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Thermoelectric effect on diffusion in the two-dimensional Hubbard model
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We study charge and heat transport in the square lattice Hubbard model at strong coupling using the
finite-temperature Lanczos method. We construct the diffusion matrix and estimate the effect of thermoelectric
terms on diffusive and hydrodynamic time evolution. The thermoelectric terms prevent the interpretation of
the diffusion in terms of a single time scale. We discuss our results in relation to cold-atom experiments and
measurements of heat conductivity based on the measurements of heat diffusion.
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I. INTRODUCTION

Strong correlations lead to unusual phenomena such as
unconventional superconductivity [1,2], non-Fermi-liquid be-
havior [3,4], strange metallicity [5], and transport without
quasiparticles [6,7], to name a few. Solutions of microscopic
Hamiltonians provide crucial insights to aid the interpre-
tation of experiments and guide phenomenological theory
approaches [8,9]. Recently, numerical simulations of the
Hubbard model successfully described the high-temperature
“bad-metal” regime [10] and also reached the strange-metal
regime [11].

Parallel efforts of simulating model Hamiltonians in cold
atoms have led to a remarkable advance [12,13] as well.
Recent highlights include the simulation of charge [14] and
spin [15] dynamics in the square lattice Hubbard model and
the observation of thermalization and a crossover from diffu-
sive to subdiffusive dynamics at infinite temperature T [16].
In these setups, the transport properties are usually determined
indirectly [17] from observing the time evolution of a chosen
initial state (e.g., a density wave) without reaching a steady
state with a fixed current.

A crucial aspect that can affect the interpretation of such
time evolution is the fact that the dynamics are coupled, with
diffusion involving several quantities, such as charge and heat,
due to the finite thermoelectric effect away from particle-hole
symmetry. Therefore the discussion should account for the
associated mixed dynamics [18]. With cold atoms, the ther-
moelectric effect has been investigated for a gaseous system
in the bottleneck geometry [19–21]; however, it has not been
explored in optical lattices and was assumed to be negligible
in the interpretation of existing lattice results.

In this paper, we address the issue of mixed diffusion by
considering the matrix diffusion equation. We calculate all
needed quantities, including the ones related to the thermo-
electric effect, in the square lattice Hubbard model using the
finite-temperature Lanczos method (FTLM). We further use
numerical results to obtain the hydrodynamic solution to the
time evolution including current relaxation rates. As an exam-
ple, in Fig. 1, we show the solution of the coupled density-heat
diffusion problem with diffusion matrix and current relaxation

rates obtained from the numerical solution of the doped Hub-
bard model at a particular T . Due to the thermoelectric effect,
the initial pure density profile additionally results in a T
profile as time evolves. The obtained time dependence differs
from that when the thermoelectric mixing is neglected. In
the Hubbard model at high T , accessible to our numerics,
quantitatively the effect is moderate. The density profile is
seen to be close to the one obtained if the thermoelectric
effects are neglected. We discuss why this is so and under
what circumstances the effect can become larger. On the other
hand, the emerging T modulation is completely absent if
thermoelectric effects are neglected.

The qualitative aspects of our results apply not only to
cold-atom experiments but also to measurements of diffusivity
in general. One important example is a “flash” method, which
determines the heat conductivity from the propagation of the
T modulation [22]. More recent extensions of such a method,
where the decay of a thermal wave introduced by periodic
laser heating is studied, are also potentially affected by our
considerations [23,24].

Very recently, related calculations of the thermoelectric
effect were reported in Refs. [25,26] that used the quantum
Monte Carlo method on related lattice models. Whereas these
remarkable state-of-the-art calculations reach large system
sizes, the dynamical results rely on analytical continuation.
It is important to cross-verify those results by a method that
does not include the same systematic uncertainties (difficult
to precisely quantify) and to estimate qualitatively and quan-
titatively the effect of thermoelectric coupling on the time
evolution for some typical experimental setups.

This paper is structured as follows. We review the model
and method, the hydrodynamic equations, and the diffusion
matrix in Sec. II. We present the impact of the thermoelectric
effect on hydrodynamics in Sec. III and discuss the implica-
tions for experiments in Sec. IV. Appendix A contains details
on the diffusion matrix, Appendix B contains details on the
FTLM calculations, Appendix C gives a comparison of some
quantities with results from other methods, Appendix D con-
tains more details on thermodynamic ratios, and Appendix E
contains further information on the extraction of lifetimes
from correlation functions.
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(c) (d)

FIG. 1. Snapshots of the time evolution of a charge density wave
and accompanying temperature modulations are shown in (a) for
the initial state, in (b) at time t = 3, and in (c) for t = 6. (d) The
time dependence of the wave amplitudes. The modulation δn(t )
is normalized to the initial modulation amplitude δn0, while the
temperature modulation δT (t ) is normalized to t0δn0, where t0 is
the hopping parameter. These results were obtained for the two-
dimensional Hubbard model with U = 7.5t0 at 15% hole doping and
a temperature T = t0. The initial state shown in (a) only contains the
density modulation with a wavelength λ = 7a (in the x direction) and
has no temperature modulation, meaning that it is in thermal equi-
librium. Dashed lines in the plots represent the results for the case
where the thermoelectric effect is neglected. When accounting for the
thermoelectric coupling, the density wave evolves differently over
time, accompanied by the appearance of a temperature modulation.

II. METHODS

A. The Hubbard model

We use the two-dimensional Hubbard model with the
Hamiltonian

H = −
∑
〈i j〉σ

ti jc
†
iσ c jσ + U

∑
i

ni↑ni↓, (1)

where ti j is the hopping integral between nearest neighbors on
a square lattice (we set ti j = t0) and U is the local Hubbard
interaction. We treat the model on a finite 4 × 4 cluster using
the FTLM [27] and avoid showing low-T results affected
by finite-size effects. See also Appendix B for more details
on the method. We use h̄ = kB = e0 = 1. When not written
out explicitly, we use t0 as the unit of energy and the lattice
spacing a as the unit of distance.

B. Transport coefficients

Gradients of T and chemical potential μ induce currents as
given by the transport coefficients Li j .

j = −L11∇μ − L12
∇T

T
, (2)

jq = −L12∇μ − L22
∇T

T
. (3)

The transport coefficients are related to charge and heat con-
ductivities as

σc = L11, κ = 1

T

(
L22 − L2

12

L11

)
. (4)

The Seebeck coefficient S is the ratio between the gradient of
voltage and the temperature gradient

S = ∇μ

∇T
= − L12

L11T
. (5)

We compute Li j from current-current correlation functions as
described in Appendix B.

C. Diffusion matrix

Gradients of chemical potential μ and temperature T
induce gradients of density and entropy (assuming local equi-
librium),

∇n = χc∇μ + ζ∇T, (6)

T ∇s = T ζ∇μ + cμ∇T . (7)

Here, χc is the charge susceptibility, cμ is the specific heat
at constant μ, and ζ is the thermoelectric susceptibility, e.g.,
ζ = ∂T n|μ. See also Appendix A. Using these relations to-
gether with continuity equations, we can write (Appendix A)
the diffusion equation for n and T as

∂t

(
n
T

)
= D∇2

(
n
T

)
. (8)

The diffusion matrix (in the basis of n and T ) reads

D =
⎛⎝ L11

χc

L12
T − ζL11

χc

L12χc−ζL11T
cnχ2

c

ζ 2L11T 2−2ζL12T χc+L22χ
2
c

cnT χ2
c

⎞⎠ (9)

=

⎛⎜⎝ Dc ±
√

cnχcDcorrDc

T

±
√

DcorrDcT
cnχc

D̃Q

⎞⎟⎠. (10)

On the diagonal, one has Dc and D̃Q = DQ + Dcorr, which are
the charge and heat diffusion constants for cases with no tem-
perature or density modulations, respectively. Dc and DQ are
the standard diffusion constants, related to the corresponding
conductivities by the Nernst-Einstein equations σc = Dcχc

and κ = DQcn. Here, cn = cμ − ζ 2T/χc is the specific heat at
fixed density. Note that the diagonal element D̃Q differs from
the standard heat diffusion constant DQ by Dcorr, which also
expresses the off-diagonal elements. This parameter may be
written as

Dcorr = DcW̃ (SK − S)2 (11)

and is related to the difference of the Seebeck coefficient from
its thermodynamic Kelvin approximation [28] SK = ∂T μ|n,
namely to SK − S [the sign of the off-diagonal elements in
Eq. (10) equals the sign of SK − S]. Dcorr is also connected to
a modified “Wilson ratio” W̃ = T χc/cn with charge suscepti-
bility χc in the place of the more standard spin susceptibility.

Dcorr is the key quantity that controls the effect of ther-
moelectric mixing and in turn the deviations of the diffusion
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matrix eigenvalues

D± = Dc + D̃Q

2
±

√√√√(
Dc − D̃Q

2

)2

+ DcDcorr, (12)

from standard diffusion constants Dc and DQ. It is important to
keep in mind that Dcorr also changes the diagonal element DT T

to D̃Q = DQ + Dcorr, as discussed above. The diffusion matrix
was recently also discussed in related models for bad [29] and
strange [30] metals.

Finally, we note that the form of diffusion matrix depends
on the chosen basis; for example, the occurrence of Dc in the
element Dnn of D is characteristic of the (n, T ) basis. This
simple expression is associated with the fact that if ∇T = 0,
the particle current is given by j = σc(−∇μ) = σc/χc(−∇n),
i.e., the standard Fick’s law. Analogously, if one chooses
chemical potential and heat (μ, Q) as the basis, one finds a
simple form for the heat-heat element of the diffusion matrix
DQQ = L22/(cμT ). When not written otherwise, we refer to D
and its elements in the basis of (n, T ). See Appendix A for
more details.

D. Hydrodynamics of charge

Let us first discuss a typical measurement of diffusion in,
e.g., cold-atom experiments [14,15]. One prepares an initial
state with some density modulation via some spatially modu-
lated external potential. Such a state is initially in equilibrium
and has no temperature modulation or currents. Next, the
external potential is switched off, and the system is left to
evolve freely, during which time the density modulation starts
to decay. In the case of negligible thermoelectric coupling, the
density modulation decays according to the diffusion equa-
tion ∂t n = Dc∇2n and current flows according to the Fick’s
law

j + Dc∇n = 0. (13)

However, Fick’s law dictates that the current appears instantly
after the external potential is switched off and is instantly pro-
portional to the density gradient, while in reality the current
needs some time to develop. For this reason, one introduces
the current relaxation rate 	c and uses the improved hydrody-
namic description [31],

∂t j + 	c( j + Dc∇n) = 0. (14)

This description has been previously discussed in the context
of the Hubbard model at various values of U [32]. Together
with the continuity equation and a spatial Fourier transform
for a wave vector k, one obtains the second-order differential
equation

∂2
t n + 	c(∂t n + Dck2n) = 0. (15)

This is the ordinary damped harmonic oscillator equation, and
its solution is

n(t ) = a Re[cos(ω̃t + φ)]e−	ct/2, (16)

ω̃ =
√

	cDck2 − 	2
c /4. (17)

Throughout this paper, we set the phase φ (for finite-	 cases)
in such a way that initially, no current is flowing, or ∂t n|t=0 =

0. Explicitly, we set φ = arctan(−	c/2ω̃). The prefactor a
determines the initial amplitude of modulation, and we plot
the modulations relative to this initial amplitude.

The resulting n(t ) actually represents the modulation from
equilibrium density n, and we therefore in the following de-
note it with δn(t ) for clarity. It is shown in Fig. 1 (dashed lines)
with parameters corresponding to the Hubbard model at 15%
doping. Similar to the damped oscillator, the time dependence
of the density modulation amplitude exhibits an underdamped
regime with oscillations for Dck2 > 	c/4 (e.g., for larger val-
ues of k) and an overdamped regime without oscillations for
small k. One recovers purely diffusive behavior with e−Dck2t

for Dck2 � 	c, realized, e.g., in the k → 0 limit.

E. Matrix formulation of mixed diffusion

When thermoelectric effects are finite, density and heat
diffusion are not independent, and one has to extend the
hydrodynamic treatment in a matrix formulation. We de-
fine the density and temperature modulation vector 	v =
[δn(x, t )/δn0, δT (x, t )/(t0δn0)] with δn(x, t ) representing the
density modulation difference from the uniform equilibrium
density n, δT (x, t ) representing the temperature modulation
from the equilibrium uniform T , and δn0 representing the
initial density modulation amplitude. With this we generalize
Eq. (15) to matrix form:

∂2
t 	v + �(∂t 	v + Dk2	v) = 0. (18)

Here, D is the diffusion matrix and � is a matrix of relaxation
rates. These are phenomenological parameters but can be re-
lated to the microscopic theory. To achieve this, we introduce
D(ω) using Li j (ω) in Eq. (9), and then we diagonalize D for
each ω and extract the corresponding eigenmodes’ relaxation
rates 	± as the width (half-width at half maximum) of D±(ω).
See also Appendix E. The solution of Eq. (18) can then be
expressed as

	v(t ) = a+	v+ f+(t ) + a−	v− f−(t ). (19)

Here, 	v± are the corresponding eigenvectors with diffusion
constants D± and relaxation rates 	±. The form of f (t ) again
corresponds to the solution of the damped harmonic oscillator
and is that of Eq. (16), but with Dc and 	c replaced with D±
and 	±, respectively. Prefactors a+ and a− depend on initial
conditions.

III. RESULTS

A. Hubbard model results

Let us start with a discussion of the extent of the ther-
moelectric mixing, which is determined by Dcorr and, via
Eq. (11), by the deviation of the Seebeck coefficient S from
its Kelvin estimate SK and the modified Wilson ratio W̃ .

In the top panels of Fig. 2 we show the temperature depen-
dence of S (solid lines) and compare it with SK (dashed lines).
In the considered regimes, one expects S to be characterized
by a crossover from a high-temperature charge-fluctuating
regime characterized by the Heikes [33] value − ln[(2 −
n)/n] ≈ −2p (negative for hole doping p) to the regime
with suppressed double occupancy (at large U and small T )
with Heikes value − ln[2(1 − n)/n] (with positive values for
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FIG. 2. Top row: The Seebeck coefficient S for the square lattice Hubbard model and for three interactions U = 5, 7.5, and 10 and various
dopings. The Kubo results (solid lines) are compared with the Kelvin approximation SK (dashed lines). Middle row: the “Wilson ratio”
W̃ = T χc/cn. Bottom row: Dcorr = DcW̃ (SK − S)2.

considered p). One sees that these considerations indeed
roughly describe the data. With increasing p, the maximum in
S moves to higher T . S increases moderately with increasing
U/t in a wide T range. The Kelvin result suggests that S
changes sign as a function of doping at p ∼ 0.15 in the regime
of lowest calculated T . Due to finite-size effects in the FTLM
calculations at low T , we cannot observe this in the full Kubo
calculation. Our results for S and SK are qualitatively (for SK

even quantitatively) consistent with the determinant quantum
Monte Carlo (DQMC) results from Refs. [25,26], and we
show a direct comparison also with our dynamical mean-field
theory (DMFT) result in Appendix C.

The key result for our discussion is that, despite consid-
ering a high-temperature regime (T ∼ 1), we find that the
difference SK − S is not small (one expects SK − S to drop as
1/T for T → ∞) and approaches kB/e0 in the U = 10 results.

In the middle panels of Fig. 2 we show the “Wilson ra-
tio” W̃ . The first observation is that the doping dependence
is insignificant at U = 5 but becomes more pronounced at
larger U . At large U and small doping, an additional inter-
mediate peak develops. At high T , W̃ = T χc/cn ∼ T 2 since
χc ∼ T −1 and cn ∼ T −2. On lowering T , W̃ drops and at
larger interactions develops a plateau. At lowest T and for
small dopings, W̃ grows again, which can be attributed to
increased χc [10,14,34]. In the metallic Fermi-liquid regime
at low T , one expects W̃ to be T independent. Whereas in
our simulations we cannot reach the Fermi-liquid regime due

to the finite-size effects, we note that at our lowest T the
dimensionless quantity π2W̃ /3 ∼ 0.5 can be compared with
the standard (spin) Wilson ratio (shown in Appendix D) with
values π2T χs/(3cn) ∼ 2. This points to a relatively increased
spin susceptibility χs in comparison to χc. The remaining
weak dependence on U with W̃ that drops with U at small
T can be rationalized as follows. To a first approximation,
χc = zg0 and cn = π2g0T/(3z) [35], where g0 is the bare den-
sity of states at the chemical potential and z is the quasiparticle
weight. This leads to W̃ = 3z2/π2, from which one expects W̃
to decrease with decreasing z (increasing U ). This decrease is
indeed observed at the lowest calculated T .

It is obvious from these results that neither SK − S nor W̃
is particularly small, and hence one does not expect Dcorr to
be negligible either. In the bottom panels of Fig. 2 we show
Dcorr. We see that this takes overall moderate values in our
calculations (note that charge and heat diffusion constants are
typically of order 1 at high T [35]). At highest T , Dcorr tends to
a constant because (SK − S)2W̃ and Dc both become temper-
ature independent there. At the lowest T (not accessible in our
calculations) in the Fermi-liquid regime, one again expects
a T -independent value of Dcorr as W̃ → const, SK − S ∝ T ,
and Dc ∝ 1/T 2 there. We notice that Dcorr/Dc ∝ T 2 in the
Fermi liquid and thermoelectric mixing has a limited effect
at low T .

We now consider a particular case of intermediate inter-
action U = 7.5 and doping p = 0.15. In Fig. 3(a) we show
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(a)

(b)

FIG. 3. The temperature dependence of the eigenvalues of D
compared with the bare diffusion constants (a) and their correspond-
ing eigenvectors 	v± (b). Dcorr is also shown in the main text. Results
are for the square lattice Hubbard model with U = 7.5 and p = 0.15.

the bare diffusion constants Dc, DQ and the mixing element
Dcorr, together with the diffusion eigenvalues D±. One sees a
growth of the charge diffusion constant on lowering T and,
remarkably, a much weaker temperature dependence of the
heat diffusion constant DQ leading to a crossing of the two
quantities at T ≈ 3, while no such crossing was observed for
the case of spin and heat diffusion [18]. The weaker tempera-
ture dependence and a shallow minimum of DQ are discussed
in more detail in Ref. [35].

The magnitude of Dcorr is ∼10% of the bare diffusion
constants, leading to important effects of mixing when the two
bare values are close. This is seen [Fig. 3(a)] from the tem-
perature dependence of the two eigenvalues D± that follow a
level-repulsion mechanism and hence differ significantly from
the bare values.

In Fig. 3(b) we show also the corresponding components of
the eigenvectors. Looking at the n components of the eigen-
vectors, one sees that at low T , 	v+ has a larger n component
(v+n). At higher T , the larger n component is in 	v−. This is
consistent also with the crossing of the bare diffusion con-
stants. Furthermore, Fig. 3(b) shows that n and T components
are in counterphase for 	v+, while they are in phase for 	v−.
Therefore, when the main component is 	v+, the n and T mod-
ulation are in counterphase as, e.g., in Fig. 1, while they are
in phase when the 	v− component is the dominant one. Which
component dominates is determined by the initial condition
via a± and the decay rate of each of the components.

FIG. 4. The decay of a density modulation δn, including the ther-
moelectric effect [Eq. (21)]. The full solution shows two time scales
and interpolates in slope between δn ∼ exp(−Dck2t ) for short times
t and δn ∼ exp(−D−k2t ) for long t . The parameters are U = 7.5,
T = 1.5, k = 2π/7, and p = 0.15.

B. Time evolution for mixed diffusion

How important are the effects of mixing for the determi-
nation of diffusion constants from the time evolution, such
as is done in cold-atom experiments? We start the discussion
assuming a fast relaxation limit Dk2 � 	/4, e.g., due to the
long-wavelength limit k → 0. The time evolution in this limit
is purely diffusive and is given by the matrix form of the
diffusion equation and its solution

	v(t ) = exp(−Dk2t )	v(0). (20)

It can be expressed also in terms of the eigenmodes

	v(t ) = a+	v+e−D+k2t + a−	v−e−D−k2t , (21)

where a± are coefficients set by the initial condition. Except
in a special case where one of a± vanishes, the time evolution
involves two time scales.

Let us consider the initial state 	v(0) = (1, 0) (pure density
modulation) and ask about the density modulation at later
times. At short times, before appreciable temperature mod-
ulation develops, δn(t ) falls as dictated by the diagonal entry
Dc of the diffusion matrix [Eq. (10)]. Alternatively, from the
perspective of Fick’s law, a pure density modulation drives
the charge current given by Dc. At long times, only the slower
decaying eigenmode 	v− survives, and the long-time dynamics
are given by the corresponding eigenvalue D−.

This behavior is illustrated in Fig. 4, which shows δn(t )
for U = 7.5 at T = 1.5. There one sees that the solution
begins to drop according to exp(−Dck2t ) (initial short time
dependence ∝ 1 − Dck2t holds strictly) while at long times
one sees exponential decay with time constant (D−k2)−1. The
full result is the sum of two exponentials.

In experiments, one often assumes a simple single expo-
nential decay and fits the observed time dependence with
δn(t ) = δn0 exp(−Dextk2t ). It is now clear that the extracted
diffusion constant Dext depends on the fitting range. We illus-
trate this by showing Dext/Dc for several values of Dcorr as a
function of the fitting range in Fig. 5, taking DQ/Dc = 0.5.
One obtains sizable deviations of Dext/Dc from 1 only for
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(a) (b)

FIG. 5. The effective diffusion constant as observed from the
time evolution in an idealized setting by varying Dcorr (a) and DQ (b).
The effective diffusion constant Dext is obtained by fitting a single
exponential up to tmax. The fixed values of diffusion constants used
are DQ/Dc = 0.5 for (a) and Dcorr/Dc = 0.25 for (b). The minimum
possible Dext = D− is denoted with a dashed line in (a) for the case
Dcorr/Dc = 0.9. Here, k = 1.

large values of Dcorr and for longer fitting times. If the fitting
range is very long, one approaches Dext ∼ D−. One reaches
Dext = D− when only the long-time regime is fitted and the
short-time regime is left out.

Since smaller DQ lowers D−, to which Dext tends at longer
fitting times, a smaller DQ also leads to a bigger mismatch
and lower values of Dext/Dc. Similarly, increasing Dcorr de-
creases D− via the level-repulsion scenario and again leads to
decreasing Dext/Dc. These findings are summarized in Fig. 5,
and we note that the effect of Dcorr is already significant at
Dcorr/Dc ∼ 0.2.

All this illustrates that in principle the effects of thermo-
electric coupling can be large, and a naïve application of a
bare diffusion with neglected thermoelectric effects can lead
to a significant error in the estimate of the diffusion constant.
On the other hand, it is reassuring that at least at very short
times, the decay rate is indeed governed by Dc. However, at
such times, the current relaxation time can become important
as discussed further in Sec. III C.

C. Finite-� case and application to cold-atom experiments

The measurements on optical lattices are performed with
modulations with sizable momenta k, and hence one needs to
take into account the current relaxation and keep � in Eq. (18)
finite. The relaxation is estimated as explained in Appendix E.
Snapshots of the resulting time evolutions are plotted in Fig. 1
(solid lines). In Fig. 6, these are compared with diffusive
solutions without current relaxation rates. The finite relaxation
times lead to a slower decay at short times due to a slower
initial buildup of currents, and to the oscillatory behavior as
currents have some persistence and continue to flow even if
the modulation becomes zero at a certain time.

It is worth mentioning that each eigenmode decay is de-
termined by both D± and 	± [Eq. (16)]. Furthermore, the
eigenmode tends to exponential decay given with e−D±k2t

FIG. 6. The time evolution of a density wave for an initial state
with only density modulation. Solid lines are the full hydrodynamic
solutions including the current relaxation rate [Eq. (19)]. Dashed
lines are the solutions to the diffusion equation, i.e., assuming 	 �
Dk2 [Eq. (21)]. The results are for several wave vectors k and corre-
spond to the square lattice Hubbard model with U = 7.5 at p = 0.15
and T = 1.

in the overdamped limit (D±k2 � 	±/2), while in the un-
derdamped regime (D±k2 � 	±/2) it tends to oscillations
suppressed with e−	±t/2. The long-lived mode is therefore
given with the smaller value of D± in the overdamped (dif-
fusive) regime, namely D− (as discussed above), while in the
underdamped regime, it is given by the smaller value of 	±. It
is possible that 	+ < 	− (as in our case as discussed in Ap-
pendix E), making the longer-lived mode in the underdamped
regime 	v+ with corresponding out-of-phase modulation of n
and T (see components in Fig. 3).

To estimate the impact of the thermoelectric effect in
optical lattice measurements, we mimicked the analysis per-
formed there. Namely, we obtain the solutions of the matrix
hydrodynamic equations (18) which we fit with a simpler
ansatz describing charge hydrodynamics (16) only. We com-
pared the results of this procedure with the Dc and 	c obtained
through FTLM calculations.

This analysis is summarized in Fig. 7(a). One sees that
the extracted Dext

c is actually quite close to Dc = σc/χc in the
entire temperature range. At low T , one could attribute this to
a relatively large component |v+n| and D+ ∼ Dc. At T where
Dc and DQ cross, a+v+n ≈ a−v−n; that is, both eigenmodes
are present in the initial state with similar weight, and the
mixing is close to maximal. Despite the fact that D+ and D−
are far from Dc, the initial time dependence is given by Dc, and
extending the fitting time beyond tmax = 6t−1

0 (with moderate
Dcorr ∼ 0.15) results in Dext only slightly deviating from Dc.
If one uses the value Dext

c to calculate the resistivity via ρ =
(Dext

c χc)−1, the estimation exceeds the value ρ = (Dcχc)−1 by
∼10%. Figure 7(b) shows that, conversely, 	ext

c is not close to
	c and is systematically overestimated.

D. Effects of mixing on the thermal diffusion

The above considerations apply also to estimates of ther-
mal transport based on measurements of thermal diffusion.
The standard “flash” method estimates the thermal diffusion
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(a)

(b)

FIG. 7. Comparison of the diffusion constant Dc (a) and the
scattering rate 	c (b) as extracted by fitting Eq. (16) to the first
component of Eq. (19) up to times tmax = 6t−1

0 . Longer fitting time
tmax = 10t−1

0 affects Dext
c and 	ext

c marginally. DQ and 	Q are also
shown. Results are for the square lattice Hubbard model with U =
7.5, p = 0.15, and k = 2π/15, although we checked that changing
the wave vector does not alter the picture significantly.

constant from the time it takes for the temperature on the back
side of the sample to reach half of its equilibrium value after
the front side has been illuminated by a laser pulse. It seems
reasonable to assume that the initial state is described in terms
of modulated temperature but that charge density is unaffected
by the pulse; hence the diffusion matrix in the basis (n, T )
is appropriate to consider also in this case. Because the ex-
perimental procedure is sensitive to the initial time evolution
before appreciable charge density gradients appear, the effects
of the mixing with charge diffusion are expected to be limited.

On the other hand, it is important to recognize that the
quantity obtained from such measurements is D̃Q = DQ +
Dcorr; hence if this quantity is used to estimate thermal con-
ductivity using the Nernst-Einstein relation, one obtains a
diffusion estimate

κdiff = κ (1 + Dcorr/DQ) (22)

that is systematically larger from such measurements than
what one obtains from the direct transport determination
of κ .

As a concrete example, we calculated DQ and 	Q from a
time evolution starting with a state containing a temperature
modulation only. The results are shown in Fig. 7 with dashed
lines. Both DQ and 	Q show deviations from Dext

Q and 	ext
Q . In

particular, 	Q is seen to be underestimated at low T and over-
estimated the most at T ∼ 2t with the difference decreasing
at higher T . DQ estimation is impacted differently from Dc

because of the occurrence of Dcorr on the diagonal.
We notice that if one assumes a different initial state, for

instance, with a constant chemical potential, the initial diffu-
sion of temperature is given by the diagonal element in the
(μ, T ) basis,

D(μ,T )
T T = L22χc − ζL12T

cnT χc
(23)

= DQ + DcW̃ S(S − SK ), (24)

i.e., a value again distinct from standard diffusion DQ = κ/cn.
Interestingly, also here the deviations from DQ are given in
terms of S − SK and W̃ .

IV. CONCLUSIONS

In conclusion, we investigated the mixed particle-heat dif-
fusion in the doped Hubbard model. The thermoelectric effect
caused the appearance of mixed diffusion modes of particles
and heat and introduced new time scales that can alter the time
dependence from that of the simple exponential decay. This
should be taken into account in measurements in cold-atom
systems. We pointed out that the standard “flash” methods
systematically give a higher value of thermal conductivity
than what is obtained from the transport measurements (at
least when the thermal conductivity is dominated by the elec-
tronic contribution).

It would be interesting to directly measure the mixed diffu-
sion, for instance, by introducing a temperature modulation
into the system and studying the amplitude of the induced
charge density wave. Because the dynamics are that of cou-
pled damped oscillators, one for density modulation and one
for T modulation, one could also explore the resonating be-
havior as a function of driving frequency with the possibly
enhanced dynamic thermoelectric effect.

The effects of thermoelectric mixing are given by Dcorr/Dc.
This quantity was found to be moderate, < 0.2, in our cal-
culations but can become large in regimes where the charge
susceptibility is large. For example, the divergence of χc in
the vicinity of phase separation, such as in doped antifer-
romagnets [10,36] or Hund’s metals [37], enhances W̃ and
hence Dcorr. Such systems are good candidates to observe the
predicted effects.
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APPENDIX A: THE DIFFUSION MATRIX IN THE
PRESENCE OF SPIN FLUCTUATIONS

Here we give an overview of the diffusion matrix, which
in general also includes spin properties, i.e., is a 3 × 3 matrix,
even though we focus on a 2 × 2 sub-block in the main text.
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The grand potential is given by

� = E − ST − μN − BM, (A1)

where S is the entropy, N = N↑ + N↓ is the number of parti-
cles, and M = (N↑ − N↓)/2 is the magnetization. The entropy
per site is given by

s = S
N0

= 1

N0
(ln e−β� + β〈K̂〉), (A2)

where K̂ = Ĥ − μN̂ − BM̂ is the grand Hamiltonian, β is the
inverse temperature, and N0 is the number of sites. Changes in
density are described by

dn = − 1

N0

∂2�

∂μ2
dμ − 1

N0

∂2�

∂μ∂T
dT − 1

N0

∂2�

∂μ∂B
dB (A3)

≡ χcdμ + ζdT + ωdB. (A4)

Similarly, we have

χs = − 1

N0

∂2�

∂2B
, ξ = − 1

N0

∂2�

∂B∂T
, cμ,B = − T

N0

∂2�

∂T 2

(A5)

and use these to express changes in entropy and magnetiza-
tion. Together, these can be cast as a matrix equation [38],⎛⎜⎝ dn

T ds

dm

⎞⎟⎠ =

⎛⎜⎝χc ζ ω

ζT cμ,B ξT

ω ξ χs

⎞⎟⎠
⎛⎜⎝dμ

dT

dB

⎞⎟⎠ ≡ A

⎛⎜⎝dμ

dT

dB

⎞⎟⎠. (A6)

We use the Kubo formalism to obtain transport coeffi-
cients [39] from transport equations for particle, heat, and spin
currents ( j, jq, and js, respectively).⎛⎜⎝ j

jq

js

⎞⎟⎠ =

⎛⎜⎜⎝
−L11 − L12

T −L13

−L21 − L22
T −L23

−L31 − L32
T −L33

⎞⎟⎟⎠
⎛⎜⎝∇μ

∇T

∇B

⎞⎟⎠ ≡ L

⎛⎜⎝∇μ

∇T

∇B

⎞⎟⎠.

(A7)

Here, Li j = Lji by Onsager reciprocity. Onsager reci-
procity relations are valid even for finite frequencies [39] and
rely on time reversibility. Despite our hydrodynamic descrip-
tion in Eq. (18) involving the current relaxation rate, which
breaks time-reversal symmetry, the underlying microscopic
dynamics and Hamiltonian are time-reversal invariant, ren-
dering Onsager’s relations valid. jq is related to the energy
current jε as

jq = jε − μ j − B js. (A8)

Combining the above equations with continuity equations for
conserved quantities

∂t n + ∇ · j = 0,

∂tε + ∇ · jε = 0, (A9)

∂t m + ∇ · js = 0,

one obtains a matrix-form diffusion equation⎛⎜⎝ ∂t n

T ∂t s

∂t m

⎞⎟⎠ = D0

⎛⎜⎝ ∇2n

T ∇2s

∇2m

⎞⎟⎠, (A10)

where D0 = −LA−1 is the diffusion matrix and also dQ =
T dS is used. Using energy density dε is sometimes preferred
to entropy density. In this case, the susceptibility matrix that
enters is Ã = PμεA, where

Pμε =
⎛⎝1 0 0

μ 1 B
0 0 1

⎞⎠. (A11)

To get the energy current, one multiplies Eq. (A10) from the
left with Pμε once more, arriving at⎛⎜⎝∂t n

∂tε

∂t m

⎞⎟⎠ = −PμεLA−1P−1
με

⎛⎜⎝∇2n

∇2ε

∇2m

⎞⎟⎠. (A12)

To obtain the form of the diffusion matrix in the basis (n, T )
given in the main text, one uses

P−1
nT =

(
1 0

T ζ

χc
cn

)
(A13)

with the upper left 2 × 2 block of D0. Then, PnT D0P−1
nT gives

the diffusion matrix given in the main text under Eq. (10).
Here, the specific heat at constant density cn = cμ − T ζ 2/χc

is used. The transformation into the basis of (μ, Q) taking
dQ = T dS is achieved as PμQD0P−1

μQ, where

P−1
μQ =

(
χc − T ζ 2

cμ

ζ

cμ

0 1

)
. (A14)

Finally, the transformation into the (μ, T ) basis is the combi-
nation of the previous two,

P−1
μT =

(
χc ζ

T ζ cμ

)
. (A15)

Notice that the physics is contained in the eigenvalues of D,
which do not depend on the “basis” of D. We use T and
n as they are commonly used and experimentally monitored
quantities.

APPENDIX B: DETAILS OF THE FTLM CALCULATION

The transport coefficients Li j within the Kubo formalism
are given by the ω → 0 limit of current-current correlation
functions Li j (ω), namely,

Li j (ω) = 1

ωN0Vu.c.
Re

∫ ∞

0
dteiωt 〈[Ĵi(t ), Ĵ j (0)]〉. (B1)

We consider the particle, spin, and heat currents only in the x
direction. We have

Ĵn = − it
∑
j,σ,δ

Rx
δc†

j+δ,σ c j,σ , (B2)

Ĵs = − it
∑
j,σ,δ

Rx
δσc†

j+δ,σ c j,σ , (B3)

ĴE = − it2

2

∑
j,σ,δ,δ′

Rx
δδ′c†

j+δ+δ′,σ c j,σ
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(a) (b)

FIG. 8. (a) The temperature dependence of the Kelvin approximation for the Seebeck coefficient SK as calculated with our FTLM and
compared with the DQMC results of Silva et al. [25] (triangles) and Wang et al. [26] (squares). The precise values of p for the data from Silva
et al. [25] are 0.04, 0.10, and 0.14. The Heikes high-temperature value − ln[(1 + p)/(1 − p)] is also shown with a green arrow for p = 0.15.
(b) The Seebeck coefficients obtained with the Kubo formula and our FTLM compared with the DQMC results from Wang et al. [26] and our
DMFT results for p = 0.15.

+ itU

2

∑
j,σ,δ

Rx
δc†

j+δ,σ c j,σ (n j+δ,σ̄ + n j,σ̄ ), (B4)

ĴQ = ĴE − μĴn − BĴs, (B5)

where Rx
δ = x j+δ − x j and Rx

δδ′ = x j+δ+δ′ − x j (δ point to the
nearest neighbors of site j). We evaluate Eq. (B1) and ther-
modynamic quantities on a 4 × 4 cluster using FTLM. Within
FTLM, one averages over initial random vectors that are ex-
pressed with approximate Lanczos eigenvectors. These are
then used to calculate static and dynamic quantities. The
dynamic quantities require another set of Lanczos eigenvec-
tors to calculate the current’s matrix elements and spectral
representation of the dynamic quantity. For more details, see
Refs. [27,40,41]. We also use averaging over twisted boundary
conditions [34,42] or averaging over shifts of wave vectors in
the Brillouin zone, which further reduces the finite-size effect
and is, e.g., able to reproduce the thermodynamic result for
U = 0 correctly. Finite-size effects in dynamic quantities also
appear as a finite stiffness or a finite delta function at zero fre-
quency, e.g., in optical conductivity (see, for example, Eq. 5.3
in Ref. [27]). This appears to be due to particles crossing
cluster boundaries without scattering, while stiffness should
be zero at finite T for normal (nonsuperconducting, non-
integrable) dissipating systems in the thermodynamic limit.
In our calculations, finite and large stiffness appears at low
T as a finite-size effect. We do not show low-T regimes
where the weight of this zero-frequency delta function ex-
ceeds 0.1% of the total spectral weight

∫
Li j (ω)dω. The size

of the stiffness is related to the spectral sum rule and diagonal
matrix elements [27,43] and to the variation of energies with
phase [44].

APPENDIX C: COMPARISON WITH OTHER
COMPUTATIONAL TECHNIQUES

It is instructive to compare our results for ther-
mopower with other techniques, namely the available DQMC
data [25,26] and, additionally, single-site DMFT. We com-

pare the Kubo and Kelvin results for the Seebeck coefficient
in Fig. 8. The static results show good agreement in the
entire T regime. The Kubo formula result of the DQMC
calculation of Ref. [26] gives somewhat bigger values for
S than our FTLM calculation, particularly at intermediate
T ∼ 1.5, while at lower T the disagreement seems smaller.
Our DMFT data for p = 0.15 are also surprisingly close to the
FTLM result despite the marked difference in known results
for both resistivity [45] and thermal conductivity [35]. The
difference is attributed to vertex corrections [46], and their
effect seems to somewhat cancel in S. Similar cancellation
of vertex corrections was previously observed in the Lorenz
ratio [35].

APPENDIX D: THE WILSON RATIO

It is interesting to compare the behavior of the “Wilson ra-
tio” W̃ = T χc/cn with that of the usual Wilson ratio involving
spin susceptibility χs,

W = 4π2T χs

3cn
. (D1)

Note that our definitions for W̃ and W differ by the factor
4π2/3. We show W in Fig. 9 as a function of T for various
p and U . W becomes ∼2 at the lowest calculated T and is
only moderately dependent on U , which seems to be observed
more generally [47]. As far as doping is concerned, one should
distinguish the weak-coupling regime, where the dependence
on doping is expected to be weak, and the strongly coupled
doped Mott-insulator regime, where the correlations and mag-
netic susceptibility are expected to depend strongly on doping.
Consistent with these expectations, we find that for U = 5
the data at all dopings p are essentially on top of each other.
Increasing U mainly has the effect that the p dependence
becomes more apparent, particularly in the peak located at
T ∼ 1. At high T , both χs and χc are proportional to 1/T ,
and therefore both W and W̃ are proportional to T 2. Both
quantities also develop a “plateau” at intermediate T for larger
U . The differences between W and W̃ can be understood by
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FIG. 9. The Wilson ratio W as a function of temperature for various U and dopings p.

comparing χc and χs [10]. W has been previously investigated
in the t − J model [27] (we note that the ratio reported in
Ref. [27] involves entropy instead of specific heat).

APPENDIX E: DETAILS ON EXTRACTING �±

Assuming a Drude form for the low-frequency part of
dynamical conductivity, one can extract a scattering rate 	0

c
as the half-width of σc(ω) = L11(ω) [48]. In the matrix gen-
eralization of �, one has to account for additional relaxation
rates. Just as 	c can be obtained from the width of the Drude
peak of L11(ω), one could determine elements of � from
the ω widths of low-ω parts of Li j (ω). We, however, use a
slightly different approach and assume that the Drude-like
form

σc(ω) = σc(0)

1 − iω/	c
, κ (ω) = κ (0)

1 − iω/	Q
(E1)

is also applicable to D±(ω) (i.e., generalized to finite ω) for
small ω. We therefore first calculate D(ω) and obtain 	± as
the width of its eigenvalues D±(ω),

D±(ω) = D±(0)

1 − iω/	±
. (E2)

We find that the eigenvectors 	v± show weak enough fre-
quency dependence in the considered regime at small ω that
the obtained 	± correspond to the ω = 0 diffusion matrix
eigenvectors. At half filling, 	± coincide with 	c and 	Q due
to the vanishing thermoelectric effect.

We show D±(ω) in Fig. 10(a), where one sees that they in-
deed inherit the shape of the conductivities, justifying Eq. (E2)
for small ω, and that the general picture of “level repulsion”
applies in the whole frequency range. Note that in the case
of a 2 × 2 diffusion matrix, D±(ω) are guaranteed to be
smooth functions, as evident from their closed-form expres-
sions [Eq. (12)].

The frequency dependence of D±(ω) reveals a feature at
ω ≈ 2.5t , where the various diffusion constants touch be-
cause Dcorr(ω) = 0 and SK − S(ω) changes sign. This occurs
at ω exceeding 	± and thus does not impact our estimates
for 	±. Figure 10(b) shows how 	± differ from the bare
values as obtained from σc(ω) and κ (ω), and one sees that
they generically reinforce the “level-repulsion” picture at
least at high T , where 	+ is about half of 	−. 	± are
decreasing in magnitude at low T , similarly to how 	c,Q

are expected to decrease as one approaches the coherent
regime.

(a) (b)

FIG. 10. (a) The frequency dependence of diffusion constants generalized to finite ω: Dc(ω) = σc(ω)/χc, DQ(ω) = κ (ω)/cn, and D(ω)
eigenvalues D±(ω). (b) The temperature dependence of the eigenmode scattering rates, also compared with the values extracted from σc(ω)
and κ (ω), denoted with 	c and 	Q. Results are for the square lattice Hubbard model with U = 7.5, p = 0.15, and k = 2π/15 as in the main
text.
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and J. Mravlje, Phys. Rev. Lett. 123, 036601 (2019).
[47] D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).
[48] Similarly, one can define 	ε and 	cε from σεε (ω) and σcε (ω).

155118-11

https://doi.org/10.1038/s41467-021-24670-z
https://doi.org/10.1038/s41567-020-0982-x
https://doi.org/10.1103/RevModPhys.73.797
https://doi.org/10.1038/414711a
https://doi.org/10.1038/s41567-018-0334-2
https://doi.org/10.1038/s41467-021-21741-z
http://arxiv.org/abs/arXiv:2206.00673
https://doi.org/10.1103/RevModPhys.94.041002
https://doi.org/10.1103/RevModPhys.94.035004
https://doi.org/10.1103/PhysRevB.95.041110
https://doi.org/10.1126/science.aau7063
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PRXQuantum.2.017003
https://doi.org/10.1126/science.aat4134
https://doi.org/10.1126/science.aat4387
https://doi.org/10.1103/PhysRevX.10.011042
https://doi.org/10.1039/C4EE01320D
https://doi.org/10.1103/PhysRevResearch.4.023197
https://doi.org/10.1126/science.1242308
https://doi.org/10.1088/1361-648X/aa74a1
https://doi.org/10.1103/PhysRevX.11.021034
https://doi.org/10.1063/1.1728417
https://doi.org/10.1073/pnas.1703416114
https://doi.org/10.1063/5.0098800
https://doi.org/10.1103/PhysRevB.108.075101
http://arxiv.org/abs/arXiv:2302.13169
https://doi.org/10.1080/000187300243381
https://doi.org/10.1103/PhysRevB.82.195105
https://doi.org/10.1103/PhysRevB.103.195111
https://doi.org/10.1103/PhysRevB.95.155131
https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1103/PhysRevB.107.155140
https://doi.org/10.1103/PhysRevB.13.647
https://doi.org/10.1103/PhysRevB.67.085103
https://doi.org/10.1103/PhysRevB.106.245123
https://doi.org/10.1016/0921-4534(93)90581-A
https://doi.org/10.1103/PhysRevLett.118.167003
https://doi.org/10.1038/nphys3174
https://doi.org/10.1088/0034-4885/72/1/016501
https://doi.org/10.1103/PhysRevLett.110.206402
https://doi.org/10.1103/PhysRevB.44.9562
https://doi.org/10.1103/PhysRevB.73.085117
https://doi.org/10.1103/PhysRevLett.74.972
https://doi.org/10.1103/PhysRevB.102.115142
https://doi.org/10.1103/PhysRevLett.123.036601
https://doi.org/10.1103/RevModPhys.56.99

