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Many-body localization in clean chains with long-range interactions
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Strong long-range interaction leads to localization in a closed quantum system without disorders. Employing
the exact diagonalization method, I numerically investigate thermalization and many-body localization in
translational invariant quantum chains with finite Coulomb interactions. In the computational basis, excluding
all trivial degeneracies, the interaction-induced localization is well demonstrated in aspects of level statistics,
eigenstate expectation values, and Anderson localization on graphs constructed of many-body bases. The nature
of localization for generic eigenstates is attributed to the quasidisorder from the power-law interactions, and the
full localization in the Hilbert space is similar to that in the disorder case. However, due to real-space symmetries,
the long-time dynamics is dominated by the degenerated eigenstates and eventually reaches homogeneity in real
space. On the other hand, the entanglement entropy exhibits size dependence beyond the area law for the same
reason, even deep in the localized state, indicating an incomplete localization in real space.
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I. INTRODUCTION

The dynamics of isolated quantum many-body systems has
been extensively studied in recent years, and a new paradigm
focus on the out-of-equilibrium quantum phase transition has
been established. In the interacting and nonintegrable setting,
the unitary dynamics of a generic quantum system drives
the system to the thermalized state, and this ergodic phase
is characterized by the eigenstate thermalization hypothesis
(ETH) [1–4]. In contrast, the system affected by sufficient
disorders features many-body localization (MBL) and fails to
thermalize. Its long-time evolution partially preserves the en-
coded information of the initial state [5,6]. Thermalization and
MBL in the presence of disorder can be characterized by es-
sential differences in aspects such as level statistics [7–9] and
entanglement entropy of eigenstates and its real-time spread
behavior [10–12], and they have attracted many experimental
probes in various platforms [13–21].

Although MBL is mainly studied in disordered systems
as it has its roots in the nonergodicity of the well-known
disorder-induced Anderson localization for noniteracting par-
ticles [22,23], disorder-free MBL and other ETH breakdown
scenarios in the absence of disorder have attracted increasing
interest [24–40]. The related studies bring attention to new
issues like Stark MBL [26–28], quantum many-body scars
[40–42], and Hilbert space fragmentation [33–35,39,40,43]
and involve systems with conserved dipolar momentum [39],
pairing hoppings [34,38], and strong constraints [44,45], to
name a few. Specifically, the one-dimensional system with
short-range interactions can be projected to a dynamically
constrained model in the strongly interacting limit, where its
Hilbert space fragments into an exponential number of dis-
connected sectors [45,46]. The real-time dynamics in different
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sectors can be qualitatively different, and some sectors feature
complete localization in the presence of any finite disorders
[45].

In parallel, the effect of long-range couplings in the context
of thermalization and localization attracts interest in many
aspects [47–70]. While both long-range interaction and hop-
ping are generally believed to allow far-distance quantum
correlations and to build up faster thermalization [48–51], it
is reported that long-range couplings can lead to anomalous
algebraic localization [52,53] and stabilize Stark MBL [64].
The logarithmic growth of the entanglement entropy over
time, known as a unique characteristic of many-body localiza-
tion, is also found in a noninteracting system with long-range
hoppings [47]. Considering the cavity systems, the cavity-
mediated global couplings not only allow the coexistence of
MBL and long-range interactions [65,66] but also can lead to
an inverted mobility edge [66].

Moreover, the possibility of disorder-free localization in-
duced by long-range interactions has been proposed by
recent studies [30–33,67,68]. Adopting the self-consistent
mean-field theory, the authors in Ref. [67] propose that the
long-range interaction can enhance localization and lower
the critical disorder. If the interactions are sufficiently long-
range, the system is always many-body localized even in
the absence of disorder. From the numerical side, Ref. [31]
explicitly demonstrates disorder-free localization in the pres-
ence of dipolar interactions, where the real-time evolution in
this disorder-free MBL phase features abnormal two-stage
dynamics. It has MBL-like behavior in a considerable time
range but eventually thermalizes in the long-time limit. While
the localization nature is due to Hilbert space fragmentation
via strong interactions, the final thermalization is attributed
to higher-order virtual excursions between fragmented Hilbert
sections.

The dynamics with the coexistence of localization and ther-
malization nature in the clean long-range-interacted system is
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beyond the picture of disorder-induced MBL. In this work, I
revisit the disorder-free localization induced by long-range in-
teractions and aim to understand better this incomplete MBL
phenomenon. The interest in long-range-interacted systems
also relies on the widely existing power-law interactions be-
tween particles in nature and the experimental developments
simulating long-range interactions in platforms of ultracold
polar molecules [71,72], trapped ions [73,74], and Rydberg
gases [75].

II. MODEL AND NUMERICAL METHOD

The present work focuses on a one-dimensional bosonic
Hubbard Hamiltonian with power-law interactions:

Ĥ = −t
∑
〈i j〉

(
b̂†

i b̂ j + H.c.
) + V

∑
i< j

R−β
i, j n̂in̂ j, (1)

where b̂†
i (b̂i) is the hard-core bosonic creation (annihilation)

operator at site i, n̂i = b̂†
i b̂i is the density operator, and Ri, j de-

notes the distance between sites i and j in the system with size
L. The strong long-range interaction leads to a Mott-insulating
ground state of Eq. (1) and supports interesting ground-state
physics when both charge and spin degrees of freedom are
considered [76] or in higher dimensions [77,78]. The decay
ratio β also affects the quench dynamics and the dynamical
critical behavior in the transverse-field Ising chain [79,80].
Regarding the context of the ETH and its breakdown, it has
recently been reported that sufficient dipole interactions result
in Hilbert space fragmentation and MBL [31].

I consider the Coulomb interaction (β = 1), which is
longer ranged than the dipole form and eliminates the multi-
band structure at relatively large V in the density of states
(DOS) to have better level statistics. The Hamiltonian (1) con-
serves the total particle number N = 〈N̂〉 = ∑

i〈n̂i〉, and the
present work is restricted to the largest sector with half-filling
N = L/2. The periodic boundary conditions are adopted to
minimize the boundary effect. To rule out all trivial degen-
eracies and reduce the computational cost of the full exact
diagonalization, the Hamiltonian matrix is constructed in ba-
sis |s〉, preserving the following symmetries as [81]

N̂T̂ P̂Ẑ|s〉 = Neik pz|s〉. (2)

Here T̂ is the momentum operator, k = 2mπ/L (m =
−L/2, . . . , 0, . . . , L/2) is the momentum, P̂ (Ẑ) represents
the reflection (particle-hole inversion) operator, and p = ±1
(z = ±1) is the corresponding parity. The Hilbert space di-
mension N is of the order of ∝ 2L/(L × L × 2 × 2), which is
about 105 for the largest system size, L = 26, investigated. As
a comparison, the paper also computes eigenstates in a basis
with only conserved N and real-time evolution of the product
states in Secs. III C and III D, with maximum size L = 18. For
all numerical results, t = 1 is set as the energy scale.

III. RESULTS

While the disorder-free ETH breakdown due to sufficient
long-range interactions has been investigated in the frame
of Hilbert space fragmentation in previous studies [31,32],
the present work aims to understand the phenomenon in an

FIG. 1. (a) The mean ratio of adjacent gaps r̄ versus interaction
strength V for different system sizes L. Here the mean value and error
are from the average over eight sectors with conserved momenta
(k = 0 and π/2) and parities (p ± 1, z ± 1); within each sector, I con-
sider energy levels in the middle half of the spectrum. (b) The distri-
bution P(r) for L = 26 and different values of V in the sector {k = 0,

p = z = 1}. The inset displays the density of state in the same sector
as a function of energy density ε = (E − Emin )/(Emax − Emin ).

alternative aspect in which the Coulomb interaction can ef-
fectively introduce quasidisorders. Therefore, the numerical
results are presented in a rather standard way of dealing with
disordered localization problems. Specifically, Sec. III A char-
acterizes thermalization and MBL using level statistics and
eigenstate expectation values, and Sec. III B considers MBL
to be a generalized Anderson localization problem. The full
localization in Hilbert space is further confirmed by real-time
dynamics in Sec. III C. In Sec. III D, I investigate the entan-
glement entropy and demonstrate that the generic eigenstate
is not fully localized in real space.

A. Level statistics and thermalization predictions

Thermalization and localization are generally related
to the ergodic and nonergodic regimes, which can be
characterized by the spectrum structure and specifically
quantified using the ratio of adjacent gaps [7–9], rα ≡
min(δα+1, δα )/ max(δα+1, δα ), where δα = Eα − Eα−1 is the
gap between adjacent energy levels and Eα is the αth eigenen-
ergy. As displayed in Fig. 1(a), the average r̄ agrees with the
value predicted by the Gaussian orthogonal ensemble (GOE)
at small interactions, indicating the ergodic phase in this re-
gion. At large V values, r̄ approaches the value that obeys the
Poisson distribution and shows localization characteristics.
The results from different system sizes suggest the possibility
of an ergodic-nonergodic transition as the jump of r̄ becomes
sharper as L increases.

The ergodic and nonergodic behaviors are further con-
firmed by the explicit distribution of r for several typical
interactions at the largest L = 26, as shown in Fig. 1(b). The
DOS in the inset Fig. 1(b) significantly differs at different V
values; therefore, I take the average over the middle half of
the spectrum to capture the physics at the infinite temper-
ature instead of focusing on the fixed energy density. The
continuous band manifests no obvious spectrum fragmenta-
tion at a large interaction, V = 128, which differs from the
short-range and dipole interaction cases. The results in Fig. 1,
which manifest the change of level statistics from ergodic to
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FIG. 2. Eigenstate expectation values 〈n̂k=0〉α for (a) V = 1 and
(b) V = 32 and different L values. The inset of panel (a) shows
the fluctuations of consecutive eigenstate expectation values �nk=0

as a function of the Hilbert space dimension N , where the dashed
line displays the fitting to N γ with γ = −0.49. Here the results
correspond to the sector {k = 0, p = z = 1}.

nonergodic behavior in the full spectrum, are not simply pre-
dicted in the frame of strong-constraint-induced Hilbert space
fragmentation. Note that in the limit V → ∞, it is obvious
that the eigenenergies approach the spectrum of the basis (2)
with banded DOS and massive degeneracies, which is not the
interest of the present work.

In the thermalized phase, the ETH predicts that the eigen-
state expectation value of a generic few-body operator is a
smooth function of energy [1–4]. On the contrary, in the MBL
phase, the physical quantity is discontinuous even for eigen-
states with very close energies. We verify the ergodicity of
the system along this line by examining the zero momentum
occupancy n̂k=0 = 1

L

∑
i, j b̂†

i b̂ j as well as the correspond-
ing eigenstate-to-eigenstate fluctuation �n̂k=0 ≡ |〈n̂k=0〉α −
〈n̂k=0〉α+1|, where 〈〉α denotes the expectation value of the
eigenstate |α〉. As displayed in Fig. 2(a), for the small V = 1,
the possessed region of 〈n̂k=0〉 becomes narrower as the sys-
tem size increases, which implies a smooth function of energy
in the thermodynamic limit. In contrast, the same quantity
in the MBL phase (V = 32) in Fig. 2(b) shows little system
size dependency. In the inset of Fig. 2(a), there is a clear
power-law behavior of the �n̂k=0 as a function of Hilbert
space dimension N in the thermal phase, where the fitting
exponent −0.49 is in consistence with the N−1/2 behavior
predicted by ETH analysis [82].

B. Anderson transition in random graphs

Anderson localization of single-particle orbitals is known
to display multifractality at criticality [23]. Recent studies
have observed a more generic Hilbert space multifractality
in interacting systems and employed it to describe thermal-
MBL transitions [83–87]. Rewriting the Hamiltonian (1) in
the computational basis |s〉 [see Eq. (2)] as

H =
∑

s

μs|s〉〈s| +
∑
s �=s′

tss′ |s〉〈s′| (3)

shows that MBL degenerates to a generalized Anderson lo-
calization problem, and the many-body bases |s〉 can be
considered as complex Anderson orbitals. For the arbi-
trary many-body wave function |	〉 = ∑

s ψs|s〉, the interest

FIG. 3. (a) The multifractal dimension D∞
λ as a function of V ,

and the fitting parameter fλ in the inset. (b) IPR/N as a function of
V , where the horizontal line marks 1/3 from the ETH prediction. In
panels (a) and (b), the mean value and error are from the average over
eight sectors with conserved momenta k (0, π/2) and parities p (±1)
and z (±1). Panels (c) and (d) display the linear fitting Dλ(N ) =
D∞

λ − fλ for S1 and S2, respectively. In panels (c) and (d), the data
are from the sector {k = 0, p = z = 1}, and the black dashed line
has a slope of 1.

related to multifractality lies in the mth participation entropy
defined as

Sλ = 1

1 − λ
ln

( N∑
s=1

|ψs|2λ

)
. (4)

Specifically, S1 = −∑
s |ψs|2 ln |ψs|2 is the Shannon entropy,

and S2 is the logarithm of the inverse participation ratio (IPR)
[88] defined as IPR = 1/

∑
s |ψs|4. For a finite system with

Hilbert space dimension N , the λ-dependent fractal dimen-
sion Dλ measures the ergodic fraction of the Hilbert space,
with Sλ(N ) = D(N ) lnN . The asymptotic scaling approach-
ing the infinite dimension follows the form Dλ(N ) = D∞

λ −
fλ with a nonuniversal constant fλ [83]; therefore, one can
extract D∞

λ by the linear fitting Sλ(N ) = D∞
λ lnN − fλ.

As displayed in Fig. 3(a), D∞
λ as a function of interaction

well demonstrates the trend of a dynamic transition: at small
V values, D∞

λ = 1 indicates fully ergodicity in the thermal
phase; at larger interactions, D∞

λ < 1 shows the multifractal
behavior in the localized phase. The sharp peak of the fitting
parameter fλ also implies a possible transition point. Fig-
ures 3(c) and 3(d) explicitly display the fittings of S1 and S2,
in the sector {k = 0, p = z = 1} as an example, where both
results suggest a critical interaction around V = 14 depicted
by the black dash-dotted line with a slope of 1. The ergodicity
breakdown is also demonstrated in Fig. 3(b) by displaying
IPR/N for different system sizes and interactions. In the ther-
mal region, IPR/N is almost independent of L, and the value
agrees with the GOE prediction IPR = N /3 at very small
interactions. In the localized region, IPR/N decays rapidly
as L increases.

155113-3



CHEN CHENG PHYSICAL REVIEW B 108, 155113 (2023)

FIG. 4. Real-time evolution of (a) fidelity |〈ψ (t )|ψ (0)〉| and
(b) IPR/N starting from the initial state |s〉 and maintaining all sym-
metries in the sector {k = 0, p = z = 1}, for L = 26 and different V
values). Panels (c) and (d) compare the evolution from the product
state |q〉 and the corresponding symmetric states |s〉. The evolution
has been averaged over 64 random initial states in the middle half of
the initial state spectrum.

The origin of this disorder-free localization can be under-
stood in the aspect of a generalized Anderson localization
problem with quasidisorders (3). In the many-body basis
|s〉, the diagonal element μs = 〈s| ∑R R−1n̂R|s〉 has a form
similar to that of the disorder-induced MBL with μdis

s =
〈s| ∑i hin̂i|s〉. Here R (n̂R) is the distance (density-density
correlation operator) in the translational invariant basis, and
hi is the random on-site potential in the disordered case. In
both forms, each diagonal element counts a summation of
∝ L different values and further provides ∝ N possibilities
for all diagonal elements of the Hamiltonian matrix in the
many-body basis. In most studies on the disorder-induced
MBL, hi is uniformly distributed. However, in the clean case
with Coulomb interactions, R−1 is discrete and decreases as a
power law. This difference can lead to different features, such
as the behavior of the fitting parameter fλ. In the present work,
fλ is always positive and approaches zero deep in the MBL
region, which differs from the disorder-induced thermal-MBL
transition where the fitting parameter changes its sign at the
critical point [84]. On the other hand, Sλ versus N shows nice
linear behaviors for all V and L values used, which also differs
from the disordered case.

C. Real-time dynamics

Localization in Hilbert space can be further confirmed by
checking the real-time dynamics starting from a random state
in the computational basis |s〉. In Fig. 4(a), the time-evolved
fidelity |〈ψ (t )|ψ (0)〉| decays rapidly to zero for V = 1, agree-
ing with the fact that the dynamical return probability of a
single site in the Hilbert space is infinitesimal in the chaotic
system. In contrast, the Hilbert space cannot be fully visited in
the localized phase, and the fidelity keeps a finite value at large
interactions (V = 32 and 64). Unlike the two-step dynamics

for the homogeneity parameter observed in Ref. [31], this high
overlap with the initial state shows no indication for further
decay, at least at the longest time (above 1010) explored in
this work. The evolution of IPR features similar dynamics. As
displayed in Fig. 4(b), IPR/N approaches zero in a relatively
short time in the thermal phase, but fluctuates around small
values in the localized state. Here all the real-time evolution is
averaged over 64 randomly initial states in the middle half of
the spectrum to mimic the same physics with static quantities
such as the level statistics [89].

Based on the above analysis on level statistics, eigenstate
expectation values, Anderson localization in a many-body
Hilbert space, and real-time dynamics of fidelity and the IPR,
increasing Coulomb interaction leads to a full localization
in the Hilbert space spanned by the basis |s〉, which is very
similar to the disorder-induced localization. Next, to better
understand the two-stage dynamics with the eventual thermal-
ization of specific product states in boson chains with dipole
interactions [31], I reinvestigate the localized phase in the
basis of the product state |q〉, which conserves only the total
particle N . Using possible combinations of trivial symmetries
to an arbitrary product state, one retrieves the state |s〉 [90],

|s〉 = 1/(
√

2 × 2 × L)
∑

r

(1 + P̂)(1 + Ẑ )T r |q〉, (5)

in the symmetric sector with k = 0 and p = z = 1. In the
following, I compare the evolution of |q〉 and |s〉 in Eq. (5),
and the latter is called the symmetric correspondence.

As shown in Fig. 4(c), the product state and its symmet-
ric correspondence have almost the same short-time fidelity,
which indicates the same short-relaxation behaviors. This is
unsurprising since the evolution of an arbitrary |q〉 is equiva-
lent under symmetry operations. At longer times, while the
fidelity of |s〉 maintains the finite value, |〈ψ (t )|ψ (0)〉| for
the product state features a slow logarithmic decay, provid-
ing clues of a final thermalization. However, as displayed in
Fig. 4(d), although the IPR of the product state |q〉 continues
to increase at a longer time range than the symmetric state
|s〉, the two curves almost merge at the long-time limit and
show the lack of ergodicity in the full Hilbert space. The
different indications from fidelity and the IPR may arise from
the degeneracy of the system in the product basis, in which
case the evolution fully visits the subspace spanned by the
degenerated eigenstates (with a dimension proportional to L)
but not the full Hilbert space.

D. Entanglement entropy

While the above analysis suggests a full localization in the
Hilbert space with quasidisorders, the evolution of a product
state retrieves all real-space symmetries in the long-time limit
and allows particle transport in real space. Based on this
discrepancy, it is interesting to check further the real-space
entanglement entropy of the eigenstates, which features the
volume or area law in the standard thermal or MBL phase.
The present work considers the most widely used half-chain
entanglement entropy Sent = TrρA ln ρA, where ρA = TrBρ is
the reduced density matrix and ρ is the density matrix of the
whole system, including two equally sized parts A and B.
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FIG. 5. (a) The entanglement entropy per site Sent/L of the eigen-
states versus V for different system sizes. The inset displays Sent .
(b) Real-time evolution of Sent for L = 18 and three typical V values,
compared between the evolution from the product state |q〉 and the
corresponding symmetric states |s〉. The choice of initial states is the
same as that in Fig. 4.

In the inset of Fig. 5(a), for the system sizes investigated,
Sent increases as L increases, even in the localized state with
large interactions. Furthermore, by checking the entanglement
entropy per site, one observes a possible transition implied by
the crossings of Sent/L versus V for different system sizes.
Regardless that one cannot rule out the finite size effect, the
current data for system sizes up to L = 18 show an entan-
glement entropy behavior beyond volume law in the thermal
phase and between area and volume law at large interactions.
Although it is hard to properly extrapolate Sent to the ther-
modynamic limit with the current results, one can roughly
estimate the minimum size dependence of a generic transla-
tional invariant state as Sent ∝ ln L, which gives a lower bound
of the eigenstate entanglement in the localized phase. This
logarithmic size dependence reminds us of the gapless ground
state with long-range order and finite transport [91,92], which
is not localized in real space.

The evolution of entanglement entropy is displayed in
Fig. 5(b). The symmetric initial state |s〉 is already highly
entangled in real space, and the evolution starting from which
reaches the long-time limit in a relatively short time. For
the nonentangled product states, the quench dynamics are
different in different phases: Sent rapidly saturates in the ther-
mal phase (V = 1) but has a long-time slow growth in the
localized phase (V = 32). Here the evolution starting from a
product |q〉 may have a short-time relaxation nature similar to
that of its symmetric correspondence |s〉, mostly contributed
by the direct hoppings of the Hamiltonian (1). At long times,
higher-order processes, especially for those between prod-
uct states generated by symmetry operators from the same
|q〉, dominate the dynamics and eventually reach ergodicity
in a subset of the Hilbert space. This subspace, which is
determined by the long-time evolution of the corresponding
symmetric states |s〉, can be a small fraction of the full Hilbert
space at large interactions.

IV. CONCLUSION AND DISCUSSION

The strong Coulomb interaction in the one-dimensional
bosonic chains leads to unconventional localization without
disorders. In the computational basis ruling out all trivial
symmetries, interaction-induced localization is nicely char-
acterized by the level statistics, the eigenstate expectation
values, the multifractality in the Hilbert space, and the time
evolution of fidelity and the IPR. Here the nature of lo-
calization is attributed to the quasidisorder provided by the
Coulomb interactions, and the full localization for generic
eigenstates is well-defined in the Hilbert space without bor-
rowing the concept of Hilbert space fragmentation. It is worth
noting that the interaction is relatively strong but still finite
with a nonbanded DOS, away from the infinite interacting
limit.

However, due to real-space symmetries and the conse-
quent degeneracy, the real-time dynamics of a product state
in the localized phase exhibits two different timescales. After
a short-time relaxation on account of the direct hopping term,
the higher-order processes connecting all equivalent product
states under symmetry operations dominate the long-time
behaviors, ultimately merging the evolution of the corre-
sponding symmetric state. In this procedure, the evolution
retrieves all trivial symmetries and allows transport in real
space. In this sense, the localization is not complete in real
space. For the same reason, the entanglement entropy of the
localized eigenstate with the real-space symmetries has a size
dependence beyond the area law. This long-range interaction-
induced localization in clean chains is beyond the picture of
the l bits [93,94] of the disorder-induced MBL and deserves
further investigation.

It is also interesting to reconsider the present results
along the line of Hilbert space fragmentation, and all results
suggest that the symmetric state |s〉 marks an individual frag-
mented section in the Hilbert space spanned by the product
states |q〉. For the clean chains with long-range interac-
tions, one observes full ergodicity within the fragmented
section but ergodicity breaking between sections |s〉. This dif-
fers from the Stark MBL, where the system features ergodicity
breaking inside the dipolar-momentum-conserved fragmented
sections [95]. Again, I attribute this long-time ergodicity to
real-space symmetries and degeneracy. Any perturbation that
breaks the real-space symmetries, such as disorders or a lin-
ear potential, would lead to full MBL. The former has been
confirmed in the dipolar interacting systems [31].
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