but a thorough theoretical
understanding is not yet available.

In this work, we apply our recently developed slave
fermion approach [36] to study the doped Mott insulators
in the one-band Hubbard and Hubbard-Heisenberg [37,38]
models and explore the long-standing pseudogap enigma from
a different perspective. This approach splits electrons into
auxiliary fermionic doublons and holons carrying the charge
degree of freedom and bosonic spinons carrying the spin
degree of freedom [36,39–41]. A fermionic auxiliary field is
then introduced to decouple the kinetic term, and the spectra
are calculated under the self-consistent one-loop local approx-
imation. We find the pseudogap phenomenon is indeed closely
associated with AFM correlations. For the Hubbard model, in
which AFM correlations are not included as in DMFT, the
hole doping yields a single sharp quasiparticle peak near the
Fermi energy due to the charge Kondo effect of holons to
form the electron quasiparticles [36] and the calculated resis-
tivity resembles that from the single-impurity DMFT. Once
AFM correlations are taken into account through an explicit
mean-field Heisenberg term as in the Hubbard-Heisenberg
model, a second peak emerges below the Fermi energy due
to the spin-polaronic mechanism [40–45], giving rise to the
pseudogap around the Fermi energy in the electron spectra
for small doping consistent with CDMFT calculations of the
Hubbard model, which contain the effect of short-range AFM
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correlations. Thus, the pseudogap arises from the competi-
tion of quasiparticle and polaron formations. This provides a
clearer physical picture of the pseudogap, and may serve as a
starting point for further investigations.

II. METHOD

We start with the following model Hamiltonian on the
square lattice:

H = −
∑
i jσ

ti jc
†
iσ c jσ − μ

∑
iσ

c†
iσ ciσ + JH

∑
〈i j〉

Si · S j

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

where the spin interaction JH is explicitly included because it
cannot be generated automatically in the local approximation
to be used in this work. The model is therefore also called
the Hubbard-Heisenberg model. We will only consider the
nearest-neighbor hopping and set t = 1/4 so that the half
bandwidth D = 4t = 1. The Hubbard interaction is set to
U = 3.0 to get a Mott insulator at half filling. The chemical
potential μ will be tuned to control the hole doping.

In the slave fermion method [36,39–41], the physical elec-
tron operator is written as ciσ = h†

i siσ + σ s†
i,−σ di, where di

and hi are fermionic doublon and holon operators, respec-
tively, and siσ are bosonic spinons, with the local constraint
Qi ≡ h†

i hi + d†
i di + ∑

σ s†
iσ siσ = 1. In this representation, the

spin interaction may be approximated by the Schwinger bo-
son mean-field Hamiltonian [46]: JH

∑
〈i j〉 Si · S j → HMF

spin =
�

∑
k ηk(s†

k↑s†
−k,↓ + H.c.), where � = JH |A|/(2t ) is the ra-

tio between spinon and electron bare bandwidths, A =∑
σ 〈σ s j,σ si,−σ 〉 reflects AFM correlations between nearest-

neighbor spins, and ηk = 2t[sin(kx ) + sin(ky)]. The Hubbard
term now takes a quadratic form of doublons and holons,
but the hopping becomes quartic and shall be decoupled via
the Hubbard-Stratonovich transformation by introducing a
fermionic auxiliary field χiσ .

Interestingly, we find a redundancy when dealing with
the chemical potential term. Because of the constraint
Qi = 1, the electron occupation operator obeys the equal-
ity: ni = ∑

σ c†
iσ ciσ = 2d†

i di + ∑
σ s†

iσ siσ = d†
i di − h†

i hi + 1.
Thus, the chemical potential can be treated either as the
kinetic term of the physical electrons and then decoupled,
or as a fictitious field splitting the doublon and holon lev-
els. In principle, they should yield the same results if the
model is solved exactly and the electron spectra are well
reproduced by the slave particles. This is, however, spoiled
because of the approximation. We find it very useful to take
advantage of this redundancy and split the chemical poten-
tial into two terms, −μ

∑
iσ c†

iσ ciσ → −∑
i jσ μ1δi jc

†
iσ c jσ −∑

i μ2(d†
i di − h†

i hi + 1), with μ = μ1 + μ2. This gives a free
parameter to enforce the relationship 〈∑σ c†

iσ ciσ 〉 = 〈d†
i di −

h†
i hi + 1〉 under approximation. Similar redundancy also ap-

pears in the Kotliar-Ruckenstein slave boson method [47]
and the Z2 slave spin method [48,49]. The final effective

Lagrangian reads

L =
∑

i

(
d̄i∂τ di + h̄i∂τ hi +

∑
σ

s̄iσ ∂τ siσ

)

−
∑
i jσ

G−1
i j χ̄iσχ jσ +

∑
iσ

[
χ̄iσ (h̄isiσ + σ s̄i,−σ di ) + H.c.

]

+
(

U

2
− μ2

) ∑
i

d̄idi +
(

U

2
+ μ2

) ∑
i

h̄ihi

+
∑

i

λi(Qi − 1) + HMF
spin, (2)

where λi is the Lagrange multiplier for the local constraint and
Gi j = −(ti j + μ1δi j ). Now, the slave particles hi, siσ , and di all
sit on their own sites and are coupled with χiσ , as illustrated
in Fig. 1(a). The hopping (blue arrows) is entirely carried by
the χ field, while the spin interaction offers another channel
for spatial correlation (purple wavy line). We will see that the
existence of both channels is essential for the pseudogap to
emerge.

The model is then solved with the self-consistent one-loop
approximation using the self-energy equations:


χ (iωn) = 1

β

∑
m

Gs(iνm)[Gh(iωm−n) − Gd (iωm+n)],


s(iνm) = 1

β

∑
n

Gχ (iωn)[Gd (iωn+m) − Gh(iωm−n)],


h(iωn) = 2

β

∑
m

Gs(iνm)Gχ (iωm−n),


d (iωn) = − 2

β

∑
m

Gs(iνm)Gχ (iωn−m),

(3)

where iω (iν) are the fermionic (bosonic) Matsubara frequen-
cies, εk is the bare dispersion of electrons, 
 are the local
self-energies, and G are the full local Green’s functions of the
auxiliary fields. The electron Green’s function is then given
by

Gc(k, iωn) = 
χ (iωn)

1 − (εk − μ1)
χ (iωn)
. (4)

To simplify the calculations, we have ignored the momentum
dependency in the self-energies of auxiliary particles and re-
placed the Lagrange multipliers λi with their mean-field value
λ. The Green’s functions and self-energies are then deter-
mined self-consistently. Note that all our calculations are per-
formed in real frequency. For each step of iterations, we tune
λ, μ1, and μ2 to enforce the three conditions

∑
i〈Qi〉/N = 1,∑

iσ 〈c†
iσ ciσ 〉/N = 1 − p, and

∑
i〈h†

i hi − d†
i di〉/N = p, where

N is the number of the lattice site and p is the hole-doping
level. For JH �= 0, the AFM mean-field parameter � is also
determined self-consistently in each step. More details on the
self-consistent equations and the numerical calculations are
given in the Appendix.
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FIG. 1. (a) Illustration of the auxiliary fields showing the effec-
tive hopping of the fermionic χ field, the AFM correlations between
neighboring spinons, and the local three-particle vertex as reflected in
the effective Lagrangian. (b)–(e) Doping dependence of the densities
of states of the electron (ρc), holon (ρh), doublon (ρd ), and spinon
(ρs) at T = 0.01 and U = 3. The insets of (c) and (e) show the holon
and spinon spectra around zero energy. (f) Doping dependence of
the calculated resistivity as a function of temperature. The result for
p = 0.05 is also shown for comparison. The inset reproduces the
DMFT resistivity at U = 2.5, obtained by using the numerical renor-
malization group (NRG) impurity solver for p = 0.02, 0.05, 0.10,
0.15 (top to bottom, cyan lines) [50], and by using the continuous-
time quantum Monte Carlo (CTQMC) and NRG impurity solvers for
p = 0.00, 0.05, 0.10, 0.15 (top to bottom, purple lines) [51].

III. RESULTS AND DISCUSSION

We first solve the self-consistent equations for JH = 0 con-
taining no explicit AFM correlations. Figures 1(b)–1(e) plot
the obtained spectra of the electron and slave particles. At half
filling (p = 0, μ1 = μ2 = 0), the electron spectra show two
broad Hubbard bands and a finite Mott gap. Correspondingly,
the holon and doublon spectra contain a single broad peak
around the bare energy ω = U/2 + λ. A small hole doping
such as p = 0.01 shifts the lower Hubbard band of the electron
spectra in Fig. 1(b) to zero energy and yields a quasiparticle
peak signaling the doping-driven insulator-to-metal transition.
The holons and doublons are no longer degenerate due to the
chemical potential μ2, which pushes the holon spectra toward
ω = 0 as shown in Fig. 1(c) and the doublon spectra to higher

energies as shown in Fig. 1(d). As the holon band touches
the Fermi energy, a sharp peak emerges around ω = 0 and
has been attributed to a dynamic charge Kondo effect [36]
due to the three-particle vertex in Eq. (2) that couples the
holon, spinon, and χ field, with the spinon serving as the
hybridization field. The sharp peak is then nothing but a holon
hybridization peak, which in turn leads to the quasiparticle
peak in the electron spectra shown in Fig. 1(b). For large
doping such as p = 0.2, another sharp peak emerges at the
lower edge of the doublon’s broad band. Correspondingly, a
small peak appears also in the high-energy part (upper Hub-
bard band) of the electron spectra in Fig. 1(b). This is probably
associated with the sharp peak in the holon spectra and arises
from quasiparticle formation, which necessarily involves the
doublon. The spinon spectra are shown in Fig. 1(e) and exhibit
a peak for all doping, which is, however, strongly damped by
coupling to holons. The spinon number is mainly contributed
by the broad background at finite p while by the sharp peak at
half filling. For comparison, we have calculated the resistivity
in Fig. 1(f) using the same formula as in DMFT [10], and
the overall features are also very similar to those from DMFT
[10,50,51]. For small doping close to the Mott insulator such
as p = 0.01, the resistivity first grows rapidly as T decreases
and behaves like an insulator, but then falls and exhibits a
broad peak at low temperatures. For larger doping, the resis-
tivity turns metallic in the whole temperature window.

So far we have considered the local approximation of the
Hubbard model and ignored AFM correlations. No pseudogap
is seen in the electron spectra. Next, we restore the AFM
correlations by including an extra Heisenberg mean-field term
and perform the calculations for JH = 0.1t , a value specially
chosen to get a phase diagram of similar critical p as in
cuprates. The inset of Fig. 2(a) shows the calculated AFM
correlation parameter � at different dopings. As expected, �

decreases gradually with increasing temperature and finally
diminishes. Its onset temperature T� is plotted in Fig. 2(a),
which decreases with increasing doping and extrapolates to
zero for p � 0.3.

Figure 2(b) shows the resulting electron spectra for T =
0.01, at which temperature AFM correlations only exist for
p < 0.18. The Mott gap at half filling is enlarged due to the
doublon-holon binding [9,40,41,52–60] caused by a dih j-like
interaction after integrating out the dispersive spinons [36].
As shown in Figs. 2(d) and 2(e), sharp inner peaks emerge at
the edges of the Mott gap in the electron spectra and the lower
edge of the broad holon and doublon spectra. As discussed
already in our previous work [36], they are recognized as spin-
polaronic peaks due to the coupling of doublon or holon with
the correlated AFM background. Similar peaks have also been
obtained in the self-consistent Born approximation calculation
of the Hubbard model at half filling [40,41] and the t-J model
[42–45].

Upon hole doping, the lower Hubbard band is expected to
move toward zero energy. But quite amazingly, two peaks,
instead of one, emerge and give rise to a pseudogap or a
dip around ω = 0. Including a negative next-nearest-neighbor
hopping t ′ seems to enhance slightly the pseudogap [61,62].
With increasing hole doping, both peaks are enhanced but
the right one at higher energy grows more rapidly. For large
p (>0.11), the lower-energy left one is absorbed and two
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FIG. 2. (a) Doping dependence of the onset temperature of the
pseudogap TPG and AFM correlations T� for JH = 0.1t and U = 3.
The inset shows the temperature dependence of � at different dop-
ings. (b)–(e) Doping dependence of the densities of states of the
electron (ρc), spinon (ρs), doublon (ρd ), and holon (ρh) at T = 0.01.
For clarity, the p = 0.15 curve is not shown in (d) and the main panel
of (e). The inset of (e) shows the holon spectra near zero energy.
(f) Comparison of the various peak positions as a function of hole
doping for the left and right peaks around the pseudogap on electron
spectra (ωc,left and ωc,right), the spinon peak ωs, the holon peak ωh, and
their difference ωs − ωh. The two vertical lines denote the doping
p ≈ 0.11 where the pseudogap vanishes and p ≈ 0.18 where the
AFM correlations vanish at T = 0.01.

peaks merge together. When � vanishes for p > 0.18, the
low-energy spectra behave as those for JH = 0 in Fig. 1(b).
The overall doping dependence agrees well with that from
CDMFT [18]. The pseudogap is gradually suppressed at high
temperatures and its onset temperature TPG is also plotted
in Fig. 2(a) for comparison. Interestingly, we see it is al-
ways smaller than the AFM correlation temperature T�, varies
roughly linearly with doping, and extrapolates to zero for
p � 0.23.

For completeness, the slave particle spectra are shown in
Figs. 2(c)–2(e). AFM correlations carried by the Heisenberg
mean-field term change the spinon spectra, which exhibit a
sharp peak roughly at ωs ≈ � and a sharp spin gap near ω = 0
for p = 0. As the doping increases, the peak moves to lower
energy and gets broadened for small p, but grows again for
larger p as � goes to zero, recovering those for JH = 0 in

FIG. 3. Comparison of the momentum-dependent electron spec-
tra for (a) p = 0 and JH = 0, (b) p = 0.05 and JH = 0, (c) p = 0 and
JH = 0.1t , and (d) p = 0.05 and JH = 0.1t . The red lines mark the
spectra at � ≡ (0, 0), X ≡ (π, 0), and M ≡ (π, π ).

Fig. 1(e). The doublon spectra shown in Fig. 2(d) contain a
sharp inner peak compared to that for JH = 0. Since this peak
is present all along, it should be attributed to the polaronic
mechanism at small doping, and to the quasiparticle formation
at large doping. The holon spectra are shown in Fig. 2(e), and
quite unexpectedly, contain only one peak near ω = 0, unlike
the electron spectra. This peak exists already at zero doping,
moves gradually to the Fermi energy with increasing hole
doping, and eventually behaves as those at JH = 0, indicating
again the evolution from polaronic to hybridization origin.

It may be informative to compare the doping dependence of
all these peak positions. As shown in Fig. 2(f), the left peak on
the electron spectra only exists for small doping and follows
closely the holon peak. It may thus be identified to arise from
the polaronic mechanism. The right peak behaves more com-
plicatedly. For large doping where � = 0, it follows roughly
ωs − ωh, where ωs (ωh) is the position of the spinon (holon)
peak. We attribute it to the hybridization peak arising from the
convolution of the holon and spinon spectra in calculating the
electron spectra. But at small doping, where � �= 0 and the
spinons have a finite bandwidth, a simple relation no longer
exists and the right peak is pushed to higher energy by the
increasing AFM correlations (�) with decreasing doping.

To further clarify the origin and the relation of these subtle
features at small doping, we plot the momentum-dependent
spectral functions in Fig. 3. Due to the local approximation
of the self-energies, we cannot study the nodal-antinodal di-
chotomy in the spectra [63–67]. Figure 3(a) shows the electron
spectra at half filling with JH = 0. A clear Mott gap and
two broad Hubbard bands are seen in all curves. Upon hole
doping, the lower Hubbard band shifts to cross the Fermi
energy. Correspondingly, as shown in Fig. 3(b) for p = 0.05, a
narrow quasiparticle band emerges near ω = 0, which follows
roughly the lower Hubbard band and moves from slightly
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FIG. 4. Comparison of the electron densities of states near ω = 0
for (a) different JH at fixed doping p = 0.05 and (b) different doping
at fixed JH = 0.1t for T = 0.01.

below the Fermi energy around � to above the Fermi energy
around M. Clearly, this quasiparticle band is nothing but the
hybridization band of the holons with the χ field via the
spinons, and the dip can be viewed as an analog of the hy-
bridization gap. Our results are similar to those from DMFT
[68], but provide a clearer physical picture.

For JH �= 0, four peaks appear in the spectra at half fill-
ing in Fig. 3(c). Upon hole doping, the lower Hubbard band
again shifts across zero energy. From the shape of the spectra
shown in Fig. 3(d), we may conclude that the left peak near
ω = 0 is from the polaronic peak at the inner edge of the
lower Hubbard band at half filling since it exhibits similar
momentum dependence (inset) as in Fig. 3(c), while the right
peak still follows the same behavior as for JH = 0, implying
its hybridization origin. The two peaks are separated by an
intermediate valley region, in correspondence with the pseu-
dogap in the electron spectra for a finite JH . It is important
to compare our results with those of CDMFT [18]. At half
filling, our observed four-peak structure in Fig. 3(c) is also
captured by CDMFT in both paramagnetic and AFM solu-
tions. On the other hand, some important differences may also
be seen in Fig. 3(d). In the paramagnetic solution of CDMFT,
the pseudogap occurs only near (π, 0) and there is a peak
near (π/2, π/2) at low energy. In our results, the pseudogap
is seen at all momenta due to the local approximation of
the self-energies. To reproduce the correct anisotropy of the
pseudogap, one needs to go beyond the local approximation.

Figure 4 summarizes how both peaks evolve with doping
and JH . In Fig. 4(a), the hybridization peak at JH = 0 is gradu-
ally suppressed and pushed to higher energy, while a new peak
(the left peak) emerges and grows rapidly with increasing

JH , causing the pseudogap in between. Figure 4(b) shows
the spectra with varying doping. Clearly, the left peak can
be identified as the polaronic peak at p = 0. The pseudogap
therefore results from the interplay between the hybridization
and polaronic mechanisms. From the spectra of JH = 0, it may
also be viewed as the splitting of the quasiparticle peak due to
polaron formation under AFM-correlated background. Hence,
the spinons play two distinct roles: they act as an effective
hybridization field between holons and the χ field to create
electron quasiparticles, but in the meantime, they interact with
holons to form polarons. The interplay of these two effects
underlies the occurrence of the pseudogap phenomenon.

It may be helpful to comment briefly on the two ap-
proximations adopted in our calculations, namely the local
approximation and the one-loop approximation. The local
approximation ignores the momentum dependency of the self-
energies in order to reduce the computation time. Our results
show that it can already capture some major spectral features
of the Mott state and the pseudogap by including nonlocal spin
correlations through a Heisenberg mean-field term. However,
the local approximation prevents us from producing the full
momentum dependent features of the electron spectra such as
the anisotropy of the pseudogap. It is therefore important to
go beyond the local approximation for future investigations,
possibly using the techniques employed previously for the
Kondo lattice systems [69–72]. The one-loop approximation
ignores the effect of vertex corrections. A similar approxima-
tion has been used for the self-consistent Born approximation
to study the spin-polaron problem in the t-J model [42–45],
where the vertex corrections were argued to be not crucial
[43,45]. It has also been applied to the Kondo problem and can
yield important features including the Kondo hybridization
[73]. In our case, the right peak of the pseudogap may be
understood to arise from the Kondo effect of fermionic holons.
Therefore, the two peaks associated with the pseudogap may
survive beyond the one-loop approximation. Moreover, our
results at JH = 0 agree well with those of DMFT, where all
vertex corrections are included. At half filling, our method
yields the correct Mott gap and the quantum Widom line over
a wide U range as in experiment or DMFT [36]. In doped
Mott insulators, our calculated resistivity at high tempera-
tures and electron spectra also display similar behaviors as
in DMFT. Both support the validity of our method beyond the
one-loop approximation in this parameter region. On the other
hand, for small U or large doping deep inside the metallic
phase, we find some discrepancy with the Fermi liquid at low
temperatures. This is not unexpected since the slave particle
representation is not a suitable starting point for perturbative
calculations to describe the Landau quasiparticles.

IV. CONCLUSION

To summarize, we have generalized the recently developed
slave fermion approach to study the doped Mott insulators
in the one-band Hubbard and Hubbard-Heisenberg models
away from half filling. In the absence of AFM correlations,
we find a single sharp quasiparticle peak on the electron
spectra due to the holon hybridization. Once AFM correla-
tions are restored through a Heisenberg term, an additional
polaronic peak emerges at slightly lower energy, causing the
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pseudogap in between around the zero energy. Our results are
in good agreement with DMFT and CDMFT calculations. Our
approach not only captures the key features of the electron
spectra in doped Mott insulators but also gives a clearer pic-
ture of their origin. Our work may serve as a starting point for
further development beyond the self-consistent one-loop and
local approximations to achieve a better understanding of the
doped Mott insulators.
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APPENDIX: SELF-CONSISTENT EQUATIONS AND NUMERICAL DETAILS

We have used the following Dyson’s equations with local self-energies:

Gχ (k, iωn) = εk − μ1

1 − (εk − μ1)
χ (iωn)
,

Gs(q, iνm) = γs(−iνm)

γs(iνm)γs(−iνm) − |�|2η2
q
,

Gh(k, iωn) = 1

iωn − λ − μ2 − U/2 − 
h(iωn)
,

Gd (k, iωn) = 1

iωn − λ + μ2 − U/2 − 
d (iωn)
,

Gc(k, iωn) = 
χ (iωn)

1 − (εk − μ1)
χ (iωn)
,

(A1)

where γs(iνm) ≡ iνm − λ − 
s(iνm), εk = −2t[cos(kx ) + cos(ky)], ηq = 2t[sin(qx ) + sin(qy)]. The corresponding local Green’s
functions are calculated using G(iωn) = N−1 ∑

k G(k, iωn), where N is the number of lattice sites. The sum over momentum can
be done analytically, giving

Gχ (iωn) = 1


χ (iωn)

{
2

π [1 + μ1
χ (iωn)]
K

(
4t
χ (iωn)

1 + μ1
χ (iωn)

)
− 1

}
,

Gs(iνm) = 2

πγs(iνm)
K

[(
16t2|�|2

γs(iνm)γs(−iνm)

)1/2
]
,

Gh(iωn) = 1

iωn − λ − μ2 − U/2 − 
h(iωn)
,

Gd (iωn) = 1

iωn − λ + μ2 − U/2 − 
d (iωn)
,

Gc(iωn) = 2
χ (iωn)

π [1 + μ1
χ (iωn)]
K

(
4t
χ (iωn)

1 + μ1
χ (iωn)

)
, (A2)

where K (z) is the complete elliptic integral of the first kind:

K (z) ≡
∫ π/2

0

dθ√
1 − z2 sin2 θ

. (A3)

In each step, we choose the gauge A = −i|A| and determine the mean-field parameters A ≡ ∑
σ 〈σ s j,σ si,−σ 〉 and � ≡

|A|JH/(2t ) self-consistently by using

A = i
1

2t

1

N

∑
q

ηq〈s−q,↓sq,↑〉, (A4)

in which

〈s−q,↓sq,↑〉 = 1

β

∑
m

[−Fs(q, iνm)]eiνm0+
, (A5)

where Fs(q, iνm) ≡ −〈sq,↑,ms−q,↓,−m〉 is the anomalous Green’s function of the spinon given by

Fs(q, iνm) = [iAJH/(2t )]ηq

γs(iνm)γs(−iνm) − |�|2η2
q
. (A6)
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Here, the summation over Matsubara frequencies can be transformed into the integration over real frequency, and the sum over
q can be done analytically. The final mean-field equation for � is

1

JH
= 1

4t2|�|2
∫ ∞

−∞

dz

π
nB(z)Im

{
−1 + 2

π
K

[(
16t2|�|2

γs(z + i0+)γs(−z − i0+)

)1/2
]}

. (A7)

In real frequency, the self-energy equations are


′′
χ (ε) =

∫
dz

−π
nF (z + ε)G′′

s (z)G′′
d (z + ε) +

∫
dz

−π
nB(z)G′′

s (z)G′′
d (z + ε)

−
∫

dz

−π
nF (z + ε)G′′

s (−z)G′′
h (−ε − z) −

∫
dz

−π
nB(z)G′′

s (−z)G′′
h (−ε − z), (A8)


′
χ (ε) =

∫
dz

−π
nB(z)G′′

s (z)G′
d (z + ε) −

∫
dz

−π
nF (z)G′′

d (z)G′
s(z − ε)

−
∫

dz

−π
nB(z)G′′

s (z)G′
h(z − ε) +

∫
dz

−π
nF (z)G′′

h (z)G′
s(z + ε), (A9)


′′
s (ε) = −

∫
dz

−π
nF (z + ε)G′′

χ (z)G′′
d (z + ε) +

∫
dz

−π
nF (z)G′′

χ (z)G′′
d (z + ε)

−
∫

dz

−π
nF (z + ε)G′′

χ (−z)G′′
h (z + ε) +

∫
dz

−π
nF (z)G′′

χ (−z)G′′
h (z + ε), (A10)


′
s(ε) =

∫
dz

−π
nF (z)G′′

χ (z)G′
d (z + ε) +

∫
dz

−π
nF (−z)G′′

d (−z)G′
χ (−z − ε)

−
∫

dz

−π
nF (−z)G′′

χ (−z)G′
h(z + ε) +

∫
dz

−π
nF (z)G′′

h (−z)G′
χ (z + ε), (A11)


′′
d (ε) = 2

∫
dz

−π
nF (z − ε)G′′

s (z)G′′
χ (ε − z) + 2

∫
dz

−π
nB(z)G′′

s (z)G′′
χ (ε − z), (A12)


′
d (ε) = 2

∫
dz

−π
nB(z)G′′

s (z)G′
χ (−z + ε) + 2

∫
dz

−π
nF (z)G′′

χ (−z)G′
s(z + ε), (A13)


′′
h (ε) = 2

∫
dz

−π
nF (z − ε)G′′

s (z)G′′
χ (z − ε) + 2

∫
dz

−π
nB(z)G′′

s (z)G′′
χ (z − ε), (A14)


′
h(ε) = −2

∫
dz

−π
nB(z)G′′

s (z)G′
χ (z − ε) + 2

∫
dz

−π
nF (z)G′′

χ (z)G′
s(z + ε), (A15)

where G′ and G′′ (
′ and 
′′) are the real and imaginary parts of the Green’s functions G (self-energies 
), respectively.
All our calculations are carried out in real frequency using several different frequency grids simultaneously. The first grid

contains points like {±10x} for x from 1.5 to −3 with step 0.01, which covers the region |ω|/D > 10−3. The second grid covers
(−10−3, 10−3) uniformly with the step 2 × 10−5. We also use some other grids to deal with the peak or edge features of the
spectra. The Lorentzian broadening factor is set to 10−5, because the position of the spinon peak at JH = 0 and the spinon gap
for JH > 0 are all very small at low temperature.
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