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Interaction-induced Liouvillian skin effect in a fermionic chain with a two-body loss

Shu Hamanaka,1,* Kazuki Yamamoto ,1,2 and Tsuneya Yoshida 1

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

(Received 31 May 2023; revised 21 September 2023; accepted 21 September 2023; published 9 October 2023)

Despite recent intensive research on topological aspects of open quantum systems, effects of strong interac-
tions have not been sufficiently explored. In this paper, we demonstrate that complex-valued interactions induce
the Liouvillian skin effect by analyzing a one-dimensional correlated model with two-body loss. We show that, in
the presence of complex-valued interactions, eigenmodes and eigenvalues of the Liouvillian strongly depend on
boundary conditions. Specifically, we find that complex-valued interactions induce localization of eigenmodes
of the Liouvillian around the right edge under open boundary conditions. To characterize the Liouvillian skin
effect, we define the topological invariant by using the Liouvillian superoperator. Then, we numerically confirm
that the topological invariant captures the Liouvillian skin effect. Furthermore, the presence of the localization of
eigenmodes results in the unique dynamics observed only under open boundary conditions: particle accumulation
at the right edge in transient dynamics. Our result paves the way to realize topological phenomena in open
quantum systems induced by strong interactions.
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I. INTRODUCTION

In the past decade, a lot of theoretical and experimental
studies have uncovered topological aspects of condensed-
matter systems [1–10]. In particular, it has been elucidated
that strong correlations alter topological phases and lead to
novel phenomena. For example, it has turned out that inter-
actions change the Z-classification to the Z8-classification
for one-dimensional topological superconductors [11,12], and
another study has shown that strong correlations generate
topological Mott phases [13]. Moreover, in Ref. [14], the
interaction-enabled topological insulator has been proposed,
which has no counterpart in noninteracting systems.

On the other hand, non-Hermitian physics has attracted
broad interest in classical and open quantum systems
[15–33]. One of the most remarkable phenomena induced
by non-Hermiticity is the non-Hermitian skin effect, which
is characterized by the extreme sensitivity of eigenvalues
and eigenstates to boundary conditions [34–44]. The non-
Hermitian skin effect has been experimentally observed in
ultracold 87Rb atoms [45] as well as electric circuits [46],
quantum walks [47], and mechanical metamaterials [48]. In
noninteracting systems, theoretical studies have shown that
the non-Hermitian skin effect is caused by the nontrivial
point-gap topology, which is intrinsic to non-Hermitian sys-
tems [35–37]. Furthermore, the non-Hermitian skin effect
has been extended to open quantum systems following the
Lindblad master equation [39,49–53]. In particular, the Li-
ouvillian skin effect manifests as the extreme dependence of
eigenvalues and eigenmodes of the Liouvillian on boundary
conditions. In particular, the eigenmode localized near the
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edge is referred to as the skin mode. It has been pointed out
that the Liouvillian skin effect has a striking influence on the
relaxation processes. Specifically, it has been reported that the
maximal relaxation time to the steady state can diverge while
maintaining the Liouvillian gap finite [50,53].

In addition to the above progress of the non-Hermitian
topological band theory, it has become possible to implement
dissipative correlated systems in ultracold atoms [54–62].
This development has opened up a new direction in stud-
ies of novel phases and phenomena, such as nonequilibrium
steady states [63,64] and dynamical phase transitions [65,66].
Previous studies have revealed that particle losses induce
unique phenomena. In particular, two-body loss brings about
unusual behavior, e.g., the sign reversal of magnetic correla-
tions [54,67]. Moreover, a lot of theoretical studies have been
conducted on a variety of quantum many-body phenomena
with atom losses [68–76], such as unconventional superfluid
phase transitions in a dissipative BCS model [77,78] and
anomalous dissipation-induced renormalization-group flows
in a non-Hermitian Kondo model [79].

In view of the pivotal role of interactions in enriching
topological phases in Hermitian systems and inducing unique
phenomena in open quantum systems, one may naturally
expect the presence of novel phenomena induced by the inter-
play between strong interactions and non-Hermitian topology.
So far, the effects of interactions of non-Hermitian topo-
logical phases have been studied in several works [42,80–
97]. However, previous studies have mainly focused on the
effective Hamiltonian, which captures the time evolution of
a single trajectory between successive quantum jumps [98].
Thus, it seems that the effects of interaction on the topological
property of the Liouvillian remain unclear [99–103]. More
specifically, whether many-body interactions can induce the
Liouvillian skin effect has not been addressed.
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In this work, we demonstrate that complex-valued interac-
tion can induce the Liouvillian skin effect in one-dimensional
open quantum systems. Specifically, we analyze the correlated
fermionic systems with two-body loss. We show that due to
strong interactions, eigenmodes and eigenvalues of the Liou-
villian become extremely sensitive to boundary conditions. In
particular, eigenmodes of the Liouvillian exhibit localization
near the edge. To characterize the Liouvillian skin effect, we
introduce the topological invariant defined by the Liouvillian
superoperator. Then, we numerically reveal that the above
topological invariant characterizes the Liouvillian skin effect.
Moreover, the Liouvillian skin effect significantly affects the
dynamics. In particular, in transient dynamics, particles accu-
mulate near the right edge under open boundary conditions
(OBC).

The rest of this paper is organized as follows. In Sec. II,
we first introduce the dissipative one-dimensional correlated
model. We then briefly explain the methods to analyze the
Lindblad equation via the vectorization of the density matrix.
Section III provides the definition of the topological invariant
and the right-state particle density, which measures the degree
of localization of eigenmodes in many-body systems. Then, in
Sec. IV, a numerical demonstration of the interaction-induced
Liouvillian skin effect is conducted. We give the conclusions
in Sec. V. In Appendix A, we discuss the relation between
the symmetry of the Liouvillian and the topological number.
In Appendix B, we compute the topological number analyt-
ically and give the characterization of the Liouvillian skin
effect reported in Ref. [50]. We numerically show the absence
of the Liouvillian skin effect in noninteracting systems in
Appendix C. Appendix D is devoted to the sensitivity of
eigenvalues of the Liouvillian to boundary conditions. We
provide the derivation of an alternative method for calculating
the topological number in Appendix E. Appendix F gives the
results about the slowing down process corresponding to the
Liouvillian skin effect. In Appendix G, we demonstrate that
the Liouvillian skin effect survives for other configurations of
down-spins. In Appendix H, we give the reason why particles
are localized near the right edge.

II. MODEL AND METHOD

A. Falicov-Kimball model with two-body loss

We consider the two-orbital Falicov-Kimball model [104]

H =
∑

〈i j〉αβ

hiα jβc†
iα↑c jβ↑ + U

∑
j

n jb↑n jb↓, (1)

where c†
jασ (c jασ ) is a fermionic creation (annihilation) op-

erator at site j = 1, . . . , L in orbital α = a, b with the spin
σ =↑,↓ state [105]. hiα jβ is the hopping Hamiltonian be-
tween site i in orbital α with the spin-up state and site j in
orbital β with the spin-up state. U denotes the strength of
interactions. The summation of the first term 〈i j〉 runs over
all pairs of nearest-neighbor sites i and j. By applying the
Fourier transformation to the first term in Eq. (1), the Bloch
Hamiltonian hαβ (k) in the orbital space reads

h(k) = b2(k)σ2 + b3(k)σ3, (2)

with

b2 = 2th − 0.5th sin k, (3a)

b3 = 2th cos k. (3b)

Here, σ j ( j = 1, 2, 3) express the Pauli matrices in the
orbital space. The Hamiltonian given in Eq. (1) is obtained
from the two-orbital Hubbard model by turning off the hop-
ping of fermions in the down-spin states. It is worth noting
that the above model breaks the inversion symmetry. Break-
ing the inversion symmetry is essential for the emergence
of the interaction-induced Liouvillian skin effect (see Ap-
pendix A), rather than the specific values of the specific value
2th,−0.5th, and 2th in Eqs. (3a) and (3b). We also note that the
multibandness is essential to inducing the skin effect without
asymmetric hopping.

When dissipation is introduced into this model, under the
Markov approximation, the dynamics is described by the
Lindblad equation [106,107]

dρ

dt
= L (ρ) = −i[H, ρ] +

∑
j

[
LjρL†

j − 1

2
{L†

j L j, ρ}
]
.

(4)

Here, L denotes the Liouvillian, which is the superoperator
acting on the density matrix ρ, the operator H is the Hamil-
tonian, and the Lindblad operator Lj characterizes the effect
of dissipation. The Lindblad operator is given by the on-site
two-body loss

Lj =
√

2γ c jb↑c jb↓. (5)

We decompose the Liouvillian L (ρ) as

L (ρ) = L0(ρ) + LJ(ρ), (6)

where we have introduced

L0(ρ) = −i(Heffρ − ρH†
eff ) (7)

and

LJ(ρ) =
∑

j

L jρL†
j . (8)

Here, the non-Hermitian Hamiltonian given by

Heff = H − i

2

∑
j

L†
j L j

=
∑

〈i j〉αβ

hiα jβc†
iα↑c jβ↑ + (U − iγ )

∑
j

n jb↑n jb↓ (9)

describes the dynamics of the single quantum trajectory
between the quantum jumps [98]. In the following, we demon-
strate that the complex-valued interaction U − iγ induces the
Liouvillian skin effect [108].

B. Vectorization of the density matrix

In this subsection, we rewrite the Liouvillian superoperator
L as an operator L acting on the doubled Hilbert space by
vectorizing the density matrix. Following the procedure of
Refs. [64–66,109], we identify the density matrix ρ as a vector
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FIG. 1. Schematic illustration of the two-body loss process for an
initial state with N↑ = 1. Due to the jump operator of the two-body
loss LJ given in Eq. (13), a fermion with an up-spin and that with
a down-spin form pairs and are scattered into environments. Down-
spin configurations are changed from {n↓} = {1, 1, 1, 1} to {n↓}′ =
{1, 0, 1, 1} after the two-body loss process.

|ρ〉〉 in the doubled Hilbert space H ⊗ H through the mapping

ρ =
∑

i j

ρi j |i〉〈 j| �→ |ρ〉〉 =
∑

i j

ρi j |i〉 ⊗ | j〉. (10)

We note that the first (second) space of the doubled Hilbert
space H ⊗ H is referred to as the ket (bra) space. When the
density matrix ρ is given by the vectorized form |ρ〉〉, the
Liouvillian superoperator L is written as the operator L that
acts on the doubled Hilbert space

L = L0 + LJ. (11)

Here, we define

L0 = −i(Heff ⊗ I − I ⊗ H∗
eff ) (12)

and

LJ =
∑

j

L j ⊗ L∗
j , (13)

where I is the identity operator acting on the ket or bra space
[110]. Thus, the Liouvillian superoperator L is mapped to
the non-Hermitian operator L acting on the doubled Hilbert
space. After the vectorization of the density matrix, the nth
eigenmode |ρ (n)

R 〉〉 and the nth eigenvalue �n are obtained by
solving the eigenvalue equation

L
∣∣ρ (n)

R

〉〉 = �n

∣∣ρ (n)
R

〉〉
(14)

for n = 1, . . . , dim L. As demonstrated in Sec. IV, eigen-
modes and eigenvalues of the Liouvillian exhibit a strong
dependence on boundary conditions.

C. Two-body loss process

Let us consider the two-body loss process as illustrated
in Fig. 1. First, we consider an initial state where only one
fermion is in an up-spin state with down-spin configurations
{n↓}. As the commutation relation

[L0, N↑ ⊗ N↑] = [L0, n jb↓ ⊗ n jb↓] = 0 (15)

indicates that the density matrix |ρ〉〉 is labeled by the total
number of fermions in up-spin states N↑ and down-spin con-
figurations {n↓}, the density matrix for N↑ = 1 with down-spin
configurations {n↓} is spanned by the basis

|(N↑ = 1)〉〉 = c†
j1α↑ ⊗ c†

j2β↑ |{n↓}〉 ⊗ |{n↓}〉 (16)

for j1, j2 = 1, . . . , L, α, β = a, b in the absence of the jump
operator LJ. Then, due to the jump operator LJ that describes
the two-body loss process, a fermion in an up-spin state and
that in a down-spin state form pairs and are scattered out into
environments. For example, when the total number of down
spins in the initial state is N↓ = 4, the two-body loss process
changes down-spin configurations into one of the following
four (see Fig. 1):

{n↓} = {1, 1, 1, 1}
→ {n↓}′ = {0, 1, 1, 1}, {1, 0, 1, 1}, {1, 1, 0, 1}, {1, 1, 1, 0}.

(17)

Here, {n↓}′ denotes the down-spin configurations after the
two-body loss process. Then, the density matrix for the
N↑ = 0 state is spanned by the basis

|(N↑ = 0)〉〉 = |{n↓}′〉 ⊗ |{n↓}′〉. (18)

We construct the basis set {|i〉 ⊗ | j〉}, which spans the doubled
Hilbert space H ⊗ H given in Eq. (10), by identifying the ba-
sis set {|i〉 ⊗ | j〉} with the basis sets combining {|(N↑ = 1)〉〉}
and {|(N↑ = 0)〉〉}:

{|i〉 ⊗ | j〉} = {|(N↑ = 1)〉〉, |(N↑ = 0)〉〉}. (19)

The matrix representation of the Liouvillian with respect to
these bases {|i〉 ⊗ | j〉} takes the form

L =
(

L(N↑=1)
0

LJ L(N↑=0)
0

)
. (20)

Here, L(N↑=1)
0 [L(N↑=0)

0 ] denotes the matrix representation of
L0 for the N↑ = 1 [N↑ = 0] sector. It is known that the block
triangular structure is a general property of the Liouvillian for
particle losses [111,112]. This structure simplifies the calcu-
lation of the winding number of the Liouvillian as shown in
Sec. IV.

III. TOPOLOGICAL INVARIANT AND SKIN MODE
OF THE LIOUVILLIAN

A. Topological invariant

In this subsection, we first present the topological num-
ber defined by the Liouvillian superoperator, and then we
discuss the relation between the topological number and the
Liouvillian skin effect.

First, we introduce the following topological invariant by
using the Liouvillian superoperator:

ν(�ref ) =
∮ 2π

0

dθ

2π i

d

dθ
log det[L(θ ) − �ref ], (21)

where we have imposed the twisted boundary condition only
on the ket space. Here, �ref ∈ C denotes the reference point,
specifying the point-gap on which we focus. The reference
point �ref is chosen from case by case in the same manner as
the topology of the non-Hermitian Hamiltonian [17,36]. L(θ )
is defined as

iL(θ ) = Heff (θ ) ⊗ I − I ⊗ H∗
eff + i

∑
j

L j (θ ) ⊗ L∗
j , (22)
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where operators Heff (θ ) and Lj (θ ) are defined by multiplying
e±iθ to the hopping term at the boundary, e.g., c†

1ασ cLα′σ ′

is replaced by c†
1ασ cLα′σ ′eiθ . More precisely, in the case of

the Falicov-Kimball model with the two-body loss given in
Eq. (9), Heff (θ ) is written by

Heff (θ ) = Hbulk
eff + H edge

eff (θ ), (23)

where Hbulk
eff is the Hamiltonian in the bulk, which is indepen-

dent of θ and is written down as

Hbulk
eff =

∑
〈i j〉′αβ

hiα jβc†
iα↑c jβ↑ + (U − iγ )

L∑
j=1

n jb↑n jb↓. (24)

The summation 〈i j〉′ runs over all pairs of nearest neighbor
sites i and j, excluding the hopping at the boundary between
site 1 and site L. The boundary term of the Hamiltonian
H edge

eff (θ ) is given by

H edge
eff (θ ) =

∑
αβ

(h1αLβc†
1α↑cLβ↑eiθ + H.c.). (25)

Here, h1αLβ is the hopping Hamiltonian between site 1 and site
L. Since we consider the on-site dissipator given in Eq. (5),
the Lindblad operator is independent of θ , i.e., Lj (θ ) = Lj .
Because of the relation L(θ ) = L(θ + 2π ), the winding num-
ber ν(�ref ) given in Eq. (21) is quantized. Hereafter, when
the winding number given in Eq. (21) takes a nonzero value,
we denote that the point-gap topology of the Liouvillian is
nontrivial.

Second, we discuss the relation between the topologi-
cal number defined in Eq. (21) and the Liouvillian skin
effect. Even in the single-particle system, the topological
characterization of the Liouvillian skin effect has not been ac-
complished so far. Importantly, in the single-particle system,
the topological invariant ν(�ref ) defined in Eq. (21) gives the
characterization of the Liouvillian skin effect, provided that
the Lindblad operator is given by the asymmetric hopping
(see Appendix B for details). In Appendix B, we compute the
topological invariant ν(�ref ) defined in Eq. (21) analytically,
and we discuss the validity of the characterization of the Liou-
villian skin effect in the single-particle system. Significantly,
the topological invariant ν(�ref ) can be computed even in
many-body systems. Such a definition of a topological invari-
ant, which is independent of momentum, has already been
introduced for the non-Hermitian skin effect in many-body
systems [84–86]. In the following section, we numerically
calculate the topological invariant ν(�ref ) and observe the
nontrivial value of the topological invariant ν(�ref ) corre-
sponding to the Liouvillian skin effect in many-body systems
[113].

B. Skin mode of the Liouvillian

In this subsection, we first introduce the right-state particle
density of the nth eigenmode of the Liouvillian superoperator
L as �

(n)
jασ , which measures the degree of localization of

eigenmodes of the Liouvillian superoperator in many-body
systems. Then, we show that in the single-particle system,
the right-state particle density reduces to the diagonal element
of the right eigenmode, which is used as the characterization
of the Liouvillian skin effect in single-particle systems in

Ref. [50]. Finally, we show that when the right eigenmode
is written by the right eigenstate of the effective Hamiltonian,
the right-state particle density gives the particle density, which
is used as the characterization of the non-Hermitian skin effect
in many-body systems in Refs. [84,85].

First, we define the following right-state particle density
of the nth eigenmode of the Liouvillian superoperator L to
quantify the degree of localization of the eigenmode of the
Liouvillian in many-body systems:

�
(n)
l = 〈〈

J|c†
l cl ⊗ I|ρ (n)

R

〉〉 = 〈〈
J|I ⊗ c†

l cl |ρ (n)
R

〉〉
(26)

with l denoting the set of j, α and σ , i.e., l = jασ . Here, |J〉〉
is the identity operator defined by |J〉〉 = ∑

j | j〉 ⊗ | j〉, and

|ρ (n)
R 〉〉 is the nth right eigenmode of the Liouvillian L that sat-

isfies the eigenvalue equation given in Eq. (14). We note that
the right-state particle density is not identical to the ordinary
particle density, which is observable and takes real values.
Specifically, the right-state particle density is complex-valued,
which is introduced to measure the degree of localization of
eigenmodes in many-body systems.

Next, we show that the right-state particle density defined
in Eq. (26) reduces to the diagonal element of the right eigen-
mode in the single-particle system. We note that the right-state
particle density of the nth eigenmode given in Eq. (26) is
expressed as

�
(n)
l = Tr

[
c†

l clρ
(n)
R

]
, (27)

where we have used the following relation:〈〈
J|A ⊗ I|ρ (n)

R

〉〉 =
∑
jkl

〈 j| ⊗ 〈 j| (A|k〉 ⊗ |l〉)ρ (n)
R,kl

=
∑
jkl

δ jl 〈 j|A|k〉ρ (n)
R,kl

= Tr
[
Aρ

(n)
R

]
. (28)

Now, we show that the definition given in Eq. (26) reduces to
the diagonal element of the right eigenmode of the Liouvillian
in the single-particle system. We take the single-particle basis
|S〉, which is generated by applying the creation operator to
the vacuum |vac〉 as |S〉 = c†

S|vac〉 with S denoting the set of
j, α and σ , i.e., S = jασ . Then the nth right eigenstate of the
density matrix ρ

(n)
R is expanded by using the single-particle

state |S〉 as

ρ
(n)
R =

∑
ST

ρ
(n)
R,ST |S〉〈T |. (29)

Here, ρ
(n)
R,ST ∈ C is expansion coefficient. By substituting

Eq. (29) into Eq. (27), we obtain

�
(n)
S = ρ

(n)
R,SS. (30)

Thus the right-state particle density defined in Eq. (27) is a
generalization of the diagonal element of the right eigenmode,
which measures the degree of localization of the eigenmode of
the Liouvillian in the single-particle system.

Finally, we show that when the right eigenmode ρ
(n)
R is

written by the right eigenstate of the effective Hamiltonian
Heff as |ϕ(n)

R 〉, the right-state particle density reduces to the
particle density defined by nl = 〈ϕ(n)

R |c†
l cl |ϕ(n)

R 〉, which is used
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as the characterization of the skin mode in a non-Hermitian
many-body system in Refs. [84,85]. We take the right and left
eigenstates of the effective Hamiltonian as |ϕ(n)

R 〉 and 〈ϕ(n)
L |,

which satisfy the eigenvalue equations

Heff

∣∣ϕ(n)
R

〉 = En

∣∣ϕ(n)
R

〉
(31)

and 〈
ϕ

(n)
L

∣∣Heff = En
〈
ϕ

(n)
L

∣∣, (32)

respectively. When we take the right eigenmode ρ
(n)
R as

ρ
(n)
R = ∣∣ϕ(n)

R

〉〈
ϕ

(n)
R

∣∣, (33)

the right-state particle density given in Eq. (27) becomes

�
(n)
l = Tr

[
ρ

(n)
R c†

l cl
]

=
∑

m

〈
ϕ

(m)
L

∣∣ϕ(n)
R

〉〈
ϕ

(n)
R

∣∣c†
l cl

∣∣ϕ(m)
R

〉
=

∑
m

δmn
〈
ϕ

(n)
R

∣∣c†
l cl

∣∣ϕ(m)
R

〉 = nl , (34)

where we have used the biorthogonal relation in the third
equality [15]. Therefore, the right-state particle density is
the generalization of the particle density nl , which measures
the degree of localization of the eigenstate in non-Hermitian
many-body systems. In the following, we demonstrate that the
right-state particle density �

(n)
l exhibits localization near the

edge. From Eqs. (30) and (34), we consider that the right-state
particle density is the proper definition to measure the degree
of localization of eigenmodes of the Liouvillian in many-body
systems.

IV. NUMERICAL RESULTS

In this section, we demonstrate that interactions can induce
the Liouvillian skin effect by analyzing the Falicov-Kimball
model introduced in Sec. II. First, in the noninteracting case
(U − iγ = 0), we show that the Liouvillian skin effect is
absent. Then, it is demonstrated that the complex-valued in-
teraction U − iγ induces the Liouvillian skin effect. In the
following discussion, we set th = 1 as an energy unit.

A. Noninteracting case

First, we see that the Liouvillian skin effect is not observed
in the noninteracting case (U = γ = 0). In this case, the Li-
ouvillian given in Eq. (11) becomes

Lfree = −i(H ⊗ I − I ⊗ HT ). (35)

Because Lfree is skew-Hermitian, i.e., L†
free = −Lfree, its

eigenvalues are purely imaginary or zero. In other words,
all eigenvalues of the Liouvillian lie on the imaginary axis
regardless of boundary conditions. As a result, the point-gap
topology of the Liouvillian always becomes trivial because
the winding number always takes zero. Correspondingly, the
eigenvalues and the eigenmodes of the Liouvillian are not
sensitive to the boundary conditions (for more details, see
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FIG. 2. (a) [(b)] Argument of det[L(θ ) − �ref ] for �ref =
−0.5 − 0.8i [�ref = −0.3 − 0.2i]. Panel (a) [(b)] shows that the
winding number takes ν = 3 [ν = 1]. (c) [(d)] D(n)

j = ∑
α |�(n)

jα↑|
computed from the right-state particle density under OBC (PBC).
The parameters are set to be L = 6, U = 0.5, and γ = 1.0. The
configuration of fermions in the down-spin states is set to be {n↓} =
{1, . . . , 1}. The density matrix is normalized as

∑
i j |ρ (n)

R,i j |2 = 1.

Appendix C). Therefore, the Liouvillian skin effect is absent
for the noninteracting system.

B. Interacting case

Next, we demonstrate that the interaction U − iγ makes
the point-gap topology nontrivial and induces the Liouvillian
skin effect. Figures 2(a) and 2(b) display the θ dependence of
det[L(θ ) − �ref ]. We see that the winding number takes ν =
3 (ν = 1) for �ref = −0.5 − 0.8i (�ref = −0.3 − 0.2i). Now,
we analyze the emergence of skin modes by comparing the
results under OBC with those under periodic boundary condi-
tions (PBC). Figure 2(c) [2(d)] displays D(n)

j = ∑
α |�(n)

jα↑| for
OBC (PBC). We note that the right-state particle density of
the nth eigenmode �

(n)
jα↑ defined in Eq. (26) takes a complex

value. Figure 2(c) indicates that the eigenmodes are localized
at the right edge under OBC. In contrast, such a localization
cannot be observed under PBC. These results demonstrate the
emergence of skin modes of the Liouvillian. We also note that
the sensitivity of the eigenvalues to boundary conditions is
also observed, although it is smeared for small L (for more
details, see Appendix D). With the above results (see Fig. 2),
we conclude that interactions induce the Liouvillian skin ef-
fect, though the system is subject to homogeneous two-body
losses. It should be noted that the Liouvillian skin effect
occurs for U = 0 and γ �= 0. This skin effect is regarded as
an interaction-induced skin effect since the nonzero γ results
in a two-body interaction [see Eq. (9)].

Here, we comment on the relation between the winding
number of the Liouvillian and that of the effective non-
Hermitian Hamiltonian. As derived in Appendix E, we obtain
the following relation for the winding number defined in
Eq. (21):

ν(�ref ) =
∑

j

w(Eref = E∗
j + i�ref ), (36)
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FIG. 3. Schematic figure that describes the relationship between
the winding number ν(�ref ) and w(Eref ) given in Eq. (36). (a) Eigen-
values of the effective Hamiltonian Heff are indicated by blue dots. E∗

is the complex conjugation of the eigenvalue E (gray dots). When
Eref is located inside the blue region, the winding number of the
Hamiltonian equals 1, i.e., w(Eref ) = 1. (b), (c) Schematic figure of
the origin of the nontrivial winding number. The winding number
ν(�ref ) equals the number of dots in the blue region indicated by the
yellow star. The number of yellow stars in panel (b) [(c)] corresponds
to the winding number ν(�ref ) in Fig. 2(a) [2(b)]. The constant
shift i�ref in Eq. (36) is set to be i�ref = 0.8 − 0.5i and i�ref =
0.2 − 0.3i for panels (b) and (c), respectively. The parameters are
set to be L = 6, U = 0.5, γ = 1.0. The configuration of fermions
in the down-spin states is set to be {n↓} = {1, . . . , 1}.

where w(Eref ) is the winding number of the non-Hermitian
Hamiltonian

w(Eref ) =
∮ 2π

0

dθ

2π i

d

dθ
log det[Heff (θ ) − Eref ]. (37)

Here, Ej denotes an eigenvalue of the non-Hermitian Hamil-
tonian Heff defined in Eq. (9). Equation (36) indicates that the
winding number of the Liouvillian ν(�ref ) can be computed
from the winding number of the effective non-Hermitian
Hamiltonian w(Eref ) with this model. Here, we compute the
winding number ν(�ref ) by making use of Eq. (36). First,
we take the complex conjugate of the eigenvalue of the non-
Hermitian Hamiltonian E∗

j [see Fig. 3(a)]. Then, we shift
E∗

j by i�ref and obtain Eref = E∗
j + i�ref . Because Eq. (36)

indicates that the summation of w for all possible Eref =
E∗

j + i�ref results in the winding number of the Liouvillian,
we obtain ν(�ref ) = 3 [ν(�ref ) = 1] for �ref = −0.5 − 0.8i
(�ref = −0.3 − 0.2i) [see Figs. 3(b) and 3(c)]. We note that
the winding number of the effective Hamiltonian takes one
when Eref is in the shaded region in Fig. 3(a). These results
of the winding number ν(�ref ) are consistent with the results
obtained by the direct computation of ν(�ref ) [see Figs. 2(a)
and 2(b)].

C. Dynamical properties

In this subsection, we show that the Liouvillian skin effect
significantly affects the dynamics of the particle density. We
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FIG. 4. (a) [(b)] Time evolution of the particle density under
OBC (PBC). The parameters are set to be L = 20, U = 0.1, γ =
0.1. The configuration of fermions in the down-spin states is set to
be {n↓} = {1, . . . , 1}. The particle is uniformly distributed in orbital
a in the initial state. Only under OBC is the anomalous localization
of the particle density observed.

assume that the total number of particles in the up-spin states
is equal to one in the initial state, i.e.,

〈�(t = 0)|N↑|�(t = 0)〉 = 1, (38)

where the wave function in the initial state |�(t = 0)〉 reads

|�(t = 0)〉 = 1√
L

L∑
j=1

c†
ja↑|{n↓}〉. (39)

Here, we have assumed that the particle in orbital a is uni-
formly distributed in the initial state. The expectation value of
the particle density in the up-spin state at time t is given by

〈nj↑(t )〉 =
∑

α

Tr[n jα↑ρ(t )]

=
∑

α

〈〈J|c†
jα↑c jα↑ ⊗ I|ρ(t )〉〉. (40)

Then, the time evolution of the density matrix reads

|ρ(t )〉〉 = eLt |ρ(t = 0)〉〉. (41)

By using the wave function in the initial state |�(t = 0)〉, the
density matrix at time t = 0 is given by

|ρ(t = 0)〉〉 = |�(t = 0)〉 ⊗ |�(t = 0)〉. (42)

Here, |�(t = 0)〉 ⊗ |�(t = 0)〉 is defined by the following
mapping:

|�(t = 0)〉〈�(t = 0)| =
∑

i j

�i j (t = 0)|i〉〈 j|

�→|�(t = 0)〉 ⊗ |�(t = 0)〉 =
∑

i j

�i j (t = 0)|i〉 ⊗ | j〉, (43)

where �i j (t = 0) is the matrix element of |�(t = 0)〉〈�(t =
0)|, and |i〉 ⊗ | j〉 is the element in the basis set given in
Eq. (19). Now, we numerically calculate the expectation value
of the particle density given in Eq. (40) considering Eqs. (41)
and (42). We note that, since the initial state only has one
fermion in an up-spin state, the dynamics is computed only
from Heff [114]. Figure 4 displays the time dependence of
the expectation value 〈n j↑(t )〉. Under OBC, wee see that the
particle is accumulated near the right boundary, as shown in
Fig. 4(a). In contrast, under PBC, we find that the particle
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density decreases uniformly due to the dissipation, as shown
in Fig. 4(b).

The above significant dependence of 〈nj↑〉 on boundary
conditions can be understood in terms of the right-state parti-
cle density of the nth eigenmode of the Liouvillian �

(n)
jασ . First,

we expand the initial density matrix |ρ(0)〉〉 = ∑
n an|ρ (n)

R 〉〉
by using an eigenmode of the Liouvillian. Then, by combining
the eigenvalue equation of the Liouvillian given in Eq. (14)
and the time evolution of the density matrix given in Eq. (41),
we obtain the particle density at time t as

〈n j↑(t )〉 =
∑
n,α

e�nt an�
(n)
jα↑. (44)

Thus the particle accumulation quantitatively originates from
the anomalous localization of �

(n)
jα↑ (see Fig. 2). Moreover, in

the presence of the Liouvillian skin effect, we find the two-
step relaxation process (see Appendix F).

We note that the particle accumulation due to the Liou-
villian skin effect is different from the topological pumping
[115,116]. In contrast to the topological pumping observed
under the twisted boundary condition, the charge accumula-
tion due to the skin modes is observed under OBC. We twist
the boundary condition only for computation of the topologi-
cal invariant [Eq. (21)].

V. CONCLUSIONS

In this paper, by introducing two-body loss into the
one-dimensional correlated system, we have demonstrated
that complex-valued interactions induce the Liouvillian skin
effect. Specifically, by introducing the winding number con-
structed by the Liouvillian superoperator, we have elucidated
that interactions make the point-gap topology nontrivial.
Moreover, we have seen that eigenvalues and eigenmodes of
the Liouvillian exhibit extreme sensitivity to boundary condi-
tions. As a result, we have observed the particle accumulation
around the right edge in transient dynamics only under OBC,
which is attributed to the emergence of the skin mode.

As two-body losses have already been introduced in yt-
terbium atoms by using photoassociation techniques [54,56],
our results can be tested in ultracold atoms. The method to
realize the Falicov-Kimball model is provided in Ref. [117]
by introducing two species of atoms such as 40K and 6Li,
where mobile and immobile atoms are coupled via an on-site
interaction. We expect that the interaction-induced Liouvillian
skin effect in our model can be observed in ultracold atoms.

Recently, classifications of the Liouvillian superoperator
have been actively conducted [99,102]. When the Hamilto-
nian preserves the inversion symmetry, the winding number
defined in Eq. (21), which characterizes the nontrivial topo-
logical phase of the Liouvillian, can be trivial. Last but not
least, it is worthwhile to study the detailed relations between
the symmetry and the topological number in a different Liou-
villian, but we leave it for future work.
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APPENDIX A: SYMMETRY CONSTRAINT
ON THE WINDING NUMBER

In this Appendix, we discuss the relation between the sym-
metry of the Liouvillian and the winding number ν(�ref ).
As we will see below, breaking the inversion symmetry of
the Hamiltonian is essential for the existence of the nonzero
topological number. The winding number ν(�ref ) given in
Eq. (21) becomes trivial when the Liouvillian superoperator
satisfies

UL(−θ )U† = L(θ ). (A1)

Here, U is the unitary operator (UU† = U†U = 1). We note
that Eq. (A1) leads to ν(�ref ) = −ν(�ref ). This relation
means that the point-gap topology of the Liouvillian is trivial,
ν(�ref ) = 0.

In the case of particle loss, this triviality [ν(�ref ) = 0]
originates from the symmetry of the Hamiltonian. Since the
eigenvalue of the Liouvillian is determined only by the ef-
fective Hamiltonian Heff [111], the winding number given in
Eq. (21) reduces to

ν(�ref ) =
∮ 2π

0

dθ

2π i

d

dθ
log det[L0(θ ) − �ref ]. (A2)

If the effective Hamiltonian Heff satisfies the following rela-
tion:

UHeff (−θ )U † = Heff (θ ), (A3)

we can construct the unitary operator U as

U = U ⊗ V, (A4)

where UU † = U †U = 1, and we have defined V = U ∗. Due
to the relation UL0(−θ )U† = L0(θ ), we find that the winding
number Eq. (A2) becomes zero.

Now, we discuss whether the Liouvillian given in Eq. (11)
satisfies the condition given in Eq. (A1). The effective Hamil-
tonian under twisted boundary conditions in real space is
Heff (θ ) = Hbulk

eff + H edge
eff (θ ), where Hbulk

eff is written as

Hbulk
eff = H1 + H2 + H3 + H4. (A5)

Here, we have defined

H1 = −2ith

L∑
j=1

(c†
ja↑c jb↑ − H.c.),

H2 = −0.25th

L−1∑
j=1

(c†
j+1b↑c ja↑ − c†

j+1a↑c jb↑ + H.c.),
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H3 = th

L−1∑
j=1

(c†
j+1a↑c ja↑ − c†

j+1b↑c jb↑ + H.c.),

H4 = (U − iγ )
L∑

j=1

n jb↑n jb↓, (A6)

and

H edge
eff (θ ) = − 0.25th(eiθc†

1b↑cLa↑ − eiθ c†
1a↑cLb↑ + H.c.)

+ th(eiθ c†
1a↑cLa↑ − eiθ c†

1b↑cLb↑ + H.c.). (A7)

The first term H1 of the bulk Hamiltonian Hbulk
eff [i.e., the

first term of the Bloch Hamiltonian in Eq. (3a) denoted by
2th] violates the condition Eq. (A1). In the absence of the
first term, the effective Hamiltonian preserves the inversion
symmetry defined by

PHeff (−θ )P† = Heff (θ ), (A8)

where the inversion operator P acts on the annihilation op-
erator as Pcjaσ P† = cL−( j−1)aσ , Pcjbσ P† = −cL−( j−1)bσ and
satisfies P†P = PP† = 1. Then, we see that the inversion sym-
metry given in Eq. (A8) is nothing but the condition of the
triviality of the winding number given in Eq. (A3). Therefore,

the Liouvillian superoperator L(θ ) given in Eq. (22) satisfies
Eq. (A1) in the absence of H1. The presence of H1 breaks
the condition Eq. (A8), which leads to the violation of the
condition Eq. (A1). Hence, the nonzero winding number orig-
inates from the property of the Liouvillian. In particular, the
Hamiltonian breaks the inversion symmetry.

APPENDIX B: TOPOLOGICAL CHARACTERIZATION
OF THE LIOUVILLIAN SKIN EFFECT REPORTED

IN REF. [50]

In this Appendix, we show that the winding number
ν(�ref ) defined in Eq. (21) characterizes the Liouvillian skin
effect reported in Ref. [50], which implies the validity of
employing ν(�ref ) for characterizing the interaction-induced
Liouvillian skin effect. We consider the bosonic systems and
assume that the Lindblad operators are given by

Lj,l = √
tlb

†
jb j+1,

Lj,r = √
trb†

j+1b j, (B1)

which describe the stochastic hopping to the nearest-neighbor
sites. Following the discussion in Ref. [50], we assume that
the Hamiltonian of the systems is zero, i.e., H = 0. The Liou-
villian superoperator becomes

LH=0 =
∑
j,α

[
Lj,α ⊗ L∗

j,α − 1

2

(
L†

j,αLj,α ⊗ I + I ⊗ LT
j,αL∗

j,α

)]

=
L∑

j=1

[
trb†

j+1b j ⊗ b†
j+1b j + tlb

†
jb j+1 ⊗ b†

jb j+1 − tr + tl
2

(b†
jb j ⊗ I + I ⊗ b†

jb j )

]
. (B2)

When we impose twisted boundary conditions only on the ket space, the Liouvillian superoperator is expressed as

LH=0(θ ) = LH=0
bulk + treiθ b†

1bL ⊗ b†
1bL + tl e

−iθ b†
Lb1 ⊗ b†

Lb1, (B3)

where we have introduced the bulk term of the Liouvillian LH=0
bulk as

LH=0
bulk =

L−1∑
j=1

[trb†
j+1b j ⊗ b†

j+1b j + tlb
†
jb j+1 ⊗ b†

jb j+1] −
L∑

j=1

[
tr + tl

2
(b†

jb j ⊗ I + I ⊗ b†
jb j )

]
. (B4)

In the following discussion, we focus on the single-particle
diagonal subspace spanned by the basis {|i〉 ⊗ |i〉}i=1,...,L. The
matrix representation of the Liouvillian with respect to this
basis is given by

LH=0(θ ) =

⎛
⎜⎜⎜⎝

−(tl + tr ) tl treiθ

tr
. . .

. . .
. . .

. . . tl
tl e−iθ tr −(tl + tr )

⎞
⎟⎟⎟⎠. (B5)

In this subspace, the action of the Liouvillian LH=0(θ ) is iden-
tical to that of the following Hamiltonian in the single-particle
system:

HHN(θ ) = −
L∑

j=1

(tl + tr )c†
j c j +

L−1∑
j=1

(tl c
†
j c j+1 + trc†

j+1c j )

+ tl c
†
Lc1e−iθ + trc†

1cLeiθ . (B6)

We note that the matrix representation of the Hamiltonian
HHN(θ ) with respect to the basis {|i〉}i=1,...,L gives Eq. (B5).
The Hamiltonian given in Eq. (B6) is nothing but the Hatano-
Nelson model [118–120] under twisted boundary conditions.

Now, we calculate the winding number ν(�ref ) defined in
Eq. (21) for the Liouvillian LH=0(θ ) in this subspace. First,
we recover the translational invariance of the Hamiltonian by
using the gauge transformation c j → c je−i j

L θ as

HHN(θ ) =
L∑

j=1

[−(tl + tr )c†
j c j + tl e

−i θ
L c†

j c j+1 + trei θ
L c†

j+1c j
]
.

(B7)

Then, we diagonalize Eq. (B7) as

HHN(θ ) =
∑

k

hHN

(
k + θ

L

)
c†

kck (B8)
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FIG. 5. (a) The right-state particle density of the Liouvillian
under OBC. (b) [(c)] Eigenvalues of the Liouvillian under OBC
(PBC) for the noninteracting case. The parameters are set to be L =
10, U = γ = 0.0. The configuration of fermions in the down-spin
states is set to be {n↓} = {1, . . . , 1}.

with

hHN(k) = treik + tl e
−ik − (tl + tr ). (B9)

In the translational invariant single-particle system, the many-
body topological invariant of non-Hermitian systems reduces
to the following topological invariant defined in the momen-
tum space [84,121]:

W (�ref ) =
∮ 2π

0

dk

2π i

d

dk
log det[hHN(k) − �ref ]. (B10)

Finally, in a similar way to Eq. (B10), we can compute the
winding number ν(�ref ) defined in Eq. (21) for LH=0(θ ) given
in Eq. (B5) as

ν(�ref ) = sgn(tr − tl ), (B11)

where we set �ref inside the region enclosed by PBC spec-
trum. As shown in Ref. [50], the right-state particle density
of the Liouvillian given in Eq. (26) exhibits the skin ef-
fect. Therefore, the Liouvillian skin effect demonstrated in
Ref. [50] is characterized by the winding number defined in
Eq. (21). This fact supports the use of ν(�ref ) as a charac-
terization of the interaction-induced Liouvillian skin effect as
shown in the main text. It should be noted that even for the
presence of H in Ref. [50], we numerically confirm that the
winding number takes a nonzero value.

APPENDIX C: ABSENCE OF THE LIOUVILLIAN SKIN
EFFECT IN NONINTERACTING SYSTEMS

Here we numerically show that the Liouvillian skin ef-
fect is absent when the systems do not have interactions
(U − iγ = 0). In this case, the time evolution of the density
matrix is described by the von Neumann equation. Figure 5(a)
shows that the eigenmodes of the Liouvillian do not exhibit
the skin effect for the noninteracting case. As mentioned in
Sec. IV, all eigenvalues of the Liouvillian lie on the imaginary
axis and are insensitive to boundary conditions [see Figs. 5(b)
and 5(c)]. Thus, the Liouvillian skin effect does not occur in
the noninteracting system.

APPENDIX D: SENSITIVITY OF EIGENVALUES
OF THE LIOUVILLIAN TO BOUNDARY CONDITIONS

In this Appendix, we show that eigenvalues of the Liou-
villian exhibit the sensitivity to boundary conditions. Under
OBC as shown in Fig. 6(a), the eigenvalues form a linelike
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FIG. 6. (a) [(b)] Eigenvalues of the Liouvillian under OBC
(PBC). The parameters are set to be L = 14, U = 0.1, and γ = 0.2.
The configuration of fermions in the down-spin states is set to be
{n↓} = {1, . . . , 1}.

structure, which is in contrast to the case of PBC shown
in Fig. 6(b). Such sensitivity is a signal of the Liouvillian
skin effect. We note that since the steady state is N↓-fold
degenerate regardless of boundary conditions, the eigenvalues
corresponding to the steady state do not exhibit the Liouvillian
skin effect.

APPENDIX E: DERIVATION OF THE RELATION
BETWEEN WINDING NUMBERS GIVEN IN EQ. (36)

In this Appendix, we derive the relation between the
winding number ν(�ref ) defined by the Liouvillian super-
operator and w(Eref ) defined by the Hamiltonian given
in Eq. (36). First, we recall that in the case of particle
losses, the Liouvillian takes the following block triangular
structure:

L =
⎛
⎝ L(N↑=1)

0 (θ )

LJ(θ ) L(N↑=0)
0 (θ )

⎞
⎠. (E1)

We note that, since the Lindblad operator given in Eq. (5) has
no hopping term between site 1 and site L, the jump term
is independent of θ , i.e., LJ(θ ) = LJ. For a block triangular
matrix, the following relation holds:

det

(
A
B C

)
= det A det C. (E2)

Since L(N↑=0)(θ ) is independent of θ , we obtain

dθ log det[L(θ ) − �ref ]

= dθ log det[L(N↑=1)
0 (θ ) − �ref ]

= dθ log det M(θ ) (E3)

for �ref �= 0, where

M(θ ) = Heff (θ ) ⊗ I − I ⊗ H∗
eff − i�ref I ⊗ I. (E4)

Then, we introduce N (θ ) to diagonalize M(θ ) defined by

N (θ ) = S(θ ) ⊗ T, (E5)

where T = S∗(θ = 0), and operator S(θ ), which diagonalizes
Heff (θ ) as

S−1(θ )Heff (θ )S(θ ) = diag(E1(θ ), . . . , E2L(θ )). (E6)
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FIG. 7. Numerical result of the time dependence of the total
number of the up-spin particles N↑(t ). U = 0.5, γ = 0.1, L = 60.
The configuration of fermions in the down-spin states is set to be
{n↓} = {1, . . . , 1}. In the initial state, the particle is distributed at the
left side of the system in the orbital b. Time of transition T is denoted
by the black arrow.

A straightforward calculation results in

log det[N−1M(θ )N ]

=
2L∑
i=1

log det
2L∏
j=1

[Ej (θ ) − (E∗
i + i�ref )]. (E7)

Finally, we obtain the relation between ν(�ref ) and w(Eref ) as∮ 2π

0

dθ

2π i

d

dθ
log det[L(θ ) − �ref I ⊗ I ]

=
∑

j

w(Eref = E∗
j + i�ref ), (E8)

which is nothing but Eq. (36) in the main text.

APPENDIX F: SLOWING DOWN OF THE RELAXATION
PROCESS UNDER OBC

There have been several studies that focus on the relax-
ation process in the presence of the Liouvillian skin effect
[50,122,123]. In this Appendix, we show that the relaxation
process slows down under OBC in a finite system. Figure 7
shows the time dependence of the total number of the particles
in the up-spin state N↑(t ). By comparing the results under
OBC and PBC, we find that the relaxation process is slowing
down under OBC, which is originally discussed in Refs. [50].
Under OBC, the relaxation speed changes after time T in
a finite system. We calculate the system size dependence of
the time of the transition time T . Figure 8 indicates that the
transition time T and systems size are proportional (T ∝ L).
This fact implies that slowing down the relaxation process
occurs even when we increase the system size. These results
are consistent with the previous study of the dynamics with
the Liouvillian skin effect [50].

FIG. 8. The system size dependence of the transition time. U =
0.5, γ = 0.1. In the initial state, the particle is distributed at the left
side of the system in the orbital b.

APPENDIX G: RESULTS FOR OTHER CONFIGURATIONS
OF DOWN-SPINS IN THE INITIAL STATE

In the main text, the configuration of fermions in the down-
spin states is set to be {n↓} = {1, . . . , 1} in the initial state. In
this Appendix, we show that the Liouvillian skin effect sur-
vives for other configurations of down-spins in the initial state.
We set the configuration of fermions in the down-spin states
to be {n↓} = {1, 1, 1, 1, 0, 1}. Then we numerically calculate
the winding number given in Eq. (21). Figure 9(a) shows that
the winding number takes three. Moreover, eigenmodes of the
Liouvillian exhibit the skin effect under the OBC as shown
in Fig. 9(b). We observe the dependence of eigenvalues on
boundary conditions, which is similar to that presented in
Appendix D. Therefore, the Liouvillian skin effect survives
for other configurations of down-spins in the initial state.

APPENDIX H: CONTINUOUS DEFORMATION
OF THE EFFECTIVE HAMILTONIAN

In this Appendix, we perform the continuous deformation
of the effective Hamiltonian, which supplies an intuitive un-
derstanding of why the eigenstate is localized at the right edge.
Non-Hermitian Hamiltonians H0(k) and H1(k) are defined to
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FIG. 9. (a) Argument of det[L(θ ) − �ref ]. (b) The right-state
particle density of the Liouvillian under an OBC for other config-
uration cases of fermions in the down-spin states. The parameters
are set to be L = 6, U = 0.3, γ = 0.7, and �ref = −0.8 − 0.2i.
The configuration of fermions in the down-spin states is set to be
{n↓} = {1, 1, 1, 1, 0, 1}.
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1A
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2A 3A

2B 3B

FIG. 10. Schematic figure of the Hamiltonian given in Eq. (H4).

be topologically equivalent if and only if there exists a Hamil-
tonian satisfying and maintaining both relevant symmetry and
the point-gap det[Hλ(k) − Eref ] �= 0 for all λ ∈ [0, 1] [16,17].
Here, we define the family of the non-Hermitian Hamiltonian
as

hλ(k) = λhasym(k) + (1 − λ)hFK(k). (H1)

Here, hFK and hasym are the Bloch Hamiltonian of the Falicov-
Kimball model with a complex-valued interaction and the
asymmetric hopping Hamiltonian, which are explicitly written
as

hFK(k) = b2(k)σ2 + b3(k)σ3 + (U − iγ )

(
0 0
0 1

)
(H2)

and

hasym = (v1 + v2eik )σ1 (v1, v2 > 0), (H3)

respectively. The functions b2(k) and b3(k) are given in
Eqs. (3a) and (3b) in the main text. Since the asymmetric
hopping Hamiltonian hasym is expressed as

Hasym = v1

∑
j

(c†
jAc jB + H.c.)

+ v2

∑
j

(c†
j+1Ac jB + c†

j+1Bc jA) (H4)

FIG. 11. The minimum value of |det[hλ(k) − Eref ]| as a func-
tion of λ. The parameters are set to be v1 = 2, v2 = 1, t = 1, U =
0.1, γ = 1.0, Eref = −2 − 0.5i.

in real space, the second term denotes the asymmetric hop-
ping from left to right, which leads to the localization of
the eigenstate at the right edge. The schematic illustration
of the Hamiltonian is given in Fig. 10. Now we show that
there exists a path to connect the Hamiltonians hFK and hasym

without point-gap closing. Figure 11 shows the minimum
value of the

|det[hλ(k) − Eref ]| (H5)

by varying the λ from 0 to 1. Remarkably, the point-gap at Eref

is always open, because |det[hλ − Eref ]| does not take the zero
for any λ. Thus, the non-Hermitian Hamiltonian hasym is topo-
logically equivalent to the Falicov-Kimball Hamiltonian hFK.
It is worth noting that by changing k ←→ −k in Eq. (H2), the
eigenstate is localized on the left side.
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