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Fractonic higher-order topological phases in open quantum systems
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In this work, we study the generalization of decohered average symmetry-protected topological phases to open
quantum systems with a combination of subsystem symmetries and global symmetries. In particular, we provide
examples of two types of intrinsic average higher-order topological phases with average subsystem symmetries.
A classification scheme for these phases based on generalized anomaly cancellation criteria of average symmetry
is also discussed.
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I. INTRODUCTION

The rapid advancement of quantum simulators has sparked
interdisciplinary research on the creation and manipulation
of entangled quantum states within the noisy intermediate-
scale quantum (NISQ) platforms. This development has
attracted significant attention from both the condensed matter
and quantum information communities [1–3]. Symmetry-
protected topological (SPT) phases [4–11] serve as a class
of quantum states with nontrivial quantum entanglements and
anomalous boundary states that have great opportunities to
be realized in quantum devices, and they provide the re-
source states for measurement-based quantum computation
and preparations for other highly entangled quantum states
[12–23]. In particular, symmetry-protected topological phases
with subsystem symmetries, a novel type of symmetry whose
conserved charges are localized in rigid submanifolds of the
whole system, have been shown to have practical advantages
in realizing measurement-based quantum computations in
certain schemes [24–27].

From the perspective of condensed matter physics, subsys-
tem symmetries present a fascinating opportunity to explore
new forms of matter characterized by fractonic dynamics
of their excitations [28–31]. These symmetries also offer
a valuable platform for studying strongly interacting topo-
logical phases, as the usual single particle hoppings are
typically prohibited. Currently, there is active research into the
classification and physical properties of subsystem symmetry-
protected topological (SSPT) phases [32–41]. Recently, a
novel class of SSPT phases called fractonic higher-order topo-
logical phases has been introduced [40,41]. These topological
phases exhibit symmetry-protected gapless modes that man-
ifest only on specific lower-dimensional subspaces of the
boundary, while the rest of the boundary remains gapped
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in a manner consistent with the symmetry. They serve as
analogs to higher-order topological phases found in systems
with crystalline symmetries [42–57]. However, these phases
are inherently strongly interacting due to the presence of sub-
system symmetries.

Although discussing SSPT phases in the context of the
ground state is fascinating, for practical purposes, it is
crucial to consider the impact of decoherence and/or dis-
sipation on the quantum entanglement of these topological
phases, as systems are inevitably coupled to environments
[58–61]. Understanding whether symmetry-protected topo-
logical phases remain stable under such conditions is an
intriguing and significant question. Specifically, decoherence
and/or dissipation can break exact symmetries in closed sys-
tems, resulting in an average symmetry in open systems
[62–65]. Consequently, investigating average SPT (ASPT)
phases becomes crucial, particularly in NISQ platforms,
where quantum dynamics is not solely governed by Hamil-
tonians. Recent findings indicate that a wide range of SPT
persists in mixed-state settings [62], and notably, there are
numerous nontrivial SPTs whose existence requires the assis-
tance of quantum decoherence, referred to as intrinsic ASPT
phases [65].

In this paper, we examine the higher-order subsystem
symmetry-protected topological (SSPT) phases in strongly
correlated open systems subjected to quantum decoherence.
For concreteness, we will mostly consider (3 + 1)d systems
with two-foliated subsystem symmetries. After some intro-
ductory remarks in this section, we will introduce examples
of higher-order subsystem average SPT (SASPT) phases, and
in particular, we will discuss two types of intrinsic SASPT
phases with examples. Then we will present a general scheme
for the classification of the higher-order SASPT phases in
Sec. III using the idea of anomaly cancellation for average
symmetries. In addition to exploring the systematic classifica-
tion and construction scheme of SASPT states, we also study
examples of dynamical phase transitions of the hinge modes
due to the effects of decoherence or dissipation in Sec. IV. We
conclude and discuss some future outlooks in Sec. V. In the
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Appendix, some detailed peripheral discussion about SASPT
is provided.

A. Higher-order SSPT in clean systems

For higher-order SSPT in clean systems [33], there has
been a systematic way to classify and construct these phases
in all dimensions for bosonic systems [41], which is based
on the idea of anomaly cancellation. We will take a (3 + 1)d
system with two-foliated subsystem symmetry as an example
to illustrate the idea. Suppose that we have a system that has
a finite extension in the x and y directions while being infinite
in the remaining direction. We assume subsystem symmetries
along every xz and yz plane of the system. By definition, the
boundary of this system is trivially gapped except for the four
hinges. These hinge modes are protected by the subsystem
symmetries (and possibly some global symmetry as well). In
other words, each individual hinge mode carries anomalies of
these symmetries. However, when we view this whole sys-
tem as a quasi-one-dimensional system, with the subsystem
symmetries now becoming on-site symmetry groups, clearly,
as a physical one-dimensional system, the symmetry actions
must be free of any ’t Hooft anomalies. This is the consistency
condition that we need to impose to classify the SSPT phases.
For higher-order SSPT in clean systems [33], there has been
a systematic way to classify and construct these phases in
all dimensions for bosonic systems [41], which is based on
the idea of anomaly cancellation. We will take a (3 + 1)d
system with two-foliated subsystem symmetry as an example
to illustrate the idea. Suppose that we have a system that has
a finite extension in the x and y directions while being infinite
in the remaining direction. We assume subsystem symmetries
along every xz and yz plane of the system. By definition, the
boundary of this system is trivially gapped except for the four
hinges. These hinge modes are protected by the subsystem
symmetries (and possibly some global symmetry as well). In
other words, each individual hinge mode carries anomalies of
these symmetries. However, when we view this whole sys-
tem as a quasi-one-dimensional system, with the subsystem
symmetries now becoming on-site symmetry groups, clearly,
as a physical one-dimensional system, the symmetry actions
must be free of any ’t Hooft anomalies. This is the consistency
condition that we need to impose to classify the SSPT phases.

Note that this picture also automatically gives a coupled-
wire construction for the SPT phase. In each unit cell of
the coupled-wire construction, we put the four anomalous
hinge modes together, which we refer to as four building
blocks throughout the paper. Within a unit cell, the four build-
ing blocks together are anomaly free and can be realized in
purely one dimension. Then we consider some interacting
Hamiltonian between the unit cells that preserve the sub-
system symmetries. The anomaly cancellation condition is
equivalent to the statement that the bulk of the system can be
symmetrically gapped out by turning on symmetric interac-
tions between the neighboring four unit cells. The hinge of the
system, however, is left gapless because there are no modes
to pair up with the assumptions of locality and symmetry
constraints. A schematic illustration for the above physical
picture is shown in Fig. 1.

FIG. 1. Coupled-wire construction of two-foliated subsystem
symmetries. Each “

⊗
” and “

⊙
” represent a pair of modes that carry

opposite anomalies of certain symmetries labeled by [ν] and [−ν].
The orange circles represent the second-order gapless hinge modes.

More formally, the bosonic anomaly for the group G in
(d + 1) space-time dimensions is characterized by a cocycle
in d + 2 dimension, namely [ν] ∈ Hd+2[G,U (1)] where ν is
a representative group cocycle. Therefore, each anomalous
hinge mode for two-foliated higher-order SSPT in d-spatial
dimensions is labeled by a nontrivial cocycle in Hd [Gs,U (1)]
where Gs is the subsystem symmetry group. Note that for
each individual hinge, only a limited set of subsystem sym-
metry is involved. The anomaly-free condition is when we
take the cocycles on the four hinges together and consider the
full subsystem symmetry groups the system should carry no
anomaly. It turns out this condition is equivalent to saying that
the image of the following map between Hd [Gs,U (1)] and
Hd [Gs × Gs,U (1)],

f2(ν)({g, g′}) = ν({g})ν({g′})

ν({gg′})
, (1)

must be the trivial class in Hd [Gs × Gs,U (1)]. We note that
the above program based on anomaly cancellation is also
applicable to fermionic systems. The anomalies of fermion
SPT phases are described by generalized group cohomology
[66,67], and we only need to substitute the cocycle ν in Eq. (1)
by generalized cocycle describing the fermionic SPT anomaly
for fermionic systems.

These conditions can be easily generalized to n-foliated
structures in general dimensions and to incorporate additional
global symmetries. For interested readers, we refer to more
details in Ref. [41]. We will generalize these ideas into the
classification of SASPT phases with decoherence in Sec. III.

B. Coupled-wire construction

As mentioned above, the coupled-wire construction is a
natural physical picture for SSPT in (3 + 1)d with two-
foliated subsystem symmetries. Here, we will rephrase the
anomaly-free condition for constructing SSPT in this setting.
As illustrated in Fig. 1, we have four building blocks per unit
cell, and each block is an anomalous (1 + 1)d edge state of
certain (2 + 1)d SPT state classified by ν ∈ H3[Gs,U (1)].
The arrangement of the four anomalous modes in one unit cell
is ν, ν−1, ν, ν−1. The total anomaly of four building blocks in
each unit cell is automatically canceled, therefore, the unit
cell in principle can be realized in (1 + 1) dimension. The
anomaly cancellation condition described in the preceding

155123-2



FRACTONIC HIGHER-ORDER TOPOLOGICAL PHASES IN … PHYSICAL REVIEW B 108, 155123 (2023)

section means physically one can get a symmetric gapped
bulk state by turning on symmetric interactions between four
neighboring unit cells. This condition can be checked us-
ing techniques in the framework of (1 + 1)d multichannel
Luttinger liquids [68,69]

Considering the four modes in the intersection of four
neighboring unit cells, i.e., the modes within a blue plaquette
in Fig. 1, the free part of Lagrangian has the following form:

L0 = ∂t�
T K

4π
∂x� + ∂x�

T V

4π
∂x�, (2)

where K is the K matrix dubbing the topological term, while
nonuniversal V matrix dubbing the dynamical term. The goal
to obtain a symmetric gapped bulk becomes to find a complete
set of Higgs terms,

LHiggs =
∑

k

cos
(
lT
k K�

)
, (3)

as backscattering of the boson fields in this set of modes that
respects all relevant subsystem symmetries.

For a complete set of Higgs terms, we first require all terms
in the set to be mutually commuting. Thus {lk} should satisfy
the null-vector condition [70]

lT
i Kl j = 0, ∀i, j. (4)

Also, we demand that the number of Higgs terms be the same
as the number of helical modes in Eq. (2) in order to gap all the
gapless modes. In the end, we also need to make sure that there
is no spontaneous symmetry breaking in the strong-coupling
limit of these Higgs terms by requiring the minors of the
matrix formed by the l vectors to be 1 [71]. If we can find
such a set of Higgs terms, then the bulk of the system can be
fully gapped out and the anomaly-free condition is checked.
One can easily spot the remaining gapless mode on the hinge
of the system, which is exactly the second-order gapless hinge
mode of the SSPT state.

C. Topological phases with average symmetries

For an open quantum system, we are generally concerned
with mixed density matrices. The generalization of short-
range-entangled (SRE) pure states to mixed states are density
matrices that can be prepared from a pure product state using
a finite-depth local quantum channel, namely

ρ = E (|0〉 〈0|), (5)

where the quantum channel E can be formulated as

E[ρ] =
∑

j

KjρK†
j ,

∑
j

K†
j Kj = 1, (6)

where Kj’s are the local symmetric Kraus operators. An SRE
mixed state generically has short-range correlations for all
local operators. We would like to discuss symmetry-protected
topological phases in such SRE density matrices.

For the density matrix, two types of symmetries can arise,
namely the exact and average symmetries [58,61,62,65]. We
label the exact symmetry group by K and the average symme-
try group by G. The exact symmetry K is defined such that
for a symmetry operator Uk (k ∈ K), the density matrix ρ is
invariant by acting Uk individually on the left or right, say

Ukρ = eiαρ and ρU †
k = e−iαρ. The average symmetry G is

defined that for a symmetry operator Ug (g ∈ G), the density
matrix ρ is generally not invariant when acting Ug on the left
or right individually, but invariant when acting Ug on the left
and right simultaneously, say UgρU †

g = ρ. Generically, the
total symmetry group G̃ is an extension of G symmetry by
K , which can be characterized by certain short exact sequence

1 → K → G̃ → G → 1. (7)

When encountering a subsystem symmetry, we will add a
subscript s to denote it.

The concept of average symmetry-protected topological
(ASPT) phases is based on the equivalence classes of density
matrices under symmetric finite-depth local quantum chan-
nels. Specifically, two ASPT density matrices, ρ1 and ρ2, are
considered equivalent if there exist symmetric finite-depth
local quantum channels, E12 and E21, such that E12(ρ1) =
ρ2 and E21(ρ2) = ρ1. The classification of ASPT states is
achieved through the use of generalized group cohomology
theory, which provides explicit classifications based on deco-
rated domain wall constructions [6,72]. Roughly speaking, a
nontrivial ASPT density matrix can be constructed as a clas-
sical collection of wave functions with G-symmetry defects
decorated with exact K-symmetry SPTs. Different decoration
patterns give different ASPT phases, as one cannot change
the decorated K-symmetry SPT without using a deep quantum
channel.

Noticeably, a new class of topological phases that only
exists in mixed states, dubbed intrinsic ASPT, is discovered
in Ref. [65]. The existence of these new phases is due to the
modified consistency relation of the generalized cohomology
theory. The basic idea is that the Berry phase consistency
condition in the cohomology theory for pure-state SPT is no
longer required in a mixed state as the Berry phase is not well
defined. Thus, there can be decorated domain wall configura-
tions that make no sense in an SRE quantum wave function
but can exist in a mixed density matrix. General classification
of ASPT phases with global exact and average symmetry are
fleshed out in Ref. [65]. We describe some detailed mathe-
matical structures in the Appendix A. In the following, we
will generalize the idea of ASPT to systems with subsystem
symmetries and possibly some global symmetry as well.

While the quantum channels are most general definition
of dynamics in open quantum systems, a large class of open
quantum system dynamics can be described by the Markovian
quantum master equation [76], which assumes the following
form:

∂tρ = Lρ = −i[H, ρ] +
∑

α

γα

(
L†

αρLα − 1

2
{L†

αLα, ρ}
)

.

(8)
Here the operator L is called Liouville superoperator and
acts on the density matrix ρ from both sides. The quantum
jump operators Lα describe the coupling between systems
and environment (bath). The non-negative number γα de-
picts the intensity of quantum jumps. In this formalism, the
exact symmetry is the symmetry that is preserved by each
individual quantum jump operator, while the average sym-
metry is essentially a statistical symmetry of the ensemble of
quantum trajectories.
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The Lindbladian evolution constitutes a versatile frame-
work capable of encompassing diverse nonequilibrium dy-
namics. Notably, the Lindbladian operator, denoted as Lα ,
can be adeptly applied to model scenarios in which the
quantum system undergoes (weak) measurements by its sur-
rounding environment either instantaneously or within finite
time intervals, as expressed by the expression Lα (t ) ∼ δ(t −
t0). Within the context of our research, we employ the ter-
minology measurement or decoherence to characterize this
particular manifestation of quantum dynamics. Moreover, the
Lindbladian evolution framework finds applicability in char-
acterizing systems engaged in continuous interactions with
their external environments, an aspect we identify as dissi-
pation dynamics in our work. Our analysis of the dynamic
phase transition caused by either decoherence or dissipation
relies on this versatile framework. We will delve into this topic
further in Sec. IV of our paper.

II. SUBSYSTEM AVERAGE SPT PHASES

In this section, we present the basic idea of SASPT phases
through a coupled-wire construction, similar to what was done
in the context of (3 + 1)d clean systems with two-foliated
subsystem symmetry [41]. In parallel to the construction of
SSPT in clean systems, we arrange four average anomalous
(1 + 1)d modes within each unit cell as depicted in Fig. 1,
and aim to achieve a short-range entangled (SRE) bulk state
through symmetric interactions and decoherence. The average
anomalous (1 + 1)d modes can be viewed as the boundary
of certain (2 + 1)d ASPT states and may or may not have a
purification into an SRE state. Analogous to the clean systems,
we will present the average anomaly cancellation condition
for SASPT phases, which is equivalent to the emergence of an
SRE bulk state through symmetric interactions and decoher-
ence between different unit cells.

A. SASPTs with clean limits

First, we illustrate an example of SASPT with a clean limit.
In this type of SASPT, since the bulk is already gapped in the
clean limit, all we need to show essentially is that the hinge
mode of the clean SSPT is stable against decoherence that
turns part of the symmetry from exact to average. Consider a
(3 + 1)d bosonic system possessing a two-foliated subsystem
symmetry Z2 and a global time-reversal symmetry ZT

2 . We
will first show that, in the clean limit, there is a nontrivial
SSPT via wire construction. Then we will argue that, with
decoherence that breaks the subsystem symmetry to average
while keeping the exact ZT

2 symmetry, the nontrivial hinge
modes cannot be turned into an SRE mixed state. Therefore,
this SSPT phase is stable in open systems.

The wire construction is shown in Fig. 1. Each blue circle
represents an anomalous theory carrying the ’t Hooft anomaly
of a (2 + 1)d Z2 × ZT

2 SPT state in clean systems. To show
that an SSPT exists, the first objective is to introduce sym-
metric interactions between a different unit cell such that the
bulk of the system can be gapped out without breaking any
symmetry, which is the essence of the anomaly cancellation
condition. Then one needs to check if there are any nontrivial
hinge modes. Finally, if we allow any local quantum channels
that break the subsystem Z2 symmetry to an average subsys-

tem Z2 symmetry, we will show that the hinge modes remain
nontrivial, and hence the system is a SASPT state.

To consider the gapping problem in the bulk, we need to
write down the Lagrangian for each plaquette in Fig. 1. This
can be conveniently presented as eight-component bosonic
fields � = (�1, . . . , �4), where �i = (φi1, φi2) denotes the
bosonic degrees of freedom of the quantum wires in each
plaquette. The kinetic part of the Luttinger liquid reads [71,73]

L0 = ∂t�
T K

4π
∂x� + ∂x�

T V

4π
∂x�, (9)

where K = (σ x )⊕4 is the K matrix. Each block of σ x is sup-
posed to be the edge theory of a (2 + 1)d Z2 × ZT

2 bosonic
SPT, which gives the following symmetry transformations:

g : � → (−1)s1(g)W � + δ�. (10)

Here s1(g) characterizes if g is antiunitary, namely

s1(g) =
{

0, if g is unitary

1, if g is antiunitary
. (11)

In the plaquette, there are four independent Z2 subsystem
symmetries. Their symmetry transformation rules are given
by the following:

WZ2 = (σ 0)⊕4

δ�Z(1)
2 = π (1, 0, 1, 0, 0, 0, 0, 0)T

δ�Z(2)
2 = π (0, 0, 0, 0, 1, 0, 1, 0)T

δ�Z(3)
2 = π (1, 0, 0, 0, 0, 0, 1, 0)T

δ�Z(4)
2 = π (0, 0, 1, 0, 1, 0, 0, 0)T . (12)

For the global time-reversal symmetry T ∈ ZT
2

W T = (−σ z )⊕4

δ�T = π (0, 1, 0, 1, 0, 1, 0, 1)T . (13)

To get an SSPT state, we should fully gap each plaquette in
the bulk with symmetric interactions. To that end, we need to
include four linearly independent symmetric Higgs terms,

LHiggs =
4∑

k=1

λk cos
(
lT
k K�

)
, (14)

that satisfying the null-vector conditions (4). One can easily
check that the following vectors satisfy all these conditions:

l1 = (1, 0, 1, 0, 1, 0, 1, 0)T

l2 = (0, 1, 0,−1, 0,−1, 0, 1)T

l3 = (1, 0, 0,−1, 0, 1,−1, 0)T

l4 = (0, 1,−1, 0,−1, 0, 0, 1)T . (15)

Moving on, we will inspect the properties of the boundary of
the system. On a smooth boundary, there exist four dangling
bosonic modes. It is obvious that one can introduce on-site
mass terms that allow us to fully gap out the boundary site.
This will not be true for a corner site, i.e., there is a dan-
gling hinge mode at each corner. By design, each hinge mode
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is described by a Lagrangian that is precisely the anoma-
lous boundary of the (2 + 1)d SPT with Z2 × ZT

2 symmetry.
Hence, the whole system comprises an SSPT state.

Finally, we consider the effect of decoherence, which
breaks the Z2 subsystem symmetry down to an average sym-
metry, on the hinge modes. Since the hinge mode can be
viewed as the edge of (2 + 1)d SPT with Z2 × ZT

2 symmetry,
in hindsight the question is equivalent to asking if (2 + 1)d
SPT is stable after breaking the exact Z2 symmetry to an
average symmetry. The (2 + 1)d SPT used in the construction
belongs to the nontrivial decoration class where a Z2 domain
wall is decorated with a (1 + 1)d SPT with ZT

2 symmetry.
According to the general classification derived in Ref. [65],
this SPT is still a nontrivial ASPT when Z2 symmetry is
average and ZT

2 is kept exact. Therefore, its boundary, carry-
ing an average anomaly, cannot be turned into an SRE mixed
state.

While the argument above is generally valid, one can see
this more explicitly with the following microscopic exam-
ple. In clean systems, the hinge mode would be a (1 + 1)d
Luttinger liquid in the form of Eq. (9), with the K matrix
K = σ x and Z2 × ZT

2 symmetry properties as

WZ2 = 12×2, δφZ2 = π (1, 0)T

W T = −σ z, δφT = π (0, 1)T . (16)

Then we consider a local quantum channel N (x) of decoher-
ence that breaks Z2 to an average symmetry, namely

N (x)[ρhinge] = (1 − p)ρhinge + pK (x)ρhingeK (x)†, (17)

where K (x) ∼ cos φ1(x). It is the lowest-order Kraus operator
in terms of the φ fields that breaks Z2 down to average while
keeping the exact T symmetry. The quantum channel N has
no effect on the correlation function of cos φ1 operators, which
will remain power-law correlated in the decohered systems.
Therefore, after applying the quantum channel N to break
Z2 to an average symmetry, we obtain a (1 + 1)d power-law
correlated mixed hinge state, which is consistent with the
conclusion that the system is a nontrivial SASPT.

B. Intrinsic SASPT phases

In the case of on-site symmetry, it has been proposed that a
significant class of ASPT is only well defined in mixed states,
lacking any counterpart in clean (closed) systems [65]. In this
section, we demonstrate that a large class of SASPT phases
also does not have clean limits and can only exist in mixed en-
sembles. We refer to these SASPT phases as intrinsic SASPT
phases. Based on the wire construction picture, we find two
types of intrinsic SASPT phases depending on the properties
of the building blocks. In the following, we primarily discuss
the cases of three-dimensional systems with two-foliated sub-
system symmetries for clarity, although general cases are easy
to construct.

(1) Type-I intrinsic SASPT refers to the following situa-
tion. We consider coupled-wire models where each unit cell
is composed of four building blocks consisting of anomalous
modes, which can be viewed as the (1 + 1)d boundaries of
certain (2 + 1)d clean SPTs. The modes are arranged such
that within each unit cell, they can be symmetrically gapped

out in the clean limit, meaning the system admits a trivial
atomic insulating phase in the clean limit. However, we want
to consider the situation where it is not possible to gap out
the modes from four neighboring unit cells in the clean limit
using only symmetric interactions, namely a clean SSPT does
not exist. In such a situation, if symmetric local decoherence
can lead to an SRE bulk mixed state and leave the hinge of the
system nontrivial, we will call such a system a Type-I intrinsic
SASPT.

(2) Type-II intrinsic SASPT is different from Type-I in
that the building blocks in each unit cell do not have a clean
limit. In particular, the building blocks are density matri-
ces corresponding to the (1 + 1)d anomalous boundary of a
(2 + 1)d intrinsic ASPT state [65]. The four building blocks
are arranged such that the average anomaly cancels within the
unit cell, meaning that the unit cell can be an SRE mixed state
with average symmetries. Under such conditions, if symmet-
ric interactions and decoherence can turn the four building
blocks from four neighboring unit cells to an SRE mixed state
and leave a nontrivial hinge, then we refer to such systems as
Type-II intrinsic SASPTs.

We note in the type-I intrinsic SASPT, the system still
admits a clean trivial insulator state, but a nontrivial SPT state
exists only in a mixed ensemble. However, in a type-II system,
the existence of a trivial insulator already requires the system
to be an open quantum system.

1. Type-I intrinsic SASPT from decoherence-assisted
anomaly cancellation

In this section, we focus on intrinsic SASPT states whose
anomaly cancellation conditions can only be fulfilled in open
quantum systems. Consider the coupled-wire model discussed
in Sec. II A. Each unit cell consists of four building blocks
(depicted in Fig. 1). Each building block serves as an anoma-
lous edge state of a clean SPT state. In the discussion of
clean SSPT, one requires an anomaly cancellation condition
in Eq. (1), which can guarantee a symmetric gapped bulk
by inter-unit-cell interactions. In the case of type-I intrin-
sic SASPT, however, the anomaly cancellation condition (1)
does not hold in clean systems. Specifically, the type-I intrin-
sic SASPT states correspond to elements in H p[Gs, hq(Ks)]
whose image under the f2 map in Eq. (31) is an element
in H p+q[G2

s ,U (1)]. However, when breaking the subsystem
symmetries down to average symmetry by local decoherence
channel, such anomaly vanishes. Hence, an SRE bulk is pos-
sible in open quantum systems.

Now we present an example of a three-dimensional system
with a two-foliated subsystem symmetry Gs = Z2 and global
fermion parity conservation Gg = Z f

2 . Each building block
in the coupled-wire model (Fig. 1) corresponds to the edge
theory of two copies of p ± ip superconductor (or the edge
of Z8-classified fermionic Levin-Gu state in (2 + 1)d with
topological index ν = 2). The building block can be described
by a Luttinger liquid with a K matrix K = σ z and Z2 and the
Z f

2 symmetries actions as the following:

Z2 : WZ2 = 12×2, δφZ2 = π (0, 1)T

Z f
2 : WZ f

2 = 12×2, δφZ2 = π (1, 1)T . (18)
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In each unit cell, there are four building blocks with an alter-
nating anomaly pattern such that the total anomaly is trivial.
Therefore, each unit cell can emerge in a clean system as an
SRE pure state.

Now in order to get a nontrivial state, we want to obtain
an SRE bulk by symmetric interaction and/or decoher-
ence between the building blocks within one inter-unit-cell
plaquette. The Luttinger liquid theory describing the modes
inside the inter-unit-cell plaquette in Fig. 1 has the K matrix
K = (σ z )⊕4. And there are four Z2 subsystem symmetries
acting on these modes with the following nontrivial actions:

W g1 = 18×8
Z1

2 :
δφg1 = π (1, 0, 0, 1, 0, 0, 0, 0)T

W g2 = 18×8
Z2

2 :
δφg2 = π (0, 0, 0, 0, 0, 1, 1, 0)T

W g3 = 18×8
Z3

2 :
δφg3 = π (1, 0, 0, 0, 0, 1, 0, 0)T

W g4 = 18×8
Z4

2 :
δφg4 = π (0, 0, 0, 1, 0, 0, 1, 0)T . (19)

We also demand a global fermion parity conservation

WZ f
2 = 18×8

Z f
2 :

δφZ f
2 = π (1, 1, 1, 1, 1, 1, 1, 1)T . (20)

We can first check that these modes cannot be gapped out
by symmetric interaction in the clean limit by calculating the
anomaly of these symmetries. An anomaly indicator to detect
the Z2 symmetry anomaly is demonstrated in Ref. [74]: for a
Luttinger liquid with Z2 symmetries (unitary or antiunitary),
one can always put the K matrix and symmetry actions into
the following canonical forms:

K =

⎛⎜⎜⎝
A 0 B −B
0 C D D

BT DT E F
−BT DT F T E

⎞⎟⎟⎠, (21)

W =

⎛⎜⎜⎝
−1n−−m 0 0 0

0 1n+−m 0 0
0 0 0 1m

0 0 1m 0

⎞⎟⎟⎠, δφ =

⎛⎜⎜⎝
0
χ2

0
0

⎞⎟⎟⎠,

(22)

where 1m is an m × m identity matrix, n−, m, and n+ are
non-negative integers satisfying n+ + n− = N and m � n±.
An auxiliary vector χ+ is further defined as

χ+ =

⎛⎜⎜⎝
0

χ2 + 2a
diag(E + F )/2 + b
diag(E + F )/2 + b

⎞⎟⎟⎠, ∀a, b ∈ Z2. (23)

The anomaly indicator ν is defined by

ν ≡ 1
2χT

+K−1χ+ + 1
4 sig[K (1 − W )] (mod 2), (24)

where “sig” denotes the signature of the matrix. The
anomaly-free criterion of (K,W, δφ) based on the anomaly

indicator ν is

ν = 0 (mod 2). (25)

For Z2 subsystem symmetries in Eq. (19), one can show the
anomaly indicator of the operations g1g3, g2g4, g1g4, and g2g3

are nonvanishing, as

νg1g3 = νg2g4 = 1(mod 2)

νg1g4 = νg2g3 = 1(mod 2). (26)

This implies that the modes in each plaquette exhibit sub-
system symmetry anomaly, indicating that the coupled-wire
construction described above is obstructed to have a gapped
bulk in the clean limit by symmetric interaction due to the
failure of the anomaly cancellation condition. Equation (26)
also indicates that the anomaly is bosonic [74]. In other
words, by introducing suitable symmetric interaction to each
plaquette, the eight-component Luttinger liquid can be trans-
formed into a two-component boson field with a K matrix
K = σ x and the Z2 symmetry transformation WZ2 = 12×2

and δφZ2 = π (1, 1), which is precisely the boundary of the
(2 + 1)d bosonic Z2 SPT, i.e., the Levin-Gu state [75].

Next, we consider the system subject to decoherence,
which breaks down the Z2 subsystem symmetry to an aver-
age Z2 subsystem symmetry. In this situation, the anomalous
bosonic modes in each plaquette can actually be turned into an
SRE mixed state, because the anomaly becomes trivial when
the Z2 symmetry is broken down to average. This statement
is synonymous with the statement that, with only average Z2

symmetry, there is no nontrivial bosonic ASPT in (2 + 1)d . In
particular, we discuss more details in Sec. IV that both deco-
herence and dissipation can drive the Luttinger liquid in each
plaquette toward a mixed state with short-range entanglement.
This leads to the formation of an SRE bulk mixed state.

Subsequently, we turn our attention to the hinge mode.
As we mentioned above, the hinge mode, which is also the
building block of the wire construction, corresponds to the
edge state of a (2 + 1)d fermionic Levin-Gu state with a
topological index ν = 2 with symmetry actions specified in
Eq. (18). We can introduce decoherence processes that break
down the Z2 symmetry to an average Z2 symmetry. However,
according to the general classification paradigm in Ref. [65],
(2 + 1)d fermionic Levin-Gu state with topological index
ν = 2 is still a nontrivial ASPT if we break Z2 symmetry
to an average symmetry by some decoherence channel and
keep the fermion parity Z f

2 exact. Therefore, the hinge mode,
which is an edge of the ASPT mentioned above, still carries
an average anomaly and cannot be turned into an SRE mixed
state. The stability of the hinge modes shows that the system
is a nontrivial type-I intrinsic SASPT.

2. Type-II intrinsic SASPT from average anomalous
building blocks

In this subsection, our focus is on constructing intrinsic
SASPT states whose building blocks do not have a clean
limit. In other words, each building block is the boundary of a
certain intrinsic ASPT state.

As an example, let us consider the coupled-wire model
with two-foliated subsystem fermion parity symmetry Gs =
Z f

2 and global time-reversal symmetry Gg = ZT
2 with
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(ZT
2 )2 = 1. In our previous discussion of closed systems in

Sec. I B, each building block in Fig. 1 is expected to be an
edge mode of a (2 + 1)d Z f

2 × ZT
2 SPT state. However, the

classification of (2 + 1)d Z f
2 × ZT

2 SPT in pure states is trivial
[67], which means there are no nontrivial clean SSPT states in
this symmetry class.

Now, let us consider open systems where decoherence
breaks the time-reversal symmetry, transforming it into an
average symmetry. In such settings, the classification of
(2 + 1)d ASPT with exact Z f

2 and average ZT
2 is actually

nontrivial and all the nontrivial cases are intrinsic ASPTs
(see Appendix A 1). In this case, the coupled-wire model can
be composed of the building block of (1 + 1)d mixed states
with exact fermion parity Z f

2 and average time-reversal ZT
2

symmetries, which are the edges of the (2 + 1)d intrinsic
ASPTs. These building blocks cannot be SRE mixed states,
indicating the presence of average anomalies.

Here we provide more details on the classification data for
the intrinsic ASPTs with exact Z f

2 and average ZT
2 symmetry.

There are three layers of the classification data:

n1 ∈ H1
[
ZT

2 , h2
(
Z f

2

)] = Z2

n2 ∈ H2
[
ZT

2 , h1
(
Z f

2

)] = Z2

ν3 ∈ H3[ZT
2 ,U (1)

] = Z1, (27)

where n1 labels the Majorana chain decoration on the
time-reversal domain walls, n2 labels the complex fermion
decoration on the junctions of time-reversal domain walls, and
ν3 represents the bosonic SPT state protected by ZT

2 . In order
to get a consistent clean SPT state, these data must satisfy the
following consistency conditions (see Appendix A for more
details):

d2n1 = s1 ∪ n1 ∪ n1

d2n2 = O4[n2], (28)

In the clean case, both n1 and n2 encounter obstructions, which
is the reason for the absence of clean SPT states. However, in
the context of open quantum systems, the O4[n2] obstruction
is trivial due to the phase decoherence of open systems. Con-
sequently, a nontrivial n2 characterizes a (2 + 1)d intrinsic
fermionic ASPT phase. And this intrinsic ASPT has Z2 clas-
sification because nontrivial n2 is actually the only intrinsic
ASPT state for this symmetry class. The reason is nontrivial n1

will lead to an obstruction of fermion parity violation, which
is not allowed as long as Z f

2 is still an exact symmetry in the
decohered systems [65]. As a result, we can set each building
block depicted in Fig. 1 to be the edge of the (2 + 1)d intrinsic
ASPT state with exact Z f

2 and average ZT
2 symmetry.

In order to achieve an SRE bulk state, we need to argue that
four building blocks from the four neighboring unit cells can
be turned into an SRE ensemble using quantum decoherence
(as shown in Fig. 2). This is equivalent to saying that the total
average anomaly vanishes for these modes. Examining the
configuration, we observe the following charge assignments
for the subsystem symmetries:

(1) Wire 1 carries nontrivial charges associated with sub-
system fermion parities Z f

2,x2
and Z f

2,y1
.

FIG. 2. Coupled-wire model of (2 + 1)d type-I intrinsic SASPT
state with exact subsystem fermion parity Z f

2,n (n = 1, 2, 3, 4) and
average global time-reversal ZT

2 symmetries. Four relevant con-
served subsystem fermion parity Z f

2,n (n = 1, 2, 3, 4) are remarked
by red dashed lines. Each black solid block is a unit cell, and the
purple dashed line defines a plaquette.

(2) Wire 2 carries nontrivial charges associated with sub-
system fermion parity Z f

2,x2
and Z f

2,y2
.

(3) Wire 3 carries nontrivial charges associated with the
subsystem fermion parity Z f

2,y1
and Z f

2,x1
.

(4) Wire 4 does not carry any charges associated with the
subsystem fermion parities Z f

2,x2
and Z f

2,y1
.

To obtain an SRE ensemble from these four building blocks
is to show that the average anomaly associated with all the
symmetries is trivial. Let us consider the two subsystem
fermion parities Z f

2,x2
and Z f

2,y1
, we can summarize the av-

erage anomalies of different wires as follows:

wire 1: nx2
2 (g1, g2) + ny1

2 (g1, g2)

wire 2: nx2
2 (g1, g2)

wire 3: ny1
2 (g1, g2)

wire 4: 0, (29)

where nx2
2 (g1, g2) ∈ H2[ZT

2 , h1(Z f
2,x2

)] = Z2 and ny1
2 (g1, g2)

∈ H2[ZT
2 , h1(Z f

2,y1
)] = Z2. Due to the Z2 nature of these

anomalies, it is easy to see that the anomaly associated with
these two symmetries is vanishing when we take all four wires
into consideration. Similarly, one can easily check the total
average anomaly of the four building blocks is trivial, guaran-
teeing the existence of an SRE bulk ensemble. Given the SRE
bulk, from a similar construction as before, one can easily
see that the hinge is a nontrivial mixed state, which carries
precisely the average anomaly of the edge of the (2 + 1)d
intrinsic ASPT state with exact Z f

2 and average ZT
2 symmetry.

Thus, this system is a nontrivial intrinsic SASPT.
A more explicit coupled-wire model (with some assump-

tions on the time-reversal action) of this type-II intrinsic
SASPT state is given in Appendix C where we have used the
doubled Hilbert space language to demonstrate this nontrivial
state. In particular, the explicit decoherence channels needed
to construct this state are provided in Appendix C.
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III. CLASSIFICATION SCHEME FOR THE SASPT PHASES

In the previous section, we have demonstrated a few possi-
bilities of SASPT phases in (3 + 1)d open quantum systems
with two-foliated subsystem symmetries. In particular, we
discussed two distinct types of intrinsic SASPT states that
cannot be realized as SSPT states in clean or closed quantum
systems. In this section, we focus on the general classification
scheme for SASPT phases. This classification scheme relies
on the cancellation condition of average anomaly, similar to
Eq. (1), within the framework of coupled-wire constructions.

A. Classification by anomaly cancellation

We discuss the general classification paradigm of SASPT
phases based on the cancellation condition of an average
anomaly in the coupled-wire models. To discuss the average
anomaly, we recall the classification of ASPT with on-site
symmetry. According to Ref. [65], we know that, for on-
site symmetry, the G̃-symmetric decohered ASPT density
matrices ρ are classified by the AH spectral sequence with
modified data and differentials. The topological invariant of
ρ in (d + 1)d is a (p + q) cocycle as an element of the E2

page of the AH spectral sequence, as

νp+q({g}; {k}) ∈ E p,q
2 = Hp[G, hq(K )], (30)

where p + q = d + 1, q > 0, and (gi, k j ) ∈ (G, K ) are group
elements of average and exact symmetries, respectively.
Each element in Eq. (30) labels the average anomaly of a
d-dimensional mixed state, which is the boundary of the
(d + 1)-dimensional ASPT state. These average anomalous
boundary systems will be our building blocks for the SASPT
states. We note that our scheme is also applicable to fermionic
systems, of which the fermion parity Z f

2 should be included
as a subgroup of K .

Towards an SRE bulk state, the total average anomaly per
plaquette (see Figs. 1 and 2) should be canceled. Therefore,
similar to Eq. (1), for a two-foliated subsystem average sym-
metry G̃s that is extended from an exact subsystem symmetry
Ks and an average subsystem symmetry Gs, the anomaly can-
cellation map f̃2 is modified to be

f̃2(ν)({g, g′}; {k, k′}) = ν({g}; {k})ν({g′}; {k′})

ν({gg′}; {kk′})
. (31)

To have average anomaly cancellation, we need the image of
this map to be trivial. We note that there is an important dif-
ference between the average anomaly cancellation condition
through f̃2 [cf. Eq. (31)] and that of the f2 map [cf Eq. (1)].
ν is the collection of all average obstruction-free elements
in E p,q

2 = Hp[Gs, hq(Ks)] with q > 0, as the topological in-
variant of (2 + 1)d ASPT phases. The total average anomaly
cancellation condition is that image of the f̃2 map falls into
the trivial elements in E p,q

2 = Hp[G2
s , hq(K2

s )] with q > 0 or
any element in Hp+q[G2

s ,U (1)]. This is because there are no
nontrivial ASPT states if there is no exact symmetry.

B. Case for intrinsic SASPT phases

In Sec. III A, we established the cancellation of the average
anomaly as the classification principle for SASPT phases, as

expressed by Eq. (31). This cancellation bears a resemblance
to the anomaly cancellation observed in closed systems. How-
ever, there is a key distinction between the f2 map (1) and
the f̃2 map (31) in terms of their preimage and image groups,
which leads to different classifications and intrinsic SASPTs.
In Secs. II B 1 and II B 2, we presented two examples of in-
trinsic SASPT phases: the type-I and type-II SASPT phases.
In this section, our objective is to see how they fit into the
general classification.

Type-I intrinsic SASPT phases are defined by building
blocks that correspond to the d-dimensional edge state of a
(d + 1)-dimensional clean SPT state. However, the gapping
problem of the bulk needs the assistance of decoherence.
In this case, although it is not possible to find a symmetric
interaction that fully gaps out each plaquette in the clean
systems, by introducing all possible symmetric interactions,
the modes in each plaquette can be deformed to the edge state
of a (d + 1)-dimensional SPT state labeled by an element
of H3[G2

s ,U (1)]. Under decoherence of the Gs degrees of
freedom, the modes in each plaquette can be decohered to
an SRE (1 + 1)d mixed state. Therefore, the classification
of type-I intrinsic SASPT phases includes the elements in
Eq. (30) that label the ASPT phases in (2 + 1)d with clean
limits, and under the f̃2 map (31) these elements are mapped
to elements in Hp+q[G2

s ,U (1)].
In the type-II intrinsic SASPT phases, each building block

corresponds to the edge state of a higher-dimensional intrinsic
ASPT state [65]. Under the f̃2 map (31), if building blocks are
mapped to trivial elements in E p,q

2 = Hp[G2
s , hq(K2

s )] (q > 0)
or any element in Hp+q[G2

s ,U (1)], one can find a consistent
type-II intrinsic SASPT.

IV. EFFECTS OF DECOHERENCE OR DISSIPATION
ON THE HINGE MODES

In the previous section, we have discussed the classification
of nontrivial SASPTs. We noted the importance of exact sym-
metries without which there are no robust SASPT phases. This
means that, when all the symmetry of the system is broken
down to average by decoherence, the hinge modes in principle
can become SRE mixed state. However, in some cases, it is
possible that the hinge mode is stable in some weak decoher-
ence regime and eventually becomes SRE after some critical
decoherence strength. In other words, the hinge mode could
go through a dynamical transition driven by decoherence or
dissipation.

We will now focus on a specific example in (3 + 1)d with
a two-foliated Z2 subsystem symmetry. According to a study
by Ref. [41], this system can host a clean SSPT state whose
hinge mode is expected to exhibit characteristics of the edge
state of the (2 + 1)d Levin-Gu model [75]. The hinge mode
can be described by

SLG[θ, φ] =
∫

dxdτ
1

4π
(∂xθ∂τφ + ∂xφ∂τ θ )

− 1

8π

[
K0(∂xθ )2 + 4

K0
(∂xφ)2

]
, (32)

where K0 is the Luttinger parameter and Z2 symmetry acts
as (θ, φ) �→ (θ + π, φ + π ). If we consider decoherence or
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dissipation that breaks the Z2 subsystem symmetry down to
average, there is no nontrivial SASPT in this case, which
implies that the hinge mode can become SRE mixed state
under decoherence or dissipation. However, small decoher-
ence can be relevant or irrelevant depending on the value
of the Luttinger parameter, and there could be an interesting
transition on the hinge.

A good way to handle the dynamical phase transition is
to use the Choi-Jamiołkowski isomorphism, which maps the
density matrix of the (1 + 1)d wire to a pure state in the
doubled Hilbert space, denoted by Hd . Within the doubled
space, we can transform the dynamical phase transition of
the density matrix to the quantum phase transition of clean
systems with some additional care.

A. Effects of measurement/decoherence

We use the Choi-Jamiołkowski isomorphism to investi-
gate the influence of measurement/decoherence on the hinge
state. We consider the quantum channels, which are (weak)
measurement/decoherence that breaks the Z2 exact symme-
try down to average. We use renormalization group (RG)
analysis in the doubled Hilbert space to study the effect
of such measurement/decoherence. By Choi-Jamiołkowski
isomorphism, the free part of the hinge theory in doubled
Hilbert space is composed of two copies of Levin-Gu edge
theory (32), which reads

S l
LG[θl , φl ] − Sr

LG[θr, φr]. (33)

We can view this theory as generated by a doubled space path
integral in imaginary time.

At low energy, the weak measurement/decoherence, which
breaks the Z2 symmetry to average will be mapped to a
coupling between l and r degrees of freedom at a given time
[63,77]. The simplest form of such coupling in low energy can
be written as

Sφ[ϕl , ϕr] = −
∫

dx
∑
ε=±

με cos(ϕl + εϕr )

Sθ [ϑl , ϑr] = −
∫

dx
∑
ε=±

αε cos(ϑl + εϑr ), (34)

where ϕl/r (x) = φl/r (x, τ = 0) and ϑl/r (x) = θl/r (x, τ = 0).
It is easy to see that Sφ and Sθ break the Z2,l and Z2,r

symmetries to the diagonal Z2 symmetry acting on Hl and
Hr identically. In practice, there will be other kinds of pertur-
bation that break the exact symmetry down to average. The
above terms are conceivably the most relevant terms that can
be generated by Kraus operators.

Similar to the analysis in Refs. [63,65,77], we perform a
Wick rotation that exchanges the spatial coordinate x with the
imaginary time coordinate τ . In the new coordinates, the weak
measurements on (34) can be interpreted as a local coupling
at x = 0 that is constant along the imaginary time direction.
The renormalization group (RG) equations for Sφ and Sθ take
the form of RG equations for (0 + 1)d static impurities in

FIG. 3. RG flow phase diagram of the decoherence terms. The
black and red arrows are RG flows of με and αε terms, respectively.

Luttinger liquids, which can be described as follows (ε = ±):

dμε

dl
=

(
1 − K0

2

)
με

dαε

dl
=

(
1 − 2

K0

)
αε

dK0

dl
= 0. (35)

As illustrated in Fig. 3, for K0 < 2, Sφ is relevant, other-
wise Sθ is relevant in the infrared (IR) limit. When Sφ is
relevant (namely K0 < 2), one can show that the power-
law correlation of 〈eiθ (r1 )e−iθ (r2 )〉 is spoiled. However, since
the φ fields are commuting with the perturbation Sφ , the
correlation function 〈eiφ(r1 )e−iφ(r2 )〉 remains the same as be-
fore measurement/decoherence, namely power-law decay.
As for K0 > 2, the situation is opposite, namely eiθ oper-
ators show nontrivial correlations. Therefore, in the weak
measurement/decoherence regime, the nontrivial correlation
on the hinge persists for any value of the Luttinger parameter
K0. However, we emphasize that the above are only analyses
in the weak measurement/decoherence limit. If both terms in
Eq. (35) are strong (say we only take the ε = +1 terms), then
they can pin the φ and θ fields and their connected correlations
become trivial, which is consistent with the statement of a
trivial bulk.

B. Effects of dissipation

To study the effect of dissipation, we employ the Keldysh
path integral formalism. In Keldysh, the Lindbladian L is
expressed as

L = − i(Hl − Hr )

+
∑

α

γα

[
Lα,l L

∗
α,r − 1

2
(L∗

α,l Lα,l + L∗
α,rLα,r )

]
, (36)

where Hl/r describe the unitary dynamics and Ll,r contains the
effects of dissipation.

In our case, the unitary dynamics for the hinge mode is
given by Eq. (32) (with imaginary time switched back to
real time). The dissipation process in the low-energy effective
theory is expressed as couplings between the quantum fields
on the left and right branches, which break the two individual
Z2 symmetry on the left and right branches to a diagonal Z2

symmetry. We again consider the simplest possibility as the
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FIG. 4. RG flow phase diagram of the dissipation terms. There
are three different regimes K0 < 1, 1 < K0 < 4, and K0 > 4 where
the relevance of the two terms at small coupling are demonstrated.
The black and red arrows are RG flows of με and αε , respectively.

following:

Lφ = −
∑
ε=±

με cos(φl + εφr )

Lθ = −
∑
ε=±

αε cos(θl + εθr ). (37)

Note that these terms do not come with a δ function in time,
i.e., the dissipation process happens continuously in time.
We can regard these terms as coming from continuous weak
measurements done by the environment on the system.

It is easy to verify that the scaling dimensions of the ratios
μ−/μ+ and α−/α+ vanish, namely, μ−/μ+ and α−/α+ do
not flow under the renormalization group. To simplify our
analysis, we choose a submanifold in the parameter space with
μ− = α− = 0. It is easy to see that this submanifold is closed
under RG flow. The RG equations for the coupling constants
μ+, α+, and the Luttinger parameter K0 are given by [78]

dμ+
dl

=
(

2 − K0

2

)
μ+

dα+
dl

=
(

2 − 2

K0

)
α+

dK0

dl
= −1

4
α2

+ + 1

16
K2

0 μ2
+. (38)

Notice the RG flow for the Luttinger parameter differs by a
sign from the usual RG equation in the clean systems. This
is due to the non-Hermitian nature of the dissipation terms. It
is hard to determine the full flow of the RG equation. Due to
the perturbative nature of the RG equations, we will treat K
as a free parameter and only look at the relevance of the μ+
and α+ terms. There are three different regimes as shown in
Fig. 4,

(1) K0 < 1: Lφ is relevant while Lθ is irrelevant. This
region corresponds to a mixed hinge state with the power-law
correlation of 〈eiφl/r (r1 )e−iφl/r (r2 )〉 (because the dissipation com-
mutes with the operator e−iφl/r (r)) and short-range correlation
of 〈eiθl/r (r1 )e−iθl/m (r2 )〉.

(2) 1 < K0 < 4: both Lφ and Lθ are relevant. This region
corresponds to a mixed state with short-range correlation for
all operators, i.e., a trivial state.

(3) K0 > 4: Lθ is relevant while Lφ is irrelevant. This
region corresponds to a mixed hinge state with the power-law
correlation of 〈eiθl/r (r1 )e−iθl/r (r2 )〉 and short-range correlation of
〈eiφl/r (r1 )e−iφl/r (r2 )〉.

Therefore, in the intermediate regime of the phase diagram,
the power-law correlations of the hinge mode are destroyed by
the dissipation.

V. CONCLUSION AND OUTLOOK

In this work, we investigate the construction and classifi-
cation of fractonic higher-order topological phases in open
quantum systems with exact and average symmetries. Our
analysis focuses on scenarios of (3 + 1)d systems with a two-
foliated subsystem symmetry. In particular, we demonstrate
two types of intrinsic SASPT phases that cannot exist in the
pure state. For type-I intrinsic SASPT phases, a trivial atomic
insulator exists in the pure state, however, the existence of
the nontrivial SPT state requires the help of quantum deco-
herence. For type-II intrinsic SASPT, in some sense, even the
existence of the trivial atomic insulator requires decoherence.
Throughout the discussion, the notion of average anomaly
(which describes the boundary of an average SPT state) plays
an important role and we use this idea to provide a general
classification of these SASPT states. It is worth noting that the
average anomaly-free condition for SASPT phases deviates
slightly from that of SSPT phases in closed (clean) systems.
Specifically, we consider all elements in Hd+1[G2

s ,U (1)] to be
trivial, since average anomalies do not arise in systems with
average symmetry only [62,65]. We also study the effects of
measurement or dissipation on the hinge modes of fractonic
higher-order topological phases. Examples of interesting dy-
namical phase transitions are discussed.

The investigation of symmetry and topology in the
presence of decoherence and dissipation holds significant im-
portance and interest in the interdisciplinary realm of quantum
many-body physics and quantum information. The insights
gained from studying the modification of consistency con-
ditions for average symmetry in dissipative foliated systems
can be extended to systems with higher-form symmetries and
intrinsic topological orders. Furthermore, in addition to de-
coherence and dissipation, the notion of average symmetry is
also very relevant to disordered systems. However, fractonic
phases with disorder could be much richer in terms of the dy-
namical properties of their excitations. On one hand, disorders
can have the effect of generating mobility for the fractonic ex-
citations since the disorder breaks subsystem symmetries. On
the other hand, with strong disorder, systems are also expected
to be localized near the ground state. These competing effects
indicate that phase diagrams of fractonic phases as a function
of symmetry-breaking disorder strength can be very complex
and worth a careful study in the future.
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APPENDIX A: A BRIEF REVIEW OF ASPT
CLASSIFICATION

The formal classification of ASPT phases with global sym-
metry can be done through the generalized spectral sequence
method. Consider the general group extension,

1 → K → G̃ → G → 1, (A1)

with G being the average symmetry group and K being the
exact symmetry group (for fermionic systems, the fermion
parity Z f

2 should be included as a subgroup of K). Mathemat-
ically, the consistency conditions for decorated domain walls
with symmetry G̃ are consolidated into an Atiyah-Hirzebruch
(AH) spectral sequence. All possible decorated domain wall
patterns are summarized as the so-called E2 page of this spec-
tral sequence, and it is given by:⊕

p+q=d+1

E p,q
2 =

⊕
p+q=d+1

H p[G, hq(K )]. (A2)

In the above equation, hq(K ) represents the classification of
K-symmetric invertible topological phases in q dimensions,
which are decorated on the defects of G symmetry with
a codimension of q. It is important to note the following
modifications, which are distinct from the ordinary spectral
sequence for classifying the SPT phases in the clean systems:

(1) h0(K ) = 0 because there is no nontrivial ASPT state if
there is no exact symmetry.

(2) Bosonic invertible topological phases should be ex-
cluded from hq(K ) [for example, (2 + 1)d Kitaev’s E8 state
is excluded]; this is because such states can be prepared by a
finite-depth quantum channel from a trivial product state [62].

As mentioned above, not all domain wall configurations
can give rise to nontrivial SPT states, as certain consistency
conditions need to be satisfied during the construction of an
SPT wave function in clean systems. Within the framework
of the AH spectral sequence, the consistency conditions are
captured by the differentials denoted as dr , which map ele-
ments from E p,q

2 to decorated domain wall configurations in
E p+r,q−r+1

2 in one higher dimension, namely

dr : E p,q
2 → E p+r,q−r+1

2 . (A3)

These consistency conditions ensure that the symmetry defect
of G symmetry can quantum fluctuate in a wave function
while keeping SRE properties [72]. In particular, the final
layer of the differential dq+1 ensures that no Berry phase is
accumulated after a closed path of continuous domain wall
deformation. For open quantum systems, the Berry phases
of different decorated domain wall patterns are no longer
well defined, therefore, we abandon the Berry phase consis-
tency condition for open quantum systems. Mathematically,

we delete the last layer of obstruction dq+1 in Eq. (A3) when
calculating the classification of ASPT phases in open quantum
systems.

For more details about the Atiyah-Hirzebruch (AH)
and Lyndon-Hochschild-Serre (LHS) spectral sequences, see
Refs. [65,67,72]. In the following, we present a simple exam-
ple to sketch the spectral sequence of calculating the ASPT
classification.

ZT
2 × Z f

2 fSPT phases in (2 + 1)d

In this section, we give an example of classification of the
(2 + 1)d fSPT phases with ZT

2 × Z f
2 by AH spectral sequence

[66,67,72]. We list all possible classification data as the ele-
ments of E2 page of AH spectral sequence, as

(1) n1 ∈E1,2
2 =H1[ZT

2 , h2(Z f
2 )] = Z2: Kitaev’s Majorana

chain decoration on the codimension-1 ZT
2 domain wall,

where h2(Z f
2 ) = Z2 is the classification of (1 + 1)d Kitaev’s

Majorana chain.
(2) n2 ∈ E2,1

2 = H2[ZT
2 , h1(Z f

2 )] = Z2: Complex fermion
decoration on the codimension-2 ZT

2 domain wall junction,
where h1(Z f

2 ) = Z2 is the classification of complex fermion
parity.

(3) ν3 ∈ E3,0
2 = H3[ZT

2 ,U (1)] = Z1.
And the differentials are defined as

d2n1 = s1 ∪ n1 ∪ n1

d3n1 = 0

d2n2 = O4[n2], (A4)

where s1 characterizes the antiunitary elements, such that

s1(g) =
{

1, g is antiunitary

0, g is unitary
, (A5)

and O4[n2] is the obstruction function of the Berry phase
consistency, as a function of n2 [67]. In clean systems, all pos-
sible decorated domain wall patterns are obstructed, towards
a trivial classification. In open quantum systems with an av-
erage ZT

2 symmetry and exact Z f
2 symmetry, the Berry phase

consistency would be lifted because of the decoherence, as a
consequence, the nontrivial n2 data corresponds to an intrinsic
ASPT state. On the other hand, n1 is still obstructed, there-
fore, the eventual classification for ASPT in this symmetry
class is Z2.

APPENDIX B: CHOI-JAMIOLKOWSKI ISOMORPHISM

We describe some more details on the Choi-Jamiołkowski
isomorphism and the mapping between ASPT density matri-
ces and SPT states in the doubled space. An ASPT density
matrix, denoted by

ρ =
∑

j

p j |ψ j〉〈ψ j |, (B1)

defined on the Hilbert space H will be mapped to the follow-
ing Choi state in the doubled Hilbert space Hd = Hl ⊗ Hr
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under the Choi-Jamiołkowski isomorphism,

|ρ〉〉 = 1√
dim(ρ)

∑
j

p j |ψ j〉 ⊗ |ψ∗
j 〉, (B2)

where both left Hilbert space Hl and right Hilbert space Hr

are identical with the physical Hilbert space H. The doubled
Hilbert space comes with a larger symmetry group.

The exact symmetry K is doubled in the doubled space to
Kl × Kr symmetry, namely

Uk,l |ρ〉〉 = 1√
dim(ρ)

∑
j

p j (Uk|ψ j〉) ⊗ |ψ∗
j 〉

Uk,r |ρ〉〉 = 1√
dim(ρ)

∑
j

p j |ψ j〉 ⊗ (U ∗
k |ψ∗

j 〉). (B3)

The average symmetry G is mapped to Gd symmetry in Hd ,
such that

Ug,d |ρ〉〉 = 1√
dim(ρ)

∑
j

p j (Ug|ψ j〉) ⊗ (U ∗
g |ψ∗

j 〉). (B4)

There is also an antiunitary SWAP∗ symmetry as

SWAP∗ ≡ C ◦ SWAP, (B5)

where C is the complex conjugation, and SWAP symmetry
exchanges Hl and Hr .

Therefore, a G̃-symmetric (A1) density matrix ρ is mapped
to a G̃d � SWAP∗-symmetric quantum state |ρ〉〉, where G̃d is
characterized by

1 → Kl × Kr → G̃d → Gd → 1. (B6)

Measurements or decoherence can be in general described by
some local quantum channels E ,

E[ρ] = E1 ◦ E2 ◦ · · · ◦ EN [ρ] =
N∑

j=1,k

Kj,kρK†
j,k, (B7)

where Kj,k’s are the local Kraus operators on site- j, satisfying
the condition ∑

k

K†
j,kKj,k = 1, ∀ j = 1, . . . , N. (B8)

In the doubled Hilbert space Hd , the quantum channel E
(B7) in H is mapped to the following (nonunitary in general)
operator in Hd ,

Ê j =
∑

k

Kk,l ⊗ K∗
k,r . (B9)

Physically, the quantum channels in the doubled space act
as an interaction between the left and right space. Specif-
ically, the interactions are symmetric under Kl × Kr but
break Gl × Gr down to the diagonal Gd symmetry. With the
Choi-Jamiołkowski isomorphism, we are ready to formulate
the description of average anomalies as the ’t Hooft anomalies
of enlarged symmetry in the doubled Hilbert space Hd . Sup-
pose the density matrix in Eq. (B1) describes an ASPT state,
then each component of the density matrix is described by
a certain consistent domain wall decoration pattern, which is
labeled by νp+q(g1, . . . , gp; kp+1, . . . , kp+q ). It can be shown

that the Choi state |ρ〉〉 of the density matrix ρ is an SPT wave
function in Hd , with the following topological invariant:

ωp+q := νp+q(g1, . . . , gp; kp+1,l , . . . , kp+q,l )

νp+q(g1, . . . , gp; kp+1,r, . . . , kp+q,r )
. (B10)

This topological invariant can be demonstrated to be a co-
cycle in Hp[Gd , hq(Kl × Kr )], where ki,l ∈ Kl , ki,r ∈ Kr and
g j ∈ Gd . Hence, it represents an SPT wave function in the
doubled space.

In particular, this mapping also encompasses the intrinsic
ASPTs; we can demonstrate that the density matrix of an
intrinsic ASPT state will also be mapped to an SPT state
in the doubled Hilbert space. One can understand this by
the following arguments. Consider the topological invariant
of a G̃-symmetric intrinsic ASPT state νp+q ∈ E p,q

2 , which
under the differential dq+1 is mapped to a nontrivial element
νp+q+1 ∈ E p+q+1,0

2 in one higher dimension, meaning this par-
ticular decorated domain wall pattern is obstructed in a clean
system. This obstruction is described by a nontrivial cocycle
νp+q+1 ∈ H p+q+1[G,U (1)], which indicates an inconsistent
Berry phase accumulation along a closed path of deformation
of G domain walls. We know such a decoration pattern can be
consistent in the mixed state and it corresponds to an intrinsic
ASPT state. On the other hand, for the corresponding Choi
state, the total Berry phase would be νp+q+1ν

∗
p+q+1, which

can be shown to automatically fall into the trivial element in
H p+q+1[G,U (1)]. Hence the Choi state |ρ〉〉 is obstruction-
free in doubled Hilbert space. One can also show that the
cocycle in Eq. (B10) represents a nontrivial SPT in doubled
space.

APPENDIX C: COUPLED-WIRE MODEL OF TYPE-II
INTRINSIC SASPT

In this section, we present a conjecture of a coupled-
wire model in doubled Hilbert space for the type-II intrinsic
SASPT with exact subsystem Z f

2 symmetries and average
time reversal symmetry ZT

2 given in Sec. II A. In the wire
construction, we use the building blocks, which are the edge
of an intrinsic ASPT with exact Z f

2 and average ZT
2 symmetry.

Unfortunately, we currently do not have a first principle way to
determine the boundary theory of an intrinsic ASPT. However,
we know some requirements in the doubled space are needed
for this construction. First of all, the exact fermion parity sym-
metry for the left and right space must factorize. Second, since
the theory is supposed to be the boundary of intrinsic ASPT,
therefore, one should not be able to factorize the time-reversal
action into actions in each individual subspace. Otherwise,
the mixed state will have a clean limit and hence not be in-
trinsic. Of course, the average time-reversal symmetry should
commute with the swap symmetry. The final requirement is
that the theory in doubled space is anomalous given these
symmetry assignments. With these requirements, there might
not be a unique choice of edge theory. Nonetheless, in the
following, we give one example of construction that satisfies
the above requirements. We conjecture that this theory can
be an edge theory of the intrinsic ASPT with exact Z f

2 and
average ZT

2 symmetry.

155123-12



FRACTONIC HIGHER-ORDER TOPOLOGICAL PHASES IN … PHYSICAL REVIEW B 108, 155123 (2023)

FIG. 5. Coupled-wire construction of SASPT states in doubled
Hilbert space Hd . Each red ellipse includes one “

⊗
” and one “

⊙
”

which depict the edge theory of an ASPT state |ρ〉〉 in doubled Hilbert
space Hd .

One such theory in the doubled space is a Luttinger liq-
uid with a four-component boson field, with the K matrix
K = σ z

l ⊕ σ z
r , where the two blocks correspond to the left and

right spaces as displayed in Fig. 5. The fermion parities in the
Hilbert spaces Hl and Hr spaces are uniquely given by

W Pl
f = 14×4, δφPl

f = π (1, 1, 0, 0)T

W Pr
f = 14×4, δφPr

f = π (0, 0, 1, 1)T , (C1)

and the SWAP∗ symmetry is uniquely defined as

W S =
(

0 σ x

σ x 0

)
, δφS = 0. (C2)

The time-reversal symmetry transformation is tricky. We need
a transformation matrix that is not factorizable in the left and
right spaces. The transformation matrix should be commuting
with W S . And finally, the time-reversal symmetry should have
an anomaly that manifests the decorated domain wall picture
(i.e., a time-reversal domain wall decorated by two complex
fermions, one is from the left Hilbert space and the other is
from the right Hilbert space). By brute-force search, we find
such a time-reversal action that satisfies all these requirements
as the following,

W T =

⎛⎜⎜⎝
0 1 −1 −1
1 0 1 1
1 1 0 1

−1 −1 1 0

⎞⎟⎟⎠, δφT =

⎛⎜⎜⎝
0
π

π

0

⎞⎟⎟⎠. (C3)

At the outset, one should check the W T commute with
the two fermion parities and the swap symmetry, and T 2 = 1,
which is consistent with our symmetry action assignment. The
tricky part is to show the mixed anomaly between the time-
reversal symmetry and the two fermion parities. First, one can
show that there is no gapping term one can turn on to get rid
of these modes without breaking symmetry either explicitly or

spontaneously. In particular, any term with the following form
is not compatible with the time-reversal symmetry (C3):

cos(aφ1 + bφ2 + cφ3 + dφ4 + ϕ),

× a, b, c, d ∈ Z, ϕ ∈ [0, 2π ). (C4)

This indicates that indeed these symmetries are anomalous.
But to more precisely demonstrate the anomaly, one way to do
it is to explicitly break the time-reversal symmetry by some
order parameter and show that there are nontrivial fermion
zero modes (one from the left sector and one from the right
sector) localized at the domain wall of this order parameter.
To that end, we can consider the following time-reversal order
parameters,

HTB = m(x) cos(φ1 + φ2) + m(x) cos(φ3 + φ4). (C5)

It is easy to see that (C5) is compatible with the SWAP∗ sym-
metry (C2) and the two fermion parities, however, it explicitly
breaks time-reversal symmetry, namely

T :

{
cos(φ1 + φ2)

cos(φ3 + φ4)
�→

{ − cos(φ1 + φ2)

− cos(φ3 + φ4)
. (C6)

We can see these backscattering terms are Cooper pair terms
by refermionization. If we make a domain wall configuration
of m, standard calculation can explicitly show that at the
time-reversal symmetry domain wall, each sector has exactly
one complex fermion zero mode. Therefore, the symmetry
assignment indeed carries the anomaly we want to study. So
far we have constructed a reasonable conjecture for the theory
in each building block in the doubled space. We note that
this construction might not be unique. However, from the
Z2 classification of the ASPT state, one can infer that all
possible constructions for the nontrivial state are equivalent
in the sense of average anomaly.

Now we can come to the question of constructing an
SASPT state using these building blocks. To that end, as
usual, we should introduce symmetric gapping terms in each
plaquette to get a symmetric gapped bulk, the only differ-
ence is now the construction is in the doubled space. In each
plaquette, there are 16 bosonic modes in the doubled Hilbert
space whose K matrix is given by K̃ = K ⊕ −K ⊕ K ⊕ −K .
We can find eight null vectors and keep both the average
time-reversal and the double subsystems fermion parity Z f

2,n
as well as the swap symmetry. These symmetric Higgs terms
read

LHiggs = cos
(
φI

1 + φI
4 + φII

1 + φII
4

)
+ cos

(
φI

1 + φI
4 + φIII

1 + φIII
4

)
+ cos

(
φIII

1 + φIII
4 + φIV

1 + φIV
4

)
+ cos

(
φII

1 + φII
4 + φIV

1 + φIV
4

)
+ cos

(
φI

2 − φI
3 + φII

2 − φII
3

)
+ cos

(
φI

2 − φI
3 + φIII

2 − φIII
4

)
+ cos

(
φIII

2 − φIII
3 + φIV

2 − φIV
3

)
+ cos

(
φII

2 − φII
3 + φIV

2 − φIV
3

)
, (C7)
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where the subscript Arabic numerals label the different com-
ponents of a specific quantum wire, and the superscript
Roman numerals label the different quantum wires within
each plaquette.

A subtle point that needs additional care is that in the
context of decoherence, all Higgs terms in doubled space
should be able to be mapped to Kraus operators of some
quantum channels in the physical Hilbert space. Our Higgs
terms chosen here satisfy this requirement. Consider the first
term in Eq. (C7), it can be mapped to the following Kraus

operators in the physical Hilbert space,

K1 = cos
(
ϕI

1 + ϕII
1

)
, K2 = sin

(
ϕI

1 + ϕII
1

)
, (C8)

where ϕI,II
1 is mapped to φI,II

1 and φI,II
4 in the doubled Hilbert

space by the Choi-Jamiołkowski isomorphism. Similarly, we
can check all other terms in Eq. (C7) can be mapped back to
some Kraus operators in the physical Hilbert space. Therefore,
we have obtained an explicitly wire construction for a type-II
intrinsic SASPT in the doubled space.

[1] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[2] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner,
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