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Thermoelectric properties of a double quantum dot out of equilibrium
in Kondo and intermediate valence regimes
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We study a system composed of two quantum dots connected in series between two leads at different
temperatures, in the limit of large intratomic repulsion. Using the noncrossing approximation, we calculate
the spectral densities at both dots ρi(ω), the thermal and thermoelectric responses, thermopower, and figure of
merit in different regimes. The interatomic repulsion leads to finite heat transport even if the hopping between
the dots t = 0. The thermopower can be very large compared to single-dot systems in several regimes. The
changes in sign of the thermoelectric current can be understood from the position and magnitude of the
Kondo and charge-transfer peaks in ρi(ω). The figure of merit can reach values near 0.7. The violation of the
Wiedemann-Franz law is much more significant than in previously studied nanoscopic systems. An analysis of
the widths of ρi(ω) indicates that the dots are at effective temperatures Ti intermediate between those of the two
leads, which tend to be the same for large t .
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I. INTRODUCTION

During the last two decades, the study of nanodevices
that convert heat into work has received great attention
due to possible applications [1]. In particular, thermoelec-
tric properties in transport through single molecules [2–7]
and quantum dots [8–11] has been experimentally studied.
Usually, these systems can be modeled by the single im-
purity Anderson model, or its generalizations to multilevel
systems, and the thermal properties of these models, in and out
of equilibrium, have been addressed by several calculations
[5,8,12–33]. Particularly in recent years, these studies have
been extended to systems of two quantum dots or molecules
[30,34–44].

For linear response (in the limit of vanishing voltage and
thermal gradient) the numerical renormalization group (NRG)
has been used to calculate the relevant quantities, like the elec-
trical and thermal conductances or the thermopower (Seebeck
coefficient S) [17,31,32,34,37,44–46]. The NRG is a robust
numerical technique. However, out of equilibrium, for a finite
bias voltage or difference of temperature between the con-
ducting leads, NRG is very difficult to apply (although some
developments using the scattering states NRG approach look
promising [45,46]) and different approximations have been
used to capture the essential physics of the Kondo effect [47],
which is always present in nanostructures for large on-site
repulsion U and degenerate configurations of the localized
electrons (like odd numbers of electrons in one quantum dot).
In its simplest and more usual realization, the Kondo effect
can be described as the screening of a localized spin by the
surrounding free conduction electrons forming a many-body
singlet.

Among the different approximations widely used to treat
Kondo systems out of equilibrium, one can mention equa-
tions of motion (EOM) for the Keldysh-Green functions
[16,26,48–51], renormalized perturbation theory (RPT) in U
or similar Fermi-liquid approaches [21,28,29,39,52–60], slave
bosons in the mean-field approximation (SBMFA) [24,36,61–
65], noncrossing approximation (NCA) [41,66–75], auxiliary
master equation approach [76,77], or other renormalization
procedures [78–80]. Recently, a method that combines NRG
with time-dependent density matrix renormalization has been
used [81]. All traditional methods have limitations. The EOM
does not reproduce correctly the functional dependence of the
energy scale TK on the on-site energy Ed [49,50]. RPT is
valid for small energies and it is not easy to apply to more
complex systems. The SBMFA with increasing temperature
[47] or magnetic field [82] has an abrupt artificial transition to
a phase in which the impurity decouples from the conduction
band. The NCA does not satisfy Fermi-liquid relations at zero
temperature, and when the ground-state configuration of the
isolated impurity (or system disconnected to the conducting
leads) is nondegenerate (like for positive Ed for one impurity
or nonzero magnetic field), the impurity self- energy has an
unphysical positive imaginary part at low temperatures and as
a consequence the spectral density presents a spurious peak
at the Fermi energy [66]. For finite U the NCA ceases to
reproduce correctly the dependence of TK with parameters and
vertex corrections should be included [83–85].

Using the SBMFA, Sierra et al. studied a system of two
Kondo impurities (modeling two quantum dots in a serial
arrangement) under a thermal bias [36]. They find some un-
usual results, like negative differential thermal conductance
and sign reversal of the thermoelectric current for certain
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parameters. Taking into account the limitations mentioned
above for the SBMFA at finite temperature, it is conve-
nient to check these results with an independent technique.
We study the same system (including also interdot Coulomb
repulsion) using the NCA. In spite of the shortcomings men-
tioned above, the NCA is known to reproduce correctly the
relevant energy scale TK and its dependence on the differ-
ent parameters. It has proved to be a very valuable tool for
calculating the differential electrical conductance through dif-
ferent systems [67] such as two-level quantum dots and C60
molecules displaying a quantum phase transition [68–70], a
nanoscale Si transistor [71], or vibrating molecules [72,73],
among others [41,74]. It also reproduces correctly the scaling
of the conductance for small bias voltage V and temperature
T [75].

Regarding the accuracy of the NCA within the lin-
ear response regime, we note that a comparative study of
the numerical renormalization group and NCA results for the
spectral functions has been done [86]. In particular, they have
shown (Fig. 7 of Ref. [86]) that the NCA spectral functions
at temperatures T � 0.1TK are reliable enough to compute
transport properties. As for the nonequilibrium results at
equal chemical potentials, the same is true if the tempera-
ture of the cold lead is kept at a similar condition, that is
TR � 0.1TK .

Our paper is a comprehensive study of different regimes of
the double quantum dot (DQD) system, although restricted to
the situation with inversion symmetry for simplicity. Among
our most peculiar results, we find unusually large and small
Lorenz numbers compared to those found usually in met-
als, semimetals, alloys, degenerate semiconductors [87], and
other nanoscopic systems [15,27]. Also in some cases large
figure of merits ZT are obtained and in other cases, large
thermopower. Analyzing the width of the spectral densi-
ties of both dots, we show that they can be interpreted
as each dot is at an intermediate temperature between that
of the left and the right leads. For interdot hopping t →
0 each dot is at equilibrium with the corresponding lead,
while at large t they are at nearly the same intermediate
temperature.

The paper is organized as follows. In Sec. II, the model,
the methods and the expressions for the electrical and heat
current are presented. The results for the occupancy of the
DQD fluctuating between 0 and 1 particles and between 1 and
2 particles are showed in Secs. III A and III B, respectively.
Section IV is devoted to the summary and discussion. The
NCA treatment of fluctuations between 1 and 2 particles in
the DQD is discussed in Appendix A. Finally, in Appendix B,
an alternative expression for the calculation of the charge
current is described in detail.

II. MODEL AND METHODS

A scheme of the system out of equilibrium is shown in
Fig. 1. It is composed by a DQD where each dot is tunnel-
coupled to a metallic reservoir. The Hamiltonian describing
the system is the following:

H = HDQD + Hc + HV . (1)

FIG. 1. Scheme of the system.

The first term describes the DQD,

HDQD =
∑
νσ

Eνd†
νσ dνσ +

∑
ν

Unν↑nν↓ + U ′ ∑
σσ ′

nLσ nRσ ′

− t
∑

σ

(d†
Lσ dRσ + H.c.), (2)

where Eν and U (U ′) are the energy levels and the intra-
(inter-) dot Coulomb repulsion respectively, ν = {L, R} labels
the left and right dot (and leads) and σ = ↑,↓ stands for the
spin projection. The hopping energy between dots is repre-
sented by t .

The second term describes the conducting leads

Hc =
∑

ν

Hν =
∑
kνσ

ενkσ c†
νkσ

cνkσ , (3)

and the last one, describes the hybridization between each dot
and its respective lead

HV =
∑
kνσ

(Vkν d†
νσ cνkσ + H.c.). (4)

In order to treat the system within the NCA and avoid the
need to consider vertex corrections, we diagonalize HDQD and
retain only two neighboring configurations, which correspond
to the limit U → +∞. In this way, the problem is mapped into
a multilevel system connected to two conducting leads. With
some adequate change of phases, the model is electron-hole
symmetric. Therefore there are two independent cases to be
considered: fluctuations between 0 and 1 particles in the DQD
and fluctuations between 1 and 2 particles. Thus, It suffices
to retain the eigenstates and energies of HDQD for 1 and 2
particles.

We assume for simplicity that the DQD has inversion
symmetry. Therefore, EL = ER ≡ Ed . The eigenstates for 1
particle are the even and odd linear combinations

d†
eσ = 1√

2
(d†

Lσ + d†
Rσ ), Ee = Ed − t,

d†
oσ = 1√

2
(d†

Lσ − d†
Rσ ), Eo = Ed + t . (5)

It is easy to see that in the new basis, the problem of fluc-
tuations between 0 and 1 particles has the same form as the
interference one studied before with level splitting δ = 2t
[73,88,89].

Regarding the two-particle sector, the four relevant eigen-
states for U − U ′ → +∞ correspond to an even singlet and
an odd triplet. In the notation |Sm〉 of the total spin and its

155117-2



THERMOELECTRIC PROPERTIES OF A DOUBLE QUANTUM … PHYSICAL REVIEW B 108, 155117 (2023)

projection, they are

|00〉 = u√
2

(d†
L↑d†

R↓ − d†
L↓d†

R↑)|0〉

+ v√
2

(d†
L↑d†

L↓ + d†
R↑d†

R↓)|0〉,

|11〉 = d†
L↑d†

R↑|0〉, (6)

|10〉 = 1√
2

(d†
L↑d†

R↓ + d†
L↓d†

R↑)|0〉,

|1 − 1〉 = d†
L↓d†

R↓|0〉,
where to linear order in t , u = 1, and v = 2χ with χ = t/
(U − U ′). The energy of the degenerate triplet is E1 = 2Ed +
U ′ and the corresponding one for the singlet is E0 = E1 − J
with J = 4t2/(U − U ′).

In the new basis, the problem for fluctuations between 1
and 2 particles takes the form

H1−2 =
∑
ξσ

Eξ |ξσ 〉〈ξσ | +
∑
SmS

ES|S, m〉〈S, m| + Hc + HV ,

(7)

where ξ = {e, o} and S = 0, 1 and −S � m � S. In this rep-
resentation, the hybridization term of Eq. (4) takes the form

HV =
∑
kνσ

∑
ξσ ′

∑
Sm

Vkν DSm,ξσ ′
νσ |S, m〉〈ξσ ′|cνkσ + H.c., (8)

where the matrix elements DSm,ξσ ′
νσ = 〈S, m|d†

νσ |ξσ ′〉, are
given in Appendix A together with a brief explanation of the
NCA treatment.

In what follows, we summarize the conventions and ex-
pressions of the charge and heat currents used in this work.
Treating the system of Fig. 1 as an interacting region cou-
pled to conducting leads, the charge and energy currents
are given by Jν

C = −e〈Ṅν〉, Jν
E = −〈Ḣν〉 and Jν

Q = Jν
E − μνJν

C ,
with e the absolute value of the electronic charge and Nν =∑

kσ c†
νkσ

cνkσ . Current conservation implies JL
C,E = −JR

C,E and
if μR = μL, JL

Q = −JR
Q . In this paper we assume μR = μL =

0. Therefore, the term proportional to μν vanishes and we
have Jν

Q = Jν
E . Furthermore, after a sign associated to each

flow is chosen, the index ν can be dropped from the definition
of the currents. We take as positive the currents that flow from
the left to the right lead. Following a procedure similar to that
described in the Appendix of Ref. [89] the charge and heat
currents are given by the following expressions in terms of
the physical Keldysh-Green functions obtained from the NCA
approximation

JC = ie

h

∫
dω Tr[(�L fL(ω) − �R fR(ω))G>

d (ω)

+ (�L fL(−ω) − �R fR(−ω))G<
d (ω)], (9)

JQ = ie

h

∫
dω ωTr[(�L fL(ω) − �R fR(ω))G>

d (ω)

+ (�L fL(−ω) − �R fR(−ω))G<
d (ω)],

(10)

where

�L = 
L

(
1 1
1 1

)
, �R = 
R

(
1 −1

−1 1

)
(11)

are the matrices that couple the even and odd levels to the
left and right reservoirs. Furthermore 
ν = πV 2

ν /D where
2D represents the conduction band width and fν (ω) =
[1 + exp[(ω − μν )]/kBTν]−1 is the Fermi function. We note
that since �L and �R are not proportional, it is not possi-
ble to eliminate the nonequilibrium Green functions in the
expressions of the current, and even in the linear response
regime, we have to use the full nonequilibrium formalism and
obtain electric and thermal conductances deriving numerically
the corresponding currents. In addition, NRG approaches in
the linear response regime, in which the conductances are
related to the spectral density and its derivative [17], are not
applicable in this case.

In Ref. [89] it was proved that the NCA is a charge current
conserving approximation for a two level Anderson model.
Here we have verified that the same is true for the energy (and
heat in the present case) current.

For t = 0, the system is disconnected and it is not possible
to transfer particles between both dots. Therefore, the electric
current vanishes (but not necessarily the heat current as it is
shown in Fig. 17). The use of the above expression for the
electric current becomes numerically inaccurate for small t ,
because it requires the cancellation of large positive and neg-
ative terms. This fact has been also found in the interference
problem [73,88]. To avoid this problem, we have derived an
alternative expression for the charge current which is explic-
itly proportional to t and therefore, is more accurate for small
t . The derivation is included in Appendix B. The result is

JC = 2πet

h

∑
σ

∫
dω Re(G<

eo,σ (ω))

= 2πet

h

∑
σ

∫
dω Re(G<

LR,σ (ω)). (12)

III. RESULTS

A. Fluctuations between 0 and 1 particles in the system

Here we assume that not only U is very large but also U ′ is
sufficiently large to avoid occupancy of more than one particle
in the double-dot system. The case in which the total number
of particles in the system fluctuates between 3 and 4 particles
can be mapped to the specific case treated in this section by
an electron-hole transformation and change of sign of all the
operators at the left or right part of the system.

We take the Fermi energy εF = 0 as the origin of one-
particle energies and assume Ed < 0. The problem becomes
equivalent to that of transport through one dot or a molecule
with two levels which interfere destructively in the transport
[73,88,89]. Several mappings were discussed in Ref. [73].
In the limit t → 0 the spectral density for each dot tends to
that of the SU(4) Anderson model (with spin and “orbital”
degeneracy), with a narrow peak of half width ∼T SU(4)

K at
energy also ∼T SU(4)

K above the Fermi level and a broad charge
transfer peak centered at Ed and width [90] 4, where T SU(4)

K
is the Kondo temperature of the SU(4) Anderson model, and
 is the resonant level width. The spectral density of the
SU(4) Anderson model showing both peaks is represented
for example in Fig. 1 of Ref. [91]. As t increases, the even
and odd one-particle states split being the former the one of
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FIG. 2. Thermal conductance as a function of temperature for
several values of δ4.

lowest energy (see Sec. II). For splitting δ > T SU(4)
K the density

of states of the even state tends to the corresponding one of
the SU(2) model with a charge transfer peak of width 2

[90] and a Kondo peak slightly above εF = 0 of half-width
T SU(2)

K � T SU(4)
K [91,92]. The spectral density of the odd state

displays a peak at energy 2t instead of the Kondo peak [92].
The electrical conductance G = dI/dV of the model has

been studied before [73,88]. It vanishes (as expected) for
t = 0 and for large t and zero temperature, it tends to the
value G0 = 2e2/h characteristic of the SU(2) Kondo model,
with a crossover when δ ∼ T SU(4)

K . The decay of G with in-
creasing temperature resembles that expected for an SU(4) or
an SU(2) model depending on the ratio δ4 = δ/T SU(4)

K [92].
Near the crossover also the occupancies of the even and odd
combinations change from being nearly equal (slightly below
1/2 adding both spins) in the SU(4) regime, to be dominated
by the even one in the SU(2) regime [88].

To study thermoelectric effects, we take 
 = 
L + 
R = 1
as the unit of energy, Ee = Ed = −4 and Eo = Ee + δ, where
δ = 2t . We also choose the half-band width D = 10. For these
parameters, from the equation G(TK )/G(0) = 1/2, for δ →
0, we estimate T SU(4)

K = 0.011, using the variational equa-
tion [88,92]

TK = {(D + δ)D exp[πEd/(2)] + δ2/4}1/2 − δ/2, (13)

with δ = 0 and this value is used in the definition of δ4 =
δ/T SU(4)

K below. The Kondo temperature that enters in Figs. 2
to 7 is given by Eq. (13).

In Fig. 2 we show the thermal conductance κ in the linear
response regime as a function of temperature for several split-
tings. In contrast to the electrical conductance, the thermal
conductance increases strongly with increasing temperature
for temperatures of the order of T SU(4)

K in particular for small
δ4 (in the SU(4) regime, where the Kondo peak is clearly
above the Fermi energy). As δ4 increases beyond 1, the sys-
tem enters the SU(2) regime, where the spectral density near
the Fermi energy is more electron-hole symmetric, and κ is
markedly reduced.

For temperatures above the charge-transfer gap |Ed |, the
thermal conductance is expected to decrease. This seems to
happen at energies below |Ed | ∼ 364T SU(4)

K for small δ4 (for

100

102

104

106

108

1010

10−5 10−4 10−3 10−2 10−1 100 101

L
/L

0

δ4

FIG. 3. Lorentz number as a function of δ4, at T = 0.8TK .

which TK ∼ T SU(4)
K ). This is probably an effect of destructive

interference.
A remarkable result is that while the Lorenz number

L = κ/(T G) tends approximately to the free electron value
L0 = π2/3(kb/e)2, in the SU(2) regime, it diverges as δ−2

4 as
δ4 → 0. This fact is illustrated in Fig. 3. We are not aware
of other systems with a similar property. This is a peculiar
violation of the Wiedemann-Franz law. Previous violations
obtained by calculations in nanoscopic systems were by fac-
tors below 5 [15,27].

For small δ this result can be understood as follows. At T =
V = 0, the conductance G0 is given in terms of the scattering
phase shifts in a Fermi liquid description [93]. In turn, these
phase shifts can be related to the expectation values nασ =
〈d†

ασ dασ 〉 of the even and odd states generalizing the Friedel
sum rule to the SU(4) model with a symmetry breaking field
(see Appendix C of Ref. [73])

G0 = e2

h

∑
σ

sin2[π (neσ − noσ )], (14)

and neσ − noσ is linear in δ [57]. This is expected since in the
SU(4) limit, the effect of δ and magnetic field are the same
interchanging orbital and spin indices. Therefore, for small
enough T , the conductance is proportional to δ2. In contrast
the thermal current is finite for δ = t = 0 due to the effect of
U ′. This fact is known from previous calculations in a spinless
model [38,39,94–96]. A simple physical explanation of this
effect is provided in Ref. [39]. At low energies the effective
interaction between the quasiparticles are renormalized, but
the interdot repulsion remains significant [57].

In Fig. 4 we show the behavior of the Seebeck coefficient
S, for several values of δ4. In the SU(4) regime of small
δ4, S behaves similarly as the corresponding SU(4) result
without destructive interference [20]. At low temperatures, the
thermopower is dominated by the Kondo peak in the spectral
density al low energies which lies above the Fermi energy,
thus, it is negative, characteristic of hole transport. Instead at
temperatures of the order of the charge-transfer energy |Ed |, S
is dominated by the charge transfer peak, which is centered at
Ed and is below the Fermi energy. Therefore, S changes sign
at intermediate temperatures. However, while the maximum
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FIG. 4. Thermopower as a function of temperature for several
values of δ4.

value of |S| in the standard SU(4) case is near 1 kB/
, in our
case with destructive interference it is about 40% larger.

Increasing δ4, the low-energy minimum approaches zero
because the Kondo peak moves towards the Fermi energy. One
also expects a negative contribution at energies of the order of
δ due to the peak at energy δ in the spectral density of the
odd state, which competes with the positive contribution of
the charge transfer peaks at energies Ed and Ed + δ below the
Fermi energy.

In Fig. 5 we show the figure of merit, which can be relevant
for possible applications [1,97]. One can see that the most
convenient choice to increase ZT is the intermediate regime
δ4 ∼ 1, where ZT can reach 1/4.

In Fig. 6 we show the thermoelectric current induced by
a difference in the temperature between the left and right
leads T = TL − TR. In spite of the obviously different phys-
ical situation, the curve has some features that resemble the
thermopower shown above. For small δ4 and T , negatively
charged electrons are excited in the Kondo peak above the
Fermi level at the left dot and move to the right, originating a
positive particle current and a negative charge current. When
the left lead reaches temperatures of the order of the charge
transfer peak |Ed |, holes are promoted in this lead which can

0
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0.25
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0.1 1 10 100 1000

Z
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δ4 = 5.0
δ4 = 10.0

FIG. 5. Figure of merit as a function of temperature.
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c(

e Γ
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ΔT/TK
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FIG. 6. Electrical current as a function of the temperature dif-
ference T = TL − TR, keeping TR = 0.1TK . For clarity, curves are
rescaled with factors: 106, 102, and 10 for δ4 = 0.01, 0.1 and 10,
respectively.

be filled from electrons of the right lead, leading to negative
particle current and positive charge current.

Similar arguments can be followed for large δ4 [in the
SU(2) regime], following a reasoning analogous to that made
above for the thermopower. However, in this case, the effect
of increasing δ4 seem more dramatic.

In Fig. 7 we represent the corresponding heat current for
the same situation as the previous figure. It seems to reach
important values only at energies near the charge-transfer
energy |Ed | and particularly for small δ4.

B. Fluctuations between 1 and 2 particles in the system

The problem for fluctuations between 2 and 3 particles can
be mapped into the corresponding one for 1 and 2 particles
using the electron-hole transformation mentioned at the be-
ginning of Sec. III A. In the following we refer to the latter
case.

The configuration with two particles consists of a sin-
glet even under inversion and an odd triplet separated by an
energy difference which is small for large U , E0 = E1 − J

0
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0.4

0.6

0.8

1

1.2

0.01 0.1 1 10 100 1000

10−8

10−6

10−4

10−2
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J
Q
(Γ

2 /
h
)

ΔT/TK

δ4 = 0.01

δ4 = 1.0

δ4 = 5.0

δ4 = 10.0

FIG. 7. Heat current as a function of the temperature difference
T = TL − TR, keeping TR = 0.1TK . (Inset) Zoom of the region with
T/TK lower than 10.
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FIG. 8. Contribution of the two-particle singlet and triplet states
to the spectral density of the even and odd states for t = 1.5, U ′ =
χ = 0 and T = 10−4. Right panel: zoom of the region of the Kondo
peak.

with J = 4t2/(U − U ′). The configuration with one particle
consists of an even doublet and an odd one. The two-particle
configuration is that of lowest energy for small t and U ′.

A model in which a singlet and a triplet are mixed with a
doublet, all with the same parity has been studied first in the
context of Tm impurities in a cubic crystal field [98] and more
recently to explain experiments [99] in a single-molecule
quantum dot [68–70], This model has a quantum phase tran-
sition (QPT) which separates two regions with a doublet or
a singlet ground state. This transition is accurately described
by the NRG [98]. With the NCA a change in the spectral
density near the Fermi level, accompanied by a change in
the occupancy of the triplet and singlet auxiliary bosons is
found [69].

In the case of two dots interacting via a Heisenberg inter-
action, there is also a QPT which turns to a crossover when
hopping between the dots is included [62,100]. It is likely that
this QPT is related to the previous one.

In our model we find that for χ = 0 (degeneracy of singlet
and triplet states of the two-particle localized configuration)
the triplet boson dominates, but small values of χ (of the order
of 0.001) induce a crossover to the dominance of the singlet
boson at low temperatures and the disappearance of the Kondo
peak at the Fermi level.

As a basis for our study we take 
L = 
R = 1 as the unit of
energy and Ed = −3.5. We also take for the moment χ = 0.
As before we choose the origin of one-particle energies at the
Fermi level εF = 0.

With the above assumptions, the energies for the even and
odd one-particle states are Ee = Ed − t , Eo = Ed + t . The
spectral density of these states is shown in Fig. 8 for a typical
case in the regime of small t and U ′. The Kondo peak lies
slightly above the Fermi energy and the charge transfer peak
is split by t . The even (odd) state has larger weight at Ed − t
(Ed + t). This is explained as follows. The ground state is
composed mainly of the odd triplet with an even and an
odd particle and total energy near 2Ed . Destroying the even
particle leaves the odd one with energy Ed + t . Therefore,
the energy difference is Ed − t . Interchanging even and odd

0
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0.1

0.15

0.2

0.25

−4 −2 0 2 4 6 8 10

ρ

ω(Γ)

e
o

FIG. 9. Spectral density of the even and odd states for t = 0.5,
U ′ = 6 and T = 10−4.

states the reasoning is similar with a change in the sign in
front of t . Due to the even parity of the two-particle singlet,
the contribution of this singlet to the split peaks is inverted
with respect to the contribution of the triplets, which is the
dominant one. Except for the splitting, the spectral density is
qualitative similar to that expected for the ordinary Anderson
model at large U .

When t reaches |Ed |, there is a change of valence and
the one-particle even state becomes the ground state. The
same happens with increasing U ′. An example for the spectral
density for large U ′ is shown in Fig. 9. It has three main
features: the charge transfer peak, now at positive energies
with respect to the Fermi level, approximately at Ed + U ′ + t
(which is the difference in energy between the two-particle
states at 2Ed + U ′ and the ground one-particle state at Ed − t),
a narrow Kondo peak at the Fermi energy (very slightly dis-
placed to negative energies) and two inelastic features at ±2t
related to higher order processes involving transitions between
even and odd one-particle states.

To study the behavior of different quantities, it is useful
to define the energy scale related to the half width at half
maximum of the Kondo peak, which is one way to define
the Kondo temperature TK . However, we had found that the
result of fitting this resonance at the Fermi level depends on
the range of the fit and it can vary within a factor 2 depending
on this range [101]. Therefore, to determine TK we have used
the “pseudoconductance” Gp(T ), which is the conductance
through one quantum dot with the total spectral density of our
system, obtaining TK from the expression Gp(TK ) = Gp(0)/2.
In Fig. 10 we represent TK obtained in this way as a function
of U ′ in a logarithmic scale. In agreement with previous calcu-
lations using NRG [102], the energy scale increases strongly
at the intermediate valence regime and decreases in going to
the integer valence limits of two particles in the system for
small U ′ or 1 particle for large U ′.

The temperature dependence of the real conductance G(T )
through the system is shown in Fig. 11 in the regime of total
occupancy near 2 in the system. For t � 0.5, G(TK ) ∼ G(0)/2
indicating that the conductance is dominated by the total
density of states, as expected in general. However, for low t
the behavior is dominated by the destructive interference. Not
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FIG. 10. Energy scale TK obtained from the pseudoconductance
(see text) as a function of U ′ for t = 0.

only G(T ) → 0 for t → 0, but also a new small energy scale
T ∗ appears which determines the temperature at which G(T )
begins to fall with increasing T . For t ∼ 10−2, T ∗ ∼ 10−2TK .

In Fig. 12 we represent the thermal conductance κ as
a function of temperature for the same parameters as in
Fig. 11. It increases monotonically with T until temperatures
greater than the charge-transfer energy are overcome. It is also
clear that κ increases substantially as the intermediate-valence
regime between total occupancies 2 and 1 is approached.

The thermal conductance for relatively large U ′ = 6, for
which the occupancy of the system is slightly above 1, is
shown in Fig. 13. There is a maximum at temperatures of
the order of the charge-transfer energy. As expected, κ in-
creases with increasing t , but the effect is not linear in t . Note
that in contrast to the previous figures, there is a significant
thermal conductance at t = 0 due to the effect of U ′. This
fact is known from previous calculations in a spinless model
[38,39,94–96].

In Fig. 14 top panel, we show the thermopower as a func-
tion of temperature in the regime of total occupancy near 2.
Since the spectral density is qualitatively similar to that of
Sec. III A in the SU(4) regime, the figure has same features
in common with Fig. 4. In particular, there is a dip at low
temperatures due to the Kondo peak slightly above the Fermi
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t = 0.200
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FIG. 11. Electrical conductance as a function of temperature for
U ′ = 0 and several values of t .
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FIG. 12. Thermal conductance as a function of temperature for
U ′ = 0 and several values of t .
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FIG. 13. Thermal conductance as a function of temperature for
U ′ = 6 and several values of t .
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FIG. 14. Thermopower as a function of temperature. Top panel:
for U ′ = 0 and several values of t . Bottom panel: for t = 0.1 and
several values of U ′.
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FIG. 15. Figure of merit as a function of temperature for U ′ = 0
and several values of t .

level and a peak at the charge-transfer energy |Ed | − t due
to the charge-transfer peak in the spectral density next to
the Fermi level. The negative interference for t → 0 tends
to suppress both, the thermal and electrical conductances but
does not affect the thermopower in a marked way.

In Fig. 14 bottom panel, we show the thermopower as a
function of temperature for several values of U ′. The peak at
the temperature corresponding to the charge-transfer energy
∼|Ed | − U ′ displaces to lower temperature with increasing
U ′. Entering the regime of total occupancy 1, for large U ′,
the thermopower is strongly reduced, particularly at small
temperatures, because the Kondo peak is nearly symmetric
and with small intensity (see Fig. 9). In addition since now
the charge-transfer peak in the spectral density lies at posi-
tive energies, the corresponding feature in the thermopower
becomes negative.

The figure of merit ZT reaches values near 0.7 for temper-
atures of the order of the charge gap and t ∼ 1.5, see Fig. 15.

The thermoelectric current, shown in Fig. 16 has qualitative
features similar to the thermopower shown in Fig. 14 for small
t . In particular, since there is a charge transfer peak below the
Fermi level, at temperatures at which holes are excited in the
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FIG. 16. Electrical current as a function of the temperature dif-
ference T = TL − TR, keeping TR = 10−3 for U ′ = 0 and several
values of t .
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FIG. 17. Heat current as a function of the temperature difference
T = TL − TR, keeping TR = 10−3 for U ′ = 0 and several values
of t .

left lead, these holes can move to the right lead leading to a
positive charge current. However for t > |Ed | there is a va-
lence crossover from occupancy near 2 to 1 in the system, and
the charge transfer peak moves above the Fermi level, leading
to a change in the sign of the electrical current. Increasing U ′
has a similar effect (not shown).

In Fig. 17 we display the heat current for similar param-
eters as the previous figure. A noticeable effect is that even
for t = 0, for a difference of temperature T higher than 
,
there is a small but significant heat current due to the effect
of correlations. Previous works have demonstrated this effect
as a consequence of U ′ in a spinless model [38,39,94–96].
Here we obtain that a similar effect takes place also as a
consequence of large on-site repulsion U , although our results
for the thermal conductance (Fig. 12) give negligible values
for t = U ′ = 0. We return to this point later, when the width
of the spectral density of both dots is discussed (Fig. 18). The
heat current increases as the occupancy is reduced from 2 to 1
at high temperatures.

When U ′ is included, as expected from previous work [39],
the heat transport at t = 0 is larger in the intermediate valence
regime, reaching values near JQ = 0.7(
2/h) for U ′ = 4 and
fixed T = 10. For U ′ = 0, JQ is slightly below 0.2(
2/h)
For the sake of brevity we do not include here our studies
for finite U ′. As in previous studies [38,39,94–96], the heat
current is large for U ′ �= 0 even at t = 0. Instead, slave boson
approaches give always JQ = 0 for t = 0.

In contrast to Sierra et al. [36], we do not find a regime
of decreasing JQ with increasing T . A discussion of the
possible reasons for this discrepancy is left to Sec. IV.

As in the case of fluctuations between 0 and 1 particles
presented in Sec. III A, we also find strong violations of
the Wiedemann-Franz law. The ratio JQ/(T Jc) ranges from
∼0.1/e2 for T = 100 to → ∞ for parameters for which
Jc → 0 (not shown).

In Fig. 18 we show the evolution of the widths of the
spectral densities at both dots as a function of the temperature
of the left (hot) lead TL keeping the temperature of the right
(cold) lead TR constant. For the physical discussion below,
we also show the result of the equilibrium situation, when
the temperature of both leads is increased simultaneously
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FIG. 18. half widths at half maximum of the spectral densities of
the left (crosses) and right (squares) dots as a function of TL , keeping
TR = 0.01TK for U ′ = 0 and (a) t = 0.0, (b) t = 1.0 and (c) t = 1.85.
The green dots correspond to both leads at temperature TL .

(TR = TL instead of fixed TR). In this case, the half width at
half maximum (HWHM) of the spectral density is expected to
vary with temperature according to

HWHM =
√

(αT )2 + T 2
K , (15)

where α is fitting parameter [72,103]. As it happened previ-
ously [72], the NCA results are well fitted by this expression
(full lines in Fig. 18), with values of α in the range
between 3 and 8, similar to values previously obtained
[72,103].

For t = 0 both dots are disconnected by the one-particle
terms of the Hamiltonian. One would expect then that each
dot reaches the temperature of the corresponding lead in the
absence of interatomic interactions (U ′ = 0). The HWHM of
the left dot is slightly above the equilibrium value at tempera-
ture TL. Except for this small deviation, the result agrees with
the expectations. Instead, one would expect that the HWHM
of the right dot remains at the corresponding value for TR.
However, it increases moderately with increasing TL. One
knows that in presence of interatomic interactions, in particu-
lar U ′, there is heat transfer between the dots [38,39,94–96],
and this is consistent with the different results presented here.
However, it is not obvious that a similar effect can exist for
U ′ = 0. A plausible explanation is that U ′ is generated at low
energies. In fact previous calculations show that even if the
bare U ′ is small, the renormalized low-energy parameter is
of the same order of magnitude as the renormalized intradot
repulsions (see Fig. 7 of Ref. [57]).

As t increases, one expects an interchange of heat between
the dots and that the HWHMs are intermediate between those
corresponding to the equilibrium ones, replacing T by either
TL or TR in Eq. (15). This is indeed what happens. For large
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FIG. 19. Electrical current as a function of the temperature dif-
ference T = TL − TR, keeping TR = 0.1TK for t = 0.1, different
values of χ and (a) U ′ = 0 and (b) U ′ = 6.

hopping, the results of Fig. 18 indicate that both dots tend
to be at the same temperature, intermediate to those of both
leads.

Effect of triplet-singlet splitting

In this section, we examine the effect of a finite triplet-
singlet splitting on the thermoelectric properties out of
equilibrium.

The effect of a finite triplet-singlet splitting on the elec-
trical current produced by a finite temperature difference
between the leads is shown in Fig. 19(a). The thermoelec-
tric current is enhanced at moderate temperatures. The same
happens at large U ′. However, in this case since the charge-
transfer peak is above the Fermi energy, electrons flow from
the cold to the hot lead, leading to a negative particle cur-
rent and a positive charge current. The heat current is also
enhanced.

IV. SUMMARY AND DISCUSSION

In summary, we have studied an inversion symmetric DQD
system in series, with each dot connected to its own lead,
under a thermal bias. We have used the noncrossing approxi-
mation in the limit of very large on-site Coulomb repulsion.
In this limit, the problem can be divided into fluctuations
between 0 and 1 electron (regime I) in the DQD, or between
1 and 2 electrons (regime 2). Other fillings are related to the
previous ones by electron-hole symmetry.

The behavior of the different quantities studied can be
understood from the energy dependence of the total spectral
density ρ(ω) at equilibrium and low temperatures. While
the charge conductance decreases in general with increas-
ing temperature, the thermal conductance is maximum at
temperatures of the order of the charge-transfer energy (the
difference between the energies of the configurations with
integer number of particles in the DQD). For interdot hop-
ping t = 0, the heat conductance is negligible if the interdot
repulsion U ′ is also zero, but increases significantly for finite
U ′. This fact is known from previous calculations in simplified
systems [38,39,94–96], but is not reproduced by the simplest
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SBMFA, because in the latter, the low-energy physics is re-
duced to an effective noninteracting system and the effect of
U ′ is not included.

In contrast to previous work [36], we do not find regions
of negative differential thermal conductance. The reason of
the discrepancy is the following. As explained in Ref. [36],
within the SBMFA the effective Kondo temperature of the hot
lead is decreased with increasing temperature of the lead, and
for very large temperatures the transport through the double
dot is blocked. Therefore, the thermal transport is inhibited
as the temperature of the hot lead is increased. We believe
that this an artifact of the SBMFA, of similar character as the
artificial decoupling of the impurity with increasing tempera-
ture [47] or magnetic field [82] found previously. Instead, the
NCA actually improves with increasing temperature and the
width of the spectral density follows the expected temperature
dependence given by Eq. (15) (see Fig. 18 and Ref. [72]).

The sign of the charge current and the thermopower can
be inferred from the positions and magnitude of the different
peaks in ρ(ω), one related to the Kondo effect, near the Fermi
energy and one or two related with charge-transfer processes,
which can be above or below the Fermi energy. We find sign
reversals of the thermoelectric current, in agreement with pre-
vious work [36]. In regime I, for small interdot hopping t , the
thermopower S reaches a maximum absolute value at temper-
atures T below the Kondo energy scale TK near 1.5/e and the
Lorentz ratio diverges for t → 0, indicating a strong violation
of the Wiedemann-Franz law, unexpected from measurements
in a large number of systems [87]. Previous deviations of
this law calculated in mesoscopic systems were much more
moderate [15,27]. There is also a maximum of S near 1 at high
temperatures. This value is much higher than the correspond-
ing one for a single-level quantum dot [17,20]. The figure of
merit ZT reaches values of the order of 0.25 at T ∼ TK for
moderate t and at temperatures of the order of 2t for high t .

In regime II the thermopower reaches also high values but
at temperatures of the order of the charge-transfer energy. The
Lorentz ratio can be also very large or very small depending
on the values of the parameters. On the other hand, ZT ∼ 0.7
at high temperatures.

A study of the width of the nonequilibrium spectral den-
sities of both dots, indicates that for small interdot hopping
t , each dot is at the same temperature as the corresponding
lead. Increasing t , the effective temperatures of both dots are
intermediate between those of the leads and tend to coincide
for t larger than the resonant level width 
.

In this work, we have assumed inversion symmetry. This
means that the on-site energy of both dots and coupling to
the leads are the same. Asymmetric coupling to the leads can
lead to a sizable enhancement of the thermoelectric response
[28,31]. In addition, different energies of the dot can lead to
important rectification effects [39]. It would be interesting to
study these asymmetry effects.
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TABLE I. Matrix elements DSm,ξσ ′
νσ entering Eq. (8) to linear

order in χ = t/(U − U ′) for ν = R and σ =↑.

DSm,ξσ ′
R↑ e ↑ o ↑ e ↓ o ↓

1, 1 −1√
2

−1√
2

0 0
1, 0 0 0 − 1

2 − 1
2

1, −1 0 0 0 0
0, 0 0 0 1

2 + χ 1
2 − χ

APPENDIX A: NONCROSSING APPROXIMATION
TREATMENT OF FLUCTUATIONS BETWEEN 1

AND 2 PARTICLES IN THE DQD

In this Appendix we describe in some detail the NCA
approximation of the serial DQD attached to two different
conducting leads as given by Eqs. (7) and (8). Perform-
ing the explicit calculations, the matrix elements DSm,ξσ ′

νσ =
〈S, m|d†

νσ |ξσ ′〉 entering Eq. (8) to linear order in χ = t/(U −
U ′) turn out to be those displayed in Tables I to IV.

Auxiliary particle representation. Now, we introduce aux-
iliary bosons and fermions to represent the two-electron
and one-electron states, |S, m〉 → b†

S,m|vac〉 and |ξσ 〉 →
f †
ξσ |vac〉, respectively, where |vac〉 is a reference state in the

auxiliary Fock space. By using this representation the Hamil-
tonian in Eq. (7) reads as follows:

He f f =
∑
ξσ

Eξ f †
ξσ fξσ +

∑
Sm

ESb†
S,mbS,m + Hc + HV , (A1)

where the hybridization term becomes

HV =
∑
kνσ

∑
ξσ ′

∑
Sm

Vkν DSm,ξσ ′
νσ b†

S,m fξσ ′cνkσ + H.c. (A2)

The auxiliary particles satisfy the constraint
∑

ξσ f †
ξσ fξσ +∑

Sm b†
S,mbS,m = 1, which represents the completeness rela-

tion of the Hilbert space formed by the states in Eqs. (6).
Furthermore, the expression of the physical creation operator
at each dot is given by

d†
νσ =

∑
ξσ ′

∑
Sm

DSm,ξσ ′
νσ b†

S,m fξσ ′ . (A3)

In this form, the Hamiltonian is suitable for the NCA
treatment.

TABLE II. Matrix elements DSm,ξσ ′
νσ entering Eq. (8) to linear

order in χ = t/(U − U ′) for ν = L and σ =↑.

DSm,ξσ ′
L↑ e ↑ o ↑ e ↓ o ↓

1, 1 1√
2

−1√
2

0 0
1, 0 0 0 1

2 − 1
2

1, −1 0 0 0 0
0, 0 0 0 1

2 + χ − 1
2 + χ
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TABLE III. Matrix elements DSm,ξσ ′
νσ entering Eq. (8) to linear

order in χ = t/(U − U ′) for ν = R and σ =↓.

DSm,ξσ ′
R↓ e ↑ o ↑ e ↓ o ↓

1, 1 0 0 0 0
1, 0 − 1

2 − 1
2 0 0

1, −1 0 0 −1√
2

−1√
2

0, 0 − 1
2 − χ − 1

2 + χ 0 0

Noncrossing Approximation. Starting from the auxiliary
Green functions in the time domain,

G>
ξσ,ξ ′σ ′ (t ) = −i〈 fξσ (t ) f †

ξ ′σ ′ (0)〉,
G<

ξσ,ξ ′σ ′ (t ) = +i〈 f †
ξ ′σ ′ (0) fξσ (t )〉,

B>
Sm(t ) = −i〈bS,m(t )b†

S,m(0)〉,
B<

Sm(t ) = −i〈b†
S,m(0)bS,m(t )〉, (A4)

and from Eq. (A1) we can write down the auxiliary selfener-
gies for the auxiliary particles as follows:

�
≷
ξσ ′,ξ ′σ ′′ (ω) = ±

∑
νσ,SmS


νσ DSmS ,ξσ ′
νσ Dξ ′σ ′′,SmS

νσ

×
∫

dω′

2π
fν (±ω′)B≷

SmS
(ω′ + ω + μν )

�
≷
SmS

(ω) = ±
∑

νσ,ξσ ′,ξ ′σ ′′

νσ DSmS ,ξσ ′

νσ Dξ ′σ ′′,SmS
νσ

×
∫

dω′

2π
fν (±ω′)G≷

ξσ ′,ξ ′σ ′′ (ω′ + ω − μν ),

(A5)

where fν (ω) = [1 + eω/Tν ]−1 is the Fermi function at temper-
ature Tν .

The complete set of lesser and greater self-energies are
purely imaginary functions. Therefore, the imaginary part of
the retarded self-energies are given by

Im �r
ξξ ′,σ (ω) = �>

ξξ ′,σ (ω)/2,

Im �r
SmS

(ω) = �>
SmS

(ω)/2, (A6)

while the real parts can be obtained from the imaginary ones
by using a Kramers-Kronig transformation.

In addition, G≶
ξξ = iG≶

ξξ , G≶
ξξ ′ + G≶

ξ ′ξ = i(G≶
ξξ ′ + G≶

ξ ′ξ ),

with ξ �= ξ ′, and B≶ = iB≶ are purely imaginary. Regarding
signs, G<

ξξ > 0 and G>
ξξ < 0 and B≶ < 0 (at least in equi-

TABLE IV. Matrix elements DSm,ξσ ′
νσ entering Eq. (8) to linear

order in χ = t/(U − U ′) for ν = L and σ =↓.

DSm,ξσ ′
L↓ e ↑ o ↑ e ↓ o ↓

1, 1 0 0 0 0
1, 0 1

2 − 1
2 0 0

1, −1 0 0 1√
2

−1√
2

0, 0 − 1
2 − χ 1

2 − χ 0 0

librium). The constraint, being a positive magnitude, reads
Q = ∫

dω
2π

(
∑

ξ,σ G
<
ξξ,σ (ω) − ∑

SmS
B<

SmS
(ω)).

For the fermion retarded Green functions we obtain

Gr
ee,σ (ω) = (ω − Eo − �r

oo,σ (ω))/D(ω),

Gr
oo,σ (ω) = (ω − Ee − �r

ee,σ (ω))/D(ω),

Gr
eo,σ (ω) = �r

eo,σ (ω)/D(ω), Gr
oe,σ (ω) = �r

oe,σ (ω)/D(ω),

D(ω) = (ω − Eo − �r
oo,σ (ω))(ω − Ee − �r

ee,σ (ω))

−�r
eo,σ (ω)�r

oe,σ (ω). (A7)

On the other hand, the bosons retarded Green functions
read as follows:

Br
SmS

(ω) = 1

ω − ES − �r
SmS

(ω)
. (A8)

The self-consistent procedure closes with the matrix rela-
tions

G≷ = Gr�≷Ga, B≷ = Br�≷Ba. (A9)

An example for a particular matrix element is

G>
eo =

∑
μν

Gr
eμ�>

μνGa
νo. (A10)

Physical Green functions. By using the auxiliary expres-
sion of the physical operator in Eq. (A3) the physical Green
functions for each dot are given by

G≷
νν ′,σ (ω) = − i

Q

∑
ξξ ′σ ′

∑
SmS

Dξσ ′,SmS
νσ DSmS ,ξ

′σ ′
ν ′σ

×
∫

dω′

2π
G≶

ξξ ′,σ ′ (ω′)B≷
SmS

(ω′ + ω). (A11)

APPENDIX B: AN ALTERNATIVE EXPRESSION
FOR THE CHARGE CURRENT

In this Appendix we give an alternative expression for the
calculation of the charge current for the Hamiltonian Eqs. (1)
to (4) of the main text. Current conservation along the system
leads to the following relation:

d

dt
(NL + nL ) = − d

dt
(NR + nR), (B1)

where ni = ∑
σ niσ and Ni = ∑

kiσ
c†

kiσ
ckiσ . Therefore, the

electric current can be computed from the left part of the
system by using the Heisenberg equation of motion

ĴC
L ≡ e

h̄

d

dt
(NL + nL ) = −i

e

h̄
[NL + nL, H]. (B2)

After some algebra and by using the identity [niσ , n jσ ′ ] =
−δi jδσσ ′ (c†

jσ ′ciσ + c†
iσ c jσ ′ ) the right-hand side simplifies to

ĴC
L = − ie

h̄
t
∑

σ

(d†
Rσ dLσ − d†

Lσ dRσ ), (B3)

which is nothing but the usual form of the current operator
between two sites of a linear chain with a hopping equal to t .
The Fourier transform G<

i j,σ (ω) of the time-dependent Green’s

functions G<
i j,σ (t ) = i〈d†

jσ diσ (t )〉 provides the average of ĴC
L
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leading the expression for the current in the form

JC
L = e

h̄
t
∑

σ

∫
dω

2π
(G<

LR,σ (ω) − G<
RL,σ (ω))

= e

h̄
t
∑

σ

∫
dω

2π
(G<

eo,σ (ω) − G<
oe,σ (ω)). (B4)

Note that the last expression follows from 〈d†
Rσ dLσ −

d†
Lσ dRσ 〉 = 〈d†

eσ doσ − d†
oσ deσ 〉. Using that G<

oe,σ (ω) is the
complex conjugate of G<

eo,σ (ω), being both purely imagi-
nary, and adding both spins, one arrives at Eq. (12) of the
main text.
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tric effects in transport through quantum dots attached to
ferromagnetic leads with noncollinear magnetic moments,
Phys. Rev. B 80, 195409 (2009).
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