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Conductivity in flat bands from the Kubo-Greenwood formula
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Conductivity in a multiband system can be divided into intra- and interband contributions, and the latter further
into symmetric and antisymmetric parts. In a flat band, intraband conductivity vanishes and the antisymmetric
interband contribution, proportional to the Berry curvature, corresponds to the anomalous Hall effect. We
investigate whether the symmetric interband conductivity, related to the quantum metric, can be finite in the
zero frequency and flat band limit. Starting from the Kubo-Greenwood formula with a finite scattering rate η,
we show that the DC conductivity is zero in a flat band when taking the clean limit (η → 0). If commonly
used approximations involving derivatives of the Fermi distribution are used, finite conductivity appears at zero
temperature T = 0; we show however that this is an artifact due to the lack of Fermi surfaces in a (partially)
flat band. We then analyze the DC conductivity using the Kubo-Streda formula, and note similar problems
at T = 0. The predictions of the Kubo-Greenwood formula (without the approximation) and the Kubo-Streda
formula differ significantly at low temperatures. We illustrate the results within the Su-Schrieffer-Heger model
where one expects vanishing DC conductivity in the dimerized limit as the unit cells are disconnected. We
discuss the implications of our results to previous work which has proposed the possibility of finite flat band
DC conductivity proportional to the quantum metric. Our results also highlight that care should be taken when
applying established transport and linear response approaches in the flat band context, since many of them utilize
the existence of a Fermi surface and assume scattering to be weak compared to kinetic energy.
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I. INTRODUCTION

Quantum geometry is key to understanding multiband
systems. For instance, quantum geometry has been related
to superconductivity in flat bands [1–13], orbital magnetic
susceptibility [14,15], light-matter interactions [16,17], the
intrinsic anomalous and spin Hall effects [18–24], the capaci-
tance [25], and other physical phenomena [26–32]. Quantum
geometric quantities determine the phase and amplitude dis-
tances between quantum states, and are represented by the
quantum geometric tensor [33] whose imaginary (antisym-
metric) part is the Berry curvature and real (symmetric)
part the quantum metric (Fubini-Study metric). The quantum
metric and Berry curvature are particularly central in the
properties of flat band systems. Flat bands are interesting plat-
forms for strongly correlated quantum phenomena, and have
attracted increased interest due to their relevance in moiré
materials [34–44].

Noninteracting particles on flat bands [45,46] are localized
and have a diverging effective mass. However, recent results
have predicted a nonzero direct current (DC) conductivity
weakly sensitive to the inelastic scattering rate [47,48], also
found in disorder-induced quasilocalized zero-energy modes
in graphene [49]. This result is sensitive to the used approach,
and for instance wave-packet propagation methods predict a
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vanishing conductivity of the zero-energy modes [50,51]. A
nonzero or even diverging DC conductivity has also been
predicted in disordered nonisolated flat bands [52,53]. In
perfectly flat bands, the zero-temperature DC conductivity
has been derived to be proportional to the quantum metric
[54–56].

The conductivity is often computed using the
Kubo-Greenwood formula, which is the noninteracting
version of the exact Kubo formula. The Kubo-Greenwood
formula can be sensitive to the order in which the relevant
limits (zero temperature, zero scattering, zero frequency) are
taken [57] or to approximations made for instance in the delta
functions [58]. Here, we show that when applied to flat bands,
the Kubo-Streda formula can give drastically different results
than the Kubo-Greenwood formula obtained directly via an
independent particle approximation of the Kubo formula. In
particular, if the zero temperature limit is taken before taking
the scattering rate to zero, the Kubo-Streda formula can yield
a conductivity proportional to the quantum metric in the
clean limit. This nonzero DC conductivity does not appear
when applying the Kubo-Greenwood formula, which predicts
vanishing DC conductivity.

In Sec. II, we first derive the conductivity within the
Kubo-Greenwood formula dividing it into intra- and interband
contributions and their symmetric and antisymmetric parts.
We show how in a flat band, where the intraband conductivity
is zero and the antisymmetric interband contributions give
the anomalous Hall effect, the symmetric intraband contribu-
tion vanishes at small temperatures in the clean limit. This
means no DC conductivity. In Sec. III, we then compute the
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conductivity using the Kubo-Streda formula, and show, using
also the sawtooth ladder, the dimerized Su-Schrieffer-Heeger
(SSH) model, and the Lieb lattice as examples, that the results
differ dramatically from the Kubo-Greenwood formula at low
temperatures. We explain the origin of the discrepancy. In
Sec. IV, we summarize and discuss our results.

II. KUBO-GREENWOOD FORMULA

The conductivity tensor σi j (ω) ≡ σi j (ω, q = 0) in a nonin-
teracting multiband system is given by the Kubo-Greenwood
formula [59]

σμν (ω) = e2

ih̄V

∑
k

∑
mn

nF (εn(k)) − nF (εm(k))

εn(k) − εm(k)

× [ jμ(k)]nm[ jν (k)]mn

εn(k) − εm(k) + h̄ω + iη
, (1)

which is obtained from the Kubo formula [60] by performing
an independent electron approximation. The band dispersion
of the nth band is given by εn(k), and the summation over
k runs over the first Brillouin zone. The prefactor involv-
ing the Fermi-Dirac distribution nF (ε) = 1/(eβε + 1), with
β = 1/(kBT ), should be understood as ∂εnF (ε)|ε=εn when
εn(k) = εm(k) [58]. The infinitesimal imaginary shift η added
to the frequency acts as a small inelastic scattering rate or
relaxation rate.

The current operators jμ are obtained from the momentum
derivatives of Hk, defined as H = ∑

k

∑
k c†

kα
[Hk]αβckβ

where

c†
kα

creates a particle with momentum k at orbital α. In terms
of the band dispersions εn(k) and the corresponding Bloch
functions |nk〉, they are given by

[ jμ(k)]mn = ∂kμ
εm(k)δmn + (εm(k) − εn(k))〈∂kμ

mk|nk〉. (2)

Another widely used form of the Kubo-Greenwood formula
for the diagonal components of σμν is

σμμ = − e2

h̄πV

∑
k

∑
mn

∫ ∞

−∞
dε

∂nF (ε)

∂ε

× Tr[Im[Gk(ε + iη)] jμ(k)Im[Gk(ε + iη)] jμ(k)],

(3)

where Gk(E ) = (E − Hk)−1 is the Green’s function. The
imaginary shift η in this case can be seen as a constant
homogenous purely imaginary self-energy, which could for
instance describe disorder causing inelastic scattering in the
system. Equation (3) is simply the diagonal components of
the more general Bastin [61] and Streda [62] formulas. In
this paper, we show that when applied to flat bands, Eqs. (3)
and (1) give drastically different results at T = 0. In order
to avoid confusion between the two forms, we will refer to
Eq. (1) as the Kubo-Greenwood formula, and to Eq. (3) as the
Kubo-Streda formula.

Let us first derive Re[σμν] from Eq. (1). The real part
of the conductivity can be decomposed in several ways, for
instance into so-called Fermi surface and Fermi sea contri-
butions [62–64]. In our case, we choose to split σμν into
intraband, symmetric interband, and antisymmetric interband
contributions, similarly to the decomposition used in

Ref. [65]. The advantage of this split when considering flat
bands is evident: the intraband contribution from a perfectly
flat band vanishes exactly, and only the interband part re-
mains. The antisymmetric part of the latter is related to the
intrinsic anomalous Hall effect.

In the thermodynamic limit, the intraband contribution to
the real part of the conductivity σ intra

μν obtained from Eq. (1) is

Re σ intra
μν (ω) = −e2

h̄

∑
n

∫
BZ

dDk
(2π )D

∂nF (E )

∂E

∣∣∣∣
E=εn (k)

× [ jμ(k)]nn[ jν (k)]nn
η

(h̄ω)2 + η2
(4)

= −e2

h̄

∑
n

∫
BZ

dDk
(2π )D

∂nF (E )

∂E

∣∣∣∣
E=εn (k)

× ∂kμ
εn(k)∂kν

εn(k)
η

(h̄ω)2 + η2
. (5)

We have replaced the momentum summation by an integral
over the first Brillouin zone, (1/V )

∑
k → (1/2π )D

∫
BZ dDk,

where D is the dimension of the system. This contribution to
the conductivity is the only component present in a single-
band model, and gives the same result as the semiclassical
Boltzmann theory of transport when taking τ = 1/η as a
momentum-independent relaxation time. The intraband con-
tribution is clearly zero in a perfectly dispersionless band.

The total interband contribution is

σ inter
μν = −i

e2

h̄

∑
m �=n

∫
BZ

dDk
(2π )D

nF (εn(k))

εn(k) − εm(k)

×
(

[ jμ(k)]nm[ jν (k)]mn

εn(k) − εm(k) + h̄ω + iη

+ [ jν (k)]nm[ jμ(k)]mn

εm(k) − εn(k) + h̄ω + iη

)
. (6)

Using Eq. (2), we can express the symmetric and antisymmet-
ric parts of the real part of σ inter

μν as

σ s
μν (ω) = −e2

h̄

∑
n �=m

∫
B.z

dDk
(2π )D

nF (εn(k))

× Re[〈∂kμ
nk|mk〉〈mk|∂kν

nk〉]

×
(

η(εn(k) − εm(k))

(εn(k) − εm(k) + h̄ω)2 + η2

+ η(εn(k) − εm(k))

(εn(k) − εm(k) − h̄ω)2 + η2

)
, (7)

σ a
μν (ω) = e2

h̄

∑
n �=m

∫
BZ

dDk
(2π )D

nF (εn(k))

× Im[〈∂kμ
nk|mk〉〈mk|∂kν

nk〉]

×
(

(εn(k) − εm(k))(εn(k) − εm(k) + h̄ω)

(εn(k) − εm(k) + h̄ω)2 + η2

+ (εn(k) − εm(k))(εn(k) − εm(k) − h̄ω)

(εn(k) − εm(k) − h̄ω)2 + η2

)
. (8)

The interband contribution is thus related to components of
the quantum geometric tensor [66], which for the nth band is
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defined as

Gn
μν (k) = 2〈∂kμ

nk|(1 − |nk〉〈nk|)|∂kν
nk〉 (9)

= 2
∑

m:m �=n

〈∂kμ
nk|mk〉〈mk|∂kν

nk〉. (10)

The real and imaginary parts of Gn
μν = Mn

μν + iBn
μν are the

quantum metric and Berry curvature, respectively. Since the
quantum geometric tensor is Hermitian, the quantum metric
is symmetric while the Berry curvature is antisymmetric.

In the limit ω → 0, η → 0+, we recover for σ a
μν the

well-known relationship between the intrinsic anomalous Hall
conductivity and the Berry curvature [18–22,67]:

σ a
μν (ω = 0) = e2

h̄

∑
n

∫
BZ

dDk
(2π )D

nF (εn(k))Bn
μν (k). (11)

Notably, the antisymmetric part of the conductivity can be
nonzero even on a flat band in the clean limit η → 0+. In con-
trast to for instance the superfluid weight and Drude weight,
it also generally depends on the choice of orbital positions
within a unit cell [10,68].

The symmetric interband contribution, on the other hand, is
related to band-resolved components of the quantum metric,
but these components are weighted by factors depending on
the band dispersions. In the limit η → 0+, η/(x2 + η2) →
πδ(x), and the symmetric interband conductivity becomes

σ s
μν (ω) = −e2π

h̄

∑
n �=m

∫
BZ

dDk
(2π )D

nF (εn(k))

× Re[〈∂kμ
nk|mk〉〈mk|∂kν

nk〉](εn(k) − εm(k))

× (δ(εn(k) − εm(k) + h̄ω)

+ δ(εn(k) − εm(k) − h̄ω)). (12)

When all bands are isolated from each other, |εn − εm| �
Egap,min for m �= n, where Egap,min is the smallest interband
gap. One can see from the delta functions in Eq. (12) that
the interband conductivity then vanishes for any frequency
|h̄ω| < Egap,min in the clean limit. It follows that the sym-
metric part of the DC conductivity in an isolated flat band
is zero in the limit η → 0+. At nonzero scattering rate, the
DC conductivity can acquire a nonzero value because of the
spread of the Lorentzian functions centered at frequencies
|h̄ω| � Egap,min; this is just the finite linewidth of interband
transitions resonant with an AC field. For η � Egap,min, this
nonzero interband contribution is approximately

σ s
μν (ω = 0) ≈ −2η

e2

h̄

∑
n

∫
BZ

dDk
(2π )D

nF (εn(k))

×
∑

m:m �=n

Re[〈∂kμ
nk|mk〉〈mk|∂kν

nk〉]
εn(k) − εm(k)

, (13)

where we have approximated η(εn(k) − εm(k))/[(εn(k −
εm(k)))2 + η2] ≈ η/(εn(k) − εm(k)). The linear dependence
on the scattering rate is consistent with the result obtained in
Refs. [54,65] for small scattering rates in a dispersive bands
and in Ref. [69] in flat bands at a nonzero temperature. Here,
this holds also for perfectly flat bands at T = 0. The interband
conductivity given by Eq. (13) does not generally involve the

quantum metric of band n directly because of the division by
εn(k) − εm(k) in the sum. An exception would be for instance
a two-band model with only flat bands, where this difference
would be a momentum-independent constant, and the sum
over m would indeed yield the quantum metric of band n at
momentum k.

We note that an expression which relates the DC conduc-
tivity directly to the quantum metric can be obtained from
Eq. (12) by using that

nF (εn) − nF (εm)

εn − εm
δ(εn − εm + h̄ω)

= nF (εn + h̄ω) − nF (εn)

h̄ω
δ(εn − εm + h̄ω). (14)

The prefactor on the second line should be, as mentioned
earlier, understood as the derivative ∂nF (E )/∂E |E=εn(k) when
ω → 0. If the delta functions are replaced by Lorentzian
functions after this substitution, the DC conductivity for η �
Egap,min becomes

σ s
μν (ω = 0) = −η

e2

h̄

∑
n

∫
BZ

dDk
(2π )D

∂nF (E )

∂E

∣∣∣∣
E=εn(k)

×
∑
m �=n

Re[〈∂kμ
nk|mk〉〈mk|∂kν

nk〉]. (15)

This form is more reminiscent of results obtained for instance
by computing the conductivity in Matsubara space [54,65]. It
should however be stressed that here this is an approximation,
as Eq. (14) no longer holds if the delta function is replaced
by a Lorentzian function with a finite spread. In the limit
ω → 0, the prefactor on the right-hand side of Eq. (14) is
replaced by a derivative of the Fermi-Dirac distribution at
εn, which approximates [nF (εn) − nF (εm)]/(εn − εm) on the
left hand side only when εn and εm are close. If the bands
are well isolated, this does not hold. Equation (15) is also
problematic at T = 0 if the Fermi energy is in a perfectly
flat band, as the derivative of the Fermi-Dirac distribution
would then become −δ(EFB − μ) = −δ(0), where EFB is the
energy of the flat band, at all points of the Brillouin zone.
Transforming the integral over the momentum to an integral
over the energy does not help, as it would involve the density
of states on the flat band, which diverges. However, at any
nonzero temperature, Eqs. (15) and (13) always give the same
vanishing interband DC conductivity in the η → 0+ limit.

A vanishing DC conductivity on a noninteracting isolated
flat band is unsurprising, since single particles are localized.
However, it contrasts with recent results at T = 0, which have
found a nonzero DC conductivity proportional to the quantum
metric even in the limit η → 0+ [48,54–56]. In Refs. [54,65],
it was shown that the interband contribution vanishes linearly
with η on dispersive bands even at T = 0, and this finite
conductivity in the clean limit thus appears only in perfectly
flat bands. In the following, we show that such results can arise
when applying the Kubo-Streda formula when the Fermi en-
ergy is in a (partially) flat band. This is related to contributions
from states at exactly the Fermi energy which do not vanish in
the clean limit, present in the Streda formula but absent in the
Kubo-Greenwood formula [Eq. (1)]. These contributions only
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FIG. 1. (a) Sketch of the dimerized SSH model and the sawtooth ladder studied here. (b, c) DC conductivity in the SSH model at μ = −t ,
when the chemical potential is in the lowest flat band (b), and at μ = −0.9t (c). The conductivity obtained from the Kubo-Greenwood formula
consists of solely interband contributions, and vanishes at all temperatures in the clean limit η → 0+. The DC conductivity obtained from the
Kubo-Streda formula remains pinned at 1/(8π ) at T = 0, but vanishes for nonzero temperatures. When the chemical potential is tuned away
from the flat band, the limit η → 0+ from the Kubo-Greenwood and Kubo-Streda formulas is the same, although the behavior at nonzero η

is drastically different. (d) Interband and intraband contributions obtained from the Kubo-Greenwood formula in the sawtooth ladder when
the chemical potential is in the flat band. The intraband contribution from the dispersive band diverges as η → 0+, whereas the interband
contribution vanishes. (e, f) DC conductivity from the Kubo-Greenwood and Kubo-Streda formula when the chemical potential is (e) in the
flat band and (f) in the middle of the dispersive band. In a dispersive band, both methods give the same results, whereas in a flat band, they
give drastically different results. In the flat band, the conductivity from the Kubo-Streda formula remains pinned to 2/(3

√
3π ) at T = 0.

become meaningful in systems without a Fermi surface, such
as a flat band.

III. FLAT BAND CONDUCTIVITY FROM THE
KUBO-STREDA FORMULA

The Kubo-Streda formula gives the symmetric part of the
DC conductivity as [62–64]

σ sym
μν (ω = 0) = − e2

h̄π

∫ ∞

−∞
dε

∂nF (ε)

∂ε

× Tr[Im[Gk(ε + iη)] jμ(k)

× Im[Gk(ε + iη)] jν (k)]. (16)

This equation can be derived from the Kubo-Greenwood
formula directly, or can be obtained from the exact Kubo
formula by computing the current-current response function
in Matsubara space assuming noninteracting particles. When
applied to dispersive bands, Eqs. (1) and (16) usually give
very close results, provided we take ηKG = 2ηStreda. However,
when applied to flat bands, the DC conductivities can differ
drastically especially at low temperatures.

To illustrate this, we consider two one-dimensional flat
band systems: the sawtooth ladder and the dimerized limit
of the SSH model [see Fig. 1(a)]. We describe these systems

with the tight-binding Hamiltonian H = ∑
iα, jβ tiα, jβc†

iαc jβ −
μ

∑
iα niα , where tiα, jβ is the hopping amplitude from site

jβ to iα. The unit cells are labeled with i and j, while
α and β indicate the orbitals within a unit cell. By taking
the Fourier transformation ciα = (1/

√
Nc)

∑
k ckαeik·(Ri+δα )

the Hamiltonian becomes H = ∑
k c†

kα
[Hk]αβckα

, where

Hk =
∑

i

∑
αβ

tiα,0βe−ik·(Ri+δα−δβ ). (17)

Here, Ri is the position of the ith unit cell, and δα = riα − Ri,
with riα the position of site iα. The eigenvalues and eigenvec-
tors give the band dispersion relations εn(k) and the periodic
parts of the Bloch functions |nk〉, respectively.

Note that in a multiband lattice taking the orbital positions
δα into account in the Fourier transformation is essential in
order to obtain the correct conductivity [65,70,71]. This is
in contrast to the superfluid weight, which is independent of
the particular choice of δα provided it is computed accurately
[10]. In other words, the conductivity is generally geometry
dependent, using the terminology introduced in Ref. [68].

The sawtooth ladder features a perfectly flat band at en-
ergy E = 2t , isolated from a dispersive band ε(k) = −[2 +
2 cos(k)]t . The dimerized SSH model has two exactly flat
bands at energies E = ±t . Importantly, the dimerized SSH
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model consists of two-site clusters that are completely dis-
connected from each other. It is thus reasonable to expect the
DC conductivity to vanish.

As can be seen from Fig. 1, when the chemical potential
is tuned into the flat band, the interband conductivity ob-
tained from Eq. (1) vanishes in the clean limit η → 0+ in all
cases. In the SSH model, the intraband conductivity is exactly
zero because the system contains only flat bands, and the
Kubo-Greenwood formula predicts a vanishing σ (ω = 0)
[Figs. 1(b) and 1(c)]. In the sawtooth ladder [Figs. 1(d) and
1(e)], the intraband contribution from the dispersive band is
nonzero at any T > 0, and diverges in the limit η → 0+.
However, it is highly suppressed at low temperatures even for
small η when the chemical potential is in the flat band. At the
values of η used here, the interband conductivity is dominant
up to a temperature kBT ≈ 0.3. This threshold temperature
decreases with the scattering rate η and reaches zero in the
limit η → 0. The nonzero conductivity found at nonzero η

thus mostly arises from the interband contribution, related
to the quantum geometry of the bands, at low temperatures,
which is expected due to the flatness of the band.

The conductivity obtained from Eq. (16), the Kubo-Streda
formula, is drastically different from the one obtained using
the Kubo-Greenwood formula. At exactly T = 0, it retains a
nonzero value proportional to the integrated quantum metric
even when η → 0+ [Figs. 1(b) and 1(e)]. For T > 0, the inter-
band conductivity vanishes for both formulas in the limit η →
0+. As a consequence, the limits η → 0+ and T → 0 do not
commute when applying the Kubo-Streda formula. The quali-
tative behavior obtained from Eqs. (16) and (1) at nonzero η is
very different at low temperatures. The interband conductivity
obtained from the Kubo-Greenwood formula varies little with
temperature when the chemical potential is tuned into the flat
band, whereas the Kubo-Streda formula predicts a conductiv-
ity roughly proportional to T −1, similar to the one found at
nonzero temperatures for topological flat bands in Ref. [69].
A notable difference in behavior subsists when the chemical
potential is tuned slightly away from the flat band, as can be
seen from Fig. 1(c), although both formulas then give the same
conductivity in the limit η → 0+. When no flat band exists in
the vicinity of the chemical potential, both Eqs. (16) and (1)
predict a similar conductivity provided the scattering rates are
related by a factor of 2.

The two models studied above feature only isolated flat
bands, for which the Kubo-Greenwood formula predicts a
vanishing DC conductivity. However, in the presence of a
band touching, the assumption that η � Egap,min, which is
essential to obtain an interband conductivity proportional to
η, no longer holds for any η > 0. We thus compute the con-
ductivity in the Lieb lattice, a two-dimensional bipartite lattice
featuring a single flat band which touches dispersive bands at
the corners of the Brillouin zone [see Fig. 2(a)].

The intraband and interband components of the conductiv-
ity obtained from the Kubo-Greenwood formula for the Lieb
lattice are shown in Fig. 2(c). The intraband conductivity in
this model is less strongly suppressed than in the sawtooth
ladder, which is expected since the flat band is no longer
isolated. The interband contribution to the conductivity
is however still dominant below a threshold temperature
decreasing with η. In contrast to the sawtooth ladder, the in-

FIG. 2. (a) The Lieb lattice (top) and its band dispersions
(bottom). The unit cell is indicated by a dashed box. (b) Conduc-
tivity obtained from the Kubo-Streda formula (dashed lines) and the
Kubo-Greenwood formula (full lines) as a function of temperature.
The two results agree very well at high temperatures when the
scattering rates are related by a factor of 2, but become increas-
ingly different as the temperature is decreased. (c) Interband and
intraband contributions to the conductivity obtained from the Kubo-
Greenwood formula. Note the logarithmic conductivity axis. Inset:
Interband conductivity obtained for the symmetric positions shown
in (a) (full lines), and when δα = 0, meaning all orbitals within a unit
cell are at the same spatial position (dashed lines).

terband conductivity does not seem to vanish even in the limit
η → 0+ and T → 0, and instead retains a finite value. This is
due to the band touching, which corresponds to a divergence
of the quantum metric of the flat band at the corners of the
Brillouin zone. To verify whether this finite value depends
on the choice of positions in the unit cell, we computed the
interband conductivity when the intraunit cell positions of all
orbitals within a unit cell are the same, i.e., δα = 0 for all α.
As shown in the inset of Fig. 2(c), the conductivity in the limit
η → 0+ does not depend on the choice of basis. However, for
finite η, the result does slightly vary based on the positions in
a unit cell.

Again in this case, the results obtained from the
Kubo-Streda formula, shown in Fig. 2(b), differ signifi-
cantly from those of the Kubo-Greenwood formula at low
temperatures. Whereas the conductivity predicted by the
Kubo-Greenwood formula acquires a finite value in the limit
T → 0, the conductivity given by the Kubo-Streda formula
diverges. This reflects the fact that the integrated quantum
metric of the flat band also diverges due to the band touching
point.

These results point to a discrepancy between the results
given by the Kubo-Greenwood and Kubo-Streda formulas
when computing the conductivity in flat bands. This dis-
crepancy is the most remarkable near zero temperature,
where the interband contribution involving the flat band is
the most prominent. For an isolated flat band, the Kubo-
Greenwood formula predicts a vanishing DC conductivity
at T = 0 in the clean limit, whereas the Kubo-Streda for-
mula gives a conductivity proportional to the quantum
metric.
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Origin of the discrepancy

In order to understand the differences in the results ob-
tained from Eqs. (16) and (1), let us derive Eq. (16) from
Eq. (1).

Starting from Eq. (1), we write

σμν (ω = 0) = −i
e2

h̄

∫
BZ

dDk
(2π )D

∫ ∞

−∞
dε

∑
mn

[ jμ]nm[ jν]mn

×
(

nF (ε)δ(ε − εn)

(ε − εm)(ε − εm + iη)

− nF (ε)δ(ε − εm)

(εn − ε)(εn − ε + iη)

)
. (18)

Using that limη→0+ 1/[(ε − εn)(ε − εn + iη)] = − limη→0+

∂ε (ε − εn + iη)−1, we obtain the Kubo-Bastin formula

σμν (ω = 0) = i
e2

h̄

∫
BZ

dDk
(2π )D

∫ ∞

−∞
dε nF (ε)

× Tr

[
jμ

∂Gk(ε + iη)

∂ε
jνδ(ε − H )

− jμδ(ε − H ) jν
∂Gk(ε − iη)

∂ε

]
. (19)

A detailed derivation of the full Kubo-Streda formula from
this form is given by Crépieux and Bruno in Ref. [63]. Here,
we will focus on the symmetric part of the conductivity, which
reads

σ sym
μν (ω = 0) = e2

h̄

∫
BZ

dDk
(2π )D

∫ ∞

−∞
dε nF (ε)

× Tr

[
jμ

∂

∂ε
Im[G(ε − iη)] jνδ(ε − H )

+ jμδ(ε − H ) jν
∂

∂ε
Im[G(ε − iη)]

]
. (20)

If we replace the delta functions by a Lorentzian, we can write
πδ(ε − H ) = limη′→0+ ImG(ε − iη′), where η′ can generally
be different from the scattering rate in G(ε − iη). With η′ = η,
we obtain precisely the formula (16) through integration by
parts. Taking η′ = η should not change the result in the clean
limit as long as the limit limη′→0+,η→0+ does not depend on
the direction it is taken in. However, this is not always the
case at T = 0. At exactly zero temperature, Eq. (20) becomes
σ

sym
μν (ω = 0) = σ I

μν + σ II
μν , where

σ I
μν = e2

2h̄π

∫
BZ

dDk
(2π )D

Tr
[

jμIm[G(μ − iη)] jνIm[G(μ − iη′)] + jμIm[G(μ − iη′)] jνIm[G(μ − iη)]
]

(21)

= e2

2h̄π

∑
mn

∫
BZ

dDk
(2π )D

(
ηη′

[(εn − μ)2 + η2][(εm − μ)2 + η′2]
+ ηη′

[(εn − μ)2 + η′2][(εm − μ)2 + η2]

)
[ jμ]mn[ jν]nm, (22)

σ II
μν = e2

2h̄π

∫
BZ

dDk
(2π )D

∫ μ

−∞
dε Tr

[
jμ

∂

∂ε
Im[G(ε − iη)] jνIm[G(ε − iη′)] + jμIm[G(ε − iη′)] jν

∂

∂ε
Im[G(ε − iη)]

− jμIm[G(ε − iη)] jν
∂

∂ε
Im[G(ε − iη′)] − jμ

∂

∂ε
Im[G(ε − iη′)] jνIm[G(ε − iη)]

]
. (23)

The contribution σ I
μν causes the discrepancy between the

Kubo-Greenwood and the Kubo-Streda formula in flat bands.
Note that the double limit limη→0+,η′→0+ of ηη′/[((εn − μ)2 +
η2)((εm − μ)2 + η′2)] depends on the direction of the limits
whenever only one of εn or εm is equal to μ. For instance, if
εn = μ and εm �= μ, the limit diverges if we first take η → 0+,
vanishes if we take η′ → 0+ before η → 0+, and gives the
nonzero finite result 1/(εm − εn)2 if η = η′. The integrand in
Eq. (22) is thus problematic whenever one of εn or εm is equal
to the Fermi energy. In other words, the contribution coming
from states at the Fermi energy to the interband part of the
conductivity can be inaccurate.

In a dispersive band where the Fermi surface is D − 1
dimensional, the states at exactly the Fermi energy will not
contribute in the thermodynamic limit, since their area in the
Brillouin zone vanishes. However, if the Fermi energy is in a
(partially) flat band, these contributions appear in the final re-
sult. In particular, if we set η = η′ when taking the clean limit,
the resulting DC conductivity when the chemical potential is
tuned into a flat band is proportional to the integrated quantum

metric of the flat band n:

σμν = e2

h̄π

∫
BZ

dDk
(2π )D

∑
m �=n

〈∂μnk|mk〉〈mk|∂νnk〉. (24)

However, this is only the case when taking the limit along
η = η′, and the double limit is actually not well defined.

The source of the problem is the introduction of the deriva-
tive of the Fermi distribution. Above, we already mentioned
that integrating ∂nF (ε)/∂ε|ε=εn(k) over the Brillouin zone
causes problems when εn(k) is constant. Here, it may appear
that the same problem is no longer present, because we could
integrate ∂nF (ε)/∂ε|ε=εn(k) over the energy ε. However, if
we take η′ → 0+ first before η → 0+, we recover the delta
function first introduced in Eq. (18). Now that we already
integrated over the energy to get rid of the delta function
coming from ∂nF (ε)/∂ε|ε=εn(k), the remaining delta function
has transformed into δ[μ − εn(k)]. Again, the integral over the
Brillouin zone is no longer well defined when the chemical
potential is in a dispersionless flat band.
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We note that these problems are less likely to appear when
computing the antisymmetric part of the conductivity, rele-
vant for the anomalous Hall effect, since the equations for
its evaluation typically involve the Fermi distribution and not
its derivative. Then, no ill-defined integrals of delta functions
appear at T = 0.

IV. CONCLUSIONS AND DISCUSSION

We calculated the DC conductivity in multiband systems
using the Kubo-Greenwood formula and the Kubo-Streda
formula, and scrutinized various approximations used in the
literature. Our focus was analyzing the DC conductivity in an
isolated (gapped from other bands) flat band and its potential
connection to quantum geometry. We summarize here our
findings and discuss their implications.

The Kubo-Greenwood formalism, without approximate
use of derivatives of the Fermi function, predicts vanish-
ing DC conductivity in a flat band in the clean limit η →
0. This is physically intuitive considering that single par-
ticles have infinite effective mass and DC conductivity is
essentially single-particle transport in a system with no cor-
relations but only a (vanishingly small) scattering rate η. The
Kubo-Greenwood formula gives a vanishing DC conductivity
in the clean limit in the dimerized SSH chain, consistent with
the fact that transport through the chain is impossible since it
is disconnected. In our view, the Kubo-Greenwood result of
zero DC conductivity is the physically correct description of
noninteracting electron transport in a flat band.

At finite η, the Kubo-Greenwood formula gives a DC
conductivity related to the quantum geometry of the bands,
but this is simply the DC tail of the AC conductivity reso-
nance at the band-gap frequency. Whether the conductivity
obtained from the Kubo-Greenwood formula at finite η is in
any way representative of a realistic system is questionable,
as a constant homogenous scattering rate does not generally
fully describe effects such as disorder.

The Kubo-Streda formula gives results very different from
the Kubo-Greenwood one in a flat band, and we argue they do
not describe the limit of a dispersionless band correctly. This
becomes apparent when they predict finite DC conductivity
at zero temperature even in the completely disconnected SSH
model where a DC current through the system clearly cannot
flow. Moreover, the nonzero interband DC conductivity in the
clean limit arises only for perfectly flat bands: as soon as even
a small dispersion is added, the conductivity at low η be-
comes proportional to η on an isolated band. Since a perfectly
flat band never occurs in practice in an experimental setting,
the nonzero conductivity predicted for isolated perfectly flat
bands would not be likely to be observed even if it was
accurate. The Kubo-Greenwood formula predicts the same
conductivity for both a perfectly flat band and a dispersive
band with a vanishingly small width.

We point out in detail where the problems with the
Kubo-Streda formula arise: essentially, they boil down to the

lack of a Fermi surface. In a flat band, the Fermi energy is
massively degenerate and forms a volume (in three dimen-
sions) or a surface (in two dimensions) in momentum space.
Therefore any unphysical features at the Fermi energy arising
from approximations become finite, while in a dispersive band
they would vanish within an integral over the Brillouin zone
since there the Fermi surface is an area (in three dimensions)
or a line (in two dimensions) of zero measure. One might
think this could be solved by changing the integration variable
from momentum to energy, but that would involve introducing
the density of states which diverges in a flat band, the same
problem dressed in a different way. Thus, in general, in studies
of linear response phenomena in the flat band limit, one needs
to be cautious with commonly applied approximations and
formulas, since many of them are valid and physically mean-
ingful only in the presence of a Fermi surface. Several recent
studies of conductivity in a flat band [47–49,55,56,69] should
probably be revisited to understand the potential implications
of our results there.

Our results relate also to the subtle connections between
quantum geometry, physical observables, and the orbital posi-
tions in a lattice system. The symmetric and antisymmetric
components of the quantum geometric tensor, namely the
quantum metric and Berry curvature, depend on orbital po-
sitions, i.e., change of orbital coordinates while keeping the
connectivity (hopping) between the orbitals the same. It is
well known that many physical observables, such as the
anomalous Hall conductivity, are determined by the Berry
curvature and thus depend on orbital positions. Flat band
superconductivity was predicted to be proportional to the
quantum metric (which is orbital dependent) within a large
number of studies (see Refs. [1,44] and references therein),
while the definition of the superfluid weight is clearly in-
dependent of orbital positions. This discrepancy was solved
only recently by showing that the superfluid weight is actually
related to the minimal quantum metric, an orbital-independent
quantity [10]. Here we showed that the flat band AC con-
ductivity can have a relation to the quantum metric, while
the DC conductivity in the limit η → 0+ does not depend on
the choice of basis. We believe that it is probably possible
to determine, at a general level, which physical observables
are orbital-position dependent simply based on Maxwell’s
equations, general properties of the (superconducting or single
electron) wave function, and gauge invariance. We leave this
to a future work. Another important future research problem is
to analyze transport in the case where other bands are touching
the flat band.
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