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Quasiparticle picture for high-harmonic generation in correlated electron systems
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The key optical and electronic functionalities in condensed materials are determined by the band filling
of electrons and their Coulomb correlations. To directly capture how many-body correlations influence the
correlated electron dynamics under the driving of laser pulses, the comprehensible quasiparticle picture is desired
to distinguish the ultrafast creation and annihilation of doublon-holon pairs in attosecond timescale. Here, we
adopt the one-dimensional non-half-filling Hubbard model to study the high-harmonic generation (HHG) in
correlated electron systems. As the value of Hubbard U increases, the cutoff energy and spectral features in
HHG spectra have been revealed and their scaling laws are explained by the characteristic energy gaps obtained
from the electronic bands under the quasiparticle picture. The adjustable degree of band filling in correlated
systems paves a way to enhance high-harmonic emissions by regulating the creation of doublon-holon pairs. The
complex temporal profile of HHG is elucidated in this work by the light-induced evolution of quasiparticle bands
in correlated materials. In addition, the dephasing of the HHG spectrum caused by the vibration-induced disorder
or lattice temperature is affirmed in the correlated electron systems and this dephasing process is attributed to
quasiparticle-lattice scattering during the doublons and holons propagating among the disordered lattice sites.

DOI: 10.1103/PhysRevB.108.155125

I. INTRODUCTION

High-harmonic generation (HHG) is a highly nonlinear
phenomenon resulting from the interaction between intense
laser fields and matter [1–3], which has obtained much atten-
tion because of its potential for the attosecond light sources
and the retrieval of spectrographic information of the electron
dynamics underlying generating materials at a subfemtosec-
ond (fs) timescale [4–11]. HHG, initially found in gases [12],
has been observed in higher radiation intensity in solids in
the past decade, which has garnered much interest, particu-
larly in semiconductors and conductors [3,5,13–28]. Simple
semiclassical models for the charge dynamics which lead to
this HHG have been proposed for atomic systems, i.e., the
so-called three-step model of tunnel ionization, acceleration,
and recombination, and have been extended to semiconduc-
tors with wide band gap, based on a fixed band structure and
the buildup of inter- and intraband electronic currents [29–32].

HHG in semiconductors and semimetals, which are well
described by the single-particle band picture, have been in-
vestigated intensively. In solid-state HHG, many-body effects
in strongly correlated systems have been reported experimen-
tally [33]. Moreover, it has been experimentally observed that
the strong Coulomb correlations emerging in the atomically
thin WSe2 shift the optimal timings of recollision by up to
1.2 fs compared to the bulk material [34]. We recognize that
the single-active-electron model is inadequate for exploring
these phenomena thoroughly, because the strong interaction
affects the electron dynamics, which in turn is closely related
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to HHG. The understanding of the electron-electron corre-
lation effect is lacking but essential for the exploration of
HHG and spectroscopic application in correlated materials. So
far, the study of HHG in strongly correlated solids has made
some progress both theoretically [35–42] and experimentally
[33,43]. The Hubbard model has been used to understand the
spectroscopic features, but it only captures certain aspects of
the physics in real materials [44,45]. Based on the Hubbard
model, many aspects affecting HHG in strongly correlated
systems have been investigated, such as the spin-charge cou-
pling effect [36], exciton [39], doping [37], dimension [40],
correlation strength [35], and electric-field strength [41]. In
spite of the great progress that has been made, there are still is-
sues that deserve to be explored in depth. Silva et al. found that
the lower-order harmonics are suppressed when the Coulomb
repulsion U is growing and the spectrographic enhancement
region is linear as a function of U [35]. Intriguingly, the spec-
troscopic dip in the lower-order harmonic region is diminished
in two dimensions [40] and non-half-filling band systems [37].
All the above-mentioned spectral features should be explained
convincingly.

In addition, the unconventional scaling law for the cutoff
energy in HHG spectra implies the electronic structure of cor-
related materials beyond the single-particle model [35–37,41].
To unravel the spectral feature and its scaling laws, the
three-step model formulated in terms of doublon and holon
quasiparticles will be involved. Doublons are doubly occupied
lattice sites and holons are empty sites. The definition of
Mott insulators usually requires the half-filling assumption,
in which its Mott gap or minimal energy gap between Hub-
bard bands characterizes the creation of a doublon-holon pair.
The electronic structure and its Mott gap are calculable by
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diagonalizing the system’s Hamiltonian, but diagonalization
of the entire half-filling system is often not tractable due
to memory constraints. The lower degree of band filling is
desirable, which is convenient for the theoretical simulations
of HHG in correlation materials. Actually, cuprates involve
materials in which the highest occupied band is far from
the half-filled situation [44]. One can delicately achieve the
filling control via the charge doping and gate bias [44,46].
Furthermore, the one-dimensional cuprate chains have also
been experimentally synthesized with many different de-
grees of hole doping [47]. The degree of band filling in
cuprate indicates the necessity of studying non-half-filling
and is of significance for the many-body dynamics, which
is also the concerned issue of this work. Furthermore, it
is enlightening to go beyond the assumption of half-filling
and to address the impact of band filling on the creation or
annihilation of doublon-holon pairs in correlated materials.
The quasiparticle-band picture under the single-particle ap-
proximation establishes the paradigm to discuss the timing
or temporal profile in solid-state harmonic emissions [31].
However, the time-frequency characteristics in HHG from
correlated materials are less discussed and the role of the
dynamical evolution of quasiparticle bands on the timings of
high-harmonic emissions is worth clarifying. For the corre-
lated systems in absence of analytical solutions, the electronic
structure can be extracted from the system’s spectral function,
which is convenient to elaborate our concerned issues.

The paper is organized as follows. In Sec. II, the theoretical
methodology and numerical details are introduced. In Sec. III,
the obtained results are analyzed and discussed. Finally, in
Sec. IV we summarize and conclude. Atomic units are used
throughout unless stated otherwise.

II. THEORETICAL MODEL AND METHODS

We adopt the discrete one-dimensional Hubbard model as
a paradigmatic model of correlated systems, with periodic
boundary conditions. We consider different numbers of elec-
trons, keeping the number of spin-up and -down electrons
equal at all times to guarantee spin-neutral situations for a
range of growing degrees of band filling. The time-dependent
Schrödinger equation (TDSE) includes the electron-electron
correlations in the systems interacting with the intense laser
field and is denoted as

Ĥ (t ) = − t0

L∑

s, j=1

(e−i�(t )c†
j,sc j+1,s + ei�(t )c†

j+1,sc j,s)

+ U
L∑

j=1

c†
j,↑c j,↑c†

j,↓c j,↓. (1)

The electric field F (t) = − dA(t )
dt is related to the time-

dependent Peierls phase �(t ) = a0A(t ), in which the lattice
constant a0 is 7.56 a.u. and its amplitude F0 is 50 MV/cm.
This linearly polarized pulse with a wavelength of 9.11 μm
(ω = 32.9 THz) has a total duration of ten optical cycles and
a sin2 envelope. We consider the nearest-neighbor hopping
term, while U > 0 is the on-site Coulomb repulsion. The
hopping energy t0 is set to a constant (0.52 eV) to mimic
Sr2CuO3 [48]. c†

j,s (c j,s) is the creation (or annihilation) op-

FIG. 1. Quasiparticle-band structures vary with band filling and
U/t0. Panels (a) and (b) respectively show the quasiparticle bands
with one- and two-paired electron fillings when the U/t0 is fixed as
5. (c) Under the case of band filling with one-paired electrons, elec-
tronic structures vary with values of U/t0. V, C1, and C2 respectively
mark the three energy bands, in which �1, �2, and �3 denote their
characteristic energy gaps. In (a) and (b) the analytical dispersions of
quasiparticle bands are also presented by dotted curves. In (c) the ver-
tical intervals among F1 and F2 lines characterize the U/t0-dependent
bandwidth β of the C1 band.

erator for an electron at site j. s = (↓,↑) labels the spin of
the electron. The periodic boundary conditions c j,s = c j+L,s

are involved here, where L is the chain length Na0. Note that
the chain length L is 50a0 for all non-half-filling cases but is
12a0 for the half-filling case.

To characterize the quasiparticle-band structure in corre-
lated materials varying with U , we expect to obtain the local
spectral functions by adopting a large lattice site for a given
spin-paired electron. We define the local spectral function
of the band structure as S(k, E ) = ∑

n δ(E − En)|〈k|ϕn〉|2,
in which |〈k|ϕn〉|2 = ∑

j〈ϕ j,n|e−ik ja0
∑

j′ eik j′a0 |ϕ j′,n〉. The
many-body eigenfunction |ϕn〉 with eigenvalue En is obtained
from the exact diagonalization method and |ϕ j,n〉 is the value
of eigenfunction |ϕn〉 at the lattice site j. k is the quasimomen-
tum. The field-dressed instantaneous quasiparticle bands can
also be obtained from the time-dependent eigenstate |ϕn(t )〉,
in which the time-dependent wave function is obtained from
the Crank-Nicolson method. The Dirac function is broad-
ened by using a Lorentzian shape 1

π

η

(E−En )2+η2 with a proper
broadening factor η = 0.001t0. In Figs. 1(a) and 1(b), we
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respectively show the quasiparticle-band structures with one-
and two-paired spin electrons, in which the quasiparticle-band
dispersions of the lowest two bands are robust. However, the
extra spin-paired electrons in Fig. 1(b) characterize one high-
lying energy band and the number of spin-paired electrons
in the correlated systems would not influence the ultrafast
many-body dynamics in the low-energy electronic excitation.
Thus we mostly focus on the correlated systems with one-
paired spin electrons unless stated otherwise. In addition, for
the convenience of discussions, we define a quantity I (U, E )
= ∑

k S(k, E )|U and then display them in Fig. 1(c) to un-
ravel the role of U in the quasiparticle-band structures of the
correlated systems. Note that when the U/t0 is greater than
2, the strongly correlated systems would emerge as multiple
Hubbard bands and the formation of the multiple Hubbard
bands will be discussed subsequently.

The real space lattice-vibration modes at a specific temper-
ature appear as disordered atomic positions. For establishing
the internal connection between lattice vibration and disor-
dered configuration, we develop the finite-temperature crystal
model including the electron-electron correlations. Here only
a brief description is given. For more details, one refers to
Refs. [49–51]. For a lattice chain under a certain tempera-
ture, each atomic configuration is a disordered arrangement,
which can be depicted by the corresponding radial distribution
function. In each disordered configuration, the lattice spac-
ing ξ j = x j+1 − x j is assumed to obey the standard normal
distribution f (ξ ) = (1/

√
2πσ 2) exp −[(ξ − a0)2/2σ 2]. Since

the Coulomb repulsion increases significantly as two nuclei
approach each other, intervals between nuclei have a lower
limit. Similarly, an upper limit of the nuclear intervals is
also necessary before the structural damage. Therefore, for
the rationality of our model, a truncated normal distribution
generator is adopted and thus only the atomic-pair intervals
falling within a range [a0 − ξ, a0 + ξ ] are retained. Here ξ

adopting a0/3 is the maximal deviation under the harmonic-
oscillator approximation. The degree of disorder is indicated
by the atomic-configuration fluctuation σ , which corresponds
to a certain lattice temperature T expressed as σ 2 = 6

MωD
[ 1

4 +
( T
�D

)2φ] [49–52]. Here M is the atomic mass and ωD is the De-
bye cutoff frequency. �D = h̄ωD/kB is the Debye temperature
and φ = ∫ �D/T

0 θ (eθ − 1)−1dθ involves the contribution from
all phonon modes described by the phonon density of states
[49,50]. In Eq. (1) the hopping energy is a site-independent
t0 under the fixed-nuclear approximation but should satisfy
t j = t0 exp[− x j−a0

γ
] in the disordered model [53], in which

γ = 0.368a0.
To compute the HHG spectrum, we first use the electric

current operator, defined as

Ĵ (t ) = −ia0t0
∑

s

L∑

j=1

(e−i�(t )c†
j,sc j+1,s − H.c.). (2)

Note that, for the disordered case, the parameters a0 and t0 in
Eq. (1) and Eq. (2) are adjusted as the site-dependent a j and t j .
All of the 100 configurations included in the disordered situa-
tion contribute to the electronic currents, which are coherently
summed. The HHG spectrum can be obtained by the Fourier
transform of this light-induced total current.

III. RESULTS AND DISCUSSION

A. HHG spectra

We show the HHG spectra as a function of U/t0 and find
the HHG spectra in Figs. 2(a)–2(c) characterize the robust
features in the spectroscopic region beyond the 22nd har-
monic, even though they are respectively contributed by the
band fillings with one-paired, and two-paired and half-filling
electrons. In Figs. 2(a) and 2(b) the HHG plateaus obtained
from non-half-filling cases reach a great agreement with the
half-filling case in 2(c) [35]. When the degree of band filling
is growing, one sees that the spectral differences exhibit in the
spectral region lowering 22nd harmonic, in which their HHG
yields are inhibited, and the underlying mechanism will be
discussed below. For highlighting the role of electron-electron
correlation in spectral features, in Figs. 2(a)–2(c) two scaling
laws (�1 and �2) revealing the spectral enhancement region
and the cutoff energies are respectively marked by the white
dashed and orange dash-dotted lines. The Mott gap (�Mott)
marked by an orange dashed line defines the potential barrier
for generating the doublon-holon pairs under laser field driv-
ing and is associated with the formation of the HHG plateau
via the doublon-holon pair annihilation. The electron-electron
correlation strength satisfying U/t0 > 2 could form a multi-
ple Hubbard-band system and give rise to high-energy HHG
plateaus, while in the case of U/t0 < 2 there are no clear
high-energy HHG plateaus in Figs. 2(a) and 2(b).

To elucidate these mentioned spectral features in Fig. 2, we
present the U/t0-dependent quasiparticle-band structures and
define their characteristic gaps (�1,2,3), as shown in Fig. 1.
In spite of the system including electron-electron correlation
U in Eq. (1), the spectral functions in Figs. 1(a) and 1(b)
display the delicate quasiparticle-band features in crystal mo-
mentum k space. For the case with one-paired electrons, the
valence band under the tight-binding model can be analyti-
cally described as V(k) = − 1

2α[1 + cos(ka0)], where α = 4t0
is the width of the valence band [37]. Although the U term
is not diagonal in k space and couples different states in
the quasiparticle bands, we can fit the local spectral func-
tion and also provide a semianalytical energy-band dispersion
to unravel the conduction bands. Similarly, the conduction
bands are formulated as C1(k) = 1

2β[1 + cos(ka0)] + U and

C2(k) = − 1
2α cos(ka0) + U + β, where β = 12t2

0
3t0+U denotes

the width of the C1 band. Here the emergence of the C2

band in Fig. 1(b) is attributed to the increasing degree of
band filling. Note that the absolute energies of bands vary
with the degree of band filling, in which the energy level will
shift down 4t0 for each pair of electrons added. The spectral
enhancement region associated with doublon-holon pairs is
clarified by the U -dependent gap �1. Moreover, the variation
of the maximal energy gap �2 dominates the scaling law of
cutoff energy in Fig. 2, as marked by the orange-dotted line in
Fig. 1(c). Comparing the spectral enhancement regions under
different degrees of band filling, one finds that a recognizable
scaling in Fig. 2(a) with one-paired electrons will evolve into
a dispersive spectral region in Fig. 2(b). For the situation
with two-paired electron filling, the dispersion of the spectral-
enhanced region in Fig. 2(b) can be explained by the emergent
channel of the elementary charge excitations between C2 and
C1 bands. The equality relation that �1 plus �3 equals �2
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FIG. 2. High-harmonic spectrum as a function of U/t0. �1 and �2 respectively indicate the spectral enhancement region and cutoff
energies. �Mott denotes the Mott gap in this correlated material. HHG spectra obtained from cases with one-paired (a), two-paired (b), and
half-filling (c) electron filling are presented.

delicately guarantees the robustness of cutoff frequency in
Figs. 2(a) and 2(b), which is consistent even in Fig. 2(c) of the
half-filling case [35]. Comparing Figs. 2(a)–2(c), one further
finds that the lower-order harmonic yields show an inhibition
under the growing degree of band filling. Here we will unravel
its mechanism. In Fig. 3, the schematic diagram exhibits the
hopping manners to create the doublon under different degrees
of band filling. In Fig. 3(a) with the lower degree of electron
filling, the hopping of the spin-up or spin-down electron is
freer. In Fig. 3(b), in contrast, the one spin electron that is
adjacent to a doublon would impose a restriction on its hop-
ping behaviors, which is determined by the Pauli exclusion
principle and results in the emergence of the high-lying C2

FIG. 3. Schematic diagram for the creation of doublon-holon
pairs under different degrees of band filling. A red arrow indicates
that a spin-up electron occupies the given site; similarly, a blue
arrow indicates that a spin-down electron occupies the given site.
The allowable transition directions are denoted by operators written
at the top of each panel.

band in Fig. 1(b). This electronic hopping limitation becomes
harsh with the growing number of the filling electron pairs,
which could extremely restrain the movement of quasipar-
ticles and thus inhibit the lower-order harmonics emissions.
Note that this electronic-hopping restraint in situations with
two or three dimensions could be relieved to some extent,
which could be verified by the absence of spectral dip in
lower-order harmonics in the reported works [40,41,54]

Next we turn to discussing the scaling laws as a function
of the field strength. For the different degrees of band filling,
we show their HHG spectra as a function of the electric-field
amplitude, as presented in Figs. 4(a)–4(c). For the non-half-
filling cases in Figs. 4(a) and 4(b), the cutoff frequency as a
function of the field strength presents a linear law (� = U +
mF0) and is finally restrained by the maximal band gap �2.
Here m denotes the site number of Wannier-Stark ladders,
in which the HHG originates from transitions among them
[41]. In contrast to that, in Fig. 4(c) the cutoff frequency
under the half-filling situation exhibits the field-independent
characteristic. The linear scaling law of the cutoff frequency
in non-half-filling cases can be attributed to the many-body
dynamic of the creation and annihilation of the doublon-holon
pairs. As mentioned in Fig. 3, in the lattice chain with the
lower degree of electron filling the movement of quasiparti-
cles is less restrained. Thus the cutoff frequency is determined
by the coherent movement displacement of the doublon-holon
pair, which gives rise to the linear law in Figs. 4(a) and 4(b). In
the half-filling system, the excitation and recombination of the
doublon-holon pair are extremely localized. Thus the first al-
lowable excitations have energies between �1 and �2, which
intrinsically dominates the harmonic emission in this spectral
range. When the electric-field amplitude is above 10 MV/cm,
the Mott band gap �Mott could be formed, as presented in the
subsequent Fig. 5(a), and the threshold for the transition is
crossed. Figure 4(c) verifies the fact that the range of emitted
harmonic energies and the cutoff frequency are field inde-
pendent. Here, Fig. 4(c) suggests that harmonic emission is
contributed by one-photon transitions back to the original va-
lence state via a single doublon-holon pair annihilation [35].
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FIG. 4. High-harmonic spectrum as a function of the electric-field amplitude F0. �2 indicates the maximum band gap. For given U/t0 =
5, HHG spectra obtained from cases with one-paired (a), two-paired (b), and half-filling (c) electron filling are presented.

B. Time-resolved high-harmonic emission

High-harmonic spectroscopy provides a way to resolve the
many-body ultrafast dynamics. Here we will discuss the tem-
poral profiles of the quantum trajectory in HHG of correlated
materials. Taking U/t0 = 5 as a representative example, the
strongly correlated systems driven by the laser fields exhibit
the dynamical evolution of quasiparticle bands. In Fig. 5(a),
we observe two characteristic situations in the instantaneous
quasiparticle-band structures and the evolution of two energy
bands undergoes their respective flips. The field-free valence
band is first deformed as VI and then completes its flip shown
as VII, while the conduction band (C1) first achieves its flip
(CI

1) and then regains the original dispersion (CII
1 ). Note that

the whole evolution process is done in each optical cycle.
In Fig. 5(a), we confirm the Mott gap (�Mott = �2 − 2α),
where an instantaneous minimal gap between VII and CII

1
bands is formed at k = 0. The characteristic gaps involved
in the instantaneous band structure can be verified by the

HHG spectrum shown in Fig. 5(b). In other words, the high-
harmonic spectroscopy paves a promising route to probe the
light-induced quasiparticle band in the quantum materials.
Then we further perform the time-frequency analysis on this
HHG spectrum and obtain an intricate temporal profile, as
presented in Fig. 5(c). To distinguish the quantum trajecto-
ries reflecting the recombination of doublon-holon pairs, we
make the semiclassical predictions under the quasiparticle-
band picture. For the instantaneous energy bands shown in
Fig. 5(a), their group velocities of doublons and holons in
the real space can be written as υ

g
n (k) = ẋ = ∂En(k)

∂k |k , where
En is the above-mentioned quasiparticle-band dispersion of
doublons or holons in k space. Under the drive of the laser
fields, the doublon and holon propagate with their respective
group velocities v

g
n(n = d, h). The high-order harmonics with

band gap energy would be emitted when the doublon-holon
recombination occurs in real space. Here, the relative dis-
placement between doublon and holon is denoted as �x =

FIG. 5. (a) Instantaneous quasiparticle-band structures in correlated systems, (b) the corresponding HHG spectrum, and (c) its time-
frequency analysis. �Mott is the Mott gap specified in (a). The laser pulse has a duration of six optical cycles and electric-field amplitude
F0 = 10 MV/cm. Three characteristic times in the top panel of (a) are specified.
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FIG. 6. Panels[(a)–(d)] exhibit the disorder effect in HHG with the growing strength of electron-electronic correlation. The gray back-
ground curves and red solid curves respectively denote the HHG spectra under the cases of σ = 0.01 and 0.21 a.u. The vertical lines in
[(b)–(d)] denote the characteristic gaps in their quasiparticle-band structures of the correlated materials.

∫ t
t ′ {vg

d [k(τ )] − v
g
h[k(τ )]}dτ , where �x represents the relative

displacement of doublon and holon from ionization moment t ′
to recombination moment t . The condition of high-harmonic
emission satisfies the zero displacement in the recombina-
tion step, which is called the closed-trajectory model [29].
In Fig. 6, the harmonic emissions beyond �2 can be un-
raveled by the open-trajectory model involving the quantum
coherence of wave function [42,51]. To further unravel the
underlying many-body dynamics in the HHG spectrum, in
Fig. 5(c) we show the charge dynamics and also clarify their
semiclassical trajectories of the doublon-holon recombina-
tion. The comparison between curves and the color map in
Fig. 5(c) reveals that, based on the field-free C1 and V bands,
its semiclassical predictions only confirm the quantum tra-
jectories within the 19th–40th harmonics, specifically in the
spectral region (�1-�2). However, in Fig. 5(c) the spectral
region ranging from �Mott to �1 cannot be explained without
the field-dressed quasiparticle bands, i.e., CI

1-VI and CII
1 -VII.

Keeping the envelope of laser pulse in mind, the instanta-
neous quasiparticle bands will be to some extent different
between the adjacent half cycles. In addition, the quantum
trajectories contributed by doublon-holon pair recombination
should involve the dynamical quasiparticle bands, but we
only involve the instantaneous bands at three characteristic
timings marked in the top panel of Fig. 5(a). All the factors
mentioned above lead to the deviation between semiclassical
and quantum trajectories, as shown in Fig. 5(c). How-
ever, the essence of temporal emission trajectories has been
clarified.

C. Vibration-induced disorder or lattice temperature effect

The real-space lattice vibration at a specific temperature
appears as the disordered atomic arrangement. The degree
of disorder is determined by the growing lattice tempera-
ture induced by the laser-field radiation. Thus the disorder
or temperature effect is an additional degree of freedom to
control the HHG in correlated electron systems. In Fig. 6,
we investigate the U -dependent HHG spectra varying with
the disordered degree. Generally, the correlation-free and
single-band electron systems driven by the laser field could
not generate the HHG plateau, because only the intraband

movement of the charge carrier is involved. In Fig. 6(a), an
extremely weak disorder (σ = 0.01 a.u.) in the correlation-
free system produces the distinct HHG plateau and this HHG
plateau is further enhanced under the case with the grow-
ing disordered degree (σ = 0.21 a.u.). In other words, for
the weakly correlated case (U/t0 � 2), the disordered degree
only dominates the formation and enhancement of the HHG
plateau and the influence of the disordered degree is dimin-
ished when the U/t0 value is greater than 2, as presented in
Figs. 6(b), 6(c), and 6(d). Furthermore, for these cases with
the strong electron-electron correlations, the growing value of
U/t0 always promotes the harmonic yields around �1 whether
this system includes the structural disorder or not.

To clarify the role of structural disorder on the HHG
plateau, in Figs. 7(b1)–7(b4) we make an insight into the
quasiparticle-band structure varying with disordered degree
and U/t0. The disorder resulting from lattice vibration does
not destroy the main characteristics of its energy band but
could perturb the quasiparticle-band structure. This pertur-
bation gives rise to the disorder-induced complex bands, in
which a single band in Figs. 7(b1) and 7(b2) becomes the
multiple-Hubbard band system including many subbands.
Thanks to these disorder-induced subbands, the excitation
rate is high around the minimum band gaps (avoided level
crossings). In Fig. 7(a), the formation and the enhanced yield
of the HHG plateau are attributed to the high excitation rate
among these disorder-induced subbands. In contrast to the
subband system induced by the structural disorder, one whole
and high-lying Hubbard band is gradually formed when the
ratio of U/t0 is larger than 2, as presented in Figs. 7(a1)–
7(a4). Considering the fact that the multiple Hubbard band
system is formed under the case with sufficiently correlated
strength, the recombination of doublon-holon pairs can occur
in the strongly correlated systems. Thus, in Figs. 6(b), 6(c),
and 6(d), the diminished influence of the disordered degree in
HHG spectra is readily comprehensible and the characteristic
gaps varying with correlated electron strength are delicately
reflected by their respective HHG spectra.

Most important of all, for the vibration-induced disordered
systems, one can observe that the high harmonics below the
Mott gap are suppressed whether or not the electron cor-
relation is involved, as shown in Fig. 6. In HHG spectra
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FIG. 7. Panels [(a1)–(a4)] present the evolution and formation of the conduction band C1 when the strength of electron-electron correlation
is increasing. Panels (b1) and (b2) show the impact of the disordered degree on the energy bands under the correlation-free case, while (b3)
and (b4) display the influence of disorder in this system with strongly correlated interaction.

this decoherence varying with disordered degrees or lattice
temperatures had been first verified in the single-electron
case [51]. Note that this temperature dependence of HHG
is also discussed under the mechanism of spin-charge cou-
pling [33,36]. Essentially, the lower orders of high harmonics
are usually determined by the intraband dynamics, i.e., the
movement of doublons or holons. Its underlying mechanism
of dephasing is attributed to each quasiparticle-lattice scat-
tering occurring among the disordered lattice sites, which
has a significant effect on the temperature-dependent HHG
spectra. The temperature-dependent scaling in high-harmonic
spectroscopy could make a calibration on the time resolution
of correlated electron dynamics.

IV. SUMMARY AND CONCLUSION

To summarize, we study the cases with doping away
from the half-filling situation and assess their HHG spectra
varying with the degree of band filling in strongly corre-
lated materials. As the growing strength of electron-electron
correlation, the HHG plateau is enhanced in the weakly cor-
related case (U/t0 � 2) and a spectral enhancement region
around the minimal gap �1 emerges in the strongly correlated
case (U/t0 > 2). The yields of the lowest harmonic orders
are suppressed when the degree of band filling is gradually
growing from the one- or two-paired to half-filling cases.
These spectral features attributed to the variation of hop-
ping behaviors are the observable signatures of the sensitive,

ultrafast response of many-body correlated dynamics to ex-
treme nonperturbative driving of the laser field. In dealing
with the numerical simulation of the Hubbard model, some
approximations such as the lattice size and dimensionality
are introduced, in which the desired quasiparticle-band pic-
ture provides a means to assess the temporal profile in the
correlated creation-annihilation dynamics of doublon-holon
pairs. Furthermore, the field-driving evolution of instanta-
neous quasiparticle-band structure in correlated materials can
be elucidated clearly under the quasiparticle picture via the
temporal resolution of high-harmonic emissions. The evolu-
tion of the instantaneous band structures is of significance for
understanding the electric and optical properties in correlated
systems. Keeping the recent temperature-dependent HHG
spectra in mind, we clarify here the vibration-induced disorder
(or lattice temperature) effect on the HHG spectrum from
non-half-filling correlated systems. This work verifies the
mechanisms of quasiparticle-lattice scatterings in correlated
systems, which gives an alternative viewpoint to interpreting
the temperature-dependent HHG experiments.

ACKNOWLEDGMENTS

This work is supported by the Natural Science Founda-
tion of Hubei Province China (Grant No. 2023AFB613), the
Fundamental Research Funds for the Central Universities,
China University of Geosciences (Wuhan) with Grant No.
G1323523064, and the Project of Hubei Key Laboratory of
Optical Information and Pattern Recognition, Wuhan Institute
of Technology.

155125-7



KAI HUANG AND TAO-YUAN DU PHYSICAL REVIEW B 108, 155125 (2023)

[1] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B.
Corkum, Phys. Rev. A 49, 2117 (1994).

[2] M. Lein and J. M. Rost, Phys. Rev. Lett. 91, 243901 (2003).
[3] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F.

DiMauro, and D. A. Reis, Nat. Phys. 7, 138 (2011).
[4] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[5] O. Schubert, M. Hohenleutner, F. Langer et al., Nat. Photon. 8,

119 (2014).
[6] W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H. C.

Kapteyn, and M. M. Murnane, Science 322, 1207 (2008).
[7] M. Lein, N. Hay, R. Velotta, J. P. Marangos, and P. L. Knight,

Phys. Rev. A 66, 023805 (2002).
[8] R. Torres, N. Kajumba, J. G. Underwood et al., Phys. Rev. Lett.

98, 203007 (2007).
[9] P. M. Kraus, B. Mignolet, D. Baykusheva et al., Science 350,

790 (2015).
[10] T. T. Luu and H. J. Wörner, Nat. Commun. 9, 916 (2018).
[11] T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[12] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray,

and C. Manus, J. Phys. B: At., Mol., Opt. Phys. 21, L31 (1988).
[13] T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan,

and E. Goulielmakis, Nature (London) 521, 498 (2015).
[14] G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare,

C. R. McDonald, T. Brabec, and P. B. Corkum, Nature (London)
522, 462 (2015).

[15] F. Langer, M. Hohenleutner, C. P. Schmid, C. Pöllmann, P.
Nagler, T. Korn, C. Schüller, M. Sherwin, U. Huttner, J. Steiner,
S. Koch, M. Kira, and R. Huber, Nature (London) 533, 225
(2016).

[16] M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner,
S. Koch, M. Kira, and R. Huber, Nature (London) 523, 572
(2015).

[17] G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne, K. J.
Schafer, M. B. Gaarde, and D. A. Reis, Nature (London) 534,
520 (2016).

[18] H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis,
Nat. Phys. 13, 262 (2017).

[19] Y. S. You, D. A. Reis, and S. Ghimire, Nat. Phys. 13, 345
(2017).

[20] N. Yoshikawa, T. Tamaya, and K. Tanaka, Science 356, 736
(2017).

[21] K. Kaneshima, Y. Shinohara, K. Takeuchi, N. Ishii, K. Imasaka,
T. Kaji, S. Ashihara, K. L. Ishikawa, and J. Itatani, Phys. Rev.
Lett. 120, 243903 (2018).

[22] N. Yoshikawa, K. Nagai, K. Uchida, Y. Takaguchi, S. Sasaki, Y.
Miyata, and K. Tanaka, Nat. Commun. 10, 3709 (2019).

[23] B. Cheng, N. Kanda, T. N. Ikeda, T. Matsuda, P. Xia, T.
Schumann, S. Stemmer, J. Itatani, N. P. Armitage, and R.
Matsunaga, Phys. Rev. Lett. 124, 117402 (2020).

[24] J. Li, X. Zhang, S. Fu, Y. Feng, B. Hu, and H. Du, Phys. Rev. A
100, 043404 (2019).

[25] T.-Y. Du, Opt. Lett. 46, 2007 (2021).
[26] M. Lysne, Y. Murakami, and P. Werner, Phys. Rev. B 101,

195139 (2020).

[27] Y. Murakami, S. Takayoshi, A. Koga, and P. Werner, Phys. Rev.
B 103, 035110 (2021).

[28] C. Ma, X.-B. Bian, and T.-Y. Du, Phys. Rev. B 106, 125117
(2022).

[29] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[30] D. Golde, T. Meier, and S. W. Koch, Phys. Rev. B 77, 075330

(2008).
[31] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B.

Corkum, and T. Brabec, Phys. Rev. Lett. 113, 073901 (2014).
[32] G. Wang and T.-Y. Du, Phys. Rev. A 103, 063109 (2021).
[33] K. Uchida, G. Mattoni, S. Yonezawa, F. Nakamura, Y. Maeno,

and K. Tanaka, Phys. Rev. Lett. 128, 127401 (2022).
[34] J. Freudenstein, M. Borsch, M. Meierhofer, D. Afanasiev, C. P.

Schmid, F. Sandner, M. Liebich, A. Girnghuber, M. Knorr, M.
Kira, and R. Huber, Nature (London) 610, 290 (2022).

[35] R. E. F. Silva, I. V. Blinov, A. N. Rubtsov, O. Smirnova, and M.
Ivanov, Nat. Photon. 12, 266 (2018).

[36] Y. Murakami, K. Uchida, A. Koga, K. Tanaka, and P. Werner,
Phys. Rev. Lett. 129, 157401 (2022).

[37] T. Hansen and L. B. Madsen, Phys. Rev. B 106, 235142 (2022).
[38] G. McCaul, C. Orthodoxou, K. Jacobs, G. H. Booth, and D. I.

Bondar, Phys. Rev. Lett. 124, 183201 (2020).
[39] M. Udono, K. Sugimoto, T. Kaneko, and Y. Ohta, Phys. Rev. B

105, L241108 (2022).
[40] C. Orthodoxou, A. Zaïr, and G. H. Booth, npj Quantum Mater.

6, 76 (2021).
[41] Y. Murakami, M. Eckstein, and P. Werner, Phys. Rev. Lett. 121,

057405 (2018).
[42] Y. Wang, M. Claassen, B. Moritz, and T. P. Devereaux, Phys.

Rev. B 96, 235142 (2017).
[43] M. R. Bionta, E. Haddad, A. Leblanc, V. Gruson, P. Lassonde,

H. Ibrahim, J. Chaillou, N. Émond, M. R. Otto, A. Jiménez-
Galán, R. E. F. Silva, M. Ivanov, B. J. Siwick, M. Chaker, and
F. Légaré, Phys. Rev. Res. 3, 023250 (2021).

[44] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70,
1039 (1998).

[45] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

[46] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Science 306, 666 (2004).

[47] Z. Chen, Y. Wang, S. N. Rebec, T. Jia, M. Hashimoto, D. Lu, B.
Moritz, R. G. Moore, T. P. Devereaux, and Z.-X. Shen, Science
373, 1235 (2021).

[48] T. Oka, Phys. Rev. B 86, 075148 (2012).
[49] I. K. Jeong, R. H. Heffner, M. J. Graf, and S. J. L. Billinge,

Phys. Rev. B 67, 104301 (2003).
[50] D. Schlesinger, K. Thor Wikfeldt, L. B. Skinner, C. J. Benmore,

A. Nilsson, and L. G. M. Pettersson, J. Chem. Phys. 145,
084503 (2016).

[51] T.-Y. Du and C. Ma, Phys. Rev. A 105, 053125 (2022).
[52] P. Debye, Ann. Phys. (NY) 344, 789 (1912).
[53] C. Jürß and D. Bauer, Phys. Rev. B 99, 195428 (2019).
[54] T.-Y. Du, Phys. Rev. A 104, 063110 (2021).

155125-8

https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevLett.91.243901
https://doi.org/10.1038/nphys1847
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1038/nphoton.2013.349
https://doi.org/10.1126/science.1163077
https://doi.org/10.1103/PhysRevA.66.023805
https://doi.org/10.1103/PhysRevLett.98.203007
https://doi.org/10.1126/science.aab2160
https://doi.org/10.1038/s41467-018-03397-4
https://doi.org/10.1103/RevModPhys.72.545
https://doi.org/10.1088/0953-4075/21/3/001
https://doi.org/10.1038/nature14456
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature17958
https://doi.org/10.1038/nature14652
https://doi.org/10.1038/nature17660
https://doi.org/10.1038/nphys3946
https://doi.org/10.1038/nphys3955
https://doi.org/10.1126/science.aam8861
https://doi.org/10.1103/PhysRevLett.120.243903
https://doi.org/10.1038/s41467-019-11697-6
https://doi.org/10.1103/PhysRevLett.124.117402
https://doi.org/10.1103/PhysRevA.100.043404
https://doi.org/10.1364/OL.419789
https://doi.org/10.1103/PhysRevB.101.195139
https://doi.org/10.1103/PhysRevB.103.035110
https://doi.org/10.1103/PhysRevB.106.125117
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevB.77.075330
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevA.103.063109
https://doi.org/10.1103/PhysRevLett.128.127401
https://doi.org/10.1038/s41586-022-05190-2
https://doi.org/10.1038/s41566-018-0129-0
https://doi.org/10.1103/PhysRevLett.129.157401
https://doi.org/10.1103/PhysRevB.106.235142
https://doi.org/10.1103/PhysRevLett.124.183201
https://doi.org/10.1103/PhysRevB.105.L241108
https://doi.org/10.1038/s41535-021-00377-8
https://doi.org/10.1103/PhysRevLett.121.057405
https://doi.org/10.1103/PhysRevB.96.235142
https://doi.org/10.1103/PhysRevResearch.3.023250
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.abf5174
https://doi.org/10.1103/PhysRevB.86.075148
https://doi.org/10.1103/PhysRevB.67.104301
https://doi.org/10.1063/1.4961404
https://doi.org/10.1103/PhysRevA.105.053125
https://doi.org/10.1002/andp.19123441404
https://doi.org/10.1103/PhysRevB.99.195428
https://doi.org/10.1103/PhysRevA.104.063110

