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Variation of carrier density in semimetals via short-range correlation:
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Carrier density is one of the key controlling factors of material properties, particularly in controlling the
essential correlations in strongly correlated materials. Typically, carrier density is externally tuned by doping
or gating and remains fixed below room temperature. Strangely, the carrier density in correlated semimetals
is often found to vary sensitively against weak external controls such as temperature, magnetic field, and
pressure. Here, we develop a realistic simulation scheme that incorporates interatomic noncollinear magnetic
correlation without a long-range order. Using the recently discovered nickelate superconductor as an example,
we demonstrate a rather generic low-energy mechanism that in semimetals short-range correlation can reversely
modulate the carrier density as well. Such a mutual influence between correlation and carrier density provides
an extra ingredient for sensitive bifurcating behavior. This special feature of correlated semimetals explains their
versatile carrier density at low energy and opens up new possibilities of functionalizing these materials.
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I. INTRODUCTION

The effect of electronic correlation on physical properties
of strongly correlated materials is one of the most impor-
tant topics in condensed matter physics. Unlike the kinetic
energy which dominates the low-energy physics of weak in-
teracting systems, correlation between electrons in strongly
correlated materials can introduce significant complexity,
leading to the emergence of numerous phenomena, such as
the interaction-driven metal-insulator transition [1,2], colos-
sal magnetoresistivity [3], unconventional superconductivity
[4,5], strange metallicity [6], bad metal behavior [7], quantum
spin liquid realization [8], etc. Naturally, the most essential
quests of the field are centered around exploring these com-
plex correlation effects and efficient means of their control for
practical applications.

Among the key controlling factors of electronic corre-
lation, carrier density is known to be the most effective.
This naturally follows the fact that correlation results from
influence of electrons onto each other and is therefore sen-
sitive to their average distance or their density. Indeed, one
typically finds a rich phase diagram in correlated materials
hosting dramatically different behaviors upon tuning the car-
rier density in these materials [9,10]. Well-known examples
include cuprates [11], iron pnictides [12], manganites [13],
titenates [14], ruthenates [15], cobaltates [16], and twisted
bilayer graphene [17,18], all testifying the extreme efficiency
of carrier density in tuning the correlation and in turns the
physical properties.

*Corresponding author: weiku@sjtu.edu.cn

In correlated semimetals (semiconductors with a negative
band gap), this strong sensitivity to carrier density grands
extra complexity and functionality due to semimetals’ addi-
tional flexibility in carrier density. Unlike regular metals and
doped semiconductors that have rather robust carrier densi-
ties (roughly speaking the size of the Fermi pockets) fixed
by their chemical potentials, semimetals have the additional
freedom in varying simultaneously the densities of the coex-
isting electron and hole carriers ne and nh, since the chemical
potential only pins the total electron count, which depends
on the difference between them, ne − nh. Indeed, for example,
in unconventional high-temperature superconductors such as
FeSe [19] and nickelates [20], the observed strong tempera-
ture dependent Hall coefficients suggest a sensitively varying
carrier density. Such variation of carrier density is in good
consistency with the apparent change of size of the Fermi sur-
face observed in FeSe [21] by angular-resolved photoemission
spectroscopy. As another example, in unconventional WTe2

superconductor the Hall coefficient [22] displays a strong
pressure dependence and the carrier density changes balance
over temperature as well [23]. These examples demonstrate
the intimate connection between the rich physical behaviors
and the versatile carrier density in correlated semimetal.

Therefore, two essential generic questions concerning the
carrier density in correlated semimetals are (1) what key
factors control the carrier density variation in these systems
and (2) how the carrier density is able to vary so efficiently
against change of “weak” (or low-energy) external conditions,
for example, temperature, pressure, or magnetic field. The
strongest correlation due to strong intra-atomic repulsion is
known to be able to enhance the effective mass of carriers
[24,25]. However, the large energy scale of the local repulsion
dictates that such mass enhancement is rather robust and thus
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unable to vary sensitively against weak external conditions.
Apparently, one needs to seek the answer in the physics of a
much lower energy scale, such as interatomic correlations.

However, incorporation of interatomic correlation poses a
serious technical challenge to our current theoretical and com-
putational capability. Perturbation treatments such as the GW
approximation [26,27] can typically capture long-wavelength
physics such as long-range screening, but is inadequate
for strong short-range correlations. On the other hand, the
state-of-the-art dynamical mean-field treatment (DMFT) [28]
only includes the high-energy intra-atomic correlation, but
ignores the multiple scattering associated with interatomic
correlations.

Here, to address the above scientific questions, we de-
velop a density functional theory [29,30] (DFT) -based
computational simulation scheme to reveal the unexplored
physical effects of the interatomic correlation in real mate-
rials. Specifically, using NdNiO2 as a prototypical example,
we demonstrate strong impacts of noncollinear magnetic
correlation on the one-body propagator in the absence of
long-range order. In addition to nontrivial modification of the
band dispersion and the quasiparticle lifetime, we find a clear
systematic trend that short-range correlation in semimetals
can reversely modulate the carrier density. Such a mutual
influence between correlation and carrier density unique in
correlated semimetals provides an extra ingredient for sen-
sitive bifurcating behavior of materials. Particularly, given
the sub-eV energy scale of nonlocal correlations, this generic
mechanism not only can explain the observed strong carrier
density modulation in many correlated semimetals, but also
opens up new possibilities of functionalizing these materials
via weak external tuning such as temperature, pressure, and
applied field.

We start by developing the following computational simu-
lation scheme for real materials. First, using the prototypical
parent compound of the nickelate superconductor NdNiO2

as an example, we extract a realistic SU(2)-symmetric
high-energy many-body Hamiltonian from DFT calculations.
Second, within self-consistent Hartree-Fock treatment, we
compute the electronic one-body spectral function under ran-
domly chosen unordered magnetic configurations that contain
various constrained noncollinear spin directions with negli-
gible long-range order parameters. Finally, we analyze the
systematic trend of effects short-range correlation induces
on the one-body spectral function by averaging results from
magnetic configurations of similar correlation strength.

II. REALISTIC INTERACTING HAMILTONIAN

Specifically, to account for various noncollinear magnetic
correlation, it is necessary for us to obtain a fully SU(2)-
symmetric many-body interacting Hamiltonian in the basis
of symmetry-respecting atomiclike Wannier orbitals [31–33].
We therefore demand that it must be able to simultane-
ously reproduce the band structures from DFT calculations
under various magnetic structures, including the fully fer-
romagnetic (FM) and fully antiferromagnetic (AFM) ones.
Furthermore, since this compound contains partially occu-
pied Nd f orbitals and Ni d orbitals, approximations like
the “LDA+U” [31,34,35] or hybrid functionals [36] are
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FIG. 1. (a) Illustration of unordered noncollinear magnetic con-
figurations with spin directions of each magnetic atom denoted by
the arrows. (b) An example of ensemble-averaged one-body spectral
function A(k, m, ω) corresponding to fully Curie-paramagnetic sys-
tems with random interatomic correlation (as in the high temperature
limit.) Contributions from different orbitals, including the interstitial
“I” orbital [31], are represented by different colors. For clarify, Nd f
bands are not shown (see text).

necessary in the DFT calculations in order to ensure a
realistic density. To this end, we apply the (LDA+U )+(many-
body) procedure [37,38] to extract the realistic many-body
Hamiltonian [31].

Furthermore, owing to the very large intra-atomic
Coulomb repulsion among the Nd f orbitals, their charge fluc-
tuation in the low-energy sector can be safely “integrated out”
(e.g., via a Schrieffer-Wolff transformation [39,40]), leaving
only their 3

2 -spin degrees of freedom [41] and their FM cou-
pling to the Nd d orbitals. The resulting SU(2)-symmetric
effective Hamiltonian contains the following leading contri-
butions:

H eff =
∑

i,m,ν

εmc†
imνcimν +

∑

i,i′,m,m′,ν

tii′mm′c†
imνci′m′ν

+ 1

2

∑

i,m,m′,m′′,m′′′,ν,ν ′
Umm′′m′m′′′c†

imνc†
im′′ν ′cim′′′ν ′cim′ν

− 1

2

∑

im,ν,ν ′
JmS f

i · c†
imνσνν ′cimν ′ , (1)

including one-body orbital energy ε and hopping strength t of
all orbitals, and intra-atomic two-body interaction U among
the Ni d orbitals, denoted by creation c†

imν and annihilation
cimν operators of orbitals m and spin ν within unit cell i [31].
As mentioned above, Nd f orbitals contribute mainly through
their 3

2 -spin S f
i degrees of freedom via their FM coupling J to

the Nd d orbitals in Eq. (1). Here σ denotes the usual vector
of Pauli matrices.

III. SIMULATING SHORT-RANGE CORRELATION

Next, to simulate the impact of short-range correlation
on the one-body propagator in the absence of long-range
order, we construct many randomly oriented supercells of
various shapes (typically containing 400 atoms) representing
noncollinear magnetic configurations of Ni and Nd atoms
[cf. Fig. 1(a)] and demand that the average order parameters
(FM or AFM) be negligibly small [31]. (For the one-body
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FIG. 2. Ensemble-averaged one-body spectral functions A(k, m, ω) under various nearest neighboring noncollinear intralayer correlation
χ‖ and interlayer correlation χ⊥, while keeping the other direction fixed as AFM (top two rows) or FM (bottom two rows). The color scheme
is the same as in Fig. 1.

propagator that encapsulates the band dispersion of interest
here, such simulation is conceptually clean [31].) [In addition,
since the interatomic Nd-Nd and Nd-Ni magnetic couplings
are negligibly small [37] (<0.1 meV), the directions of Nd
spins are treated as completely random in our simulation.]
Obviously, the size of the supercells must be sufficiently large
in such simulations to allow configurations with strong short-
range correlation and yet negligible long-range order at the
same time [31]. Such a large supercell size, together with the
need for constraining the spin directions, seriously limits our
options of affordable many-body methods.

We therefore employ the self-consistent Hartree-Fock
approximation to compute the frequency ω-dependent, or-
bital M-projected one-body spectral function, A(K, M, ω) =∑

J |〈KM|KJ〉|2δ(ω − εKJ ), using the eigenvalue εKJ and
eigenvector |KJ〉 corresponding to band J and crystal mo-
mentum K of each supercell, with spin directions constrained
according to the magnetic configuration. The use of Hartree-
Fock approximation makes affordable the large system size
necessary for our study. Furthermore, since in this partic-
ular system Ni is predominantly Ni+ (d9 with one hole),
atomic many-body multiplets should be well approximated
via Hartree-Fock treatment.

Finally, we categorize the configurations based on the
strength of their nearest neighboring (NN) magnetic cor-
relation, χ = 〈Si · Si′ 〉|i′∈NN(i), between Ni 1

2 -spins Si and
average the one-body spectral functions within each cat-
egory. This average can be easily performed in the
configuration-independent orbital basis (momentum k and
orbital m) of the chemical formula unit, A(k, m, ω) =∑

K,M |〈km|KM〉|2A(K, M, ω), through the unfolding proce-
dure [42], which also facilitates an easier visualization in the
standard Brillouin zone. The chemical potential is then deter-
mined from the averaged one-body spectral function based on
the total occupation of these orbitals.

IV. CURIE PARAMAGNETIC PHASE

Figure 1(b) gives an example of the resulting ensemble-
averaged one-body spectral function that corresponds to fully
Curie-paramagnetic systems with random short-range corre-
lation χ ∼ 0 (as in the high temperature limit). Notice that
it displays many interesting characteristics distinct from re-
sults of typical nonmagnetic calculations. For example, one
observes significant broadening and smearing in some of the
bands with Ni d orbitals (in red), reflecting a shorter mean-
free path and lifetime of quasiparticles corresponding to these
bands. This is evidently from strong scattering against the
unordered Ni 1

2 spins, since particles in the Ni d shell would
experience a strong spin-dependent self-energy that varies by
a large scale of U ∼ 7 eV in Eq. (1). In comparison, the
scattering of Nd d orbitals (in blue) against the Nd f 3

2 spins
is obviously much less effective due to the rather small f -d
spin coupling J ∼ 0.3 eV in Eq. (1).

Notice that the effects of scattering in our result are
strongly momentum dependent. For example, around −2 eV
the band between � and Z point becomes very broad, while at
the same energy the bands around the M point remain sharp.
This is in great contrast to the momentum-independent smear-
ing obtained from the DMFT [31,43–46], whose self-energy
is strictly intra-atomic only. Our approach on the other hand
accounts for the interatomic self-energy associated with the
essential short-range correlation of interest in this study.

V. EFFECTS OF SHORT-RANGE CORRELATION

Figure 2 summarizes our main result, which shows a very
strong impact of short-range magnetic correlation on the
obtained one-body spectral functions. Even the eV-scale band
dispersion can be dramatically modified by the varying in-
teratomic correlation. Specifically, the first row shows a clear
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FIG. 3. (a) Significant suppression of carrier density under
stronger intralayer AFM noncollinear correlation χ‖, corresponding
to the first row in Fig. 2. (b) Illustration of reduced carrier density
via weakening of kinetic energy, showing smaller (blue) electron and
(green) hole pockets. (c) Illustration of the unique mutual influence
between carrier density ρ and interatomic correlation χ in semimet-
als, through renormalization of the kinetic energy εk . The blue arrows
indicate the reverse influence of χ on ρ found in this study.

systematic trend that the size of the hole pocket around the M
point reduces significantly, as the intralayer magnetic correla-
tion χ‖ of the Ni-O layer changes from strongly FM (left) to
strongly AFM (right) under a fixed AFM interlayer correlation
χ⊥. Correspondingly, the electron pockets around the A point
also shrink their size. (These electron pockets originate from
electron transfer from Ni+ to Nd3+ in the absence of chemical
doping, a phenomenon commonly known as “self-doping”
[47].) A similar strong reduction of the Fermi pocket is also
observed in the second row, when the interlayer correlation
changes from FM to AFM while keeping the intralayer
correlation χ‖ AFM. That is, AFM correlation can efficiently
reduce the Fermi pockets or more essentially the carrier
density.

This effect of carrier density modulation in correlated
semimetals can be quantified by the ensemble-averaged den-
sity of electron carrier density (and equivalently that of
the hole carriers), ne = 〈 1

V

∫
d3K

∑
J∈{Je} nF (εKJ − μ)〉, in

which the summation involves only those bands contribut-
ing to the electron pockets {Je}, namely those with orbital
character M predominantly from Nd and the interstitial “I,”∑

M∈{Nd,I} |〈KM|KJ〉|2 > 1
2 . Here V denotes the volume of

the system with periodic boundary condition for each configu-
ration, nF the standard Fermi-Dirac distribution function, and
μ the chemical potential obtained from the ensemble averaged
one-body spectral function. Consider the cases in the first row
of Fig. 2 as examples; Fig. 3(a) demonstrates clearly that, as
the system develops stronger AFM intralayer correlation, the
carrier density can be dramatically suppressed in correlated
semimetals (by more than an order of magnitude in this case).

We stress that this important effect is from the short-range
correlation, instead of the long-range order. Since a long-
range order necessarily implies certain strength of short-range
correlation, typical studies incorporating the former unavoid-
ably inherit the impacts of the latter as well. However, in
the presence of long-range fluctuation, a system with strong
short-range correlation does not necessarily host a long-range
order. Our result makes clear that it is really the short-range
correlation, not the long-range order, that gives rise to the

observed density modulation (and many previously reported
observations in ordered structures [41,48,49]).

Also note that, even though our demonstration above fo-
cuses on carrier scattering due to magnetic correlation, the
microscopic mechanism discussed here is generally applica-
ble to all strong short-range correlation. Since all short-range
charge, lattice, or orbital correlations act to restrict the carrier
motion to some degree regardless their microscopic details,
they produce a similar effect of carrier density modulation in
correlated semimetals.

The above significant effect of short-range correlation on
carrier density actually has an intuitive microscopic origin,
namely the reduction of effective kinetic energy. Due to the
Pauli principle and other many-body couplings, when moving
between neighboring atoms, carriers encounter different de-
grees of scattering probability: weaker with a similar spin en-
vironment and stronger with rapidly varying spin orientation.
This naturally introduces a correlation-dependent reduction
of the effective kinetic energy of the carriers and at the long
length scale a reduction of their bandwidth. As illustrated in
Fig. 3(b), in semimetals this would in turn shrink the size of
electron and hole Fermi pockets and decrease the correspond-
ing carrier densities. Altogether, combined with the unique
flexibility of carrier density in semimetals, short-range corre-
lation’s renormalization of kinetic energy can reversely affect
the carrier density, as indicated by the blue arrows in Fig. 3(c).

The first and third rows of Fig. 2 confirm this intuitive pic-
ture. As the in-plane short-range AFM correlation increases
(χ‖ → −1), the Ni bandwidth is significantly reduced by the
stronger scattering. This leads to a much smaller carrier den-
sity easily observable from the removal of the electron pockets
near the � point. In comparison, the fourth row verifies that, as
long as the intralayer correlation is uniform or FM, only very
limited damage to the intralayer kinetic energy can be induced
by increasing interlayer AFM correlation, as expected from
the above picture.

VI. MUTUAL INFLUENCE BETWEEN CARRIER DENSITY
AND CORRELATION

Generally speaking, since carrier density is one of the most
effective factors that control the correlation strength [cf. the
gray arrow in Fig. 3(c)], the above-mentioned reverse influ-
ence of the latter to the former indicates a unique mutual
influence between them. Such a nonlinear feedback illustrated
in Fig. 3(c) is the perfect recipe for sensitive bifurcating
behavior, toward either a weakly correlated metal with high
carrier density or a strongly correlated system with low den-
sity. For example, in the context of semimetal-semiconductor
transition, it should strengthen Mott’s proposal [2] of a first-
order quantum phase transition.

We now reach the answers to our key scientific questions
on semimetals concerning (1) the key factor controlling the
carrier density variation and (2) the origin of the carrier
density’s sensitivity to weak external conditions. The above-
mentioned reverse influence of interatomic correlation on
carrier density is the natural candidate that controls the carrier
density variation at low energy. Furthermore, this mechanism
is active with a small energy scale (<100 meV) relevant to
the external parameters such as temperature, pressure, and
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external field. This relevant energy scale of interatomic corre-
lation, together with the nonlinear sensitivity due to its mutual
influence with carrier density, explains the observed high sen-
sitivity of carrier density to these weak external parameters.

Indeed, this mechanism offers simple explanations to nu-
merous exotic observations in many correlated semimetals.
For example, it allows intuitively the dramatic reduction of
the Hall coefficient (by orders of magnitude below 300 K)
[20,50] in Ni-based and Fe-based unconventional supercon-
ductors. Similarly, it accounts for the significant shrinking of
the Fermi pockets in these materials when comparing with
standard band theories. Also, the extreme sensitivity of super-
conductivity to the substrate and pressure in these materials
[19,51,52] can also result (or benefit greatly) from the same
consideration.

VII. DISCUSSION FOR NdNiO2

Specifically for the prototypical NdNiO2, our study reveals
several important effects in the quasiparticle dispersion and
lifetime. Figure 2 shows that the electron pockets around the
� point via band calculations would disappear under strong
enough AFM correlation. Furthermore, the magnetic correla-
tion enhanced scattering is much stronger for the hole carriers
in the Ni orbitals, such that their propagation is more dif-
fusive than ballistic. Correspondingly, the hole carriers can
easily lose the quasiparticle nature and become susceptible
to non-Fermi liquid physics, such as the strange metal and
bad metal behavior [20]. Interesting, near momenta points M
and A, the suppressed kinetic process of the Ni orbital causes
them to retract from the Fermi energy, leaving mostly the
O orbital at low energy, and in turn strengthens the charge-
transfer nature. This reinforces the claim [37] that in this
system the hole carriers reside primarily in the O p orbitals
and form Zhang-Rice singlets with the intrinsic holes in Ni.
Our results also clarify that most features found previously in
the theoretical band structures of magnetically ordered nick-
elates actually result from the short-range correlation instead
of the long-range orders. One example is the emergence of a
prominent flat band near the chemical potential in the kz = π

plane, which can potentially promote various instability [49]
at low temperature. Finally, the heaviness of the diffusive hole
carriers and their low density are both harmful to the super-
fluid stiffness. This indicates the need for sufficient doping in
establishing a stronger phase coherence, in good agreement
with the observed phase diagram.

VIII. CONCLUSION

In summary, we identify a generic low-energy mechanism
for the puzzling tunability of carrier density in correlated
semimetals. To incorporate the interatomic correlations and
their physical impacts that pose a serious technical challenge
to the state-of-the-art methods, we develop a DFT-based com-
putational simulation scheme for the one-body propagator
under noncollinear magnetic correlation without long-range
order. Using recently discovered Ni-based unconventional
superconductors as an example, we demonstrate significant
impacts on the resulting quasiparticle dispersion and life-
time. Moreover, in contrast to the well-known modulation

of correlation via carrier density, in semimetals short-range
correlation can reversely affect carrier density. Such mutual
influence suggests an enhanced tendency toward bifurcating
physical properties of low-energy scale relevant to slight tun-
ing of external parameters such as temperature, pressure, or
external field. This unique feature of correlated semimetals
not only provides a natural explanation for the observed ex-
otic tunability of carrier density in many materials, but also
suggests routes to functionalize correlated semimetals with
richer physical properties and wider scope of application in
electronic devices.
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APPENDIX A: COMPUTATIONAL DETAILS OF DENSITY
FUNCTIONAL CALCULATION

For this prototypical case, we obtain the most relevant
Hilbert space within ±10 eV around the Fermi energy from
the spin polarized LDA+U [34,35] electronic structure of the
parent compound NdNiO2, using the linearized augmented
plane wave [53] implementation [54] of the density functional
theory (DFT) [29,30]. We take from Ref. [20] the lattice struc-
ture with lattice constant a = b = 3.92 Å, c = 3.37 Å, and
the space group P4/mmm. We set U − J = 0.6–0.06 Ry =
7.344 eV for Ni d orbitals and 0.20–0.00 Ry = 2.72 eV,
0.60–0.00 Ry = 8.16 eV for Nd d, f orbitals separately.

APPENDIX B: WANNIER ORBITALS AS CONFIGURATION
INDEPENDENT BASIS

In disordered systems the orbital hybridization can vary
strongly. It is therefore necessary to construct a more complete
set of charge-active atomiclike Ni d-, O p-, and Nd d-, f -
Wannier orbitals [32,33,55] without downfolding to a smaller
low-energy subspace. In addition, the Bloch orbital corre-
sponding to the electron pocket at momentum A = (π, π, π )
shown in Fig. 4(a) contains a significant contribution in the
empty space above Ni atoms [56]. It is thus highly beneficial
to include an additional interstitial “I” orbital [cf. Fig. 4(c)]
in addition to the Nd-dxy Wannier orbital [cf. Fig. 4(b)]. These
symmetry-respecting Wannier orbitals form a nearly complete
basis that is atomically local and nearly configuration inde-
pendent, making them ideal for the ensemble averaging of the
resulting one-particle spectral function.

APPENDIX C: EXTRACTION OF A MANY-BODY
HAMILTONIAN

We aim at obtaining a realistic SU(2)-symmetric many-
body Hamiltonian H eff in Eq. (1). To ensure a DFT-like level
of accuracy, we further demand that when, under a similar
approximation, our many-body Hamiltonian needs to repro-
duce the self-consistent DFT Hamiltonian (equivalently the
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FIG. 4. Illustration of the Bloch orbital corresponding to the
electron pocket at momentum A = (π, π, π ) (a), showing a signif-
icant contribution in the interstitial region. A more complete basis
thus should include an interstitial “I” orbital (c) in addition to the
Nd-dxy Wannier orbital (b).

electronic band structure). Since in LDA+U the strong local
electron-electron interaction is approximated in an effective
Hartree-Fock manner [57], a proper connection can be nat-
urally made on the Wannier states’ basis by matching the
self-consistent Hartree-Fock solution of our SU(2)-symmetric
H eff with the self-consistent HLDA+U [55]. The requirement
that the Hartree-Fock approximation of H eff needs to repro-
duce the LDA+U band structure within the subspace of the
active orbitals results in a rather unique set of parameters in
H eff [55].

Specifically, since we demand that the self-consistent
Hartree-Fock solution reproduce the self-consistent solution
of the LDA+U solution, the corresponding density matrix
ρiνν ′ must be identical in both cases when represented in the
same set of Wannier orbitals. One can thus take ρiνν ′ directly
from the self-consistent LDA+U solution in the Wannier ba-
sis. Furthermore, if one assumes that the structure of Umm′′m′m′′′

follows the Slater integral [35,58], the entire Umm′′m′m′′′ can be
fixed by just two parameters Ueff and Jeff. Combining ρiνν ′ and
Umm′′m′m′′′ , the effective Hartree-Fock potential V HF can then
obtained.

In addition, orbital dependent Jm in H eff can be straightfor-
wardly obtained from the local site energy difference of Nd d
orbitals between spin up and spin down, when the 3

2 -spin S f
i

of the f orbitals are all set to be along the spin-up direction.
Finally, the remaining intra-atomic hopping parameters tiimm′

and site energy εm are then obtained by subtracting V HF from
the intra-atomic part of HLDA+U .

A simple criterion to check the quality of the resulting H eff

(or the accuracy of the chosen Ueff and Jeff) is the degree of
the spin independence of the intra-atomic tiimm′ . A reasonable
value of Ueff and Jeff should encode all the spin dependence
of the self-consistent HHF. Therefore, a non-negligible spin
dependence of the resulting tiimm′ or site energy εm indicates
clearly a need to improve the value of Ueff and Jeff. In practice,
we find this criterion quite sufficient to pin down a rather
narrow range of acceptable values of Ueff and Jeff. This then
allows us to fix all the intra-atomic parameters in H eff.

On the other hand, since the LDA+U only included
atomically local Hartree-Fock approximation, the interatomic

FIG. 5. Confirmation of the quality of H
eff

by comparing the
electronic band structures with those from LDA+U calculations
under different magnetic configurations: (a), (b) spin majority of
ferromagnetic order, (c), (d) spin minority of ferromagnetic order,
and (e), (f) antiferromagnetic order. The excellent agreement estab-
lishes a robust foundation for configurations with noncollinear spin
correlations without long-range order. For clarity, Nd f bands are not
shown (see the main text).

hopping parameters tii′mm′ are unaffected in the approxi-
mation. We therefore can simply take it from the spin-
averaged HLDA+U . The next section lists some of the leading
parameters.

The above procedure, if performed properly, should gener-
ate a SU(2)-symmetric many-body Hamiltonian H eff that can
be further studied with any many-body solver one prefers, not
just the Hartree-Fock approximation. Furthermore, since the
Hamiltonian does not require or guarantee a magnetic order, it
can in principle be applied to metallic systems (or spin liquid
insulators) that do not contain long-range order but show signs
of the existence of local moments—for example, Curie-Weiss
susceptibility at high temperature.

For the purpose of this work, in which we study the impact
of noncollinear spin correlations, we verify that H eff is able
to reproduce the HLDA+U solution under various magnetic
orders. Figure 5 demonstrates an excellent correspondence
between our resulting band structure under the same Hartree-
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TABLE I. Leading parameters εm and Jm in units of eV.

Nd d3z2−r2 dx2−y2 dyz dxz dxy

Jm 0.272 0.379 0.268 0.268 0.217
εm 4.12 5.43 5.779 5.779 4.045

Ni d3z2−r2 dx2−y2 dyz dxz dxy

εm −55.448 −55.101 −55.616 −55.616 −55.284

O px py pz “I”

εm −3.488 −2.542 −2.602 4.93

Fock treatment of local interactions and the LDA+U band
structure within the subspace of the selected orbitals. Notice
especially that the agreement occurs under both ferromagnetic
and antiferromagnetic order with the same set of parameters,
despite the significantly different band structure under these
two orders. These results thus establish the high quality of
these parameters and the validity of our effective Hamiltonian
in describing various magnetic structures, including the para-
magnetic parent compound.

APPENDIX D: LEADING PARAMETERS FOR Heff

Table I lists some of the leading coefficients εm and Jm of
the resulting SU(2) symmetric many-body Hamiltonian. The
full interaction kernel Umm′′m′m′′′ is approximated by the Slater
integral [35,58], with Ueff = 7.385 eV and Jeff = 1.197 eV
obtained from the above procedure. The leading terms of the
resulting hopping parameters tii′mm′ are 1.321 eV between Ni
dx2−y2 and O px, 1.158 eV between Nd dxz/dyz and O pz,
and 1.024 eV between Nd dxy and “I” orbitals. The full tii′mm′

parameters are available upon request.

APPENDIX E: IMPLEMENTATION OF NONCOLLINEAR
MAGNETIC CONFIGURATION

In this study, the fluctuation of noncollinear spin directions
is incorporated in our simulation by averaging a large number
of configurations with similar nearest short-range correlations
χ = ∑

〈i,i′〉 Si · Si′ , but with negligible long-range order Mq =∑
i Sieiq·xi . Obviously, a larger supercell is necessary in the

search for configurations of various short-range correlation,
but without long-range order. Furthermore, averaging over
large supercells (cf. examples in Fig. 6) with various sizes,
shapes, and orientations is an efficient way to avoid fictitious
gap openings and shadow band foldings related to the artificial
new spatial periodicity. [Figure 7(a) gives an example showing
artificial shadow bands and gap opening at particular mo-
menta resulting from the periodicity of a single configuration
with a rather small supercell.]

The enforcement of the spin directions according to the
proposed magnetic configurations can be easily achieved
within the Hartree-Fock approximation by constraining the
atomically local one-body density matrix ρiνν ′ to be diagonal
in the spin channel ν = ν ′ along the assigned spin direction
in every self-consistent cycle. Specifically, using the Euler
angle we represent (rotate) ρiνν ′ in a local spin basis whose

(a)

(b)

(c) (d)

Ni              Nd

FIG. 6. Examples of supercells from categories: (a) χ‖ = 1,
χ⊥ ∼ −0.5, (b) χ‖ = −1, χ⊥ ∼ 0, (c) χ⊥ = 1, χ‖ ∼ −0.5, and
(d) χ⊥ = −1, χ‖ ∼ 0. Purple arrows represent the spin directions of
Nd and Ni atoms.

z axis is along the assigned spin direction. We then zero out
the off-diagonal elements of ρiνν ′ in this local basis and then
rotate the representation back to the global one with the z axis
of the spin along that of the lattice. This constrained ρiνν ′

is then combined with Umm′′m′m′′′ in Eq. (1) to evaluate the
effective orbital-dependent potential within the Hartree-Fock
approximation. Naturally, the same constraint needs to be
applied in each iteration of the self-consistent cycle, until a
spin-density is converged.

Convergence of our results is illustrated in Fig. 7(c). Upon
doubling the number of distinct configurations, Fig. 7(c)
shows essential features practically indistinguishable from
Fig. 7(b) as the paramagnetic results shown in Fig. 1(b) of
the manuscript.
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FIG. 7. Band structure corresponding to (a) 2 × 2 × 2 supercell,
(b) ensemble average over 10 large supercells, and (c) ensemble
average over 22 large supercells.
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FIG. 8. Exact one-body self-energy 
 is only sensitive directly
to the two-body correlation functions. Here, green lines and dotted
lines represent the one-body Green’s function and the two-body
interaction. G2 and χ denote the two-body Green’s function and the
two-body correlation function.

APPENDIX F: FORMAL THEORETICAL FOUNDATION
OF THE SIMULATION

At the formal conceptual level, our simulation is conceptu-
ally clean in formulation. This is because the main physics of
interest in this study is through the strong renormalization of
the kinetic energy present in the one-body propagator, which
is only sensitive directly to the two-body correlation functions
even in the exact many-body formulation. As shown in Fig. 8,
the exact self-energy 
 of the one-body Green’s function
that encapsulates the band dispersion can be obtained fully
with two-body correlation functions, through which effects
of higher order N-body correlations are all included. There-
fore, regardless of the underlying quantum or classical origins
of the two-body correlation functions and their approximate
leading contributions, our simulation is conceptually clean in
formulation.

APPENDIX G: CONSIDERATION AND COMPARISON
WITH THE LDA+DMFT APPROACH

Our study aims at illustrating a mechanism for sensitive
tunability of material properties unique in correlated semimet-
als often observed in experiment under weak (low-energy)
external control such as temperature, pressure, or external
field. The low-energy sensitivity renders the high-energy
(10 eV scale) intra-atomic physics inadequate. Instead, we
seek physics originating from lower-energy (100 meV or
lower) physics, specifically the interatomic correlation.

To this end, the state-of-the-art dynamical mean-field treat-
ment [43–46] is not suitable, since it can only incorporate
the high-energy intra-atomic correlation but is incapable of
including the multiple scattering resulting from interatomic
correlation. (The GW calculation [26,43] is even less suit-
able since it includes only screening of long-range charge
fluctuation but incorporates poorly the short-range correla-
tion.) Specifically, since the key physical energy scales of GW
(the plasmon frequency) and DMFT (intra-atomic repulsion)
are both of the order of 10 eV, roughly two to three orders
of magnitude larger than the room temperature, they cannot
possibly be directly related to the versatile temperature de-
pendence of interest in this manuscript. The results of these
methods would instead show negligible temperature depen-
dence of carrier density at T ∼ 300 K and below. On the other
hand, since the single-hole valence of Ni d9 does not support
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FIG. 9. Comparison of resulting one-body spectral function for
the paramagnetic case from (a) charge self-consistent LDA+DMFT
calculation and (b) self-consistent noncollinear Hartree-Fock simu-
lation, with identical lattice parameters.

strong intra-atomic many-body multiplets, the local Hartree-
Fock treatment should be a reasonable approach, especially
considering the need for very large noncollinear configura-
tions in our simulation. Given that the state-of-the-art results
in the literature are primarily from the LDA+DMFT calcu-
lations, we compare below our result of the paramagnetic
case with that of LDA+DMFT calculation to illustrate the
important features from our new capability.

Figure 9(a) shows our charge self-consistent LDA+DMFT
calculations using the EDMFTF package [59,60] with all pa-
rameters identical to the self-consistent noncollinear magnetic
calculation [Fig. 9(b)] reported in Fig. 1(e) of the manuscript.
Clearly, the “uncorrelate” O p band and Nd d bands are very
similar between these two calculations. While the correlated
Ni d orbitals show a similar smearing effect as a result of
many-body scattering, the general renormalization in these
two calculations are quite different. The main effects of intra-
atomic correlation in DMFT in Fig. 9(a) are to (1) compress
the Ni d bands from LDA to a narrower energy range and
(2) to produce a large decay (imaginary part of the self-
energy) of the Ni d orbital in some frequency range (around
[−3,−1] eV) in which the d bands are barely recognizable
(loss of quasiparticle nature). Indirectly on the O p bands,
the first effect also slightly weakens the bandwidth (due to a
larger d-p energy separation), while the second effect smears
slightly some of the p bands due to hybridization with Ni d
orbitals.

In comparison, the effects of interatomic short-range cor-
relation in our paramagnetic calculation (with zero average
interatomic correlation) shown in Fig. 9(b) are very different
in nature. While the kinetic energy of Ni d orbitals is also
reduced (for a different physical reason), the smearing effect
is however k dependent. For example, around −2 eV the band
between � and Z point becomes very smeared, while at the
same energy the bands around the M point remain well de-
fined. This is because the self-energy containing interatomic
correlation is beyond atomically local and therefore acquires
k dependence absent in the local self-energy in DMFT.

Another obvious difference is the appearance of the upper
Hubbard band around [4,6] eV in Fig. 9(b), which is absent in
Fig. 9(a) and instead shows up around [−1, 2] eV as a heavier
version of the LDA band. Now, consider Hamiltonians with
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only large intra-atomic interaction U but without interatomic
interaction, such as Eq. (1). Since there is no easy way to
screen the large local charging energy U upon adding or
removing an electron in the Ni d orbitals, the one-body
spectral function corresponding to such an addition and
removal process must contain a U -scale splitting of the oc-

cupied and unoccupied d bands (sometimes referred to as the
lower Hubbard bands and upper Hubbard bands). Therefore,
disregarding whether Fig. 9(a) or Fig. 9(b) might resemble
the real material better, the result in Fig. 9(b) clearly captures
more faithfully the physics of the effective model Hamiltonian
Eq. (1) of the manuscript than the DMFT treatment.
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