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Frustration, solitons, and entanglement in spin chains
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Defects in frustrated antiferromagnetic spin chains are universally present in geometrically frustrated systems.
We consider the defects of the one-dimensional, spin-s XXZ chain with single-ion anisotropy on a periodic
chain with N sites that was famously studied by Haldane. For N odd, the antiferromagnetic model is frustrated,
and the ground state must include a soliton defect. We consider the Heisenberg interaction perturbatively and
determine the corresponding perturbative solitonic ground state. Then we compute the entanglement spectrum,
entanglement entropy (EE), capacity of entanglement (CE), and spin correlations in the solitonic ground state.
For weak frustration, we find an algebraic violation of the area law for the EE consistent with recent results on
weakly frustrated chains. Our analysis then moves beyond the weak frustration regime, and we obtain a novel
extensive scaling law for the EE when strong frustration prevails, signaling large entanglement, and failure of
the quasiparticle interpretation in this regime. Enhanced frustration results in less total correlations but relatively
more nonlocal correlations.
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I. INTRODUCTION

The study of phase transitions and entanglement properties
of frustrated systems is a venerable subject [1–5] which has
attracted renewed interest in recent years [6–16]. Frustration
refers to the impossibility for the ground state of a many-body
system to locally minimize energy. In classical systems, frus-
tration can only arise because of topological obstructions. For
instance, the (classical) antiferromagnetic (AF) Ising chain
|J|∑i Sz

i Sz
i+1 minimizes the energy of the local interaction

terms |J|Sz
i Sz

i+1 with the Néel order. On a periodic chain of
odd length, however, the Néel order cannot be realized and
a defect must be present which causes frustration for one or
more local terms. This example of a geometric frustration
is prototypical: a theorem by Toulouse and Vannimenus im-
plies that a classical system in any dimension is frustrated
if and only if it contains loops of odd length that can be
mapped to a (frustrated) AF Ising chain [2,3]. Quantum cri-
teria that reduce to the Toulouse-Vannimenus condition in
the classical case have been obtained in Refs. [10,11]. Odd-
numbered periodic AF chains are thus the elementary building
blocks of geometric frustration, classical or quantum. Con-
trary to common belief, these systems are known to display
boundary-induced orders and transitions in the bulk of large
chains [14–18]. We stress that these effects of frustration and
their corresponding degeneracies can be altered dramatically
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by adding a single site, thus revealing their nonperturbative
nature [13]. Quantum systems can feature another type of
frustration due to the impossibility of realizing certain struc-
tures of local entanglement on a global scale. An example
is the AF Heisenberg chain |J|∑i=1

�Si · �Si+1, where �Si =
(Sx

i , Sy
i , Sz

i ), whose local interaction terms have singlet ground
state (|↑i ↓i+1〉 − |↓i ↑i+1〉)/

√
2. No global state can possess

such local entanglement on every pair of nearest neighbors,
and the system is frustrated. This quantum frustration has
of course no classical equivalent. It will not be discussed
further here.

In this work, we are concerned with the geometric frus-
tration of a quantum spin chain, especially when frustration
becomes strong. To define strong frustration, we use the mea-
sure of local frustration proposed in Refs. [10,11]. For a
many-body Hamiltonian H =∑S hS , frustration of the inter-
actions hS on subsystem S is a number fS ∈ [0, 1] quantifying
how much a ground state of H is failing to overlap with
the ground state of hS . (The quantity fS will be defined ex-
plicitly in Sec. III C.) Absence of frustration corresponds to
fS = 0, while maximal frustration gives fS = 1. We define
weak ( fS ∼ 0) and strong ( fS ∼ 1) frustration accordingly.
Geometric frustration can also be extensive. For instance,
it is extensive in the AF Ising model on the triangular lat-
tice because the number of frustrated rings (triangles) scales
like system size. The systems that we consider in this work
have nonextensive frustration but most have strong frustration.
(That is to say, we distinguish between weak and nonextensive
frustration, contrary to Ref. [13].) Our main results relate to
aspects of ground state bipartite entanglement in geometri-
cally frustrated chains, mostly when frustration is strong. A
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widely used entanglement monotone1 for pure states ρ is the
bipartite entropy of entanglement (EE), defined as

SA = −TrA ρA ln ρA, (1)

where ρA = TrB|ψ〉〈ψ | is the reduced density operator on
A. For quantum many-body systems, there is now massive
evidence that entanglement features in the ground state of
these systems, as measured by bipartite EE in particular, are
highly sensitive to fundamental properties of the low-lying
spectrum like the presence or absence of a mass gap, degen-
eracies, Fermi surfaces, and criticality [19], properties which
may be extremely difficult to assess directly. Moreover, en-
tanglement is a resource for quantum protocols of calculation,
communication, and teleportation [20]. Devising ways to pro-
duce highly entangled states in the laboratory has immediate
practical value for these technologies. Generic quantum states
display extensive scaling in the bipartite EE,

SA ∼ O(1) · |A|, (2)

where | · | stands for set cardinality. (That is, the bipartite EE
for generic quantum states scales like the number of degrees
of freedom in the volume of A. If A was an interval on a
chain, for instance, the EE would scale like the length of A.)
Systems of local interactions, however, usually present much
less entanglement in their ground state. In local lattice systems
without frustration, a remarkably common relationship exists
between the presence of a spectral gap and the so-called area
law for the bipartite EE:

SA � O(1) · |∂A|, (3)

where ∂A is the frontier of A. (The EE for such states scales
like the number of degrees of freedom at the boundary be-
tween A and its complement. Again, if A was an interval on a
chain, the EE would be upper bounded by a constant.) Exact
results are established for spin chains and lattices [21,22],
harmonic lattices [23], topological phases on lattices [24],
and even for systems with moderate nonlocality [25]. Several
applications rely on the area law, e.g., the density matrix
renormalization group (DMRG) and matrix product states
(MPS), owing to the fact that the area law considerably con-
strains the complexity of states and systems [26]. Local spin
chains that can be effectively described by a (1 + 1)d confor-
mal field theory (CFT2) when poised at criticality display a
mild, logarithmic violation of the area law [27]. Frustration
may change that picture dramatically. In spin chains with
weak frustration, one may find (i) an algebraic violation of
the area law in the bulk, (ii) a saturation of the bipartite EE
as system size is sent to infinity, and (iii) agreement with the
nonfrustrated case for distances comparable to the correla-
tion length [13]. Combinations of analytical and numerical
approaches indicate that the perturbative picture, in which
the frustrated ground state is analyzed in terms of single-
particle excitations (defects) over the nonfrustrated ground
state, sometimes persists beyond the perturbative regime [13].

1An entanglement monotone is a nonnegative function of a multi-
partite state which does not increase under the set of local operations
and classical communications (LOCC).

The main objective of the present work is to probe the
strong frustration regime. We will study ground state en-
tanglement in a quantum spin chain (defined in the next
section) with adjustable geometric frustration. Our calcula-
tions will be performed by higher-order perturbation theory.
The weak frustration regime will be seen to agree perfectly
with properties (i)–(iii), and with the single-particle picture.
The phenomenology of the strong frustration regime, on the
other hand, is radically different, and is our main result.

The paper is organized as follows. In Sec. II, we present
the model and the region of parameter space on which we will
concentrate. In Sec. III, we describe our results: the profile of
the soliton defect2 arising from frustration in a classical limit
of our model (Sec. III A), the perturbative solitonic ground
state of the interacting model (Sec. III B), and features of
ground state entanglement distinguishing weak and strong
frustration (Sec. III C). The results are further discussed in
Sec. IV, and we sum up in Conclusion, Sec. V. Detailed
calculations for all our results are provided in Appendices.

II. THE MODEL

Haldane [28] considered the Heisenberg model with an
anisotropy, corresponding to the Hamiltonian

H = |J|
(

N∑
i=1

�Si · �Si+1 + λSz
i Sz

i+1 + μ
(
Sz

i

)2)
, (4)

where �Si = (Sx
i , Sy

i , Sz
i ), with periodic boundary conditions,

�SN+1 = �S1, for large spin |�S| = s 
 1 but for small anisotropy
0 < (λ − μ)1/2 � 1, with λ > μ. In his work, the low-energy
effective field theory was found to be the O(3) nonlin-
ear sigma model, and soliton solutions were semiclassically
quantized, showing distinctly different behaviours for inte-
ger versus half-integer spin. However, the complete phase
diagram of the model, for all values of the couplings, is
still of much interest. We will consider the model in the
large anisotropy limit, the opposite limit to that considered
by Haldane. We define a = |J|μ and b = |J|λ, and consider
the model perturbatively for |J| � max(|a|, |b|) with a and b
finite. For simplicity, a and b may be assumed to be of order
1. Thus we write the Hamiltonian as

H (�S1, . . . , �SN ) = H0
(
Sz

1, . . . , Sz
N

)+ |J|
N∑

i=1

�Si · �Si+1,

H0
(
Sz

1, . . . , Sz
N

) = N∑
i=1

(
a
(
Sz

i

)2 + bSz
i Sz

i+1

)
, (5)

and treat |J| � 1 perturbatively. The anisotropy, however
small in Haldane’s work, picks the antiferromagnetic Néel-
ordered ground state that is aligned in the z direction. For

2In this paper, the term soliton is used to describe localized
solutions propagating without dispersion because their shape is
determined by (fixed) Hamiltonian parameters and/or boundary con-
ditions. These solitons are not necessarily topological in the strict
sense of corresponding to topological invariants or being protected
by the system’s nontrivial topology.
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(a) (b) (c)

FIG. 1. The main steps of our argument. (a) The (semi)classical soliton of the BCHI theory H0 due to frustrated antiferromagnetic coupling
on a chain of odd length N (Sec. III A). [Here, N = 11, a/b ∼ 0.77. See also Fig. 2(c).] Nonmaximal spins are in red and black, see Eq. (6),
while the Néel background is in green. (b) The perturbative solitonic ground state of the full Hamiltonian H0 + |J|∑k

�Sk · �Sk+1, with small
|J| (Sec. III B). The ground state is a superposition of solitons at all positions, restoring translational symmetry. (The only exception being the
special case with half-odd spin s and length-one solitons.) (c) A bipartition of the chain with nonoverlapping intervals A and B (Sec. III C). We
study entanglement between these two regions in the perturbative ground state.

different parts of the parameter space in the anisotropy, it is
possible and indeed true that a different ground state is indi-
cated. The anisotropic term in the Hamiltonian only involves
the z component of the spin thus, considering it alone, it is
essentially an Ising [29] model. In fact it corresponds exactly
to the model studied by Blume and Capel (for spin 1) [30–33],
albeit here, it is for arbitrary and large spin. Therefore we
will call the limiting model defined by H0(Sz

1, . . . , Sz
N ) the

Blume-Capel-Haldane-Ising (BCHI) model.
Being a sum of mutually commuting operators, the BCHI

Hamiltonian H0(Sz
1, . . . , Sz

N ) is fully classical. The eigen-
states of H0(Sz

1, . . . , Sz
N ) are obvious and independent of the

parameters, a and b, and can be labeled as |s1, . . . , sN 〉,
where si is the z component of the ith spin and as usual
si ∈ {−s,−s + 1, . . . , s − 1, s}. The corresponding energy

eigenvalue is E (s1, . . . , sN ) =∑N
i=1 (a(si )2 + bsisi+1). Which

eigenstate has the minimum energy, i.e., which state is the
ground state, is not always obvious. Of special interest to us
is the case of frustrated antiferromagnetic coupling on the
periodic chain of odd length N , host to a solitonic defect in
the Néel state, as described in the next section.

III. RESULTS

We now give an overview of our results as follows. In
Sec. III A, we will summarize the main features of the soli-
ton defect present in the (frustrated) BCHI theory with AF
couplings and odd number of sites N . In Sec. III B, we turn
the Heisenberg interaction on, and perform higher-order per-
turbation to determine the perturbative ground state when
the soliton must be present due to frustration. In Sec. III C,
we study entanglement in the perturbative solitonic ground
state, and find our main results. These three main steps are
illustrated in Fig. 1. The detailed calculations for the results
of Secs. III A, III B, and III C are provided in Appendices A,
B, and C, respectively.

A. Solitons of the classical theory

We describe the profile of the BCHI soliton for antiferro-
magnetic coupling (b > 0), with odd N . To the best of our
knowledge, these simple results have not been previously ob-
tained in the literature. Details and calculations may be found
in Appendix A. Recall the BCHI Hamiltonian H0 from Eq. (5),

with obvious eigenstates |s1, . . . , sN 〉. For easy-axis coupling,
a < 0, the defect is a kink in the Néel background, that is to
say, a pair of adjacent parallel maximal spins. However, for
easy-plane coupling, a > 0, we find that the defect spreads
out to maximal size as the antiferromagnetic coupling b is
weakened. When the spin is not restricted to quantized values,
quadratic optimization gives the semiclassical expression of
the soliton extended over sites j = 1, . . . , M:

s j = (−1) j s

sin(M + 1)θ/2
sin

(
M + 1

2
− j

)
θ, (6)

where cos θ = a
b , and M � 1 is the unique integer such that

cos π
M+1 < a

b � cos π
M+2 . The rest of the chain is covered by

a Néel configuration. The soliton corresponds to a rotation of
the (staggered) spin components by π radians over the sites
labeled by j = 1, . . . , M, interpolating smoothly between the
two ends of the Néel arrangement. The size of the soliton is
independent of the number of sites N but depends on the ratio
a/b, increasing with it as described above. Hence, the size is
a characteristic that is not an artefact of the odd number of
sites, and the same soliton can be excited in chains with other
lengths and boundary conditions.

When the z component of the spin is quantized, the ex-
pression above is only an approximation to the soliton, but
is already in good qualitative agreement with numerically
obtained solitons of moderate spin. In Figs. 2 and 3, the soliton
is shown with different lengths for spin 20, and spin 41/2,
respectively. We observe that the length, the overall symmetry,
and the degeneracy of the soliton are quite close to those
of the unquantized version. (The quantized antiferromagnetic
solitons for spin 1 to 7/2 are provided in Appendices. See
Sec. A 2 d.) Note that when a/b ≈ 1, the soliton has a nearly
linear profile. This can be understood analytically from the
BCHI Hamiltonian at a = b:

H0,a=b = a

2

N∑
i=1

∣∣Sz
i + Sz

i+1

∣∣2, (7)

which vanishes on the Néel background, and is minimized
when summands |Sz

i + Sz
i+1| are all equal on the soliton.
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(a)

(d)

(b)

(e)

(c)

(f)

FIG. 2. The soliton of spin 20 on a chain of length N = 11 for different chosen values of a/b. The values of sz are given in units of h̄.
(Numerically evaluated with the MATHEMATICA function NMinimize, with up to 350 iterations using the methods DifferentialEvolution
and SimulatedAnnealing. Degeneracies are not shown.) (a) a/b = 0.498, (b) 0.503, (c) 0.769, (d) 0.833, (e) 0.870, and (f) 0.999. The
soliton’s length is numerically observed to change from M to M + 1 at a/b ∼ cos π/(M + 2), in agreement with the large spin calculation.
Solitons of odd length have total spin 0. Solitons of even length have (close to) maximal total spin.

B. Solitons of the interacting theory

From now on, we will focus on the full Hamiltonian,
Eq. (5). As described below, on the chain of odd length N the
Heisenberg interaction term will permit soliton translations at
high order. Thus we obtain the solitonic ground state of the
frustrated chain perturbatively by allowing soliton translations
to restore the translation invariance of the ground state. The
procedure is a commonplace application of (higher-order)
perturbation theory, in which two elements in the ground
space of H0 (two classical solitons at different positions) are
connected by the operator (|J|∑k

�Sk · �Sk+1)γ at some order
γ . We have relegated to Appendix B the technical details of
the calculations, and give here a brief overview. At first, we
omit degeneracies resulting from the discreteness of z-spin
values, and not present in the semiclassical picture. We will
come back to these degeneracies in Sec. III C 3.

In order to perform the perturbative level splitting of the
semiclassical soliton ground space, we need to translate the
now-interacting solitons by tunneling. Define the operators

(S+
i S−

i+1)α =
{

(S+
i S−

i+1)|α|, if α � 0,

(S−
i S+

i+1)|α|, if α < 0.
(8)

Then, for any si, si+1, we have

(S+
i S−

i+1)si+1−si | . . . , si, si+1, . . . 〉 ∝ | . . . , si+1, si, . . . 〉. (9)

These adjacent transpositions, including swapping the first
and last elements, generate all permutations [34], and all
translations in particular. Higher-order Brillouin-Wigner per-
turbation theory then establishes the ground state for solitons
of minimal size (i.e., of length one), solitons of intermediate
size, and solitons of large size (meaning a size comparable to
the total number of sites).

(a)

(d)

(b)

(e)

(c)

(f)

FIG. 3. The soliton of spin 41/2 on a chain of length N = 11 for different chosen values of a/b. The values of sz are given in units of h̄/2.
(Numerically evaluated with the MATHEMATICA function NMinimize, with up to 350 iterations using the methods DifferentialEvolution
and SimulatedAnnealing. Degeneracies are not shown.) (a) a/b = 0.498, (b) 0.503, (c) 0.769, (d) 0.833, (e) 0.870, and (f) 0.999. The
soliton’s length is numerically observed to change from M to M + 1 at a/b ∼ cos π/(M + 2), in agreement with the large spin calculation.
Solitons of odd length have total spin 1/2. Solitons of even length have (close to) maximal total spin.
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The ground state corresponds to the superposition of the
soliton translated to all positions around the chain, which
yields a translationally invariant ground state (except for
half-odd values of s and a soliton of length one, for which
translation invariance is broken in accordance with the Lieb-
Schultz-Mattis theorem [35]). Barring that one exception, the
ground state has the general form

|ψ0〉 = 1√
N

N∑
μ=1

ωμ|μ〉, (10)

where ω is a root of unity depending on s and a/b, and |μ〉 is a
normal vector parameterized by a classical configuration with
soliton at position μ, and Néel background. For solitons of
length one and integer spin s, for instance, explicit calculation
[see Eq. (B15)] gives ω = 1 if s is even, and ω = −1 if s
is odd. In the above expression, we have omitted an irrele-
vant overall phase, and we have neglected a small number of
Z2 degeneracies of the (semi)classical soliton, in addition to
degeneracies resulting from spin discreteness. The effect of
these degeneracies on entanglement will be taken care of in
Sec. III C 3. For the solitons of length one (i.e., one nonmaxi-
mal spin), the translation by one site is achieved by flipping
the unique nonmaximal spin with an adjacent spin, which
occurs at order s in perturbation. For intermediate solitons of
length M > 1, the translation by two sites is achieved at low
order, while for a single-site translation, one has to flip the
remaining Néel state to achieve the translation, a costly oper-
ation. For the large solitons, it is energetically more efficient
to translate by a single site, along with the remaining Néel part
of the chain.

For all ground states of the general form (10), we find
a gapless perturbative spectrum in the form of a band of
width ∼constant · |J|γ , where the constant depends on the
spin s and the parameter ratio a/b, and where γ is the min-
imal perturbative order at which soliton translations occur.
[See Eqs. (B14), (B36), and (B41) for the explicit spectra.]
This spectrum is very different from what one would obtain
without frustration, for then the degenerate classical ground
space is spanned by the two Néel states, and the Heisenberg
interaction lifts the degeneracy by a finite gap. The spectra
for chains of odd length (i.e., frustrated) and chains of even
length (i.e., nonfrustrated) are qualitatively distinct, and most
importantly, the difference persists in the ‘thermodynamic
limit’, if one may still use such terminology in the presence
of provably inequivalent limits limodd N→∞ and limeven N→∞,
as resulting from frustration.3 This phenomenon has also been
observed in the geometrically frustrated AF Ising spin chain
with a transverse field, which can be solved analytically [18].

3We note that if the soliton size is made to increase without bound
as N → ∞, as is the case for the strong frustration regime discussed
in Sec. III C 2, the energy band width |J|γ = |J|O(N ) collapses to
zero. (See Appendix B 3.) Soliton translations are no longer possible
at any finite perturbative order. However, degeneracies based on spin
discreteness are expected to proliferate as the soliton grows without
bound (Sec. III C 3). Without further knowledge of these degenera-
cies, we cannot establish whether or not the resulting spectrum will
be distinct from that of the nonfrustrated chain.

For a weak transverse field, these authors also perform (first-
order) perturbation theory over the frustrated Ising ground
space, which consists of kinks, i.e., a single pair of parallel
spins in the Néel background, and find a gapless band of
translation-invariant combinations of kinks, in perfect agree-
ment with the low-lying states of the analytical result. We
note that in our model, kinks are solitons of length M = 0
(i.e., zero nonmaximal spin) and correspond to the weakest-
frustration scenario, as will be explained in the next section.
The novelty of our study is to tackle the strong frustration
regime.

Importantly, any energy eigenstate of the perturbative spec-
trum has the general form (10). Thus our entanglement results
will not depend on the particular value of ω corresponding
to the ground state. Nevertheless, in Appendix B, we give
an attempt at determining the ground state for each soliton
length, at the price of using simplifying assumptions when
exhaustive calculations are unwieldy.

C. Frustration and entanglement

For simplicity, we consider for the rest of this discus-
sion only solitons of length M � 2. [From Eq. (6) and the
paragraph after it, these are found in the region 0 < b/2 <

a < b of parameter space.] The perturbative ground state of
the AF chain of odd length N is then of the general form
(10). We now argue that the frustration of our Hamiltonian,
Eq. (5), is completely adjustable by tuning the parameter
a/b. In Refs. [10,11], a measure of frustration is proposed
for a many-body system H =∑S hS with ground state |GS〉,
and local interactions hS on subsystem S. Let ρ = |GS〉〈GS|,
and let �S ⊗ 1R be the projector onto the ground space of
hS , and the identity on the rest of the system R. Then fS =
1 − Tr(ρ�S ⊗ 1R) quantifies how much ρ fails to overlap
with the local subspace selected by �S ⊗ 1R, and consti-
tutes an unambiguous measure of the frustration of hS [10].
For our Hamiltonian (5), the subsystems are neighbor pairs
i, i + 1, and the local interaction terms hi,i+1 have ground
state |GS〉i = (|↑↓〉 ± |↓↑〉)/

√
2, up to perturbative correc-

tions [36]. Here, the arrows ↑/↓ denote maximal/minimal z

FIG. 4. The (R, M ) space for subsystem length R and soliton
length M. In the light gray region (R � N/2), the EE is given by
(12). In the dark gray region (R > N/2) the EE is obtained by the
symmetry SAc (R) = SA(N − R), where Ac is the complement of A.
The entanglement entropy has qualitatively distinct behaviours on
regions I, II, and III.
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FIG. 5. Entanglement entropy SA of a connected interval A of
size R for the perturbative ground state of the frustrated anisotropic
XXZ chain with strong BCHI, and weak Heisenberg. The system
size is N ∼ 107, the soliton length ranges from M = 0.05N to 0.95N .
Observe the different properties corresponding to M < 0.5N (small-
soliton phase) and M > 0.5N (large-soliton phase).

components of spin, Sz = ±s, and the sign in |GS〉i depends
on the parity of 2s. From (10), we find for all sites i

fi,i+1 = 1 − Tr(|ψ0〉〈ψ0|�i,i+1 ⊗ 1R) = M + 1

N
, (11)

where the number M of nonmaximal spins in the soliton satis-
fies 2 � M � N − 2. We see that frustration is weak for small
solitons, and strong for large solitons, tending to the maximal
value 1 when M/N → 1. In the large (odd) N limit, by varying
the ratio a/b in the Hamiltonian, frustration covers its entire
range of values (0,1).

In order to study bipartite EE, let A and B be two intervals
such that {A, B} is a bipartition of the chain. In Appendix C,
we compute the reduced density operator ρA = TrB|ψ0〉〈ψ0|
corresponding to the ground state (10), and the resulting bi-
partite EE, SA = −TrA ρA ln ρA. We find

SA =

⎧⎪⎪⎨
⎪⎪⎩

N−M−R+1
N ln N

N−M−R+1 + R−M+1
N ln N

R−M+1 + 2M−2
N ln N, region I,

N−M−R+1
N ln N

N−M−R+1 + M+R−1
N ln N, region II,

ln N, region III,

(12)

with regions I, II, and III as represented in Fig. 4. (In fact,
our calculations yield the full entanglement spectrum of the
model. See Appendix C for details.) We remind the reader
that in the ground state (10) we have omitted degeneracies,
and will come back to them later on. The entropy is rep-
resented in Figs. 5 and 6 for multiple subsystem sizes and
soliton sizes.

1. Weak frustration

Let us first consider weak frustration, fi,i+1 = M+1
N ∼ 0. If

the limit of (odd) chain length N → ∞ is reached while M
is fixed, we get the binary entropy function SA = − R

N ln R
N −

(1 − R
N ) ln(1 − R

N ) corresponding to a randomly positioned
particle (soliton) being in A with probability R

N , and outside

FIG. 6. Entanglement entropy SA in the solitonic ground state, for
subsystem lengths R ∈ [1, N/2] and soliton lengths M ∈ [2, N − 2].
Here we have used system size N = 1001. The behavior is qualita-
tively different in regions I (right), II (front), and III (top). The EE is
extensive in region II.

of A with probability (1 − R
N ). This weak frustration scenario,

M = O(1), is in perfect agreement with the results obtained
for the (weakly) frustrated chains of Ref. [13], namely, (i) a
bulk violation of the area law [21,27,37,38] SA = a(N )Rb(N ),
where b(N ) ≈ 0.22(2) (subextensive) for N chosen between
201 and 901, and (ii) the saturation of the EE in the limit
of large N . The universal EE curve that the authors of [13]
identify in the scaling thermodynamic limit of their models
is the binary entropy function mentioned above, in agreement
with the single-particle interpretation described by these au-
thors as well as in this paragraph. (See also Refs. [39,40]
for a more general quasiparticle interpretation of the EE.) It
is clear that these results are not finite-size effects as they
define a thermodynamic limit distinct from that of nonfrus-
trated chains. When both M and R are fixed as N → ∞, the
dependence on boundary conditions disappears and SA → 0,
in agreement with the nonfrustrated chain (open or closed) and
its Néel ground state, a product state without entanglement.
(If we take care of the Z2 degeneracy, the ground state is a
translation-invariant combination of the two Néel states, and
SA = ln 2.)

2. Strong frustration

We now turn to strong frustration, fi,i+1 �∼ 0, i.e.,
M = O(N ). If M, R, and N all grow at the same rate as the
limit N (odd) → ∞ is reached, we drop the bounded terms in
Eq. (12), and find

SA ∼

⎧⎪⎪⎨
⎪⎪⎩

2M
N ln N, region I,

R+M
N ln N, region II,

ln N, region III.

(13)
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This entanglement behavior is strikingly different from the
one found in the weakly frustrated case, and is our main
result. On the one hand, the EE is extensive in subsys-
tem size when R is smaller than the soliton length M
(region II), then plateaus as R becomes larger than M (re-
gion I). On the other hand, the EE is nonfinite as N → ∞,
diverging like ln N in all regions. This behavior appears ir-
reconcilable with a quasiparticle interpretation as given in
Refs. [39,40]. Interestingly, even though the soliton ground
state |ψ0〉 has arguably large entanglement when M 
 1 (be-
ing extensive in subsystem size), it is also arguably slightly
entangled in the sense of algorithm theory. Because the EE
diverges no more than O(ln N ), if the solution of a quantum
N-qubit problem is encoded in |ψ0〉, a theorem by Vidal
shows that this problem is likely to be efficiently simulatable
classically [41].

We note that in our perturbative treatment, strong frustra-
tion cannot be reached at the limit N → ∞ if Hamiltonian
parameters are kept fixed. Establishing whether these results
should be classified as finite-size effects will imply to find out
if a stronger Heisenberg term, or some other frustrated chain,
can develop large solitons of size O(N ) in the limit N → ∞,

with all other parameters fixed. This will be the object of a
future work.

3. Degeneracy

So far our argument has been based on the semiclassi-
cal soliton (6) with its continuous spin values. However, the
discreteness of spin may result in the presence of additional
degeneracies in the ground space of H0. See for instance
Figs. 2 and 3. Including these degeneracies is straightforward,
and the details can be found in Appendix C 6. Here we
summarize the results. The classical soliton of length M and
position μ is replaced by a degenerate set {|μq〉} of z-spin
eigenstates, indexed by q ∈ GM . The index set GM is inde-
pendent of both position μ (translation invariance) and (odd)
system size N (locality). Perturbative ground states of the full
Hamiltonian are of the form

|ψ0〉 =
∑

q∈GM

cq

(
1√
N

N∑
μ=1

ωμ
q |μq〉
)

, (14)

where
∑

q∈GM
|cq|2 = 1, and the roots of unity ωq may depend

on q. The bipartite EE of (14) is

SA,degenerate =

⎧⎪⎪⎨
⎪⎪⎩

N−M−R+1
N ln N

N−M−R+1 + R−M+1
N ln N

R−M+1 + σ (N, Z ), region I,

N−M−R+1
N ln N

N−M−R+1 + σ (N, Z ), region II,

σ (N, Z ), region III.

(15)

The only difference with our previous expression (12) is that
the last term of each line is now generalized to

σ (N, Z ) =
∑
μ∈I

∑
Q∈C(μ)

Zμ(Q)

N
ln

N

Zμ(Q)
. (16)

This term might be dubbed the EE of degeneracy, as it is the
only term reflecting the classical soliton’s degeneracy. Let us
explain the notation. For each μ, C(μ) is the set of equivalence
classes within GM defined by identifying two indices q, q′ ∈
GM when |μq〉 and |μq′ 〉 agree on subsystem B:

q, q′ ∈ Q ∈ C(μ) if and only if B〈μq′ |μq〉B = 1. (17)

Z = {Zμ : C(μ) → (0, 1] }μ∈I is a collection of partitions of
unity:

0 < Zμ(Q) =
∑
q∈Q

|cq|2 � 1,
∑

Q∈C(μ)

Zμ(Q) = 1. (18)

When all but one cq are zero (as in the nondegenerate case),
(15) coincides with (12). Otherwise, the EE is enhanced. To
get an intuition of the effect of degeneracies on the EE, let
us suppose that each set C(μ) has the same size CM , and that
each Zμ(Q) has the same value C−1

M . [As would be the case
if C(μ) = GM for all μ, for instance.] Globally we expect
degeneracy, and thus CM , to increase with soliton size M,
though not necessarily monotonously. Naturally, the increase
rate is at most exponential. With these simple assumptions we
may calculate the difference between (15) and (12), and obtain

SA,degenerate − SA = r ln CM, 0 < r < 2. (19)

[The exact value of r is gM,R/N , where gM,R is defined in the
Appendix. See (C9).] We numerically verify that the behavior
of the EE is largely unaffected by a polynomial increase

CM = O(Mk ), (20)

even at very high order. The curves are not shown, as they are
visually almost identical to those of Fig. 5. The main effect is
a vertical rescaling with almost no change to the shape of the
curves. Even the most severe (quasi)exponential case

CM = O(exp(Mk )), (21)

0 < k � 1, has a limited qualitative impact on the EE curves.
See Fig. 7.

For fixed soliton size M (and thus fixed Z), we have
σ (N, Z ) → 0 as N → ∞. As a consequence, the weak-
frustration EE still coincides with the binary entropy, even in
the presence of degeneracies. [Note however that a residual
EE of degeneracy is expected if M is allowed to diverge slowly
enough that M/N → 0 still. See (19) for instance.] At strong
frustration, the bounded terms of (15) become negligible in
front of σ (N, Z ), and we find SA,degenerate ∼ σ (N, Z ) in regions
I, II, and III. When σ (N, Z ) depends on soliton size M, an
immediate consequence of degeneracies, visible in Fig. 7,
is that the slope in the extensive phase changes with M. A
second consequence, also visible in the figure, is that the
saturation of large solitons (M > N/2) no longer constitutes
a common plateau. We will come back to these effect in the
Discussion. In the present work, we will not attempt to gain
further knowledge about the degeneracies of the XXZ chain.
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(a) (b) (c)

FIG. 7. Entanglement entropy SA,degenerate of a connected interval of size R for a state of the form (14) with (quasi)exponential degeneracy
(21): the sets C(μ) are of size exp(Mk ) for all μ. (a) k = 0.2, (b) 0.5, and (c) 1.0. The system size is N ∼ 107. The curves are ordered as in
Fig. 5: from bottom to top, the soliton lengths are M = 0.05N, 0.20N, 0.35N, 0.50N, 0.65N, 0.80N, and 0.95N .

The generality of our argument should therefore apply to other
models.

IV. DISCUSSION

We note that the strongly frustrated chain cannot admit a
long-distance effective field theory which is scale invariant
because the soliton length is a macroscopic physical scale
of the system. This is also seen, for weak and strong frus-
trations, at the level of EE scaling with respect to subsystem
length, where we observe algebraic scaling in the frustrated
chain, as opposed to logarithmic scaling in CFT2’s [27,37,38]
and (1 + 1)D Lifshitz theories [42,43]. Anticipating the re-
sults of the next section, let us mention that the capacity of
entanglement can also diagnose the impossibility of a con-
formal scale-invariant effective limit. However, an aspect of
the right effective theory might be found in Fig. 5, where we
observe a duality between solitons lengths M and N − M in
the plateauing of EE. We identify two perturbative quantum
phases, depending on the coupling ratio a/b through the value
of the soliton length M. The small-soliton phase corresponds
to M < N/2:

SA ∼
{

R+M
N ln N, R < M (extensive),

2M
N ln N, R > M (plateaued).

(22)

In perturbation theory, this phase corresponds to soliton trans-
lations over two lattice constants, as briefly explained below
Eq. (10). (See also Appendix B 2.) The large-soliton phase
corresponds to M > N/2:

SA ∼
{

R+M
N ln N, R < N − M (extensive),

ln N, R > N − M (plateaued).
(23)

In perturbation theory, this phase corresponds to soliton (and
Néel background) translations over a single lattice constant.
(See Appendix B 3.) These equations can be brought into a
unique form by considering the relative entanglement entropy
S′

A(R) = SA(R) − SA(0), where SA(0) = M
N ln N is the EE of

an interval of length O(1) in the limit N, M → ∞. (Corre-
sponding to a divergent single-point entropy in the continuous
limit.) We find

S′
A,strong frustration ∼

{
R
N ln N, R < λ (extensive),

λ
N ln N, R > λ (plateaued),

(24)

where the length scale λ is the soliton length M in the small-
soliton phase (M < N/2), and the soliton colength N − M in
the large-soliton phase (M > N/2).

We expect the relationship (24) to remain valid at least up
to polynomial degeneracy, such as (20), which leaves the EE
unaffected even at high order, as already observed. Ultramas-
sive, superpolynomial degeneracy may change that picture,
however, as may be seen for the (quasi)exponential case (21),
whose relative EE is displayed for k = 0.5 in Fig. 8. The
behavior at soliton length M is no longer identical to that at
soliton (co)length N − M. Yet, for k values up to ∼0.2 (not
shown) all slopes still coincide, in agreement with (24).

A. Capacity of entanglement

The capacity of entanglement (CE) is another quantity as-
sociated to a reduced density matrix, defined in the same way
as one defines heat capacity for thermal systems [44,45]. (The
reduced density matrix ρA corresponding to the perturbative
solitonic ground state is calculated in Appendix C.) From the
modular Hamiltonian HA defined as

ρA =
∑

n

e−ξn |n〉AA〈n| = e−HA , (25)

FIG. 8. Relative entanglement entropy S′
A,degenerate of a connected

interval A of size R for a state of the form (14) with quasiexpo-
nential degeneracy CM = exp(M0.5). The system size is N ∼ 107.
The curves correspond to different soliton lengths M: in order of
increasing slope, M = 0.05N, 0.20N, 0.35N, 0.50N, 0.65N, 0.80N,

and 0.95N .
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with eigenvalues ξn, one defines the capacity of entanglement of subsystem A as the variance of HA,

CEA =
(∑

n

ξ 2
n e−ξn

)
− S2

A = 〈H2
A

〉− 〈HA
〉2 = var(HA). (26)

The CE is therefore a measure of the width of the eigenvalue distribution for the modular Hamiltonian, and for the reduced
density matrix. From the explicit modular Hamiltonian of the solitonic ground state [see Eq. (C8)], we may compute de CE of
any single-interval A. We find

CEA ∼

⎧⎪⎪⎨
⎪⎪⎩

N−M−R+1
N

(
ln N

N−M−R+1

)2 + R−M+1
N

(
ln N

R−M+1

)2 + 2M−2
N (ln N )2 − S2

A, region I,

N−M−R+1
N

(
ln N

N−M−R+1

)2 + R+M−1
N (ln N )2 − S2

A, region II,

0, region III,

(27)

where regions I, II, and III still refer to those defined in Fig. 4.
Note that CEA is identically zero in region III because all
eigenvalues of the reduced density matrix are equal to 1/N . In
this region, the solitonic ground state has the EE and CE of the
generalized GHZ state N−1/2∑N

i=1 |i〉⊗N . We provide a plot of
the CE in Fig. 9. Interestingly, the capacity of entanglement
in CFTs is found to scale like the entanglement entropy [45].
Moreover, there is convincing evidence that such a scaling,
CEA ∼ SA, can detect criticality in many models [44,45]. For
the solitonic ground state, we observe in Fig. 10 that CEA �∼
SA everywhere, except for M = O(1), for which case we have
already found a super-logarithmic violation of the area law,
not consistent with a low-energy CFT limit. The capacity of
entanglement thus confirms that the frustrated chain has no
conformal effective QFT. Following the methods of Sec. III C
3, is it straightforward to include spin-based degeneracies in
the capacity of entanglement. We omit the result, but mention
that an immediate consequence of degeneracy is that the CE
no longer vanishes in region III.

B. Correlations

We briefly discuss the effect of frustration on correlations
in the solitonic ground state. Only the translation-based de-
generacy is considered in this section. It is not difficult to

FIG. 9. The capacity of entanglement CEA in the solitonic
ground state, for subsystem lengths R ∈ [1, N/2] and soliton lengths
M ∈ [2, N − 2]. The system size is N = 1001. The behavior is qual-
itatively different in regions I (left), II (top), and III (right). The CE
vanishes in region III.

determine approximate expressions for the correlator

Czz
N (R) = 〈ψ0|Sz

i Sz
i+R|ψ0〉 = 1

N

N∑
i=1

〈μ|Sz
i Sz

i+R|μ〉, (28)

where |ψ0〉 is as in Eq. (10). In the last term, obtained from
the translation invariance of |ψ0〉, μ is (any) fixed position
on the chain. Let us first describe correlations over distances
R > M. Using the symmetries of the semiclassical soliton, we
can show that

Czz
N (R) = (−1)Rs2

(
1 − 2R

N

)
, R > M. (29)

See Appendix C for more details. This expression is valid
with any amount of frustration, as long as R > M. Notice that
antipodal sites, R ∼ N/2, have vanishingly small correlations.
When M = 0 (weakest frustration), the soliton is a kink, and
the solitonic ground state is formally identical with the ground
state of the geometrically frustrated AF Ising model, whose
correlation function is known exactly [18], and coincides
with (29). As observed in [18], the function Czz

N (R) reveals
nonlocal correlations on the frustrated chain, because setting
the correlation to a fixed value, and letting N → ∞, will
force R to diverge as well. Without surprise, the purely local

FIG. 10. The difference CEA − SA in the solitonic ground
state, for subsystem lengths R ∈ [1, N/2] and soliton lengths M ∈
[2, N − 2]. The system size is N = 1001. We see that CEA ∼ SA

(i.e., CEA − SA ∼ 0 for all R and fixed M) only when M ∼ O(1),
confirming that the frustrated system has no conformal low-energy
limit.
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FIG. 11. Dimensionless zz correlations |Czz
N |/s2 as a function

of spin separation R/N for different values of soliton length M,
i.e., different values of frustration. From top to bottom, M =
0, 0.1N, 0.2N, 0.3N, 0.4N, ad 0.5N . The behavior at distances
R < M is given by (30), whereas the behavior at distances R > M
is given by (29). Frustration diminishes and flattens correlations
within the length of the soliton: at fixed separation R < M, the
(anti)correlation |Czz

N | and the decay |∂Czz
N /∂R| both decrease with M.

Increased frustration implies relatively more nonlocal correlations.
(Inset) Correlations between neighboring spins for different values
of M.

part of the correlator, limN→∞ Czz
N (R) = (−1)Rs2, is that of a

simple antiferromagnet. The algebraic decay of correlations
is consistent with a high level of entanglement in the ground
state.

At moderate or strong frustration, M 
 1, one needs to dis-
tinguish the case R > M, with correlations given by (29), and
the case R < M. For the latter case, reasonable assumptions
give

Czz
N (R) ≈ (−1)R s2

N

[
N − 2M

3
− 2R2

M
+ 2R3

3M2

]
, R < M.

(30)

A plot of Czz
N (R) over the full range R ∈ [0, N/2], given in

Fig. 11, shows that the soliton length M is indeed a character-
istic scale of the model. (Anti)correlations are diminished over
distances less than the soliton size M, and their distribution is
flattened. At fixed separation R < M, greater frustration (i.e.,
larger soliton size M) implies weaker (anti)correlation |Czz

N |,
and damped decay |∂Czz

N /∂R|. For close neighbors R ∼ 1, in
particular, we obtain

Czz
N (R) ∼ (−1)R s2

(
1 − 2M

3N

)
, (31)

revealing correlations almost independent of separation, but
weaker than is found at weak frustration. It thus appears
that frustration implies a reducing of the total amount of
correlations, affecting primarily the most local correlations,
while leaving nonlocal correlations unabated. Simply put,
more frustration means relatively more nonlocality. A relative
dominance of long-distance correlations is suggestive of a
highly entangled state, as previously observed in the exten-
sive region of the strong-frustration EE, Eq. (24), where the

nonlocal characteristic scale λ was already identified to the
soliton length M (or colength N − M in case M > N/2, by
symmetry). At distances greater than the nonlocal scale, spin
correlations are independent of the amount of frustration, and
given by (29) in all cases. This is in contrast to the EE, which
is highly sensitive to frustration at any subsystem size, as seen
in Fig. 6. We should remark that these results are not exclusive
to the solitonic ground state, but apply equally well to the
other states of the perturbative spectrum.

Interestingly, frustration acts in seemingly opposite direc-
tions on the states of the solitonic perturbative spectrum,
reducing (local) correlations while increasing entanglement.
Entanglement is a resource for quantum communication, en-
abling teleportation and quantum cryptography [46]. When
shared by two parties, a maximally entangled state distributes
correlations among them whose secrecy is guaranteed by
the laws of physics. On the other hand, correlations not
based on entanglement may be a resource for evesdroppers,
and be detrimental to the confidentiality of the communi-
cation [47]. States with fewer total correlations but high
entanglement are therefore appealing for secure quantum
communication protocols [48,49]. It would be of value to
determine if, and how, frustration could be harnessed for such
purpose.

C. Generalizations

We conclude this discussion with a few words about
possible generalizations to other boundary conditions and
couplings. The argument leading to the classical soliton,
Eq. (6), may be used with minor modifications to find the
profile of the defect resulting from other types of bound-
ary conditions. Antiferromagnetic coupling between an even
number of sites with twisted periodic boundary conditions
will produce a classical soliton given by (6). For open
boundary conditions, spins at the boundary will favor the
direction of an external field, if any. When a defect is pro-
duced this way, its classical profile will also be given by
(6). Similarly, ferromagnetic coupling with twisted periodic
boundary conditions will result in a nonalternating version of
(6). In most cases, we expect the perturbative ground state
of such semiclassical chains hosting a defect to resemble
Eq. (10), i.e., an ordered superposition of classical configu-
rations where, from one configuration to the next, the defect
is found shifted by one or two sites. The superposition may be
translation-invariant or not. Yet, because our calculation of the
entanglement spectrum is largely independent of translation-
invariance and of the explicit soliton profile—but crucially
dependent on the soliton’s length—we believe that the be-
havior of the EE and CE observed in this work might be
found in many other strongly frustrated semiclassical spin
chains. When translation-invariance is enforced, additional
degeneracies of classical configurations are expected to have
limited qualitative impact on these behaviours, as observed
in Sec. III C 3.

V. CONCLUSION

In this paper, we have studied a large-spin Haldane-like
anisotropic XXZ model in the limit of large anisotropy which
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we call the classical, Blume-Capel-Haldane-Ising (BCHI)
limit. When geometric frustration is present due to antifer-
romagnetic coupling between an odd number of sites with
periodic boundary conditions, soliton defects are to be found.
We have determined the profile of the soliton in the classical
limit, and we have computed the perturbative corrections due
to the Heisenberg interaction. In this way, we have found the
perturbative solitonic ground state of the chain with frustra-
tion, along with a continuous band of excited states, in stark
contrast with the gapped spectrum prevailing when no frus-
tration is present. Importantly, this phenomenon persists as
system size is sent to infinity. That it is sometimes impossible
to define a single thermodynamic limit independently of the
boundary conditions has been observed in other models as
well [7,13,17,18].

Using the measure of frustration introduced in
Refs. [10,11], we have shown that the amount of frustration
increases with the length of the soliton, so that frustration
is a tunable parameter in our model, making it possible
to overtake the weak frustration regime studied in all
previously mentioned references, and probe the effect of
strong frustration on ground state entanglement. We have
determined the entanglement spectrum, entanglement entropy
(EE), capacity of entanglement (CE), and spin correlations
in the solitonic ground state. For weak frustration, we have
found an algebraic violation of the area law for the EE
consistent with recent results on weakly frustrated chains
[13]. Moving beyond the weak frustration regime, we were
able to reveal that the EE has extensive scaling in subsystem
size when frustration is strong. In that regime, we also observe
that the EE scales logarithmically with the length N of the
chain. Although aspects of criticality are present in both the
weak- and strong-frustration scenarios, such as the algebraic
decay of correlations, and violation of the area-law for the
EE, the behavior of the EE and CE are quite different from
those observed in standard critical models (CFTs). The nature
of the effective low-energy QFT of the frustrated chain is an
open problem, but the length of the soliton is bound to be an
important scale of it. The effect of additional degeneracies
resulting from the discreteness of z-spin values was also
considered, and shown to have limited impact on our results,
unless the degeneracy was ultramassive (superpolynomial
in the soliton size). Remarkably, although entanglement
increases with frustration, we have found that more frustration
results in a reduction of the total amount of correlations, along
with an enhancement of the relative nonlocality of these
correlations.
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APPENDIX A: BCHI MODEL WITH ARBITRARY SPIN s

The one dimensional BCHI model with N � 2 sites with
the Hamiltonian, Eq. (5) can be written as

H0 = 1
2 ST AS, (A1)

where ST = (Sz
1, Sz

2, . . . , Sz
N ) and A is the circulant matrix

with first row (2a, b, 0, . . . , 0, b). Because the Hamiltonian
is quadratic and local, it can be defined on one-dimensional
lattices of period 1 and 2. Specifically, the labels of the
eigenstates |s1, . . . , sN 〉 could define a section f (i) = si on the
orientable closed strip, the trivial fiber bundle [−s, s] × S1,
on which the z axis is sent to itself after one world trip.
Alternatively, they could define a section on the Möbius strip,
the (unique) nonorientable bundle that looks locally like the
product [−s, s] × S1, on which the z axis is sent to −z after
one world trip. Although the z direction cannot be defined
globally on the Möbius strip, it is defined locally so that
nearest neighbor interactions Sz

i Sz
i+1 make sense and are in-

dependent of the local gauge ±z. We will eventually find the
phase diagram for all periodic chains. Since, in the thermo-
dynamic limit, Landau’s theorem precludes the existence of a
phase transition in this system at any positive temperature, we
study the phase diagram at T = 0.

1. The ground state on the orientable chain with N even

On the orientable periodic chain with an even number of
sites, the staggered spin operators S̄ j ≡ (−1) jS j are globally
well-defined, and we find the usual mapping between the fer-
romagnetic (b < 0) and the antiferromagnetic (b > 0) cases

Hb>0
0 (S̄1, . . . , S̄N ) = Hb<0

0 (S1, . . . , SN ) (A2)

and vice versa. For definiteness we will find the ferromagnetic
ground state, and then obtain the antiferromagnetic one by
the above duality. Note that staggered operators are locally
defined when N is odd, if not globally, and the equivalence
Eq. (A2) remains locally valid.

The ferromagnetic case is easily dealt with. We write the

state |s1, . . . , sN 〉 as |r(α1, . . . , αN )〉 where r =
√∑

k s2
k and∑

k α2
k = 1. Then the energy is given as

E (s1, . . . , sN ) =
(

a + b
∑

k

αkαk+1

)
r2 = C(α̂)r2, (A3)

where explicitly,

C(α̂) =
(

a + b
∑

k

αkαk+1

)
. (A4)

As
∑

k (αk ± αk+1)2 � 0, we have

−1 �
∑

k

αkαk+1 � 1. (A5)

Thus for |b| < a, using Eq. (A5) in Eq. (A4), we have C(α̂) >

0 and hence the minimum energy configuration is realized
exactly for r = 0 corresponding to the state |0, . . . , 0〉 with
corresponding energy E0 = 0. For half odd integer spin, the
state |0, . . . , 0〉 is not permitted. Then in this case, one of the
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FIG. 12. Ground state of the orientable BCHI chain, with N even,
and arbitrary spin s.

states closest to the origin, | ± 1/2, . . . ,±1/2〉 (with uncorre-
lated ± signs) will be the minimal energy configuration. Since
the first term in the energy does not care whether the spin is
±1/2 and since b < 0, the energy is minimized at the “little”
ferromagnetic states

|1/2, . . . , 1/2〉 or | − 1/2, . . . ,−1/2〉 (A6)

with energy E0 = (1/4)N2(a − |b|).
For all other cases, |b| > a (including a negative), the

factor C(α̂) becomes negative for certain directions, and in
particular for α̂T = ± 1√

N
(1, . . . , 1) the upper bound Eq. (A5),

for the sum
∑

k αkαk+1 is saturated. These are the only two
states for which the bound is saturated, and here C(α̂) = a +
b = a − |b|. C(α̂) is negative and minimal for this direction.
The extreme corners ±(s, . . . , s) of the hypercube [−s, s]N

are attained along this direction. Hence r is maximal, and
correspondingly, the energy is minimal at the two corners.
Thus the two corresponding ferromagnetic states, which we
will write as |↑, . . . ,↑〉 and |↓, . . . ,↓〉, are the ground states
in the regime |b| > a (and we will use the notation ↑ and ↓
when the corresponding spin is maximally up, s, or maximally
down, −s, respectively).

When expressed as a function of the nonthermal parameter
a/|b| the ground state energy is nonanalytic at a = |b|. For
a = |b|, the states | ± (m, . . . , m)〉 are degenerate for any
m ∈ {−s,−s + 1, . . . , s} thus the ground state is 2s + 1-fold
degenerate with E0 = 0, and the system passes through a
highly degenerate critical point. In the large s limit, this is
veritably a massless continuum.

With the duality, Eq. (A2), we obtain the antiferromagnetic
ground state, and plot the result in Fig. 12. The ground state
is everywhere doubly degenerate, except on the critical lines
a = |b|, as well as for the particular case a > |b| and integer
spin s, for which the ground state |0, . . . , 0〉 trivially possesses
the Z2 symmetry of the Hamiltonian. We now find, for all
values of a and b, the soliton interpolating between the two
degenerate vacua, if applicable.

2. The BCHI soliton

The profile of the soliton will be seen to depend only on
the ratio a/|b|, and not on the size N of the lattice nor on
the boundary conditions. The calculation and results are local,
and will apply equally well to any periodic lattice, whether
or not the degenerate ground states identified in Fig. 12 can
be realized globally. For definiteness, let us begin with the
antiferromagnetic case (b > 0).

a. Antiferromagnetic soliton

When 0 < b < a, a straightforward induction shows that
the soliton (for half-odd spin s) is the “little” defect com-
prising two adjacent +1/2 or two adjacent −1/2 spin
components.

For 0 < a < b, the soliton is found by minimizing the
energy functional subject to the boundary conditions, s0 = s
and sn+1 = (−1)ns, connecting the two Néel ground states.
For now n is at least as large as the size of the soliton,
but otherwise arbitrary. With these boundary conditions, the
energy of the generic state |s0, . . . , sn+1〉 is

E = 1
2 sTBns + 2as2 + bsTt, (A7)

where Bn is the tridiagonal Toeplitz matrix of dimension n × n
with the three nonzero diagonals given by

Bn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a b
b 2a b

b 2a b
· · ·

· · ·
· · ·

b 2a b
b 2a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

(A8)

and where s = (s1, s2, . . . , sn)T and t =
(s, 0, . . . , 0, (−1)ns)T . The critical points of the energy
form are given by

Bns = −bt. (A9)

The Hessian matrix of the energy quadratic form is Bn, whose
eigenvalues and eigenvectors are easily found. The eigen-
values are λk = 2(a + b cos kπ

n+1 ), k = 1, 2, . . . , n. Now the
Hessian is positive definite for cos π

n+1 < a
b , therefore in this

range the unique critical point, Eq. (A9), is the minimum
energy configuration for the boundary problem s0 = s, sn+1 =
(−1)ns. The solution is obtained by inverting the Toeplitz
matrix Bn, s = −b(Bn)−1t, explicitly from [50,51]

sk = s̄ n
k

def= (−1)ks

(
sin(n + 1 − k)θ − sin kθ

sin(n + 1)θ

)
,

k = 1, . . . , n, (A10)

where cos θ = a/b. Equivalently, the solution can be written
as

s̄ n
k = (−1)ks

sin(n + 1)θ/2
sin

(
n + 1

2
− k

)
θ, k = 1, . . . , n.

(A11)

From this expression it is easily seen that |s̄ n
k | < s, so the so-

lution is inside the hypercube [−s, s]n of acceptable solutions.
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One also recognizes a rotation of the spin components by
π , interpolating smoothly from one Néel ground state to the
other over the sites labelled by k = 1, . . . , n. The soliton we
are after must therefore be found among these functions s̄ n

k ,
with integer n such that cos π

n+1 < a
b < 1, since they are the

minimum energy solutions to the boundary problems s0 = s,
sn+1 = (−1)ns. It is clear that the corresponding energies de-
crease with n, En > En+1, since the nth problem is subsumed
in the (n + 1)st. This implies that the soliton has maximal
such n. We conclude that the antiferromagnetic (b > 0) soliton
for a > 0 is given by Eq. (A11):

sk = s̄ M
k = (−1)ks

sin(M + 1)θ/2
sin

(
M + 1

2
− k

)
θ,

k = 1, . . . , M, (A12)

where cos θ = a
b and M � 1 is the unique integer such that

cos π
M+1 < a

b � cos π
M+2 . The soliton corresponds to a rota-

tion of the spin components by π over the sites labelled by k =
1, . . . , M, interpolating smoothly from one Néel ground state
to the other, and has minimal energy among such interpola-
tions. As a is decreased towards zero, the soliton is shortened
until it reaches the trivial s̄1

1 = 0 in the range 0 < a < cos π
3 .

As a becomes negative one can guess, and prove by an easy
induction, that the domain-wall soliton collapses to a simple
“up-up” or “down-down” defect.

b. Ferromagnetic soliton

In the ferromagnetic case b < 0, the problem can be solved
by an essentially identical analysis or more simply by the
exact local equivalence, Eq. (A2). In places where the anti-
ferromagnetic case had “up-up” or “down-down” defects (or
little defects), the ferromagnetic case has up-down or down-up
defects (or little defects). Where the antiferromagnetic ground
state is nondegenerate, so is the ferromagnetic one. Where the

FIG. 13. Soliton in parameter space.

antiferromagnetic soliton is sk = s̄M
k , Eq. (A12), the ferromag-

netic soliton is

sk = sM
k = s

sin(M + 1)θ/2
sin

(
M + 1

2
− k

)
θ,

k = 1, . . . , M, (A13)

with cos θ = a
|b| and M � 1 is the unique integer such that

cos π
M+1 < a

|b| < cos π
M+2 .

c. BCHI soliton in parameter space

These results are summarized in Fig. 13, where defects
are made of spin components ±s, “little” defects are made of
spin components ± 1

2 , while sM
j and s̄ M

j are solitons of length
M � 1 in the ferromagnetic (b < 0) and antiferromagnetic
(b > 0) regions, respectively. From Eqs. (A11) and (A13),
their profile is

s j =
⎧⎨
⎩

sM
j = s

sin(M+1)θ/2 sin
(

M+1
2 − j

)
θ, b < 0 (ferromagnetic),

s̄ M
j = (−1) j s

sin(M+1)θ/2 sin
(

M+1
2 − j

)
θ, b > 0 (antiferromagnetic),

(A14)

where cos θ = a
|b| , and M � 1 is the unique integer such that

cos π
M+1 < a

|b| � cos π
M+2 .

d. Explict, discrete-spin soliton profile

The expressions found above in Eqs. (A12) and (A13)
for the soliton profile are expressed as continuous functions
of the parameters and hence do not actually correspond to
the discrete values that are allowed for the z components
of the spin. However it is an easy numerical exercise to
find the actual discrete soliton profiles. Using MATHEMATICA,
we find a few examples for the antiferromagnetic case. See
Tables I–VI. For small values of the spin, we observe that
the exact, discrete soliton changes size at rational values of
a
b ∼ n

n+1 . At the present time, we only have a numerical

observation of this phenomenon, and we think this is only for
small values of the spin, as it no longer seems to be the case
already at spin 20 and spin 41/2. (See Figs. 2 and 3 of the main
text.) For these values, the soliton’s length is numerically ob-
served to change from M to M + 1 at a/b ∼ cos π/(M + 2),
in agreement with the large spin calculation.

TABLE I. Spin 1.
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TABLE II. Spin 2.

APPENDIX B: SOLITONS OF VARIOUS SIZES WITH
THE PERTURBATIVE HEISENBERG TERM

1. Solitons of length one

We now consider the full Hamiltonian, Eq. (5), and treat the
Heisenberg term perturbatively, setting |J| � max(|a|, |b|).
For simplicity, we may assume that a, b are of order 1, and set
|J| � 1. For now, we specialize to the region 0 < a < b

2 of
parameter space, where the classical soliton has size one (one
nonmaximal spin z component). This case deserves special
treatment because small-soliton translations by one lattice
constant occur at low perturbative order only for solitons of
length one. For other intermediate soliton lengths, transla-
tions by two lattice constants occur earlier in the perturbative
development than translations by one lattice constant. (See
Sec. B 2.) We compute the perturbative energy splitting in the
soliton degenerate subspace due to translations by one lattice
constant on the periodic chain of odd length N .

a. Integer spin

When s ∈ N, the soliton has total spin zero, and the soliton
degenerate subspace has dimension 2N . For each soliton |ν〉,
where ν indicates position on the chain, define the projector
Pν =∑μ �=ν |μ〉〈μ|. Let |1〉 have z component representation

| . . . ,↑,↓,↑, 0,↓︸︷︷︸
sites 1 and 2

,↑,↓, . . . 〉, (B1)

where arrows denote maximal components ±s. (The soliton
with Néel background reversed, denoted |1〉, is also one of the
|ν〉’s.) Applying P1(S−

1 S+
2 + S+

1 S−
2 )s to |1〉 will produce the

state with z component representation

| . . . ,↑,↓,↑, ↓, 0︸︷︷︸
sites 1 and 2

,↑,↓, . . . 〉. (B2)

It seems natural to denote it |2〉. It is clear that the transition
|1〉 → |2〉 occurs at perturbative order s, and not earlier, be-
cause a minimal amount s of spin must be exchanged between
sites 1 and 2, no matter what. Note also that P2(S−

1 S+
2 +

S+
1 S−

2 )s will operate the inverse transition |2〉 → |1〉 when
applied on |2〉. The soliton |μ + 1〉 is defined recursively as

|μ + 1〉 ∝ Pμ(S−
μ S+

μ+1 + S+
μ S−

μ+1)s|μ〉, (B3)

where S−
μ S+

μ+1 + S+
μ S−

μ+1 is shorthand for
S−

(μ mod N )S
+
(μ+1 mod N ) + S+

(μ mod N )S
−
(μ+1 mod N ). One easily

convinces oneself that |N + 1〉 thus defined is actually |1〉,
and that |2N + 1〉 = |N + 1〉 = |1〉. All translations are

reversible at order s, since

|μ〉 ∝ Pμ+1(S−
μ S+

μ+1 + S+
μ S−

μ+1)s|μ + 1〉. (B4)

Translations over more than one lattice constant will re-
quire more adjacent transpositions of spin components, and
will occur at higher orders. Brillouin-Wigner perturbation
theory tells us that the level splitting is given to lowest or-
der by the eigenvalues of the matrix w with (off-diagonal)
components

wμν = 〈μ|V (RνV )s−1|ν〉, μ, ν = 1, 2, . . . , 2N, (B5)

where

Rν = (Eν − H0)−1Q = (Eν − H0)−1

⎛
⎝1 −
∑

μ

|μ〉〈μ|
⎞
⎠,

(B6)

and Eν is the exact energy of the perturbed soliton of quantum
number ν. Translation invariance of the translation opera-
tors from Eqs. (B3) and (B4) implies that w is a circulant
matrix,

w = circ(a1, . . . , a2N ) =

⎛
⎜⎜⎝

a1 a2 · · · a2N

a2N a1 · · · a2N−1
...

...
. . .

...

a2 a3 · · · a1

⎞
⎟⎟⎠. (B7)

It is clear that w is symmetric, and that its first column
has only two nonzero (off-diagonal) entries, w2,1 and w2N,1,
which must be equal by the combination of circulation and
symmetry. So it suffices to find the constant C such that
w = C circ(0, 1, 0, . . . , 0, 1). We have

C = w2,1 =
( |J|

2

)s

〈2|S−
1 S+

2

(
Q

E1 − H0
S−

1 S+
2

)s−1

|1〉

=
( |J|

2

)s 〈2|(S−
1 S+

2 )s|1〉∏s−1
m=1(E1 − em)

, (B8)

where em is the unperturbed energy of the state

(S−
1 S+

2 )m|1〉 ∝ | . . . ,↑,↓,↑,−m,−s + m︸ ︷︷ ︸
sites 1 and 2

,↑,↓, . . . 〉. (B9)

Approximating E1 as E1(|J| = 0), the energy denominators
are easily computed to be

E1 − em = (2a − b)(s − m)m. (B10)
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TABLE III. Spin 3.

The amplitude 〈2|(S−
1 S+

2 )s|1〉 in (B8) is obtained by inserting identity resolutions

〈2|(S−
1 S+

2 )s|1〉 =
s−1∏
m=0

〈. . . ,↑,↓,↑,−m − 1,−s + m + 1︸ ︷︷ ︸
sites 1 and 2

,↑,↓, . . . |S−
1 S+

2 | . . . ,↑,↓,↑,−m,−s + m︸ ︷︷ ︸
sites 1 and 2

,↑,↓, . . . 〉

=
s−1∏
m=0

√
(s − m)(s + 1 + m)(2s − m)(m + 1)

=
s−1∏
m=0

(2s − m)(s − m). (B11)

Hence

C =
( |J|

2

)s ∏s−1
m=0(2s − m)(s − m)∏s−1

m=1(2a − b)(s − m)m
= (−1)s−1Ks2 (2s)!

(s!)2

( |J|
2K

)s

, (B12)

where we have introduced K = b − 2a > 0. The factor (−1)s−1 is due to the presence of s − 1 negative energy denominators.
Circulant matrices circ(a1, . . . , a2N ) are diagonalized by discrete Fourier transforms, and have eigenvalues

ε j = a1 + a2ω j + a3ω
2
j + · · · + a2Nω2N−1

j , j = 0, . . . , 2N − 1, (B13)

and corresponding eigenvectors 1√
2N

(1, ω j, ω
2
j , . . . , ω

2N−1
j )T,

with ω j = exp(i jπ/N ). As the matrix w from (B5) has the
form w = C circ(0, 1, 0, . . . , 0, 1), its eigenvalues are

ε j = C
(
ω j + ω2N−1

j

) = 2C cos
jπ

N
, j = 0, . . . , 2N − 1.

(B14)

The spectrum is doubly degenerate for all values of j except
j = 0 and j = N . From (B12), the ground state of the periodic
chain corresponds to j = 0 when s is even, and to j = N when
s is odd:

|ψ0〉 =
⎧⎨
⎩

1√
2N

∑
μ |μ〉, s even,

1√
2N

∑
μ(−1)μ|μ〉, s odd.

(B15)

We remark that when a → b/2, at the crossover with solitons
of length two, we get K → 0, and our expression for C,
Eq. (B12), will diverge. Thus it appears that Brillouin-Wigner
perturbation theory could fail to converge in that limit, due to
the presence of small energy denominators in (B8). However,

refining our expression for the energy denominators (B10)
by using the semiclassical energy (including the Heisenberg
term) of spin coherent states, we get instead

E1 − em = (2a − b − |J|)(s − m)m, (B16)

and K = b + |J| − 2a in Eq. (B12). At the crossover a →
b/2, we obtain K → |J| and find that C is of order |J|, so
that perturbative theory should converge after all.

b. Half-odd spin

When s − 1
2 ∈ N, the soliton has total spin ± 1

2 , and the
soliton degenerate subspace has dimension 4N . To compute
the perturbative level splitting due to soliton translations, we
need to diagonalize a 4N×4N Brillouin-Wigner matrix W ,
analogous to the matrix w from the previous section, Eq. (B5).
But since the Hamiltonian conserves total spin, that matrix is
block diagonal

W =
(

w+ 0
0 w−

)
, (B17)

TABLE IV. Spin 3
2 .
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TABLE V. Spin 5
2 .

and we need only to diagonalize each 2N×2N super-
selection sector separately. Define the projectors P±

ν =∑
μ �=ν |μ〉± ±〈μ| into the degenerate soliton subspaces of total

spin ± 1
2 , respectively, and let

|1〉± = | . . . ,↑,↓,↑,± 1
2 ,↓︸ ︷︷ ︸

sites 1 and 2

,↑,↓, . . . 〉. (B18)

(The solitons with all components reversed, denoted |1〉±, are
part of the |ν〉∓’s.) Now

P−
1 (S−

1 S+
2 + S+

1 S−
2 )s− 1

2 |1〉−
∝ | . . . ,↑,↓,↑,↓,− 1

2︸ ︷︷ ︸
sites 1 and 2

,↑,↓, . . . 〉. (B19)

Like in the previous section, we call the right-hand side |2〉−.
The transition |1〉− → |2〉− and its inverse occur at perturba-
tive order s − 1

2 , and not earlier. The transition |2〉− → |3〉−,
however, occurs only at the next order in perturbation, s + 1

2 .
Indeed, transposing spin components s2 = − 1

2 and s3 = +s
requires at least |s2 − s3| instances of S−

2 S+
3 + S+

2 S−
3 . At min-

imal perturbative order s − 1
2 , the spin − 1

2 sector only has
translations of the type

|2k − 1〉− ←→ |2k〉−, k = 1, 2, . . . , N. (B20)

As before, |N + 1〉− = |1〉−. The Brillouin-Wigner matrix for
this sector of soliton subspace has components

w−
μν = −〈μ|V (R−

ν V )s− 3
2 |ν〉−, μ, ν = 1, 2, . . . , 2N,

(B21)

where

R−
ν =(E−

ν − H0)−1Q−=(E−
ν − H0)−1

⎛
⎝1 −
∑

μ

|μ〉− −〈μ|
⎞
⎠,

(B22)

and E−
ν is the exact energy of the perturbed soliton of quantum

number ν and total spin − 1
2 . According to (B20), the matrix

w− is block diagonal, with N blocks of dimension 2×2 along
the diagonal. The blocks are symmetric, and they must be
identical by the two-site translation invariance of the Néel
background. What we need to diagonalize is thus a 2 × 2
matrix C−(0 1

1 0), with eigenvalues

ε± = ±C−, (B23)

and corresponding eigenvectors 1√
2
(1,±1)T, respectively. At

this minimal perturbative order, the spectrum of the spin − 1
2

sector is N-fold degenerate, and has a mass gap of 2|C−|. The
constant C− is

C− = w−
2,1 =
( |J|

2

)s− 1
2

−〈2|S−
1 S+

2

(
Q

E−
1 − H0

S−
1 S+

2

)s− 3
2

|1〉−

=
( |J|

2

)s− 1
2 −〈2|(S−

1 S+
2 )s−1/2|1〉−∏s−3/2

m=1 (E−
1 − em)

, (B24)

where

E−
1 − em = (2a − b)

(
s − m − 1

2

)
m. (B25)

The amplitude −〈2|(S−
1 S+

2 )s− 1
2 |1〉− in (B24) is obtained by

introducing identity resolutions, and the result is

−〈2|(S−
1 S+

2 )s− 1
2 |1〉− =

s− 3
2∏

m=0

√(
s − m − 1

2

)(
s + m + 3

2

)
(2s − m)(m + 1)

=
s− 3

2∏
m=0

(2s − m)

(
s − m − 1

2

)
. (B26)

Hence

C− =
( |J|

2

)s− 1
2
∏s− 3

2
m=0(2s − m)

(
s − m − 1

2

)
∏s− 3

2
m=1(2a − b)

(
s − m − 1

2

)
m

= (−1)s− 3
2

K

2

(
s − 1

2

)2 (2s + 1)!((
s + 1

2

)
!
)2
( |J|

2K

)s− 1
2

, (B27)
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where K = b − 2a > 0. The N-fold degenerate ground states
are

|ψ0〉− =
⎧⎨
⎩

1√
2
(|2k − 1〉− − |2k〉−), s − 1

2 odd,

1√
2
(|2k − 1〉− + |2k〉−), s − 1

2 even,
(B28)

for k = 1, 2, . . . , N . The spontaneous breaking of translation
invariance is consistent with the Lieb-Schultz-Mattis theorem,
which says that the ground state of a translation invariant
s-spin chain can be gapped and translation invariant only if
s − m0 is integer, where m0 is the magnetization per site in
the ground state [35,52]. For the soliton of length one, the
magnetization per site tends to zero in the thermodynamic
limit, so s − m0 is noninteger in this limit.

The calculation for the total spin 1
2 sector is virtually iden-

tical, the only difference being that at minimal perturbative
order s − 1

2 , the spin 1
2 sector only has translations of the type

|2k〉+ ←→ |2k + 1〉+, k = 1, 2, . . . , N, (B29)

with |N + 1〉+ = |1〉+ and |2N + 1〉+ = |1〉+. [Compare with
(B20).] The perturbative mass gap is 2|C+| = 2|C−|, and the
N-fold degenerate ground states are

|ψ0〉+ =
⎧⎨
⎩

1√
2
(|2k〉+ − |2k + 1〉+), s − 1

2 odd,

1√
2
(|2k〉+ + |2k + 1〉+), s − 1

2 even,
(B30)

for k = 1, 2, . . . , N .
As before, refining our energy denominators to include

a first-order |J| term shows that C is of order |J| at the
crossover with solitons of length two. [See paragraph follow-
ing Eq. (B15).]

2. Solitons of intermediate length

For solitons of intermediate length M > 1, translations by
one lattice constant occur at relatively high perturbative order.
Due to the alternating character of the Néel order, moving the
soliton over one site in a fixed Néel background cannot result
in a translated soliton. (Unless M = 1, Sec. B 1.) Solitons of
even length, on the one hand, have the following general form

(B31)

where the longest arrows represent maximal spin components
of the Néel background. To preserve the right antialignment
of s1 and sM with their respective neighbor, translations by
one lattice constant require translating the Néel background
along, a costly operation. (Unless the soliton’s length is larger
than the remaining Néel segment, a situation to be discussed
in Sec. B 3.) Similarly, solitons of odd length M > 1 have the
general form

(B32)

where the central dot represents component 0 (2s even) or ± 1
2

(2s odd). Again, the Néel background must be brought along
to preserve the right anti-alignment of s1 and sM with their

respective neighbor. For integer spin solitons, of total spin
zero, another possibility is to move the soliton by one site in a
fixed Néel background, and invert all soliton components. All
these transitions occur at relatively high perturbative order.

Obviously, moving the soliton over two lattice constants
in a fixed Néel background conserves total spin and results
in a translated soliton. Such transitions can be performed at
comparatively low perturbative order. (See Sec. B 3 for com-
parison.) Because the chain has odd length N , the soliton will
visit all positions after N steps, and two trips around the chain:

|μ〉 → |μ + 2〉 → · · · → |μ − 1〉 → |μ + 1〉 → · · · → |μ〉.
(B33)

At the lowest perturbative order where these translations
occur, there are two orthogonal superselection sectors corre-
sponding to the two Néel backgrounds. (If 2s is odd and the
soliton has odd length, there are four sectors as the central
component can be ± 1

2 .) For each sector, we need to diagonal-
ize a Brillouin-Wigner matrix w analogous to Eq. (B5). The
matrix w is N × N , circulant, of the form

w = circ(a1, a2, . . . , aN ) = Cscirc(0, 0, 1, 0, . . . , 0, 1, 0).
(B34)

Its eigenvalues are

ε j = a1 + a2ω j + a3ω
2
j + · · · + aNωN−1

j ,

j = 0, . . . , N − 1, (B35)

with corresponding eigenvectors 1√
N

(1, ω j, ω
2
j , . . . , ω

N−1
j )T,

where ω j = exp(i2π j/N ). We find

ε j = Cs
(
ω2

j + ωN−2
j

) = 2Cs cos
4π j

N
, j = 0, . . . , N − 1.

(B36)

We will not attempt to compute Cs explicitly, but only whether
it is positive or negative for any given s, since this is enough
to determine the perturbative ground space. The difficulty in
calculating Cs explicitly lies in the number of ways in which
the transposition operators S+

i S−
i+1 + S−

i S+
i+1 can be ordered.

Cs is a sum over all these different orderings. Each term in
that sum is analogous to Eq. (B8), with a positive amplitude in
the numerator, and a product of negative energy denominators.
The number of energy denominators is the same in all terms,
namely one less than the perturbative order. The sign of Cs is
thus determined by the parity of the order of perturbation at
which the transition occurs

Cs

{
>0, odd perturbative order,
<0, even perturbative order. (B37)

It is possible that the parity of the minimal perturbative order,
and by extension the degenerescence of the ground space,
delicately depends on the fine details of the quantum soliton.
We assume, however, that on average (including soliton de-
generacies) it will be a robust property attached to symmetries
which our semiclassical expression is likely to possess as well.

a. Minimal perturbative order

In order for a soliton to transit over one lattice constant,
an amount ±s of spin from the Néel background must tunnel
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across it. Let the soliton have arbitrary length M, and compo-
nents s1, . . . , sM . From Eq. (9), the minimal perturbative order
at which the component ±s will transfer is

M∑
i=1

|±s − si| = Ms ∓
M∑

i=1

si. (B38)

An up-down or down-up pair from the Néel background will
therefore transit across a soliton of length M at minimal per-
turbative order 2Ms.

b. Solitons of even intermediate length

Solitons of even length have two symmetric halves. As an
illustration, consider the soliton of length four, and arbitrary
spin s:

By Eq. (B38), transferring two adjacent Néel components
(boxed) across the soliton requires at least V 2Ms. Transposing
these two maximal components (in order to recover the Néel
order to the left of the soliton) requires an additional V 2s. The
minimal perturbative order is thus 2s(M + 1), where M + 1 is
odd. From Eq. (B37), we get

(even length) Cs

{
>0, 2s odd,

<0, 2s even.
(B39)

From Eq. (B36) we conclude that the ground space is fourfold
degenerate in each superselection sector if 2s is odd, and
nondegenerate in each superselection sector if 2s is even. In
the thermodynamic limit, each sector is gapless with a doubly
degenerate ground state for all values of s.

c. Solitons of odd intermediate length

Solitons of odd length have two antisymmetric halves. As
an illustration, consider the soliton of length five:

The central dot represents spin component zero if 2s is even,
and spin component ±1/2 if 2s is odd. Notice that once the
boxed spins have tunneled across the soliton they already fit in
the Néel background, and need not be swapped, in contradis-
tinction to the previous section. The minimal perturbative
order for this transition is thus 2Ms, where M is odd. From
Eq. (B37), we get

(odd length) Cs

{
>0, 2s odd,

< 0, 2s even,
(B40)

which is identical to the even length case, (B39). Again, the
ground space is fourfold degenerate in each superselection
sector if 2s is odd, and nondegenerate in each superselection
sector if 2s is even. In the thermodynamic limit, each sector
is gapless with a doubly degenerate ground state for all values
of s.

3. Large solitons

As explained in Sec. B 2, translating a soliton of length
M > 1 by one lattice constant requires translating the Néel
background along. (In some cases, one can flip all soliton
components instead. This is a costly operation even for soli-
tons of modest size.) For solitons of length much smaller than
the Néel background we argued that it was less expensive
to perform translations by two lattice constants in a fixed
Néel background. We now consider solitons of length M
comparable to the size N of the lattice. For odd values of N ,
these solitons constitute the unperturbed ground states in the
region a ≈ b− of parameter space (i.e., a less than but close
to b). Since the Néel background is comparatively short, it
eventually becomes less expensive to translate it by one lattice
constant than translate the soliton a second time. To illustrate
our point, let us consider a soliton of large odd length M a
fixed fraction of N :

The one site translation T1 : |μ〉 → |μ + 1〉 necessitates the
concomitant inversion of the Néel background, and can be
performed by transiting a Néel component (any one) along
the entire chain. From Eq. (B38), transferring it across the
soliton costs Ms + |∑M

i=1 si|, which is equal to Ms for 2s
even, and Ms + 1/2 for 2s odd. Néel inversion costs an ad-
ditional ( N−M

2 )2s = (N − M )s. Thus T1 occurs at minimal
perturbative order ∼Ns, while T2 : |μ〉 → |μ + 2〉 was found
to occur at order 2Ms in Sec. B 2 c. We see that T1 occurs
earlier in perturbative theory if M > N/2. A similar argument
can be made when M is even. We conclude that when a
is close enough to b, one-site translations occur earlier in
perturbation theory than two-site translations. We now briefly
summarize the calculation of the perturbative ground state for
large solitons, i.e., solitons with length M > N/2. In all cases,
we will find that the ground state is nondegenerate in each
superselection sector in the thermodynamic limit. Of course
when 2s is odd, and since N is odd, there will be two super-
selection sectors mapped onto one another by time reversal,
and the ground space will be degenerate in accordance with
the Kramers degeneracy theorem.

a. Large even length solitons

For each Néel background, the N × N Brillouin-Wigner
matrix has the form w = C circ(0, 1, 0, . . . , 0, 1), correspond-
ing to translations |μ〉 → |μ ± 1〉. As before [see Eq. (B14)],
the eigenvalues of w are

ε j = C
(
ω j + ωN−1

j

) = 2C cos
2π j

N
, j = 0, . . . , N − 1,

(B41)

with corresponding eigenvectors 1√
N

(1, ω j, ω
2
j , . . . , ω

N−1
j )T,

where ω j = exp(i2π j/N ). The ground state corresponds to
j = 0 when C < 0, and to j = �N/2�, �N/2� + 1 when C >

0. The sign of C is determined by the parity of the minimal
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TABLE VI. Spin 7
2 .

perturbative order γ :

C = w2,1 =
( |J|

2

)γ

〈2|S−
1 S+

2

(
Q

E1 − H0
S−

1 S+
2

)γ−1

|1〉

= (−1)γ−1

( |J|
2

)γ 〈2|(S−
1 S+

2 )γ |1〉∏γ−1
m=1 |E1 − em| , (B42)

where E1 and em are defined as before, and E1 − em < 0.
The minimal perturbative order γ is obtained as above. The
one-site translation T1 occurs at the same order as the fol-
lowing transition: the transit of a Néel component across the
soliton, plus the complete inversion of the Néel background.
The first part occurs at order Ms + |∑M

i=1 si|. The latter part
occurs at order ( N−M−1

2 )2s = (N − M − 1)s. Thus T1 is of
minimal perturbative order γ = (N − 1)s + |∑M

i=1 si|. Since
M is even, the soliton’s total spin

∑M
i=1 si is integer, and so is

γ . In the limit M → ∞, our semiclassical expression for the
soliton yields |∑M

i=1 si| → s. Numerical results for small to
moderate spin values (see Tables I to VI, and Figs. 3 and 2)
also seem to suggest that for any even M, |∑M

i=1 si| = s or
|∑M

i=1 si| = s − 1 for integer s, and |∑M
i=1 si| = s − 1

2 for
half-odd s. This is the case exactly for the classical solitons of
the critical line a = b, which are of the form si = (−1)i(s − i)
with i = 1, . . . , 2s − 1. Assuming this to hold as well for the
exact quantum soliton of the region a ≈ b−, we find

γ =
{

Ns − 1
2 , 2s odd,

Ns, Ns − 1, 2s even.
(B43)

When 2s is odd, γ = Ns − 1
2 = N (s − 1

2 ) + N−1
2 . Thus the

perturbative ground state is nondegenerate (C < 0) in each
superselection sector if s − 1

2 and N−1
2 are both even or both

odd. The perturbative ground state is doubly degenerate in
each superselection sector (C > 0) if exactly one among s − 1

2
and N−1

2 is odd. A new feature of large solitons is that the
degeneracy of the perturbative ground state when 2s is odd
depends on the length N of the entire chain, a global property.
When 2s is even, our analysis does not allow us to reach a
conclusion, unless a = b, for then |∑M

i=1 si| = s − 1 if s is
odd, and |∑M

i=1 si| = s if s is even, implying nondegeneracy
(C < 0) for all integer values of s on the critical line.

b. Large odd length solitons

For each superselection sector, the N × N Brillouin-
Wigner matrix has the form w = C circ(0, 1, 0, . . . , 0, 1),
corresponding to translations |μ〉 → |μ ± 1〉. There are two
sectors if 2s is even (the two Néel backgrounds), and there
are four if 2s is odd (two Néel backgrounds, soliton’s total
spin
∑M

i=1 si = ± 1
2 ). In each sector, the eigenvalues of w are

given by Eq. (B41), and the value of C is given by Eq. (B42).
The minimal perturbative order γ to reach both one-site trans-
lations T1, T −1

1 was found above to be Ns + |∑M
i=1 si|. Our

semiclassical expression for the soliton of odd length is anti-
symmetric with respect to the central component. Assuming
the exact quantum soliton to possess that symmetry as well,
we find

γ =
{

Ns + 1
2 , 2s odd,

Ns, 2s even.
(B44)

When 2s is odd, γ = Ns + 1
2 = N (s − 1

2 ) + N+1
2 . Thus the

perturbative ground state is nondegenerate (C < 0) in each
superselection sector if s − 1

2 and N+1
2 are both even or both

odd. The perturbative ground state is doubly degenerate in
each superselection sector (C > 0) if exactly one among s − 1

2
and N+1

2 is odd. Again, we find that for large solitons, the
degeneracy of the perturbative ground state when 2s is odd
depends on the length N of the entire chain. When 2s is even,
γ = Ns. Thus the perturbative ground state is nondegenerate
(C < 0) in each superselection sector if s is even, and doubly
degenerate in each superselection sector (C > 0) if s is odd.

APPENDIX C: ENTANGLEMENT SPECTRUM,
EE, CE, AND CORRELATIONS

In this Appendix, we will compute exactly some quantities
related to entanglement in the general perturbative solitonic
ground state given in Eq. (10) of the main text. We do not
consider the ground state with broken translation invariance
corresponding to the special case of half-odd s and length-one
soliton, found in Eqs. (B28) and (B30). All quantities relate
to bipartite entanglement, that is, they are witness to the
entanglement between two nonoverlapping intervals on the
chain, A and B, such that A ∪ B is the whole chain.

1. Schmidt decomposition

Let |ψ〉 be a normalized vector in HA ⊗ HB. Then there
exist orthonormal subsets {|ui〉} ⊂ HA and {|v j〉} ⊂ HB such
that |ψ〉 may be written as

|ψ〉 =
Q∑

i=1

√
λi|ui〉 ⊗ |vi〉, (C1)

where the sum is countable (finite or infinite), Q �
min(dim HA, dim HB), the coefficients λi are strictly posi-
tive, and

∑Q
i=1 λi = 1. Expression (C1) is called the Schmidt

decomposition of |ψ〉. Note that the coefficients λi are the
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eigenvalues of the corresponding reduced density operators:

ρA = TrB|ψ〉〈ψ | =
Q∑

i=1

λi|ui〉〈ui|,

ρB = TrA|ψ〉〈ψ | =
Q∑

i=1

λi|vi〉〈vi|. (C2)

Finding the Schmidt decomposition of the perturbative soli-
tonic ground state, Eq. (10), will yield the reduced densities,
from which we obtain the entanglement spectrum, EE, and
CE.

Let A and B be two intervals such that {A, B} is a bipartition
of the chain. Define I which we call the seam set, such that
μ ∈ I iff the soliton |μ〉 has (non Néel) components in both
A and B. Let A◦ stand for the interior of A: μ ∈ A◦ iff the
soliton part of |μ〉 lies entirely within A. Define B◦ similarly.
Partitioning the sum in Eq. (10) as

∑
I +∑A◦ +∑B◦ , we

obtain the Schmidt decomposition of |ψ0〉 with respect to
partition {A, B},

|ψ0〉 = 1√
N

((∑
μ∈I

ωμ|μ〉A|μ〉B

)

+
√

|A◦||A◦〉|Néel〉B +
√

|B◦||Néel〉A|B◦
)

. (C3)

Let us explain the notation. The state |μ〉 in (10) is a tensor
product of the states for each spin in the chain. Here |·〉A,B

naturally stands for the restriction to A’s or B’s subspace, so
that |μ〉A and |Néel〉A are vectors that are the tensor product
of the spins in the subset A (and similar for B). Then, |A◦〉 is

obtained from
∑N

μ=1 ωμ|μ〉A by restricting the sum to μ ∈ A◦,
and normalizing: |A◦〉 = |A◦|−1/2∑

μ∈A◦ ωμ|μ〉A. (Here and
in what follows, the cardinality of a set X is written |X |.)
The vector |B◦〉 is obtained similarly. Eq. (C3) is formally
invariant under the exchange A ↔ B. States corresponding
to different classical configurations have vanishingly small
overlap, 〈η|η′〉 ∼ |J|γ , where as before |J| � 1 is the cou-
pling constant, and γ is the perturbative order at which soliton
translations are reached. Thus the vectors in (C3) effectively
constitute an orthonormal Schmidt basis.

The Schmidt rank is defined as the number of terms Q ap-
pearing in Eq. (C1). Without loss of generality we assume that
A is smaller than B. Let R be the size of A (so R < N/2), and
M be the length of the soliton. We must distinguish the cases
M � R and M > R, and the subcases of the latter M + R � N
and M + R > N .

(1) Case M � R. The seam set I in (C3) has 2M − 2 ele-
ments, so the Schmidt rank is 2M. In particular when M = 1
(Néel defect or minimal soliton), the Schmidt decomposition
is seamless (I = ∅) and the rank is 2. The other extreme
subcase is when M = R and R is maximal, R = (N − 1)/2:
then I has N − 3 elements, and the Schmidt rank is N − 1.

(2) Case M > R. The set A◦ is empty so |A◦〉 = 0. The set
I has M + R − 1 element, with a maximum of N :

|I| =
{

M + R − 1, M + R � N,

N, M + R > N.
(C4)

When I has size N , the state |Néel〉A is void as well. The
Schmidt rank is M + R (for M + R � N) with a maximum
of N (for M + R � N).

2. Reduced density

The reduced density matrix ρA = TrB|ψ0〉〈ψ0| is

ρA = 1

N

⎛
⎝∑

μ∈I

|μ〉AA〈μ| + |A◦| |A◦〉〈A◦| + |B◦| |Néel〉AA〈Néel|
⎞
⎠, (C5)

with

|A◦| = R − M + 1, |B◦| = N − M − R + 1 when M � R,

|A◦| = 0, |B◦| = N − M − R + 1 when M > R and M + R � N,

|A◦| = 0, |B◦| = 0 when M > R and M + R > N.

(C6)

Let us verify proper normalization. In all cases, TrA ρA = |I| + |A◦| + |B◦|.
(1) Case M � R. Then TrA ρA = 1

N ((2M − 2) + (R − M + 1) + (N − M − R + 1)) = 1.
(2) Case M > R. If M + R � N , we have |A◦| = 0 and TrA ρA = 1

N ((M + R − 1) + (N − M − R + 1)) = 1. If M + R > N ,
we have |A◦| = 0, |B◦| = 0, and TrA ρA = 1

N (N ) = 1.

3. Entanglement spectrum

The reduced density (C5) may be recast as the partition function at unit temperature (β = 1) of an entanglement spectrum
Hamiltonian (or modular Hamiltonian) HA,

ρA =
∑

n

e−ξn |n〉AA〈n| = e−HA , (C7)
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whose eigensystem is

HA |μ〉A = ln N |μ〉A (μ ∈ I ),

HA |A◦〉 = ln
N

R − M + 1
|A◦〉 (M � R, void otherwise),

HA |Néel〉A = ln
N

N − M − R + 1
|Néel〉A (M + R � N, void otherwise).

(C8)

The ground state of HA is |Néel〉A, and is gapped from the low-lying state |A◦〉. The higher excited states |μ〉A form a level with
degeneracy gM,R = |I| = O(M ),

gM,R =
⎧⎨
⎩

2M − 2, M � R,

M + R − 1, M > R, M + R � N,

N, M > R, M + R > N.

(C9)

We will label entanglement energies as follows:

ξ0 = ln
N

N − M − R + 1
� ξ1 = ln

N

R − M + 1
� ξ2 = ln N. (C10)

A “phase transition of entanglement” of geometrical origin occurs as R ↗ N/2, which closes the gap between ξ0 and ξ1 as
the roles of A and B get exchanged. The “energy” gap |ξ1 − ξ0| is a measure of the size difference between A and B. Another
more physical transition occurs as M ↗ R, at which point the lower excited level ξ1 merges with the upper level ξ2. When
R < M, all solitons belong to the set I , whose size grows with R, resulting in entanglement being highly sensitive to R. [See the
extensive stage of the small-soliton phase, Eq. (22).] When R > M, the size of I plateaus, and so does entanglement entropy.
[See the plateaued stage of the small-soliton phase, Eq. (22).] A third transition is observed as M + R ↗ N , and ξ0 merges
with ξ2. Beyond this point, a pure Néel state within A ceases to be a possibility, resulting in all N states within I , and saturated
entanglement with B. [See the saturated stage of the large soliton phase, Eq. (23).]

4. Entanglement entropy

The entanglement entropy (EE), or modular thermal average energy (at unit temperature), of subsystem A is defined as

SA = −TrA ρA ln ρA =
∑

n

ξne−ξn = 〈HA〉β=1. (C11)

Considering multiplicities we have

SA =

⎧⎪⎪⎨
⎪⎪⎩

ξ0e−ξ0 + ξ1e−ξ1 + gM,R ξ2e−ξ2 , M � R,

ξ0e−ξ0 + gM,R ξ2e−ξ2 , M > R, M + R � N,

gM,R ξ2e−ξ2 , M > R, M + R > N.

(C12)

From (C9) and (C10), we get

SA =

⎧⎪⎪⎨
⎪⎪⎩

N−M−R+1
N ln N

N−M−R+1 + R−M+1
N ln N

R−M+1 + 2M−2
N ln N, region I,

N−M−R+1
N ln N

N−M−R+1 + M+R−1
N ln N, region II,

ln N, region III,

(C13)

with regions I, II, and III as represented in Fig. 4 of the main text.

5. Correlations

We now find approximate expressions for the zz correlator
over distance R,

Czz
N (R) = 〈ψ0|Sz

i Sz
i+R|ψ0〉 = 1

N

N∑
i=1

〈μ|Sz
i Sz

i+R|μ〉, (C14)

where |ψ0〉 is as in Eq. (10). In the last term, obtained from the
translation invariance of |ψ0〉, μ is (any) fixed position on the
chain. When separation exceeds the soliton length, R > M, we
can show, using the symmetries of the semiclassical soliton,
that

Czz
N (R) = (−1)Rs2

(
1 − 2R

N

)
. (C15)

Crucially, as i sweeps over the N sites of the chain, at most
one site among i and i + R is on the soliton, the other site
being on the Néel background. Because of the complete
overturn occuring at the midpoint of the soliton, the sum∑

i,i+R ∈ soliton〈μ|Sz
i Sz

i+R|μ〉 vanishes identically (for the semi-
classical soliton). For the rest of the sum in (C14), both i and
i + R are on the Néel segment, contributing (−1)Rs2 to the
sum if the segment i, i + 1, . . . , i + R is Néel, and (−1)R−1s2

if this segment contains the soliton. Thus

Czz
N (R) = (−1)R s2

(
N − M − R

N

)
− (−1)R s2

(
R − M

N

)
,

(C16)
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where the first term comes from Néel segments, and the sec-
ond term from segments comprising the soliton. From this we
obtain (C15).

We now consider separations inferior to the soliton length,
R < M, and restrict ourselves to moderate or strong frustra-
tion, M 
 1. Using simplifying assumptions, we show that
the correlations for this case are

Czz
N (R) ∼ (−1)R s2

N

[
N − 2M

3
− 2R2

M
+ 2R3

3M2

]
. (C17)

When both i and i + R are outside the soliton, the segment
i, i + 1, . . . , i + R can only be Néel, and the contribution to
the correlator is identical to the first term of (C16). For the
rest of the calculation, we approximate the soliton profile with
a linearized one,

s j ≈ (−1) j 2s

M

(
M

2
− j

)
, j = 1, . . . , M − 1. (C18)

As observed in Sec. III A, very large (semiclassical) solitons,
M ≈ N−, have nearly this form. [See also Figs. 2(f) and 3(f)].
When exactly one site among i, i + R is on the soliton (de-
noted i ∈ I1 below), the contribution to the correlator is

1

N

∑
i∈I1

〈μ|Sz
i Sz

i+R|μ〉 ≈ (−1)R 2s2

N

(
2

M

) R∑
j=1

(
M

2
− j

)
.

(C19)

When sites i, i + R are on the soliton simultaneously (denoted
i ∈ I2), we find

1

N

∑
i∈I2

〈μ|Sz
i Sz

i+R|μ〉

≈ (−1)R 2s2

N

(
2

M

)2 M−R∑
j=1

(
M

2
− j

)(
M

2
− j − R

)
. (C20)

Combining (C19), (C20), and the first term of (C16), we
obtain (C17) in the limit M 
 1.

6. Degeneracy

We now adapt the semiclassical derivation of the entangle-
ment entropy to include the presence of degeneracies resulting
from the discreteness of quantum spins. The classical soliton
of length M and position μ is now replaced by a degenerate
set {|μq〉}, indexed by q ∈ GM . Because by assumption the
|μq〉 minimize H0 (see (5)), they still are z-spin eigenstates
and we have 〈νq′ |μq〉 ∝ δνμ. We assume that only translation-
based degeneracies are affected by system size N , and that
GM is independent of N . By translation invariance, the index
set GM is also independent of position. Moreover, indexation
can be done in a way that is consistent with translations T
in the sense that 〈(μ + 1)q′ |T |μq〉 = δq′q. On this ground, a
translation-based perturbative analysis may be performed in-
dependently on each q sector, yielding a state akin to Eq. (10)
in each sector. Ground states resulting from the lifting of the
additional degeneracy in q have the general form

|ψ0〉 =
∑

q∈GM

cq

⎛
⎝ 1√

N

N∑
μ=1

ωμ
q |μq〉
⎞
⎠, (C21)

where
∑

q∈GM
|cq|2 = 1, and the roots of unity ωq may depend

on q. In order to give an expression for the reduced density
matrix on subsystem A generalizing (C5), let us introduce
some notation. For each μ, let C(μ) be the set of equivalence
classes of GM defined by identifying two indices q, q′ ∈ GM ,
when |μq〉 and |μq′ 〉 agree on subsystem B:

q, q′ ∈ Q ∈ C(μ) if and only if B〈μq′ |μq〉B = 1. (C22)

The reduced density matrix then reads

ρA = 1

N

⎛
⎝∑

μ∈I

∑
Q∈C(μ)

∑
q,q′∈Q

(
ω

μ

q′cq′
)∗

ωμ
q cq|μq〉AA〈μq′ | + |A◦| |A◦〉〈A◦| + |B◦| |Néel〉AA〈Néel|

⎞
⎠. (C23)

In this equation, |A◦〉 has been adapted from its previous definition and is now given as |A◦〉 = |A◦|−1/2∑
q∈GM

∑
μ∈A◦ cqω

μ
q |μq〉A.

It is normalized, as before. To reach our final expression, we define a collection of partitions of unity as follows:

Z = {Zμ : C(μ) → (0, 1] }μ∈I ,

0 < Zμ(Q) =
∑
q∈Q

|cq|2 � 1,
∑

Q∈C(μ)

Zμ(Q) = 1, (C24)

along with the normalized states

|μQ〉A = 1√
Zμ(Q)

∑
q∈Q

ωμ
q cq|μq〉A. (C25)

Our final expression for the reduced density is thus

ρA = 1

N

⎛
⎝∑

μ∈I

∑
Q∈C(μ)

Zμ(Q)|μQ〉AA〈μQ| + |A◦| |A◦〉〈A◦| + |B◦| |Néel〉AA〈Néel|
⎞
⎠. (C26)

When the classical soliton is degenerated by translations only, i.e., when |GM | = 1, all sets C(μ) are singletons, and the above
expression reduces to (C5). A nontrivial GM turns the pure states |μ〉AA〈μ| of (C5) into mixed states

∑
Q∈C(μ) Zμ(Q)|μQ〉AA〈μQ|,

increasing entropy. We may determine the entanglement spectrum just as we did in Sec. C 3, and deduce the entanglement
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entropy:

SA =

⎧⎪⎪⎨
⎪⎪⎩

N−M−R+1
N ln N

N−M−R+1 + R−M+1
N ln N

R−M+1 + σ (N, Z ), region I,
N−M−R+1

N ln N
N−M−R+1 + σ (N, Z ), region II,

σ (N, Z ), region III,

(C27)

with regions I, II, and III as represented in Fig. 4 of the main
text, and where Z is the collection of partitions (C24). We have
introduced the term

σ (N, Z ) =
∑
μ∈I

∑
Q∈C(μ)

Zμ(Q)

N
ln

N

Zμ(Q)
. (C28)

It is the only term reflecting the classical soliton’s degeneracy:
translational degeneracy (sum on positions μ ∈ I for solitons
that straddle across subsystems A and B) and spin-discreteness
degeneracy [sum on equivalence classes Q ∈ C(μ)]. When
|GM | = 1, we find σ (N, Z ) = |I|

N ln N , in agreement with
(C13) and (C9).
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