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Mott insulators in moiré transition metal dichalcogenides at fractional fillings:
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In this work, we study a slave-rotor mean-field theory of an extended Hubbard model, applicable to transition
metal dichalcogenide moiré systems, that captures both the formation of Wigner crystals as well as exotic spin
states on top of these charge backgrounds. Phase diagrams are mapped out for different choices of long-range
Coulomb repulsion strength, reproducing several experimentally found Wigner crystal states. Assuming unbro-
ken time-reversal symmetry, we find several spin-liquid states as well as dimer states at fractional fillings. While
spin dimer states are always found to have the lowest mean-field energy, several spin-liquid states are energeti-
cally competitive and may be stabilized by including gauge fluctuations or further interaction terms. We further
discuss possible experimental signatures of these states pertinent to two-dimensional moiré heterostructures.
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I. INTRODUCTION

Moiré patterns are formed by two or more similar two-
dimensional lattices overlaid with a slight relative strain or
twist angle, giving rise to a large-scale periodic structure. The
most prominent example, twisted bilayer graphene, theoret-
ically proposed by Bistritzer and MacDonald [1], has been
found to host a variety of strong correlation phenomena such
as superconductivity and correlated insulating states [2,3].
Moiré systems often feature strongly quenched kinetic en-
ergy scales and flat bands such that electronic interactions
become dominant, providing a fertile ground for exploring
strong correlations in condensed matter systems. However,
the flat band of twisted bilayer graphene is highly degenerate
(spin and valley) and nonlocal [4], such that the validity of
Hubbard-type models for localized orbitals is under debate.

On the other hand, moiré heterostructures constructed from
transition metal dichalcogenides (TMDs) also exhibit flat
bands, where only a twofold pseudospin degeneracy is present
due to large spin-orbit coupling and resulting spin-valley lock-
ing in TMDs. Wannier centers constructed from the flat band
of some moiré TMDs turn out to be localized at triangular
superlattice sites, and thus effective moiré Hubbard model
can be formulated [5,6]. Moiré TMDs are also insensitive
to the precise magic angle, i.e., flatness is maintained for a
large range of twist angles. These features, along with tunable
filling via gating, make moiré TMDs an ideal and flexible
platform to “simulate” [7,8] the Hubbard model and study
novel phases that can emerge in systems of strongly corre-
lated electrons [9]. Moreover, several moiré TMD systems are
found to feature topologically nontrivial bands [10,11], hence
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providing a platform to study the interplay of band topology
and strong interactions [12,13].

Recent experiments on WSe2/WS2 moiré heterostruc-
tures as well as twisted WSe2/WSe2 homobilayers have
demonstrated Mott-insulating states at half-filling, as well
as correlated insulating states at various fractional fillings
[14,15], corresponding to generalized Wigner crystals, where
longer-ranged Coulomb interactions lead to the localization of
charges on self-organized lattices.

A highly topical open problem in this context is concerned
with possible magnetic states that would arise at lowest tem-
peratures by interactions lifting the residual spin degeneracies
of charges localized on lattice sites [5,9,16,17]. Since at some
fractional fillings, the effective charge lattices correspond to
frustrated lattices, these states may be prime candidates for
the realization of highly sought-after quantum spin liquids
[18,19], featuring long-range entanglement and fractionalized
excitations, see also Fig. 1 for an illustration.

In this work, we focus on the moiré-Hubbard model with
nearest-neighbor hopping t , onsite and longer-range Coulomb
repulsions U and Vi j as an effective model for correlated
electrons and holes on an emergent moiré triangular lattice,
as applicable for K-valley moiré TMD heterostructures, such
as WSe2/WS2 heterobilayers or twisted WSe2 homobilay-
ers [5,7,20]. In principle, given a particular charge-ordered
configuration [stabilized by onsite (U ) and longer-ranged
(Vi j) repulsive interactions], one can perform a perturbative
expansion in the hopping t � U,Vi j to derive an effective
strong-coupling Hamiltonian that lifts the spin degeneracy.
However, this procedure is cumbersome in practice, requir-
ing separate perturbative expansions for each filling factor.
Further, at dilute fillings, spin-spin interactions may only be
induced by processes at higher order in perturbation theory
[17,21], and finding the ground states and phase diagrams of
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FIG. 1. Illustration of quantum magnetism in moiré transition
metal dichalcogenides. At low energies, charged quasiparticles carry
a pseudospin- 1

2 degree of freedom. In incompressible phases (for
example, at half-filling, pictured), the charge degrees of freedom
(blue) become localized in Wannier orbitals of the moiré triangular
lattice. The remaining spin degrees of freedom are frustrated, and
quantum fluctuations can stabilize quantum spin-liquid states [for
example, resonating valence bonds (RVB), illustrated with valence
bonds in purple, supporting isolated spinons as fractionalized excita-
tions] or nonmagnetic dimer states.

resulting spin Hamiltonians (often with multiple competing
interactions) requires significant numerical efforts. Such a
program was undertaken recently by Motruk et al. in Ref. [17],
where an effective spin model for pseudospin- 1

2 degrees of
freedom in the kagome charge crystal (at filling 3

4 ) was studied
using density matrix renormalization group (DMRG) sim-
ulations, finding chiral spin-liquid and kagome spin-liquid
phases.

In the paper at hand, we instead pursue a more integrated
approach, aiming at a framework to simultaneously describe
charge-ordered states at various fractional fillings and the
concomitant magnetic states on top of these states. To this end,
we employ a slave-rotor representation, first introduced by
Florens and Georges [22]. In this representation, each electron
is fractionalized into a fermionic spinon (carrying spin, but no
charge) and an O(2) rotor degree of freedom, with its angular
momentum corresponding to the electronic charge. Within the
slave-rotor representation, the Hubbard model then becomes
a model of interacting spinons and rotor degrees of freedom.
Making a mean-field approximation, this interacting problem
can be split into a solvable free-spinon Hamiltonian and a
quantum XY model, with self-consistency equations coupling
the two mean-field Hamiltonians.

Solving these self-consistency equations numerically al-
lows us to map out phase diagrams, and characterize the
nature of respective phases. We summarize our main results
below:

(1) We find various incompressible (Mott-insulating)
states with charges forming emergent honeycomb (n̄ =
4
3 , 5

3 filling) and kagome (n̄ = 5
4 , 7

4 ) Wigner crystals on the
(moiré) triangular lattice, as observed in previous experi-
ments [14]. These states are accessible by tuning chemical
potential and/or the overall strength of repulsive electronic
interactions (compared to kinetic energy scales).

(2) Distinct insulating states are separated by metallic
(compressible) states, that are entered via first-order metal-
insulator transitions. At fractional fillings, “partially metallic”
states are found, where quasiparticles disperse on emergent
lattices that are inherited from adjacent Wigner crystal phases,
e.g., honeycomb or kagome sublattices of the triangular
lattice.

(3) Considering incompressible (insulating) states, within
our mean-field theory it is energetically preferable for the
spinons to form dimerized states, corresponding to (possibly
fluctuating) valence-bond solid (VBS) magnetic states that
lift the remaining spin degeneracy of localized charges. We
further find that some U(1) spin-liquid states are energetically
competitive to these dimer states, such as 0-flux spinon Fermi
surface U(1) spin liquid and staggered π -flux U(1) Dirac spin
liquid on half-filling triangular charge crystal and 5

4 filling
kagome charge crystal. We discuss the stability of such U(1)
spin-liquid states on these different charge crystals.

The outline of this paper is as follows. In Sec. II we briefly
describe the generalized Hubbard model on the effective
moiré triangular lattice, and detail the symmetry properties
of the physical moiré system and the effective Hubbard
model. In Sec. III, we introduce the slave-rotor representa-
tion and mean-field approximation, and describe the solution
of self-consistent equations for the decoupled free fermion
and rotor Hamiltonian. In Sec. IV, we discuss results of our
mean-field calculation and present phase diagrams as a func-
tion of chemical potential and interaction strength. In Sec. V,
we explore the physics beyond mean-field theory, give argu-
ments on the stability of different spin liquids, and discuss
possible experimental signatures. A summary and outlook is
given in Sec. VI.

II. MOIRÉ-HUBBARD MODEL

A. Hamiltonian

In this work, we are concerned with the moiré-Hubbard
model on an effective triangular lattice (on moiré lattice
scales), with the Hamiltonian

H = Ht + HU , (1)

where

Ht = ε0

∑
i,σ=↑,↓

c†
i,σ c†

i,σ +
∑

i j,σ=↑,↓
ti j,σ c†

i,σ c†
j,σ , (2a)

HU = U

2

∑
i

(ni − 1)2 + 1

2

∑
i j

Vi j (ni − 1)(n j − 1). (2b)

Here, ε0 is the onsite energy, i, j denote lattice sites of the ef-
fective moiré triangular lattice, ti j,σ corresponds to a (possibly
complex) spin-dependent hopping amplitude, U is the onsite
Coulomb repulsion, and Vi j is the long-range Coulomb inter-
action. As discussed further below, we will mostly focus on
truncating long-ranged Coulomb interaction to nearest neigh-
bor V and next-nearest neighbor V ′ for simplicity, but write
Vi j for generality. The total electron number ni = ni,↑ + ni,↓.

Note that we have defined the interaction term (2b) so that
the interaction term is invariant under particle-hole transfor-
mations (while the kinetic energy is not). ε0 = 0 corresponds
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to half-filling when the hopping ti j,σ is zero. HU is related
(up to a constant) to the conventional form U

∑
i ni,↑ni,↓ +

V
∑

〈i j〉 nin j + V ′ ∑
〈〈i j〉〉 nin j by a redefinition of the onsite

energy ε0 → ε0 − U/2 − 6(V + V ′).
As written, the Hamiltonian is agnostic regarding specific

material realizations. A general principle that gives rise to
such effective moiré-Hubbard Hamiltonians consists in de-
termining the band structure that arise when holes near the
valence-band maxima (VBM) experience a slowly varying pe-
riodic moiré potential (in heterobilayers, induced by a second
layer with incommensurate lattice geometry), or a periodically
varying interlayer hybridization (in twisted homobilayer sys-
tems). Considering nearly flat and well-isolated moiré bands,
one may then construct appropriate localized Wannier or-
bitals, with their overlaps giving rise to the tight-binding
dispersion Ht , and HU is obtained from projecting Coulomb
interactions onto these localized orbitals. The locations of
the centers of these Wannier orbitals therefore determine the
effective lattice geometry in Eq. (1). In TMDs with K-valley
VBM, strong spin-orbit coupling leads to a locking of spin
and valley degrees of freedom near the Fermi level, so that
quasiparticles in the effective moiré-Hubbard model carry
a single (combined) Seff = 1

2 spin-valley degree of freedom
(pseudospin).

We briefly discuss possible material realizations:
(1) Heterobilayers such as WSe2/MoSe2 [10] or

WSe2/WS2 [7]: the topmost moiré band originates from the
K/K ′ valley valence electrons of the WSe2 layer, experiencing
a triangular moiré potential modulated by the WS2 or MoSe2

layer. Wannier centers constructed from this moiré band are
found to form an effective triangular lattice [20].

(2) Twisted homobilayers such as twisted bilayer WSe2

[6,23]: the K/K ′ valley valence bands from both layers
hybridize to generate the (topologically trivial) K/K ′ valley
moiré bands, respectively. Wannier centers are found to form
a triangular lattice, coinciding with sites in the moiré structure
where the metal atoms in the two layers are aligned [5].

For both realizations, the topmost moiré bands are doubly
degenerate and related to each other by time-reversal symme-
try, corresponding to the pseudospin- 1

2 degeneracy.
For some twisted TMDs, most prominently twisted bilayer

MoTe2 [10], Wannier states for the topmost moiré bands
are found to form an effective honeycomb superlattice, with
pseudospin- 1

2 –dependent intralayer hopping giving rise to an
effective realization of the Kane-Mele model. The interplay of
band topology and strong interactions has recently received
immense attention, following experimental reports of frac-
tional quantum anomalous Hall states [12,13].

In the following, we will focus on moiré TMD sys-
tems well described by effective triangular Hubbard models,
for which generalized Wigner crystal states have been ob-
served experimentally [15]. We stress that, in principle, our
slave-rotor mean-field study as presented in Sec. III can be
straightforwardly applied to appropriate Kane-Mele-Hubbard
models, which is an interesting avenue left for further study.
However, we note that pseudospin-dependent complex next-
nearest-neighbor hoppings give rise to Dyzaloshinskii-Moriya
interactions in the strong-coupling limit which can be ex-
pected to stabilize (noncollinear) magnetic order rather than
spin-liquid phases [9].

B. Symmetries

Moiré heterostructures have distinct microscopic sym-
metries. TMD monolayers possess C3v symmetry, with a
vertical reflection plane parallel to the links of the effective
honeycomb lattice. For (twisted) heterobilayers, this reflection
symmetry is broken, and the C3v symmetry is reduced to a C3

symmetry. Twisted homobilayers have D3 symmetry which is
generated by C3 rotations as well as C2 rotations around an
in-plane axis which swaps the top and bottom layers. Note that
vertical displacement field, e.g., introduced by gate voltages,
would break the layer pseudospin symmetry and reduce it
to a C3 symmetry. For both systems, time-reversal symmetry
is preserved, connecting the K (spin-up) and K ′ (spin-down)
degrees of freedom.

The effective Hubbard model (1) is constructed by project-
ing the repulsive Coulomb interactions to the lowest-energy
(flat) bands derived from continuum models for K-valley
moiré TMD [5,6]. Crucially, in Refs. [5,6] moiré potentials
were truncated beyond the lowest harmonics (i.e., restricting
to Fourier components corresponding to the first six moiré
reciprocal lattice vectors). As we detail in Appendix A, this
truncation leads to the emergence of an accidental inversion
symmetry of the moiré-Bloch wave functions, and thus also of
the effective Hubbard model for the respective Wannier states.

Now we comment on the validity of the lowest harmon-
ics approximation, following the original argument in the
Bistritzer-MacDonald paper [1] for twisted bilayer graphene.
We expect the interlayer tunneling amplitude tq at momentum
q to drop rapidly on the reciprocal lattice vector scale. For
example, based on Ref. [24], WSe2 has interlayer separation
6.7 Å � d⊥ � 7.1 Å, which exceeds the intralayer lattice
constant a = 3.28 Å by more than a factor of 2. Because the
real-space hopping t (r) varies with three-dimensional separa-
tion

√
d2

⊥ + r2 , tq decreases rapidly for qd⊥ > 1.

III. SLAVE-ROTOR MEAN-FIELD THEORY

We seek an integrated description of metal-insulator tran-
sitions (at zero temperature) and the concomitant formation
of charge crystals at certain fractional fillings, and the mag-
netic states in the incompressible regimes (with localized
charges). To this end, we employ a slave-rotor represen-
tation to explicitly separate the electrons’ spin and charge
degrees of freedom. While in an exact rewriting these are
strongly coupled, we can make a mean-field approximation
to obtain separate spin and charge Hamiltonians, coupled via
self-consistency equations.

A. Slave-rotor representation

Following Ref. [22], we split electrons at each site into
fermionic chargeless spinons and a single onsite O(2) rotor
degree of freedom. The rotor is used to represent the phase
degree of freedom θi, conjugate to the total charge at site i,
identified as the rotor’s angular momentum L̂i = −i∂/∂θi. The
electron creation operator at site i is rewritten as

c†
i,σ = f †

i,σ eiθi (3)
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where the spinon f †
i,σ has the same spin and orbit flavor as

the electron, and eiθi raises the angular momentum of the rotor
by one unit. In other words, creating an electron amounts to
creating a spinon and raising the angular momentum (total
charge) by one at the same time. This rewriting enlarges the
local Hilbert space and thus introduces redundant degrees of
freedom. Therefore, a constraint is imposed that the number
of spinons match the total charge,

L̂i =
∑

σ

( f †
i,σ f †

i,σ − 1/2). (4)

Here, we choose the convention that the rotor quantum num-
ber Li = 0 corresponds to half-filling, e.g., for electrons with
spin 1

2 , Li = 0 implies that there is exactly one electron at
site i.

We note that the representation (3) is an exact rewriting
if the constraint (4) is enforced on each site, for example, by
means of a Gutzwiller projection. However, since there is only
limited analytical understanding of projected wave functions,
and their evaluation requires significant numerical efforts, we
instead henceforth will enforce the constraint (4) on average.
This approximation is equivalent to finding a saddle-point
solution if we formulate it using a functional path integral.
In this language the Lagrange multiplier can be seen to be
equivalent to the temporal component of the emergent U(1)
gauge field that couples to the spinons. Generalizing SU(2)
to SU(N ), it can be shown that the saddle-point solution
becomes exact in the limit N → ∞. The mean-field solution
at a finite N has been benchmarked and compared to DMFT
and the Gutzwiller approximation in Ref. [22], and can be
expected to qualitatively capture the nature of different phases
under the approximation.

The merit of the slave-rotor representation lies in the fact
that Coulomb repulsion is only dependent on the charge
quantum number, and we can thus replace the four-fermion
interaction terms HU [see Eq. (2b)] by terms quadratic in
the rotor’s angular momentum. Specifically, considering an
atomic Hamiltonian with some onsite energy level ε0 and
onsite Coulomb repulsion U , we can write

Hat =
∑

σ

ε0c†
σ c†

σ + U

2
(n − 1)2

=
∑

σ

ε0 f †
σ f †

σ + U

2
L̂2, (5)

where we drop an overall numerical constant. We now gen-
eralize to the Hubbard model in Eq. (1). Again using the
slave-rotor representation in Eq. (3), and replacing L̂i = ni −
1, the Hubbard Hamiltonian can be expressed in terms of
spinons and rotors as

H = −
∑
i,σ

μ f †
i,σ f †

i,σ +
∑

i

U

2
L̂2

i + 1

2

∑
i j

Vi j L̂iL̂ j

−
∑
i j,σ

ti j,σ f †
i,σ f †

j,σ ei(θi−θ j ). (6)

Here, we have replaced the onsite energy ε0 by a chemical
potential

ε0 = −μ, (7)

which is an experimentally accessible tuning parameter (via
electrostatic gating) [7]. In the following, we will therefore
work in the grand-canonical ensemble rather than at fixed
particle number.

The kinetic term of the Hubbard model has become a cou-
pling between spinon and rotor degrees of freedom in Eq. (6).
In principle, the constraint (4) should be imposed on each site.

B. Mean-field decoupling of spinons and charge rotors

The fermionic spinons and rotor degrees of freedom inter-
act via the “correlated hopping” in Eq. (6), preventing an exact
solution of the model. To make progress, here we perform a
mean-field decoupling of the interaction term

f †
i,σ f †

j,σ ei(θi−θ j ) → 〈 f †
i,σ f †

j,σ 〉ei(θi−θ j ) + f †
i,σ f †

j,σ 〈ei(θi−θ j )〉
− 〈 f †

i,σ f †
j,σ 〉〈ei(θi−θ j )〉, (8)

where 〈. . . 〉 denotes an expectation value with respect to the
ground state of the respective mean-field Hamiltonian.

We also add a Lagrange multiplier field hi to impose the
constraint (4). The Hamiltonian (6) then splits into separate
Hamiltonians for the fermionic spinons and O(2) quantum
rotors,

Hf =
∑
i,σ

(−μ − hi ) f †
i,σ f †

i,σ −
∑
i j,σ

t eff
i j,σ f †

i,σ f †
j,σ , (9)

Hθ =
∑

i

U

2
L̂2

i + hiL̂i +
∑

i j

1

2
Vi j L̂iL̂ j − Ki je

i(θi−θ j ), (10)

where the effective hopping t eff
i j,σ for the (free-) fermionic

spinons and the coupling of quantum rotors Ki j are related
to the mean-field parameters, and are to be determined self-
consistently. Explicitly, the coupled self-consistency relations
read as

t eff
i j,σ = ti j,σ 〈ei(θi−θ j )〉, (11)

Ki j =
∑

σ

ti j,σ 〈 f †
iσ f †

jσ 〉. (12)

Further, the parameters hi must be (implicitly) determined
to satisfy the average constraint for matching the filling of
spinons to each site’s charge,

〈L̂i〉 =
∑

σ

[〈 f †
i,σ f †

i,σ 〉 − 1/2]. (13)

C. Solution of rotor Hamiltonians

While the free-fermion Hamiltonian is easily diagonalized
by means of a unitary transformation in momentum space, the
Hamiltonian Hθ of interacting O(2) rotors (i.e., a quantum XY
model) evades such an exact solution.

Instead, we will make physically motivated approxima-
tions to the rotor correlation expectation value 〈ei(θi−θ j )〉 which
characterizes distinct phases of the quantum XY model, and
in the present context then determine the effective spinon
dispersion. We discuss two distinct regimes below.

1. Metallic (compressible) states

The rotor acquiring a nonzero expectation value 〈eiθi〉 ≡√
Zi 
= 0 can be understood to be analogous to the
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condensation of a bosonic ladder operator 〈b†
i 〉, giving rise to

a superfluid phase for the bosonic degrees of freedom. This
phase is characterized by off-diagonal long-range order of the
rotor correlator at long distances, i.e., lim|i− j|→∞〈ei(θi−θ j )〉 =
〈eiθi〉〈e−iθ j 〉. We can access this phase on a mean-field level
by factorizing the correlator 〈ei(θi−θ j )〉 ≈ 〈eiθi〉〈e−iθ j 〉. This im-
plies that the effective spinon hopping [cf. Eq. (11)] can be
written as

t eff
i j,σ = ti jσ 〈eiθi〉〈e−iθ j 〉

= ti jσ
√

Zi

√
Zj, (14)

where we assume 〈eiθi〉 is real, which should be expected
if the time-reversal symmetry is unbroken, and then 〈eiθi〉 =
〈e−iθi 〉 = √

Zi from Hermiticity. The notation
√

Zi is used so
that Zi would have the meaning of spectral weight (see below).
The nonzero expectation value of the phase operator indicates
that the rotor’s angular momentum, and thereby the electronic
charge, is no longer a good quantum number and thus the
system is in a metallic (compressible) state. Especially at
commensurate fillings, upon increasing Coulomb repulsion,
Zi decreases continuously to zero, which is the well-known
Mott transition as demonstrated in Ref. [22].

Within the slave-rotor formalism, the electronic Green’s
function G(c) is given by

G(c)
i j (τ − τ ′) = G( f )

i j (τ − τ ′)〈e−i[θi (τ )−θ j (τ ′ )]〉. (15)

In the metallic states, the rotor degrees of freedom are long-
range ordered, and in the mean-field approximation we can
read off the spectral weights of the electronic quasiparticles as
Zi j = √

Zi
√

Zj where
√

Zi = 〈eiθi〉. Note that here, the spinon
bands contribute unity spectral weight, such that the wave-
function renormalization of the electronic quasiparticles is
determined by the rotor degrees of freedom.

To explicitly solve the self-consistency equations, we
note that with Eq. (14), the rotor Hamiltonian (10) can
be written as

Hθ ≈ U

2

∑
i

L̂i
2 + 1

2

∑
i j

Vi j L̂iL̂ j +
∑

i

hiL̂i

−
∑

i

⎛
⎝∑

j

Ki j

√
Zj

⎞
⎠(eiθi + e−iθi ) + const. (16)

In line with our site-factorized treatment of the rotor ki-
netic energy, we also decouple the long-range Coulomb inter-
action as∑

i j

Vi j L̂iL̂ j ≈
∑

i j

Vi j (L̂i〈L̂ j〉 + 〈L̂i〉L̂ j − 〈L̂i〉〈L̂ j〉). (17)

Then, the rotor Hamiltonian can be reduced to a sum of
decoupled single-site rotor (mean-field) Hamiltonians

HMF
θ =

∑
i

[
U

2
L̂2

i +
( ∑

j

Vi j〈L̂ j〉 + hi

)
L̂i

]

−
∑

i

( ∑
j

Ki j

√
Zj

)
(eiθi + e−iθi ) + const. (18)

Given a set of Ki j , the mean-field Hamiltonian HMF
θ can now

be readily solved, where 〈L̂i〉 and
√

Zi are to be determined
self-consistently: the corresponding ground-state expectation
values 〈eiθi〉 then determine t eff

i j,σ , which serves as an input for
the solution of the fermionic spinon Hamiltonian, to obtain the
value of Ki j for the next iteration.

2. Insulating (incompressible) states

We characterize insulating states by vanishing of the re-
spective quasiparticle weights which attains when the phase
operator expectation values 〈eiθi〉 = 0. In this case, L would
be quantized to be integers, giving rise to zero compressibility
∂n/∂μ = 0. When 〈eiθi〉 = √

Zi = 0, there is no long-range
order for the rotor degrees of freedom, but we stress that
this does not necessarily lead to 〈ei(θi−θ j )〉 = 0: A simple site-
factorized mean-field treatment of the quantum XY model (as
suggested for metallic states above) is incapable of correctly
producing such finite (short-range) rotor correlations. Instead,
we obtain the expectation value of this operator from Eq. (10)
by the Hellmann-Feynman theorem

〈ei(θi−θ j )〉 = −∂〈Hθ 〉
∂Ki j

, (19)

which makes explicit that, in general, rotor correlations do
not vanish since the energy expectation value will depend
on Ki j . This implies that in insulating states with vanishing
quasiparticle weights Z = 0, the spinon in general still has
nonzero hopping and disperses. Such spin-charge separation
is typical of spin liquids.

In this work, we employ canonical perturbation the-
ory to calculate the ground-state energy 〈Hθ 〉 of the rotor
Hamiltonian (10) and the rotor correlation from Eq. (19) when
the onsite mean fields 〈eiθi〉 = 0 vanish. This perturbative ex-
pansion is controlled if the rotor-rotor coupling Ki j is small
compared to the repulsive U,V interactions. To this end, we
take the (solvable) Hamiltonian for the angular momenta as
the unperturbed Hamiltonian

H (0)
θ =

∑
i

U

2
L̂2

i + 1

2

∑
i j

Vi j L̂iL̂ j +
∑

i

hiL̂i, (20)

with the perturbation

H ′
θ =

∑
i

δhiL̂i −
∑

i j

Ki je
i(θi−θ j ), (21)

where we included δhi as a possible change of Lagrange mul-
tipliers to ensure the constraint (13) remains satisfied. Then,
the ground-state energy up to second order in K/U reads as

E0 = E (0)
0 +

∑
i

δhiLi +
∑

i j

Ki jKji

E (0)
0 − E (0)

i j

+ O[(K/U )3].

(22)

Here, E (0)
i j corresponds to the energy of the configuration that

one unit charge is moved from site j to site i, with respect to
the unperturbed ground configuration. From Eq. (19) we can
see that 〈ei(θi−θ j )〉 and thus t eff

i j,σ would be proportional to Ki j to
the lowest order.

155109-5



SONG, SEIFERT, LUO, AND BALENTS PHYSICAL REVIEW B 108, 155109 (2023)

Equations (19) and (22) correspond to a set of self-
consistent equations, now accounting for perturbative correc-
tions. From these we can solve for Ki j and other parameters.
There is always a trivial solution Ki j = 0, which is the nor-
mal insulating state. When Ki j 
= 0, we get nonzero spinon
hoppings, while the system is still incompressible because the
charge is quantized and conserved (〈eiθ 〉 = 0).

3. Classification of spin-liquid states

When the Ki j are not zero in insulating states, we can get a
larger set of solutions than the metallic case, which fall into
different universality classes of spin liquids. In fact, in the
decomposition (3), we have a U(1) gauge redundancy

f †
i,σ → e−iϕi f †

i,σ ,

θi → θi + ϕi. (23)

After this transformation, the electron operators and thus the
physical Hamiltonian remain invariant. However, given mean-
field Hamiltonians Hf and Hθ will in general not be invariant
under these transformations. Equivalently, one observes that
even though a physical wave function for a spin liquid may
preserve all physical symmetries (space-group symmetries,
spin-rotation symmetry, and time-reversal symmetry), a cor-
responding mean-field Hamiltonian is only invariant if those
symmetry operations are supplemented by appropriate gauge
transformations as in Eq. (23). In other words, symmetries
of mean-field Ansätze are realized projectively. Mean-field
Ansätze corresponding to distinct physical states can be clas-
sified by their respective projective symmetry groups (PSG),
as introduced in Ref. [25].

To be more explicit, consider a space-group transforma-
tion U under which the physical state |�Phys〉 is invariant.
Before projection, the mean-field state |� (Ki j )〉 may not trans-
form trivially under U since Ki j and K ′

i j related by a U(1)
gauge transformation [Eq. (23)] correspond to actually the
same physical state. Invariance of the mean-field Ansatz Ki j is
achieved by combining U with a U(1) gauge transformation

GUU (Ki j ) = Ki j, (24)

where the physical operation U maps the spatial index i to
some other index U (i), and GU is an appropriately chosen
U(1) gauge transformation,

GU : f †
iσ → e−iϕU (i) f †

iσ ,

eiθi → eiϕU (i) eiθi ,

Ki j → e−i(ϕU (i)−ϕU ( j) )Ki j,

t eff
i j,σ → ei(ϕU (i)−ϕU ( j) )t eff

i j,σ . (25)

The set of GUU that leaves Ki j invariant is referred to as the
invariant PSG. Different PSG entail distinct Ki j Ansätze, and
thus we can classify the mean-field Ansätze and corresponding
physical states by their PSG realizations.

The subgroup of invariant PSG that is a pure gauge group
is called invariant gauge group (IGG), and the physical sym-

metry group is hence given by SG = PSG/IGG. Here in the
insulating case, a global U(1) transformation leaves Ki j and
t eff
i j,σ invariant

f †
i,σ → e−iϕ f †

i,σ ,

eiθi → eiϕeiθi , (26)

where ϕ is site independent. Therefore, the slave-rotor repre-
sentation has a U(1) IGG.

Then, we can ask how many gauge-inequivalent classes
of spin liquids are allowed if we demand the full physical
symmetry. The structure of the symmetry group imposes an
algebraic constraint on the PSG. For example, demanding that
translations along the two principal axes of a lattice commute
implies

T −1
1 T2T1T −1

2 = I. (27)

Then, the PSG (24) with a U(1) IGG should satisfy(
GT1 T1

)−1
GT2 T2GT1 T1

(
GT2 T2

)−1 = G ∈ U(1). (28)

The identity of the right-hand side of Eq. (27) is now relaxed
to an element of U(1) IGG since it keeps the mean-field
Ansätze invariant. Listing out all the relations of the symmetry
group, we can get a finite number of distinct PSGs allowed
by these algebraic constraints, called algebraic PSG. Since
Ansätze Ki j are distinguished by their PSG realizations, we
arrive at a finite number of choices, which are not related
to each other by a pure gauge transformation, and thus fall
into different classes. We can therefore focus on particular
mean-field Ansätze Ki j that correspond to distinct PSG, under
a given symmetry requirement.

Above arguments and PSG classifications in general em-
ploy the full symmetry group of the lattice on which spin
degrees of freedom reside. However, in this work, we are
in particular focused on charge-ordered states that may form
in the generalized Hubbard model. At fractional fillings,
charges then reside on effective sublattices of the triangular
lattice (e.g., honeycomb lattice at 4

3 filling or kagome lattice
at 5

4 filling). For these states, a similar PSG analysis can
be applied based on the symmetry groups of the respective
charge-ordered states (that spontaneously break translational
and rotational symmetries of the parent triangular lattice).
Moreover, if we allow a breaking of rotational symmetry, ne-
matic states are possible, where the amplitudes of Ki j differ on
bonds of different orientation. These also include dimer states
that are formed if all the nonzero Ki j bonds are disconnected,
corresponding to VBS states.

In the following, based on the discussion above, we will
consider distinct invariant PSG Ansätze that have previously
been found to be energetically competitive on various charge
crystals, solve the self-consistent equations, respectively, and
compare their respective energies.

We mention that also in the metallic phase, the slave-rotor
Hamiltonian before mean-field decoupling formally enjoys a
U(1) gauge redundancy. But the phase operator eiθ → 〈eiθ 〉 
=
0 acquiring a finite expectation value implies that the IGG here
is just a trivial group with identity as the only element because
〈eiθ 〉 would change under any transformation θi → θi + φi.
This trivial IGG will result in only one solution allowed where
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Ki j are the same on all bonds (a uniform solution), if the
full physical symmetry is preserved: This metallic state does
not possess an intrinsic gauge structure and corresponds to a
confining phase.

We further note that dimer states which have 〈 f †
i,σ f †

j,σ 〉 
= 0
on disjoint bonds 〈i j〉 possess on the mean-field level a U(1)
IGG. However, the disconnected nature of the spinon hopping,
all fermionic degrees of freedom are gapped (i.e., spinons are
localized on bonds, forming spin singlets after projection).
Pure (compact) U(1) gauge theory in 2+1 dimensions is un-
stable [26,27], and thus the dimer phase must be a confining
phase of matter.

IV. MEAN-FIELD PHASES

A. Overview

To map out phase diagrams, we numerically solve the self-
consistency equations (11) and (12) in Sec. III B, as a function
of chemical potential μ and interaction strength U . We find
that phase diagrams depend significantly on the presence and
nature of longer-ranged repulsive interactions Vi j in Eq. (2b)
due to Coulomb interactions between charges.

Typically, the Coulomb interaction in bulk solids is
efficiently screened (leading to an exponential decay
with distance), justifying the approximation of repulsive
interactions as an onsite (contact) interaction. However, in
two-dimensional moiré heterostructures, screening is signif-
icantly weaker, and the moiré-induced quenching of kinetic
energy scales implies that extended repulsive interactions
are no longer negligibly small [28]. As we shall see below
(and discuss in Appendix B), extended repulsive interactions
(beyond nearest neighbor) are necessary for reproducing some
of the more complex generalized Wigner crystals at certain
filling factors.

In fact, the screening length in moiré TMD heterostructures
can be controlled via the choice of and distance to metallic
screening layers (which also act as gate electrodes). Modeling
the screening via the method of image charges, the electron-
electron interaction potential is U (r) = (e2/ε)[r−1 − (r2 +
D2)−1/2], where D is the vertical distance between the metallic
layer and TMD bilayer [20].

With this in mind, in this study, we for simplicity consider
two distinct cases of next-nearest-neighbor repulsion V ′:

(1) V ′ = 0, corresponding to short-ranged (truncated
beyond nearest-neighbor repulsion V ) interactions due to
strong screening;

(2) V ′ = 1√
3
V , roughly motivated by a 1/r decaying

Coulomb repulsion, such that V ′/V is inversely proportional
to distance ratio.

In both cases, we neglect repulsions beyond next-nearest
neighbors for simplicity, and the ratio of nearest neighbor to
onsite Coulomb repulsion V/U is fixed to be 1

4 [5,29,30].
We expect that in realistic systems, V ′/V should take a
value between the two cases discussed above, depending
on microscopic details. Note that here we also drop hop-
ping amplitudes beyond nearest neighbors since the Wannier
states on the moiré lattice scale are exponentially localized,
and accordingly longer-ranged hopping has been found to
be negligible compared to the strong Coulomb interactions
in moiré TMDs [29,30]. Considering only nearest-neighbor

FIG. 2. Unit cells for three-site Ansatz and four-site Ansatz.

repulsion, a classical analysis shows that all possible charge
crystals on the triangular have at most three distinct sub-
lattices, so three inequivalent sublattice sites with possibly
different Li, Zi, and hi are needed, assuming a translational
symmetry with respect to

√
3 × √

3 unit cells [Fig. 2(a)]. On
the other hand, if next-nearest-neighbor repulsion is included,
charge-ordering patterns with four-site unit cells [Fig. 2(b)]
become energetically competitive, allowing for striped phases
and kagome-type effective sublattice charge order. In our
numerical solutions of the self-consistency equations we con-
sider various Ansätze in three- and four-site unit cells, and
compare their respective total energies per site to determine
the global ground state.

For simplicity, we restrict our analysis to the half-plane of
μ > 0 so that in our convention, the filling factor (mean num-
ber of particles per site) n̄ � 1 [i.e., hole-doped scenario since
charged particles correspond to holes from the (K/K ′) valley
in the monolayer TMDs [6,7,10,23]]. While the triangular
lattice is not particle-hole symmetric, and thus the location of
phases and phase boundaries may change, it is expected that
for each generalized Wigner crystal at filling n̄ there will exist
a “conjugate” phase at filling 2 − n̄.

We solve the mean-field self-consistency equations using
an iterative procedure. We work on discretized momentum-
space grids with 30 × 30 unit cells for both the three- and
four-site Ansätze. The free-fermion Hamiltonian can be diago-
nalized easily in momentum space, with negligible finite-size
effects. To solve the rotor Hamiltonian, we truncate the local
rotor Hilbert space (which is in principle unbounded) to finite
dimension with Lmin = −5 to Lmax = 5. This truncation is
justified since states with large L would be suppressed by U ,
and we explicitly confirm its validity by noting that Z is close
to 1 when U = 0 and ε = 0, as expected. We further note that
this consideration also implies that the slave-rotor mean-field
approach works better for a relatively large U .

We work in units of the kinetic energy t , and employ
a small but finite temperature kBT/t = 0.01 for numerical
stability. Here, the Fermi distribution function is used as a
smooth function to avoid numerical instabilities. Note that
strictly speaking, at finite temperatures, the ground-state min-
imizes the free energy F = E − T S (rather than E ), but we
have checked that our results (comparing E of different states)
remain invariant when using finite temperatures on the order
of T = 10−4t to T = 0.01t . Hence, we expect the results
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FIG. 3. Mean-field phase diagrams in the μ-U plane, for nearest-neighbor repulsion V = U/4, and two representative values of next-
nearest-neighbor repulsion V ′, (a) V ′ = 0 and (b) V ′ = V/

√
3. Average particle number n̄ is a commensurate fractional number for insulating

phases, and n̄ = 1. x denotes incommensurate filling for metallic states conducting on different sublattices. (c)–(f) Schematic depiction of
various charge orders (corresponding to generalized Wigner crystals) found for correlated insulating states at fractional filling. Filled and
empty circles correspond to half-filled and doubly occupied sites. On solid lines spinons may have nonzero hopping, whereas bonds denoted
by dashed lines do not contribute to the connectivity of the lattice. (i)–(l) Schematic depiction of metallic states, with charges dispersing
on different sublattices of the parent moiré triangular lattice. Orange shading indicates bonds on which charges disperse, and empty circles
correspond to doubly occupied sites.

calculated at T = 0.01t to reflect the energetic competition
of states at zero temperature.

The mean-field phase diagrams in the plane of U and
μ (in units of t) for short-range repulsion V ′ = 0 is shown
in Fig. 3(a), and for longer-ranged repulsion V ′ = 1√

3
V in

Fig. 3(b). Various charge crystal states are illustrated in
Figs. 3(c)–3(h), and metallic states with charge dispersion on
distinct sublattices in Figs. 3(i)–3(l).

Depending on V ′, we find distinct charge-ordering pat-
terns: For V ′ = 0, there are emergent honeycomb Wigner
crystals at 4

3 and 5
3 filling [Figs. 3(e) and 3(g)] as well as half-

filling [Fig. 3(c)]. These Mott-insulating states are separated
by metallic states conducting on an emergent honeycomb
sublattice [Fig. 3(j)] or parent triangular lattice [Fig. 3(i)]. On
the other hand, for V ′ = 1√

3
V , charge orders of kagome type

at 5
4 and 7

4 filling [Figs. 3(d) and 3(h)] and stripe type at 3
2

filling [Fig. 3(f)] are more favored than order with
√

3 × √
3

periodicity. These states are accompanied by metallic states
dispersing on respective sublattices [Figs. 3(k) and 3(l)].

States of commensurate fractional fillings in the phase dia-
grams are all insulators with

√
Zi = 0, and the compressibility

∂n/∂μ = 0 because the charge per site ni is quantized in a
range of chemical potential μ. In these parameter regimes,
we use perturbation theory in K/U in order to obtain finite
(short-ranged) spin correlations determined by 〈ei(θi−θ j )〉 as in-
troduced in Sec. III C 2, with details discussed in the following
subsections.

When some of the 〈eiθi〉 
= 0, there is a finite quasiparticle
weight and the system is in a compressible metallic state
[corresponding to incommensurate particle numbers in the
phase diagram Figs. 3(a) and 3(b)]. In addition to the metallic
state corresponding to particles dispersing on the triangular
lattice (with uniform 〈eiθi〉 
= 0), we also find states where
particles disperse on a honeycomb sublattice formed by two
of the three sites in the

√
3 × √

3 unit cell, and kagome or
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FIG. 4. Energy per site E/N as a function of U/t for different
candidate states on different Wigner crystals. Note that here, we
explicitly enforce particular charge crystals [i.e., these plots do not
correspond to cuts through the phase diagrams in Figs. 3(a) and
3(b)] in order to study the competition of various spinon Ansatz
states. (a) Triangular charge crystal (with n̄ = 1), (b) honeycomb
charge crystal (with n̄ = 4

3 ), (c) kagome charge crystal (n̄ = 5
4 ).

The dashed lines indicate the energy of “trivial” insulating states
without any spinon hopping. And the black solid lines correspond to
metallic states living on sublattices of respective charge orders, i.e.,
(a) triangular, (b) honeycomb, and (c) kagome metal phase.

stripe sublattices formed by three or two sites in the 2 × 2
unit cell, while the remaining site is doubly occupied, leading
to 〈eiθi〉 = 0 for the corresponding i. The metallic states con-
ducting on different sublattices are sketched in Figs. 3(i)–3(l).
While the uniformly dispersing metallic state on the parent
triangular lattice is present in both phase diagrams of V ′ = 0
and 1√

3
V , the honeycomb metal is only favored for V ′ = 0,

and the kagome and stripe metals are more competitive in the
latter case.

At a fixed chemical potential, upon increasing interaction
strength U (simultaneously also increasing V , V ′ propor-
tionally), the metallic state enters an adjacent insulating
charge-ordered state through a first-order phase transition, in
contrast to a continuous Mott transition with a spectral weight
going to 0, as also shown in Fig. 4 in next subsection. The
critical U for a continuous Mott transition is marked by the
vanishing of the quasiparticle weights Zi and can be obtained

by applying a perturbative approximation on Zi, as shown
in Ref. [22]. From Eq. (16), and making use of Hellmann-
Feynman theorem, we have

√
Zi ≡ 〈eiθi〉 = 4U

√
ZiK̃i

U 2 − 4
(
ULi + ∑

j Vi jL j + hi
)2 (29)

where K̃i = ∑
j∈n.n(i) Ki j is the sum over nearest sites in the

corresponding metallic sublattice (since we are keeping only
nearest hoppings). At the boundary of the insulating state,
hi = ε0 = −μ to satisfy the constraint Eq. (4). Eliminating Zi

on both sides, we get an equation of the critical interaction
strength UC and Vi jC .

U 2
C − 4

⎛
⎝UCLi +

∑
j

Vi jCL j − μ

⎞
⎠

2

= 4K̃iUC (30)

The value of K̃i can be calculated from the self-consistency
equation Eq. (12), which would be independent on

√
Zi if the

non-zero
√

Zi is uniform on corresponding sublattices with
h = −μ near transition.

B. Spin liquids and dimerized states in insulating phases

When all
√

Zi = 0, all electronic quasiparticle weights van-
ish and thus the system enters an insulating regime. Distinct
insulating states (at identical filling and charge order) can be
characterized by their corresponding spin states. Focusing on
nonmagnetic states such as spin liquids and dimer states, as
stated in Secs. III C 2 and III C 3, the mean-field parameters
Ki j will generically be nonzero and can be used to classify
various Ansatz states corresponding to their respective invari-
ant PSG.

In the following, we analyze self-consistent solutions to
the mean-field equations corresponding to symmetry-allowed
spin-liquid states, as well as dimerized solutions. While we
find that for all insulating states the dimerized state always has
the lowest energy in our mean-field calculation (with pertur-
bative corrections), various spin-liquid states are competitive
in energy with respect to the mean-field Hamiltonian.

1. Triangular charge crystal (half-filling)

At half-filling, every site of the moiré triangular lattice is
occupied by one charge (Li = 0). While charges are localized
to sites, spinons can hop on the triangular lattice with nonzero
Ki j , and give rise to spin liquids and dimerized states.

Assuming that all microscopic symmetries of the system
(space-group, time-reversal, and spin-rotation symmetries)
are preserved, all fully symmetric spin-liquid states with U(1)
gauge group can be classified by their respective invariant
PSG as introduced in Sec. III C 3. On the triangular lattice,
restricting to nearest-neighbor hoppings, there are only two
distinct fully symmetric spin-liquid states [31,32]:

(1) The RVB state with uniform real hoppings on every
bond, which corresponds to a U(1) spinon Fermi-surface spin
liquid.

(2) The staggered flux state, with an emergent π flux for
the spinons in every other triangular plaquette (this can be
achieved by purely real hoppings with identical magnitude,
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FIG. 5. Visualization of spin-liquid Ansatz and dimer states on
the moiré triangular lattice at half-filling n̄ = 1. Orange bonds de-
note positive spinon hopping amplitudes and, by self-consistency,
rotor couplings Ki j , while blue bonds denote negative hoppings and
couplings. The width of the bonds is in proportion to the amplitude
of rotor coupling Ki j = ∑

σ 〈 f †
i,σ f †

j,σ 〉 on the respective bond. In all

cases, μ = 0, U/t = 10, V/U = 1
4 , and V ′/V = 1/

√
3.

but a particular sign pattern). The spinon spectrum then ex-
hibits Dirac nodes, and the spin state corresponds to a U(1)
Dirac spin liquid.

Restricting to particular representative (gauge-fixed)
Ansatz states, we find that both the RVB state and staggered
flux states are solutions to our self-consistency equations.
The form of the rotor coupling as well as spinon hopping
parameters (which are proportional in magnitude to each
other following the perturbative calculation in Sec. III C 2)
as a result from the self-consistency calculation are shown
in Figs. 5(a) and 5(b). For the RVB Ansatz state (i), with
the gauge choice commensurate with the full translational
symmetry of the triangular lattice, there is a single band and
at the self-consistent point the effective spinon Fermi energy
εF = h + μ implies that the system is half-filled. The band
structure is shown in Fig. 6. For the staggered flux state
(ii), the translational symmetry is realized projectively such
that any gauge-fixed configuration of hopping parameters re-
quires two inequivalent sites and a doubling of the unit cell
to accommodate the flux pattern. As a result, there are two

FIG. 6. Spinon band structure of the 0-flux RVB state on the
moiré triangular lattice, for μ = 0, U/t = 10, V/U = 1

4 , and V ′/V =
1/

√
3. The hopping is renormalized by the rotor coupling. (a) Cut

along high-symmetry lines. (b) Plot of spinon band in the two-
dimensional (hexagonal, dashed) Brillouin zone, with the red circle
denotes the spinon Fermi surface. aM denotes the lattice constant of
the triangular moiré superlattice.

FIG. 7. Spinon band structure of the Dirac state on triangular
lattice (lattice constant aM ), for μ = 0, U/t = 10, V/U = 1

4 , and

V ′/V = 1/
√

3. (a) Cut along high-symmetry lines. (b) Energy dif-
ference 
(k)/t between highest filled and lowest unoccupied band as
a function of momentum. The orange hexagon denotes the Brillouin
zone of the original triangular lattice, and the white rectangle denotes
the Brillouin zone after doubling the unit cell.

bands featuring two Dirac points in the Brillouin zone for the
doubled unit cell. The corresponding band structure is shown
in Fig. 7.

Allowing for the spontaneous breaking of the lattice’s
rotational symmetries, additional states can be solutions to
the self-consistency equations. For example, an effective
(anisotropic) square lattice can form if Ki j = 0 on all bonds
along a certain direction (say, along x̂). The spinon dispersion
develops again Dirac points if there is a π -flux in each effec-
tive square plaquette.

To find the ground state, we compare the total mean-field
energies of various Ansatz states. Throughout the half-filled
insulating state, dimer states have the lowest energy, as shown
explicitly for selected cuts through parameter space in Fig. 4.
This is in accord with previous studies that found dimer phases
as the mean-field ground states, with a projection back to
physical Hilbert space and/or inclusion of gauge fluctuations
capable of stabilizing spin-liquid states [33,34]. We leave a
systematic investigation of gauge fluctuations of discussed
mean-field states for future study.

The energetic competition of the metallic state, the trivial
atomic insulator (without any spin correlations) as well as the
insulators with spin-dimer and spin-liquid states is shown at
chemical potential μ = 0 in Fig. 4. Upon increasing U , the
system enters the dimer state before it approaches the atomic
insulator (the dashed line) at UC determined by Eq. (29),
where

√
Zi would vanish continuously. This corresponds to

a first-order phase transition since the respective states (dimer
and metallic states) exist as solutions (local minima) of the
mean-field calculation on the left- and right-hand sides of
the transition, i.e., one of the local minima becomes the new
global minimum (as opposed to a new local minima emerging
at the critical point). The same also applies for honeycomb
and kagome charge crystals below. We also find that, even
though the dimer state always has the lowest energy, the
U(1) Dirac spin-liquid state (staggered flux) is energetically
competitive.
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FIG. 8. Visualization of spin-liquid mean-field Ansatz and dimer
states on the honeycomb Wigner crystal at filling n̄ = 4

3 . The color
and width of bonds follow the same conventions and normalizations
as in Fig. 5. Plaquettes which contain a π flux are shaded gray. In all
panels, μ/t = 12, U/t = 10, V/U = 1

4 , and V ′/V = 0.

2. Honeycomb charge crystal ( 4
3 filling)

For some regions in parameter space, effective honey-
comb charge crystals are formed, at commensurate 4

3 filling,
where the half-filled sites form an effective honeycomb lat-
tice “stuffed” with doubly occupied sites. While the doubly
occupied sites are effectively decoupled from the system as
demanded by self-consistency, spinons can hop on the half-
filled honeycomb sublattice, which possesses an effective C6v

point-group symmetry. There are two fully symmetric U(1)
spin-liquid Ansätze as classified by the PSG [35]:

(1) the RVB state, with no emergent flux;
(2) the π -flux state with a uniform π flux in each hexago-

nal plaquette.
We display (gauge-fixed) configurations for these two

states in Figs. 8(a) and 8(b). For the 0-flux RVB state, the
spinon band structure features two Dirac cones as shown
in Figs. 9(a) and 9(b). For the π -flux state, the mean-field
spinon Hamiltonian requires (at least) a doubling unit cell to
accommodate the π flux, and thus the four branches of bands
give rise to four Dirac points in the halved Brillouin zone
[Figs. 9(c) and 9(d)].

We show the energies of various Ansatz states as a function
of U/t at chemical potential μ/t = 12 in Fig. 4. Similar to
the triangular charge crystal, we find that on the n = 4

3 charge
crystal the dimer state Fig. 8(c) has the lowest energy of all
insulating states. (The n = 5

3 insulator is not shown there, even
though it could have the lowest energy as shown in the phase
diagram Fig. 3. The same applies for n = 5

4 kagome charge
crystal below.) We further note that the spin-liquid states and
the dimer state are close in energy, and the 0-flux RVB spin
liquid has a consistently lower energy than the π -flux state.

3. Kagome charge crystal ( 5
4 filling)

Similar to the triangular lattice formed by charges at half-
filling, the geometrical frustration of kagome charge crystal
is promising for realizing quantum spin-liquid states. Again
focusing on U(1) spin liquids, here we consider two spin-
liquid states which have been found to be most competitive
in energy among all PSG-allowed symmetric spin liquids on
kagome lattice [36,37]:

(1) the RVB state, with no emergent flux in either triangu-
lar and hexagonal plaquettes, denoted as [0,0];

FIG. 9. (a), (b) Same as Fig. 7, but now for the 0-flux RVB state
on the honeycomb charge crystal for μ/t = 12, U/t = 10, V/U = 1

4 ,
and V ′ = 0. The dashed hexagon in (b) denotes the Brillouin zone
of the honeycomb charge crystal on the moiré triangular lattice, with
lattice constant aM . (c), (d) Same as (a) and (b), but now for the π -flux
RVB state on the honeycomb charge crystal (lattice constant aM ) for
μ/t = 12, U/t = 10, V/U = 1

4 , and V ′ = 0. The white rectangle in
(d) denotes that of the doubled unit cell with four Dirac points at the
spinon Fermi level.

(2) the Dirac state with zero flux on triangular plaquettes,
but π flux on hexagonal plaquettes, denoted as [0,π ].

We illustrate the mean-field Ansätze, corresponding to
particular gauge-fixed configurations, with self-consistent pa-
rameters in Figs. 10(a) and 10(b).

The spinon band structure of the RVB [0,0] state (cor-
responding to uniform hopping of spinons on the emergent
kagome lattice) is shown in Fig. 11. The topmost band is
found to be exactly flat corresponding to localized modes on
the hexagonal plaquettes of the kagome lattice [38], and there
are two Dirac points at the K/K ′ corners of the Brillouin zone.
The spinon Fermi level εF = h + μ lies away from the Dirac

FIG. 10. Visualization of mean-field spin-liquid Ansatz and
dimer states for kagome charge crystal at filling 5

4 . The color and
width of bonds have the same normalization as in Fig. 5. In all cases,
μ/t = 12, U/t = 10, V/U = 1

4 , and V ′/V = 1/
√

3.
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FIG. 11. Same as Fig. 7, but now for the RVB [0,0] state on the
kagome charge crystal (lattice constant aM ) at μ/t = 12, U/t = 10,
V/U = 1

4 , and V ′/V = 1/
√

3. (a) Cut along high-symmetry path.
(b) The dashed hexagon denotes the Brillouin zone of kagome charge
crystal with Dirac points at K/K ′.

points in order to enforce half-filling of the spinon bands, such
that the RVB [0,0] state corresponds to a U(1) spinon Fermi-
surface spin liquid. We now turn to the Dirac [0,π ] state,
for which a doubling of unit cell is needed to accommodate
a mean-field parameter configuration that contains a π flux on
hexagonal plaquettes. The resulting band structure features a
twofold-degenerate flat band, as shown in Fig. 12, and there
are two Dirac points at the spinon Fermi level εF = μ + h.

However, similar to the previously discussed case of the
triangular lattice with unit occupancy, we find that through the
phase diagram, spin-dimer states (on top of the kagome charge
crystal) have a lower mean-field energy than the two sym-
metric spin-liquid Ansätze described previously. An example
of such a dimer configuration is shown in Fig. 10(c). The
energies of different candidate states on the kagome Wigner
crystal are shown in Fig. 4(c). Note that within the insulating
phase, the U(1) Dirac [0,π ] spin liquid is most competitive
in energy to spin-dimer states, while the RVB [0,0] spin liquid

FIG. 12. Same as Fig. 7, but now for the Dirac [0,π ] state on
the kagome charge crystal (lattice constant aM ), for μ/t = 12, U/t =
10, V/U = 1

4 , and V ′/V = 1/
√

3. (a) Cut along high-symmetry path.
Note that the top flat band is twofold degenerate. (b) The dashed
hexagon denotes the Brillouin zone of the kagome charge crystal,
and the white rectangle denotes the Brillouin zone after doubling the
unit cell, containing two two Dirac points at the Fermi level.

and trivial insulator (without any spinon hopping or hybridiza-
tion) are higher in energy.

V. BEYOND MEAN-FIELD THEORY: STABILITY AND
EXPERIMENTAL DETECTION

A. Spin liquids on triangular charge crystal

Our results indicate that on the triangular lattice, the
U(1) Dirac spin liquid that occurs with a staggered π -flux
background is the energetically most preferred spin-liquid
Ansatz state. This is in accord with theoretical studies of
Heisenberg models valid deep in the insulating state [32,39],
though a U(1) spinon Fermi-surface state has also been con-
sidered a strong candidate in Hubbard models [40,41]. At
low energies, the U(1) Dirac spin liquid is described by
quantum electrodynamics in 2+1 dimensions (QED3), where
the SU(2)pseudospin × SU(2)valley symmetry is enhanced to an
emergent SU(4) symmetry. QED3 is believed to be stable
and flow to an infrared fixed point with conformal symmetry
[4,42]. A key consequence of this low-energy conformal field
theory (CFT) is that correlation functions of order parameters
close to the QED3 fixed-point theory are expected to fall off
as anomalous power laws. For example, spin-spin correlation
functions will be dominated by

〈Sα (x)Sβ (y)〉 ∼ e−iKm·(x−y)

|x − y|2
�
+ H.c. + . . . , (31)

where 
� ≈ 1.02 is the scaling dimension of the monopole
operator in the QED3 CFT according to latest bootstrap stud-
ies [43,44], and Km denotes a wave vector at the corner of
the hexagonal moiré Brillouin zone. Here, we stress that in
the context of moiré TMD discussed in this paper, the spin
operators Sα (r) in Eq. (31) refer to the SU(2) spin-valley pseu-
dospin degree of freedom associated with a charge carrier.

We briefly comment on experimental signatures of this
putative spin-liquid state in the context of moiré heterostruc-
tures. While these systems are not amenable to conventional
probes of magnetism and magnetic order such as neutron
scattering due to limited sample sizes, their two-dimensional
nature allows them to be readily integrated into two-
dimensional tunnel junctions. Following experimental works
on tunneling spectroscopy of magnons in van der Waals mag-
nets [45] as well as a theoretical proposal by Koenig et al.
[46], we suggest that the anomalous pseudospin correlations
in Eq. (31) of the putative Dirac spin liquid could be probed
using inelastic tunneling spectroscopy, where electrons tun-
neling between two planar metallic substrates at the top and
bottom of the heterostructure scatter off spin excitations in
the moiré TMD system. Adopting the scaling arguments
of Ref. [46], the inelastic contribution Iinel. to the tunnel-
ing current I = Iel. + Iinel. would then exhibit an anomalous
differential conductance dIinel./dV ∼ V 2
�−1 with 
� as in-
troduced in Eq. (31). As a comparison, for the Heisenberg
120◦ antiferromagnet with linearly dispersing magnons, one
would expect dIinel./dV ∼ V 2. However, we note that energy
and temperature scales at which these universal power laws
are expected to be observable are unclear as of now.
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B. Spin liquids on honeycomb charge crystal

We comment that U(1) spin-liquid states with spinons dis-
persing on an effective honeycomb lattice formed by localized
charges will in general be unstable. There are two main mech-
anisms for their instability.

On the one hand, we note that the gapless Dirac cone in the
spinon dispersion in this state is protected by a combination
of time-reversal and inversion symmetries. As discussed in
Sec. II B, the inversion symmetry of moiré-Hubbard model
on the triangular lattice occurs as an artifact of truncating the
Fourier expansion of the moiré potentials 
±(r) and 
T (r)
beyond leading order. Accounting for higher-order harmonics,
this symmetry is broken and thus the spinon Dirac cones can
be gapped out by terms of microscopic origin. Hence, an
effective field theory that describes this spin-liquid state corre-
sponds to a pure U(1) lattice gauge theory in 2+1 dimensions.
However, as shown by Polyakov [26,27], such compact U(1)
gauge theory is unstable against monopole proliferation.

On the other hand, even if the spinon Dirac cones are
stable, in Ref. [42] it was demonstrated that U(1) Dirac spin
liquids on the honeycomb lattice are unstable because there
exists a monopole excitation that transforms trivially under all
microscopic symmetries, and can thus proliferate.

We therefore conclude that the U(1) spin-liquid states for
filling n̄ = 4

3 are in general not expected to be stable against
monopole proliferation, likely giving way to confined states
such as magnetically ordered or dimer states.

C. Spin liquids on the kagome charge crystal

Amongst pure Heisenberg spin models, the kagome lattice
antiferromagnet has long been known to have the strongest
tendency to avoid magnetic ordering. While there is consensus
on this point from many calculations, the precise nature of the
nonmagnetic ground state, and its sensitivity to weak inter-
actions beyond nearest-neighbor exchange, are under debate.
Spontaneously dimerized valence bond solid states [47], as
well as U(1) Dirac [36,37,42] and Z2 [48–51] spin-liquid
states are competitive energetically.

We may therefore expect a spin liquid to obtain as well for
the kagome charge crystal. Within our framework, we find that
the most competitive spin-liquid state is a U(1) Dirac state,
which is in accord with variational wave-function studies for
the aforementioned Heisenberg models. The experimental sig-
natures of a such a state would be similar to those discussed
above for the triangular lattice Mott insulator.

D. Dimer states

For all charge crystals, forming effective triangular, hon-
eycomb, and kagome lattices, within our mean-field theory
we saw that dimerized states are actually more favorable than
spin liquids and cannot be discounted. At the mean-field level,
these dimer states retain a very high degeneracy, associated to
the positioning of the dimers. This degeneracy is an artifact
of the mean-field treatment and is not expected to be exact.
Instead, perturbative corrections in K/U beyond the mean-
field approximation will induce energy differences between
different dimer configurations, tending to stabilize particular
dimer coverings of the lattice. More generally, one might

invoke an effective dimer model to describe the dynamics and
state selection within the space of singlet dimer coverings.
Typically, the “potential” terms within such a dimer model
tend to induce an ordered configuration of singlet bonds, i.e.,
a valence bond crystal. A gapped Z2 resonating valence bond
spin-liquid state is also conceivable, if the “kinetic” terms of
such an effective dimer model dominate.

Valence bond solid states thus appear highly plausible, and
should be detectable experimentally if present. They can occur
a priori not only in the kagome charge crystal but also for
other insulating fillings. While the precise pattern of ordered
dimers in such a state is hard to predict, a number of candi-
dates have been discussed in the literature. Rather than trying
to differentiate amongst many different possible orderings,
here we point out that at the grossest level they all share
commonalities which suggest similar experimental signatures.
In particular, any dimer pattern necessarily breaks discrete
space-group symmetries. Consequently, a valence bond solid
state exhibits domains and domain walls, and moreover the
domains couple to lattice deformations. These facts tend to
lead to substantial increases in resistance when such sym-
metry breaking occurs, for example, from the difficulty of
propagating electrons across domain walls, against preferred
directions, and from opening of gaps. In other metals with
discrete symmetry breaking these resistivity enhancements
can be quite dramatic [52,53]. In twisted TMDs, we can
expect valence bond solid states to show similar resistivity
enhancements tuned by gating and applied fields. If the dimer
order breaks rotational symmetry, that may also be detectable
directly in transport, as it has been in nematic quantum Hall
states.

VI. SUMMARY AND OUTLOOK

In this paper, we have studied the triangular
moiré-Hubbard model as an effective model for correlated
states in moiré hetorobilayers and twisted homobilayers
of transition metal dichalcogenides. Motivated by the
experimental discovery of self-organized charge lattices
(generalized Wigner crystals) at various filling factors,
we have employed a self-consistent slave-rotor mean-field
theory to map out phase diagrams containing both insulating
states as well as metallic (compressible) states as a function
of interaction strength and filling, reproducing several
experimentally found charge-ordering patterns, where we
point out that longer-ranged (next-nearest-neighbor) repulsive
interactions are crucial for the stabilization of kagome-type
charge crystals.

By splitting electronic quasiparticles into charge rotor
and fermionic spinon degrees of freedom, the slave-rotor
mean-field theory (upon including charge fluctuations per-
turbatively) allows us to study spin states on top of the
charge-ordered background, possibly including exotic spin-
liquid states. Such states are expected if the generalized
Wigner crystals form frustrated lattices, which occurs at half-
filling (corresponding to a triangular lattice), as well as at
filling n̄ = 5

4 , where kagome-type lattices are stabilized.
Among all candidate Ansatz states, we find that on the

mean-field level, dimer states are always energetically pre-
ferred, but certain spin liquids are found to have competitive
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energies, and may be realized as ground states in certain
parameter reigmes after accounting for gauge fluctuations
and Gutzwiller projection. We discuss the stability of these
states, as well as means of experimental detection of spin
liquids and dimer states that are particularly suitable for two-
dimensional heterostructures. In the future, it would be ideal
to improve the quantitative accuracy of this study by elevating
the mean-field approximation to variational status via suitable
wave functions. At present we simply assert that the current
method qualitatively captures the physics of charge ordering,
bandwidth and mass renormalization, and possible spin-liquid
and dimer states.

We note that we have restricted our study to dimer states
as well as symmetric U(1) spin liquids, which are necessarily
gapless. While these states have previously been found to be
prime contenders for spin-liquid ground states of frustrated
Heisenberg models on the triangular and kagome lattices
[32], Z2 spin-liquid states cannot be ruled out a priori. In-
deed, there are feasible DMRG calculations supporting a
gapped Z2 spin liquid in triangular lattice Heisenberg models
[54,55]. Moreover, DMRG studies of the triangular lattice
Hubbard model have suggested that virtual charge fluctu-
ations at intermediate values of t/U may stabilize gapped
chiral spin liquids (CSL) [56,57]. In a similar vein, one may
consider vertical displacement fields which explicitly break
the SU(2)pseudospin degeneracy of the moiré-Hubbard model
[5], leading to Dzyaloshinskii-Moriya interactions in effective
spin models obtained at large t/U . These interactions have
been suggested to induce noncollinear magnetic order as well
as chiral spin-liquid phases [17,58]. As for kagome charge
order ( 5

4 filling), recent DMRG [17] and Schwinger boson
[59] studies have suggested the possibility of chiral spin-liquid
phases on kagome lattice. A highly interesting extension of
our work therefore consists in allowing for spontaneous break-
ing of time-reversal symmetry, which could capture possible
CSL phases as well as (possibly complex) magnetic order,
which we have explicitly excluded out in the paper at hand.

On the experimental front, we remark that detection of
magnetic long-range order in moiré TMD heterostructure is
still at its infancy. Recently, first evidence for ferromagnetic
long-range order in R-stacked MoTe2 was provided [60].
While there are signatures of antiferromagnetic interactions,

for example, in WSe2/WS2, both at half-filling [7] as well as
fractional filling [61], no direct detection of antiferromagnetic
long-range order in moiré TMD has been reported. Estab-
lishing new experimental probes for magnetically ordered
states in moiré TMD constitutes an important milestone for
the eventual realization and detection of quantum dimer or
quantum spin-liquid phases in these systems.
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APPENDIX A: ACCIDENTAL SYMMETRY OF
MOIRÉ-HUBBARD MODELS

Here, we show that the effective Hamiltonian of Ref. [5]
for the twisted homobilayer exhibits an accidental symmetry.
Moiré bands and wave functions are obtained as solutions to
the Schrödinger equation Hψ = Eψ where

H =
(− 1

2m (k̂ − κ+)2 + 
+(r) 
T (r)



†
T (r) − 1

2m (k̂ − κ−)2 + 
−(r)

)
,

(A1)

where κ̂ = −i∇ is the momentum operator acting in real
space, and 
±(r) and 
T (r) are moiré potentials in each layer
and the interlayer tunneling, respectively. If the Bloch Ansatz
ψ = eik·ruk(r) solves the Schrödinger equation with energy
Ek, the Bloch wave function wk′ (x, y) ≡ (uk′ (x,−y))∗ with
k′ = (−kx, ky) solves

(− 1
2m (k̂ + k + κ−)2 + 
+(x,−y) 


†
T (x,−y)


T (x,−y) − 1
2m (k̂ + k + κ+)2 + 
−(x,−y)

)
wk′ = Ek′wk′ , (A2)

where we use that 
±(r) is real. Since κ+ + κ− is equal to a
reciprocal lattice vector, we can write wk′ = w̃k′e−i(κ++κ− )·r.

Now, if we assume that 
±(x,−y) = 
±(x, y) and

T (x,−y) = 


†
T (x, y), the resulting Bloch problem for w̃k′ ,

with energy Ek′ takes the same form as uk with eigenvalue
Ek. Hence, there exists a combination of time-reversal and
reflection symmetries that relates

uk′ (x, y) = ei(κ1+κ2 )u∗
k(x,−y). (A3)

Crucially, this symmetry requires 
±(x,−y) = 
±(x, y) and

T (x,−y) = 


†
T (x, y), which is satisfied by general moiré

potentials only if their Fourier coefficients are restricted to the
first shell of reciprocal lattice vectors.

In the case of heterobilayers with strong band off-
sets [20], the moiré-Bloch spectrum is derived by solving
the Schrödinger equation for a valence band hole, H =
κκ2/(2m) + V (x), where V (x) is the moiré potential which
can be extracted from DFT simulations. Keeping the C3 sym-
metry manifest and expanding V (x) to include only the first
harmonics (i.e., reciprocal lattice vectors only in the first
moiré-Brillouin zone) leads to a spurious reflection symmetry,
which is broken explicitly upon keeping higher-order terms in
the expansion of V (x).
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APPENDIX B: LONGER-RANGED REPULSIVE
INTERACTIONS AND WIGNER CRYSTALLIZATION

While the (screened) Coulomb repulsion in moiré het-
erostructures is generally long ranged, it is easier for
theoretical analysis and qualitative insights to truncate re-
pulsive interactions between nth nearest neighbors on the
effective moiré triangular lattice. However, we point out
that such truncated models might not exhibit more com-
plex charge-ordered (Wigner lattice) as stable thermodynamic
ground states. As a particular example, we consider the
moiré-Hubbard model of Eq. (1). At t = 0, charges do not
possess any dynamics and for filling n � 1, we can map the
Hamiltonian onto an effective Ising model with si = 2ni −
3 such that si = +1 (−1) corresponds to doubly occupied
(singly occupied) sites (a similar mapping can be performed
for fillings n < 1). Then, the effective Hamiltonian H =
HU + Hμ with Hμ = −μ

∑
i ni can be written as

H = J
∑
〈i j〉

sis j − h
∑

i

si, (B1)

which corresponds to an antiferromagnetic Ising model
on the triangular lattice with nearest-neighbor coupling
J = V/4 > 0 and a longitudinal field h = (U + 6V + μ)/
2.

As is well known, the antiferromagnetic Ising model pos-
sesses an extensive degeneracy at zero field h = 0, which is
lifted by any infinitesimal |h| > 0 in favor of a state with
mz = ± 1

3 magnetization, which corresponds precisely to the√
3 × √

3 Wigner crystal states forming an effective honey-
comb lattice with singly occupied and doubly occupied states.
Further increasing h, at |h| = 6J saturation is achieved, with
all Ising spins pointing up and down (corresponding to the
trivial band insulator of doubly occupied sites, or the half-
filled triangular lattice).

Importantly, this argument implies that the kagome charge
crystal with filling n̄ = 5

4 does not exist in the grand-canonical
ensemble if only nearest-neighbor repulsion is taken into ac-
count, and such that finite V ′ 
= 0 is required to stabilize the
Wigner crystal states.
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