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Chiral and nodal superconductors in the t-J model with valley contrasting
flux on a triangular moiré lattice
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Recent experimental progress has made it possible to simulate spin-1/2 Hubbard model on triangular lattice
in moiré materials formed by transition metal dichalcogenide (TMD) heterobilayer or homobilayer. In twisted
TMD homobilayer, a vertical electric field can induce a valley contrasting flux in the hopping term. In this
paper we study possible superconductors from a t-J model with valley contrasting flux � using the slave boson
mean-field theory. We obtain a phase diagram with doping x and �. A finite � breaks spin rotation symmetry and
the pairing symmetry is a superposition of spin singlet d − id and spin triplet p + ip. There are two topological
phase transitions when tuning � from 0 to π , with three Dirac nodes at one transition and one single Dirac node
at the other transition. We also discuss the effects of Van Hove singularity and a three-site correlated hopping
term on the pairing strength. Lastly, we demonstrate that a small anisotropy term breaking the C3 rotation can
lead to a time-reversal invariant nodal superconductor connected to the dx2−y2 superconductor on square lattice.
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I. INTRODUCTION

Superconductivity from doping a Mott insulator has been
intensively studied in the last several decades after the discov-
ery of the high-Tc superconductor in cuprates [1]. Recently,
moiré superlattices emerge to be a wonderful platform to sim-
ulate strongly correlated physics [2–22]. Superconductivity
has been experimentally reported in twisted bilayer graphene
and a twisted multilayer graphene system with alternating
twist angles [5,23–25]. However, the mechanism of the su-
perconductivity there is still under debate. Theoretical study
in twisted bilayer graphene is hard due to the lack of a simple
lattice model which is obstructed by the fragile topology [26].
On the other hand, moiré superlattice based on transition
metal dichalcogenides (TMDs) is believed to be described by
a simple Hubbard model [27] similar to that of the cuprate.
This offers an opportunity to study superconductivity in the
Hubbard model or the t-J model on triangular lattice.

Moiré superlattice can be formed by twisting TMD homo-
bilayer or heterobilayer. In both cases the resulting Hubbard
model has two flavors from the two valleys, which are locked
to the spins due to the strong Ising spin-orbit coupling of the
valence band. In the heterobilayer case, it was shown that
there is a good SU(2) spin rotation symmetry in the valley
(spin) space [27]. Thus the physics of doping the Mott in-
sulator at νT = 1 is captured by the standard t-J model. In
contrast, for the twisting TMD homobilayer [28], the low-
energy model has a valley contrasting flux � induced by a
displacement field in the z direction [30,31]. The valley con-
trasting flux originates from the inversion symmetry breaking
within each valley and is known to exist also in graphene
moiré systems [32]. In such a case, the SU(2) spin rotation
symmetry is broken down to U(1) except at � = 0 mod 2π .
The t-J model with � = 0 has been found to host a d − id
superconductor by the slave boson mean-field theory [33].
But the fate at generic � is unknown, although there are
already a few studies at the weak-coupling limit [34–36]. For

application to twisted TMD homobilayer, it is desirable to
obtain a phase diagram of (n,�) given that both the density
n and the flux � can be conveniently tuned in the dual gated
sample.

In this paper we perform a slave boson mean-field study
of the t-J model with a generic valley contrasting flux �.
The flux � enters both the hopping term and the J term
through a Dzyaloshinskii-Moriya interaction. At finite �, we
find that the d − id spin-singlet pairing is mixed with a p + ip
spin-triplet pairing. By changing � at fixed density n, we
find two topological phase transitions between Chern number
|C| = 2 and |C| = 1 through three Dirac nodes and one Dirac
node, respectively. We also notice the correlations between
the density of states (DOS) and the pairing strength. Pairing is
stronger at the Van Hove singularity. Chiral superconductivity
has been observed in numerical simulations in the SU(2)
symmetric limit [37–39]; our study demonstrates a route to
tune a topological phase transition through changing the val-
ley contrasting flux. We also study the effect of strain which
breaks the C3 rotation symmetry. We find that a small strain
favors a nodal superconductor with the same symmetry as the
dx2−y2 pairing in cuprates. This suggests that a nematic nodal
superconductor is a strong competing state. Indeed, a recent
numerical simulation shows that adding a J2 term can lead
to a transition from the chiral superconductor to the nematic
nodal superconductor [39].

II. MODEL

The twisted TMD homobilayer can be described by a gen-
eralized triangular-lattice Hubbard model [30]:

H = −
∑
〈i j〉,s

(teiφs
i j c†

i,sc j,s + H.c.)

+ U
∑

i

ni↑ni↓ − μ
∑

i

(ni↑ + ni↓), (1)
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where s =↑,↓ labels the valley index which is locked to
the spin. 〈i j〉 represents the nearest-neighbor bond. We have
φ

↑
i j = −φ

↓
i j due to the time-reversal symmetry. As illustrated

in Fig. 1, φ
↑
i j = ±φ depending on the direction of the bond.

There is a valley contrasting flux � = 3φ and −� in the two
types of triangles for one valley. We label σa as Pauli matri-
ces in the valley space. We have time-reversal symmetry T
acting as σxK, where K is the complex conjugate. The mirror
reflection operators Mx and My act as cs(x, y) → cs(x,−y)
and cs(x, y) → (σx )ss′cs′ (−x, y), respectively. C6 around site
x acts as cs(x) → (σx )ss′cs′ (C6x). Two basis vectors of the
lattice are a1 = (1, 0) and a2 = (− 1

2 ,
√

3
2 ). The corresponding

reciprocal basis vectors are b1 = (2π, 2π√
3

) and b2 = (0, 4π√
3

).

φ and φ + 2π
3 are gauge equivalent upon a transformation:

cs(x) → (ei(x/3)·(b1+b2 )σz )ss′cs′ (x). We can combine a particle-
hole transformation with the gauge transformation: cs(x) →
(ei(x/6)·(b1+b2 )σzσx )ss′c†

s′ (x), which maps � to � + π and the
density n to 2 − n [34].

In the strong-coupling limit t 	 U and filling factor n < 1,
we can use the standard t/U expansion [40] to obtain a t-J
model [30]:

H = −
∑
〈i j〉,s

P
(
teiφs

i j c†
i,sc j,s + H.c.

)
P

+ J
∑
〈i j〉

[
Sz

i Sz
j + cos(2φ

↑
i j )

∑
α=x,y

Sα
i Sα

j + sin(2φ
↑
i j )

× (
Sx

i Sy
j − Sy

i Sx
j

) − 1

4
nin j

]
− μ

∑
i

(ni↑ + ni↓), (2)

where J = 4t2

U and P is the projection operator which forbids
double occupancy. For φ 
= 0, the system only has a U(1) spin
rotation symmetry generated by σz. At n = 1, the ground state
is an XY ferromagnetic phase for |φ| ∈ ( π

3 , 2π
3 ), 120◦ AF+

phase for φ ∈ (0, π
3 ) ∪ (π, 4π

3 ) and 120◦ AF− phase for φ ∈
( 2π

3 , π ) ∪ ( 5π
3 , 2π ) [30]. The ground state remains unexplored

at finite doping with n = 1 − x. We expect that the magnetic
order is suppressed by the doping [33]. The major focus of this
paper is to explore the possibility of superconducting phase in
the small doping regimes. For the n > 1 case, we can apply
the particle-hole transformation to map the model to the n < 1
model above, but with a change of the flux φ → φ + π .

III. SLAVE BOSON MEAN-FIELD THEORY

Since it is difficult to handle the projection operator di-
rectly, we use the U(1) slave boson theory [1,41] to deal
with the model. We focus our discussion in the region n < 1,
while the n > 1 regime can be obtained by the particle-hole
transformation. The electron operator can be represented as
c†

i,s = f †
i,sbi. By decoupling the interaction part in the hop-

ping and pairing channel, we use the following mean-field

FIG. 1. Illustration of the flux pattern for the valley ↑. The other
valley is related by time-reversal symmetry and has opposite flux
pattern.

Hamiltonian to perform the calculation:

HMF = −
∑
〈i j〉,s

(teiφs
i j 〈bib

†
j〉 f †

i,s f j,s + H.c.)

− J

8

∑
〈i j〉,s

[(χ∗
i j,s + 2ei2φs

i j χ∗
i j,−s) f †

i,s f j,s + H.c.]

+ J

8

∑
〈i j〉

[(	i j + 2	 jie
i2φ

↑
i j ) f †

i,↑ f †
j,↓ + (i ↔ j) + H.c.]

− μ
∑

i

(ni↑ + ni↓), (3)

with χi j,s = 2 〈 f †
i,s f j,s〉 and 	i j = 2 〈 fi↑ f j↓〉. The chemical

potential μ is tuned to make 1
N

∑
i,s 〈ni,s〉 = 1 − x, where

x is the doping level. We ignore the magnetic order since
it is suppressed on a doping level greater than a critical
value xc [33]. Moreover, we assume that the system respects
the translation symmetry, then the bosons are condensed
and satisfy 〈bib

†
j〉 = 〈b†

jbi〉 = x [33]. We can simply take
〈b〉 = √

x.
As for the n > 1 case, we can apply a particle-hole trans-

formation ci,s → c†
i,−s on the original Hamiltonian and apply

the same procedure. By solving the self-consistent equation,
we obtained the order parameter dependence on φ and n.
Moreover, we remove the regime 0.95 < n < 1.05 by assum-
ing the superconducting order is suppressed. The result is
shown in Fig. 2. We found that the superconducting order is
mixed by p wave and d wave. Moreover, the pairing strength
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(a) (b)

(c) (d)

FIG. 2. t/J = 3. (a) Dependence of p + ip and d − id pairing’s
component on φ at n = 0.9. (b) Dependence of |	i j | on the density n
while flux � = 0, π

2 on triangular lattice and � = 0 on square lattice.
(c) Dependence of |	i j | on � and n. (d) Dependence of DOS on �

and n. In (c) and (d), the region 0.95 < n < 1.05 is removed because
the superconductivity is expected to be suppressed because the slave
boson condensation 〈b〉 = √

x is weak in this regime.

is enhanced near the Van Hove singularity, which depends on
the value of φ.

IV. p WAVE VS d WAVE

The special case with � = 0 has been studied before [33].
There 	i j = 	e±i2θi j is in the dx2−y2 ± idxy pairing symmetry,
where 	 = |	i j | does not depend on the bond direction.
With a finite �, the spin rotation symmetry is broken down
to U(1) generated by the Sz rotation. Therefore, the relation
	i j = 	 ji would not hold anymore and generically the pair-
ing symmetry is a superposition of the spin-triplet pwave and
the spin-singlet d wave. 	i j and 	 ji have the same magni-
tude but different phases. Since 	i j respects C3 symmetry
instead of C6 symmetry, the angular momentum is defined
mod 3. The p ± ip and d ∓ id pairings are mixed, and we
can define their components as 	p = 1

2|	i j | |	i j − 	 ji| and

	d = 1
2|	i j | |	i j + 	 ji|. The components’ dependence on φ is

shown in Fig. 2(a).
We note that the superconducting order breaks the

time-reversal symmetry T and mirror reflection symme-
try Mx(My), but satisfied the combined mirror time-
reversal MxT (MyT ) symmetry combined with a U(1)
transformation.

V. PAIRING STRENGTH

We study the dependence of |	i j | on different values of n
and �. As shown in Figs. 2(b) and 2(c), the superconducting
gap |	i j | is larger at electron doping than hole doping when
0 � � < π

2 and 3π
2 < � � 2π , and smaller when π

2 < � <
3π
2 . The reason is that the density of states (DOS) of the

free dispersion does not respect particle-hole symmetry, and

FIG. 3. t/J = 3. Dependence of Chern number on n and � for
fixed chirality. The black and white line corresponds to one and three
Dirac nodes in the dispersion plot.

the Van Hove peak locates at n > 1 for the former case and
n < 1 for the latter case. The apparent correlation between
the pairing strength and the DOS in Fig. 2(d) suggest that
we should look for superconductors close to the Van Hove
singularity, which is tunable by gating in the twisted TMD
homobilayer.

VI. TOPOLOGICAL PROPERTY

The chiral superconductor is known to host a nonzero
Chern number, which could be calculated via [42]

C = 1

4π

∫
BZ

d2k
[
m̂ · (

∂kx m̂ × ∂ky m̂
)]

, (4)

where m̂ = 1√
ε2

k +|	k |2
(Re	k, Im	k, εk ). The definition is

equivalent to the winding number of 	k as k moves around
the Fermi surface in the anticlockwise direction. We can
also calculate the winding number by counting the number
of 	k’s zero points inside the Fermi sphere; the formula is
C = #1 − #2, where #1 and #2 represent the number of saddles
and sources, respectively. The phase diagram is shown in
Fig. 3 provided that the chirality is fixed. The change in Chern
number equals to the number of Dirac nodes at the transition
point. There are two kinds of transitions, which corresponds to
one Dirac node (at κ point) and three Dirac nodes (inside the
mini Brillouin zone) closing the gap, respectively. For details,
please see Appendix A.

VII. EFFECTS OF φ

The phase of hopping parameters φs
i j plays two roles in our

model: (1) It can produce an effective magnetic flux in the t
term. (2) It enters the spin-spin coupling J term. The first one
changes the distribution of DOS and the second one changes
the form of pairing. To study these two effects in detail, we
change the kinetic term and the interaction term in Eq. (2)
to the conventional t-J model’s form, which are named t̃-J
model and t-J̃ model, respectively. The concrete form of their
Hamiltonian can be found in Appendix B. We note that φ and
φ + 2π

3 could no longer be related via a gauge transformation
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(a) (b)

(c) (d)

FIG. 4. t/J = 3. (a), (b) Components of p + ip and d − id at n =
0.9 for the t-J̃ model and the t̃-J model, respectively. (c), (d) The
superconducting gap |	i j | at n = 0.88 for the t-J̃ model and the t̃-J
model, respectively.

here. In the t-J̃ model, we find that the superconducting order
parameter returns to nearly pure d wave pairing shown in
Fig. 4(a), but the hopping term still acquires a phase based
on the mean-field calculation. As shown in Fig. 4(b), the
components’ dependence on φ in the t̃-J model is nearly the
same as the original model. Therefore, we can conclude that
the pairing symmetry is decided by the J term as expected. In
the t̃-J model, the phase of the hopping parameter is found to
be relatively small, especially at high doping levels. It makes
the effective flux become smaller than the original Hamilto-
nian, causing the superconducting gap to become less depen-
dent on φ than the one in the t-J̃ model, as shown in Figs. 4(c)
and 4(d).

VIII. NEMATIC NODAL SUPERCONDUCTOR
FROM STRAIN

So far we have only observed a gapped chiral superconduc-
tor respecting C3 symmetry. One may expect that a nematic
superconductor with mixing between l = 1 and l = −1 angu-
lar momentum channels is a competing state. In the following
we show that a small strain can easily favor a nematic nodal
superconductor. We consider the effects of strain by multiply-
ing a factor (1 − α) on the hopping parameter teiφs

i j on the
bond along the x axis, i.e., ti±a1,i, where α implies the stress

intensity. Since Ji j = t2
i j

U , the J term needs to be multiplied by
a factor (1 − α)2 along the x axis. When α = 1, the kinetic
and the interaction terms are nonzero on four bonds. Then
the Hamiltonian is mathematically equivalent to the one on
the square lattice, where the pairing symmetry is known to be
dx2−y2 . Therefore, the time-reversal symmetry and mirror re-
flection symmetry can be restored by sufficiently large strain.
During the calculation, the pairing parameter 	i±a1,i is found
to decay very fast when α grows as shown in Fig. 5(c). It
shows that the dx2−y2 superconductor in the square lattice can
be reached by small α. We use 1 − 〈T 〉 and 1 − 〈My〉 to
label the symmetry of the ground states. Here 〈T 〉 is defined

(a) (b)

(c) (d)

FIG. 5. t/J = 3, n = 0.85. (a) The expected value of the time-
reversal operator, the mirror reflection operator, and the mirror time-
reversal operator as α changes for flux � = π

2 . (b) Dependence of
|	i+a2,i|(=|	i−a3,i|) and |	i+a3,i|(=|	i−a2,i|) on α for � = π

2 with
the chirality fixed. (c) Dependence of |	i+a1,i| on α for flux � =
0, π

2 , π . (d) The dispersion plot for � = π

2 , α = 0.15; the gap closes
at four nodal points in the first Brillouin zone.

by the inner product of the ground states of H and T HT −1,
and similar for My. Since the Hamiltonian has a global U(1)
symmetry, 〈T 〉 and 〈My〉 will change as the global phase θ

changes. Therefore, we need to choose the appropriate θ to
maximize the expected value to represent the symmetry faith-
fully. As shown in Fig. 5(a), the time-reversal symmetry and
mirror reflection symmetry can be restored by a small strain
αc. Moreover, we find that |	i+a2,i| 
= |	i+a3,i| if 0 < α < αc

as shown in Fig. 5(b). In Fig. 5(d), we show that there are four
nodes in the resulting superconductor phase under strain. This
calculation demonstrates that a nodal nematic superconductor
is indeed a strong competing state and can be favored by a
small strain. It is interesting to also study the possibility that
the C3 symmetry is spontaneously broken by additional terms.

IX. THE EFFECT OF THREE-SITE HOPPING TERM

In addition to Eq. (2), perturbation theory also gives a
three-site hopping term [43], which can be written as

Ht3 = − t3
∑

〈i jk〉,s
P(n j,−sc

†
k,sci,se

i2φs
k j

− c†
k,sc

†
j,−sc j,sci,−s + H.c.)P, (5)

where t3 = J
4 . Here we suppose t3 can be changed indepen-

dently in order to discuss this term’s effect. By applying the
slave boson approach mentioned above, we can read off this
term as

Ht3 = − t3
∑

〈i jk〉,s
(bkb†

i f †
j,−s f j,−s f †

k,s fi,se
i2φs

k j

− bkb†
i f †

k,s f †
j,−s f j,s fi,−s + H.c.), (6)

where bkb†
i ≈ 〈bkb†

i 〉 = x is the doping level, so this term’s
effect increases as the doping level increases. Indeed, Eq. (6)

155111-4



CHIRAL AND NODAL SUPERCONDUCTORS IN THE … PHYSICAL REVIEW B 108, 155111 (2023)

(a) (b)

FIG. 6. t/J = 3. (a) Dependence of |	i j | on t3 for n = 0.85.
(b) Dependence of |	i j | on n for t3 = 0.25J .

can be decoupled in the pairing channel [43] as

Ht3 = xt3
∑
〈i j〉

[	i j (	
∗
jie

i2φ
↑
ji + 	∗

i j ) + H.c.]. (7)

So we can expect that a positive value of t3 can increase the
total energy, leading to a decrease in |	i j | by solving the self-
consistent equation. The mean-field calculation validates our
expectation as shown in Fig. 6(a). For different value of �, the
pairing strength |	i j | always decreases as t3 increases. More-
over, the existence of Eq. (7) does not violate the particle-hole
symmetry at � = π

2 as shown in Fig. 6(b).

X. SUMMARY

In conclusion, we use a slave boson method to investigate a
t-J model with valley contrasting flux in the context of twisted
TMD homobilayer. We show that the superconducting order
parameter is a mixture of p − ip and d + id pairing when
φ 
= 0. We notice two topological phase transitions with jump
of Chern numbers by tuning the valley contrasting flux �,
which is controlled by the vertical displacement field in the
TMD homobilayer. The pairing strength correlates with the
density of states, suggesting that we should search for su-
perconductors near the Van Hove singularity. Finally, we find
that a small strain can favor a nematic nodal superconductor
similar to the dx2−y2 pairing on the square lattice.
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APPENDIX A: TOPOLOGICAL TRANSITIONS

In the main text, we observe that the Chern number
depends on � and n. There are two kinds of topological
transitions, which corresponds to one Dirac node and three
Dirac nodes, respectively. The sketch of the dispersion plot
for two different situations is shown in Fig. 7.

APPENDIX B: HAMILTONIAN OF t̃-J MODEL AND t-J̃
MODEL

The concrete form of the t̃-J model and the t-J̃ can be
written as

Ht̃-J = −
∑
〈i j〉,s

P(tc†
i,sc j,s + H.c.)P

+ J
∑
〈i j〉

[
Sz

i Sz
j + cos(2φ

↑
i j )

∑
α=x,y

Sα
i Sα

j

+ sin(2φ
↑
i j )

(
Sx

i Sy
j − Sy

i Sx
j

)−1

4
nin j

]

− μ
∑

i

(ni↑ + ni↓),

Ht-J̃ = −
∑
〈i j〉,s

P(teiφs
i j c†

i,sc j,s + H.c.)P

+ J
∑
〈i j〉

⎛
⎝ ∑

α=x,y,z

Sα
i Sα

j − 1

4
nin j

⎞
⎠

− μ
∑

i

(ni↑ + ni↓). (B1)

APPENDIX C: STABILITY OF THE DIRAC NODES

In the main text, we show that the Chern number has two
kinds of transitions while varying the parameters. Here we
demonstrate that the transitions will remain the same type
under perturbations respecting C3 symmetry. This fact can
be verified by calculating the number of Dirac nodes at the
transition point. The Dirac node corresponds to the point in
the first Brillouin zone where 	(k) and ε(k) vanish simulta-
neously. In our system, the C3 symmetry in the Hamiltonian
requires that 	(C3k) = 	(k) and ε(C3k) = ε(k). Therefore,
at the transition points that the Chern number only change by
1, the Dirac node locates at �, κ or κ ′. The superconducting

(a) (b)

FIG. 7. (a) Illustration of the three Dirac nodes inside the first Brillouin zone. (b) Illustration of the Dirac node at κ ′.
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FIG. 8. Dependence of the Chern number on φ at n = 0.85.

order parameter in k space can be written as

	(k) = 2|	i j |
∑

j=1,2,3

ei(2π/3)( j−1) cos(k · aj − φSC), (C1)

where φSC is defined by the relation 	i+aj,i = e−i2φSC	i−aj,i.
The expression around �, κ , or κ ′ can be expanded as

	(k) = 3|	i j |β(kx + iky), (C2)

where β = sin φSC, sin(φSC + 2π
3 ), and sin(φSC − 2π

3 ) cor-
responds to �, κ , and κ ′, respectively. Any rotation around the
z axis is equivalent to a U(1) gauge transform. The solutions
of 	(k) = 0 can only be shifted by adding a constant, which
breaks the z-rotation symmetry. Therefore, we can conclude
that the existence of the Dirac node at �, κ , or κ ′ is ro-
bust under perturbations respecting C3 symmetry. This can
be illustrated by considering the three-site term, Eq. (6), and

next-nearest-neighbor (NNN) hopping:

Ht2 = −t2
∑

〈〈i j〉〉,s
P(c†

i,sc j,s + H.c.)P, (C3)

where 〈〈i j〉〉 represents NNN sites. As shown in Fig. 8, the
transition of the Chern number remains the same pattern.

APPENDIX D: SYMMETRY TRANSFORMATION
ON THE ORDER PARAMETERS

We note that the order parameters in Eq. (3) have 12 de-
grees of freedom, in which 6 corresponds to the pairing in six
bonds; they are 	i±aj,i, j = 1, 2, 3, where a1 = (1, 0), a2 =
(− 1

2 ,
√

3
2 ), a3 = (− 1

2 ,−
√

3
2 ), and aj+3 = aj. The remaining

6 = 3 + 3 corresponds to the hopping parameters in spin-up
and spin-down channels; they are χi+aj,i,↑ and χi+aj,i,↓, j =
1, 2, 3. Under C6 rotation, the order parameters transform
as 	i+aj,i → −	i+aj−1,i, χi+aj,i,s → χi−aj−1,i,−s. Under time-
reversal transformation, the order parameters transform as
	i±aj,i → −	∗

i∓aj,i and χi±aj,i,s → χ∗
i±aj,i,−s. Under mirror re-

flection transformation about the x axis, the order parameters
transform as 	i±aj,i → 	i±a5−j,i and χi±aj,i,s → χi±a5−j,i,s. Un-
der mirror reflection transformation about the y axis, the order
parameters transform as 	i±aj,i → −	i±a5−j,i and χi±aj,i,s →
χi∓a5−j,i,−s.

From the above analysis, one can verify that under mir-
ror time-reversal transformation about the x axis, the order
parameters transform as 	i±aj,i → −	∗

i∓a5−j,i and χi±aj,i,s →
χ∗

i±a5−j,i,−s. Under mirror time-reversal transformation about
the y axis, the order parameters transform as 	i±aj,i →
	∗

i∓a5−j,i and χi±aj,i,s → χ∗
i∓a5−j,i,s. The mean-field results give

that the order parameters are gauge equivalent to the ones
before the symmetry transformation.
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