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Band structure and band topology in twisted homotrilayer transition metal dichalcogenides
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We investigate an idealized continuum model of a twisted homotrilayer transition metal dichalcogenides
with negligible next-nearest-layer couplings. We systematically analyze band structure and topology of various
stacking configurations in a twist angle range from 1◦ to 4◦. This allows us to uncover a plethora of topological
transitions as well as various angle regimes with flat bands, some of them topologically nontrivial, which are
of growing interest for the realization of exotic strongly correlated phases. Additionally, we uncover surprising
properties, such as that for certain stacking configurations, some layers effectively decouple from other layers.
In this case, the only remnant of coupling between layers is a layer-dependent energy shift.
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I. INTRODUCTION

Moiré superlattices are long-wavelength periodic modula-
tions that form when two adjacent layers of a lattice have
slight differences in lattice constants or have the same lattice
constant but are rotated with respect to one another. Such
moiré systems often produce spatial confinement, resulting
in flat bands in which electron-electron or electron-phonon
interactions dominate the energy scale. Therefore, electrons
in moiré superlattices often exhibit strongly correlated phases.
Experiments involving these flat bands have led to many excit-
ing discoveries, such as unconventional superconductivity in
twisted bilayer graphene (TBG) [1], which by itself has led to
a surge of interest in twisted two-dimensional materials. Aside
from superconducting phases [1–5], this material class also
gives rise to other exotic quantum phases like correlated insu-
lating phases [2,6,7] and orbital magnetism [2,8–10], making
it one of the currently most exciting research areas in con-
densed matter theory. In addition to these interacting phases,
TBG was also a subject of extensive studies on noninteract-
ing properties such as band structure and topological phases
both in the equilibrium case [11–13] and in a nonequilibrium
setting [14–19]. Aside from TBG, similarly interesting phases
both in the interacting and noninteracting regimes have been
discovered in other graphene-based twisted materials, includ-
ing double-bilayer graphene [20–24] and trilayer graphene
[25–28].

In addition to graphene, transition metal dichalcogenides
(TMDs) emerged as a promising material that shares some
of its features. However, unlike graphene, it has a large
direct band gap [29–32], which leads to its own distinct
set of interesting phenomena. To further contrast graphene,
TMDs exhibit strong spin-orbit splitting and the interesting
phenomenon of spin-valley locking, where spin degrees of

*hassan.albuhairan@kfupm.edu.sa
†ssss133@googlemail.com

freedom become linked to the momentum degree of freedom:
specifically, spins become associated with the K valleys at the
corners of the Brillouin zone. These phenomena mean that
twisted TMDs, like TBG, form unique platforms for excit-
ing physics. For instance, they play host to various idealized
models of physics such as a Hubbard model on a triangular
lattice [33–36], generalized Kane-Mele models [34,37], and
generalized Wigner crystals [38,39]. They also are predicted
to play host to a highly tunable phase diagram of a variety
of magnetic phases [40,41] as well as an extended Hubbard
model with highly nonlocal interactions [36]. Much like TBG,
twisted TMDs are not only exciting in the interacting limit,
but also host interesting noninteracting topological phases
[34,42].

Theoretical investigations of twisted TMDs were con-
ducted using various methods ranging from atomistic ab initio
approaches like density functional theory (DFT) to effective
continuum models. For instance, using DFT and neglecting
the effects of spin-orbit coupling, the band structure of MoS2,
a two-dimensional TMD, was analyzed and shown to exhibit
flat valence bands with widths of 23 and 5 meV at twist
angles of θ = 3.5◦ and 56.5◦, respectively. A similar analysis
was performed for various other TMD homobilayers [43].
However, using DFT is computationally expensive due to
its scaling with the system size, which makes smaller angle
calculations increasingly more difficult.

As a computationally cheaper but still atomistic alternative,
one may employ tight-binding Hamiltonians. For instance,
tight-binding Hamiltonians exist for untwisted homobilayer
TMDs as proposed in Ref. [44]. Such a tight-binding approach
has the advantage that it permits including spin-orbit cou-
plings in a computationally cheap fashion. Furthermore, such
models permit reaching smaller twist angle regimes than it
would be computationally practical using DFT. Based on this
model, band structures of homobilayers MoS2 were studied in
the small twist angle regime. Particularly, widths of flat bands
and band gaps were studied as a function of twist angle and
other structural parameters [45,46]. A similar analysis was
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also performed for a variety of other twisted homobilayer and
hetrobilayer TMDs [47].

Another alternative theoretical approach to the aforemen-
tioned atomistic methods is to use continuum effective mass
models [33,34,48], which, despite being limited to small an-
gles and relatively low energies, are computationally very
efficient and thus advantageous for systematic studies. In
particular, the continuum model for twisted TMD homobi-
layers proposed in Ref. [34] was used in further theoretical
investigations of this attractive material class. For example,
a systematic study of single-particle and many-body moiré
physics in twisted WSe2, including a complete topological
phase diagram that studies the effects of introducing a layer
potential difference, was presented in Ref. [49]. Furthermore,
a combination of the continuum model with other atomistic
methods, such as DFT, was applied to twisted TMD homobi-
layers (with WSe2 as a focus of the work). Here, a particular
magic twist angle of θ = 1.43◦ with almost perfectly flat
bands was identified, and the realization of several exotic
physical models, such as an interaction-driven Haldane insu-
lator, was predicted [37].

In this work, we expand on the theoretical efforts of
investigating twisted TMDs by systematically studying the
electronic and topological properties of various twisted ho-
motrilayer TMD configurations using an idealized continuum
model that neglects next-nearest-layer couplings. We observe
the existence of flat bands in all configurations, especially at
small twist angles, which sometimes remain flat for a wide
range of twist angles θ > 1◦. The bands in our model exhibit
other interesting properties. For example, in the middle-twist
configurations at a twist angle θ = 1.2◦, we observe that the
top three valence bands are all extremely flat, with band-
widths as low as ≈0.013 meV, where the topmost band is
separated from the rest by a comparatively huge band gap of
24 meV. The second and third bands are in very close proxim-
ity to one another, and both are topologically nontrivial. This
work demonstrates some of the fascinating features of trilayer
TMDs and highlights their potential as an exciting subject of
future research on moiré materials.

This paper is organized as follows. In Sec. II, we discuss
our model Hamiltonian, define the different stacking configu-
rations of the moiré system, explain the method used to obtain
band structures, and outline the method employed to compute
valley Chern numbers. In Sec. III, we analyze band structures,
highlight twist angles with flat bands (magic angles), and
identify band-touching points. We further identify topologi-
cal phase transitions and nontrivial topological phases. Our
findings are supported by plots of the valley Chern numbers,
bandwidths, and band gaps of the topmost valence bands as a
function of twist angle taking values in the range 1◦ � θ � 4◦.
Finally, in Sec. IV, we conclude by giving a summary and an
outlook on our main findings.

II. PHYSICAL SYSTEM AND MODEL

In this section we will lay out the theoretical foundation for
our study of twisted homotrilayer TMDs. The Hamiltonian we
will study can be applied to the study of various TMDs, but
we will specifically focus on parameters that are appropriate
for MoTe2 to produce concrete numerical results. MoTe2 has a
hexagonal lattice structure with a lattice constant a0 = 3.472
Å. More precisely, it consists of two layers of Te atoms with a
layer of Mo atoms between them. For our study of trilayer
MoTe2 build on the bilayer model in Ref. [34] and extend
it to a description of three layers. Hereby, we assume that
hoppings between nonadjacent TMD layers can be neglected
because tight-binding hoppings typically decay exponentially
with distance. In our model we focus on the valence band
maxima that are located in ±K valleys. Since the two valleys
are related by time-reversal symmetry, we choose to focus
on the +K valley. Valence band states, here, are subject to
relatively strong spin-orbit splitting. This allows us to choose
a description that focuses solely on the spin-up states, which
are closer to the Fermi energy. According to this logic the two-
band Hamiltonian for two layers from Ref. [34], in our case
of three layers, generalizes to a three-band k · p Hamiltonian:

H0(k, δ1, δ3) =

⎛
⎜⎜⎜⎝

−h̄2k2

2m∗ + �1(δ1) �T
12(δ1) 0

�T
12(δ1)† −h̄2k2

2m∗ + �2a(δ1) + �2b(δ3) �T
23(δ3)

0 �T
23(δ3)† −h̄2k2

2m∗ + �3(δ3)

⎞
⎟⎟⎟⎠, (1)

where k is the momentum measured from the +K point, m∗ =
0.62me is the valence band effective mass, δi is a displacement
vector that captures the relative orientation between layer i
and layer 2 (we take layer 2 as a reference). Furthermore, �i is
a potential energy pertaining to layer i, and �T

i j is an interlayer
tunneling amplitude between layers i and j. Both atoms from
layer 1 (�2a) and layer 3 (�2b) contribute to the effective po-
tential �2 = �2a + �2b on layer 2. We stress that we neglect
interlayer hopping between layers 1 and 3, which is an ideal-
ization. Expressions for �i and �T

i j can be obtained in lowest
harmonic approximation by observing how their dependence

on δi is constrained by the symmetry properties [34], which
yields

�i(δi) = 2V
∑

j=1,3,5

cos(G j .δi + sψ ), (2)

�T
i j (δi) = w(1 + e−iG2.δi + e−iG3.δi ), (3)

where V = 8 meV characterizes the amplitude of the po-
tential, G j is a reciprocal lattice vector obtained by the
counterclockwise rotation of G1 = (4π )/(

√
3a0)ŷ by angle
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( j − 1)π/3, s = 1 for �1 and �2b, s = −1 for �2a and �3,
ψ = −89.6◦ characterizes the shape of the potential, and w =
−8.5 meV is a tunneling strength parameter.

In this work, we study different configurations of trilayer
MoTe2 that are constructed from combinations of layer twists
and shifts. To have a fixed coordinate system, we take the
center of layer 2 as the origin.

There are two types of twists that can be considered: (i)
a top twist, achieved by twisting layer 1 by an angle +θ/2
and both layers 2 and 3 by an angle −θ/2, and (ii) a middle
twist, achieved by twisting layer 2 by an angle −θ/2 and
both layers 1 and 3 by an angle +θ/2, where all twists are
taken around a rotation axis that passes through the origin.
Note that a bottom twist would be equivalent to a top twist,

which is why we do not consider this case. For layer shifts,
we restrict our investigation to shifting layer 3 by the high-
symmetry displacements n(a1 + a2)/3 for n = 0,±1, where
a1 = a0(1, 0) and a2 = a0(1/2,

√
3/2) are the primitive lat-

tice vectors. Hence, we consider six families of configurations
of trilayer MoTe2, which we denote Cn=0,±1

t,m , where the sub-
script refers to the type of twist and the superscript to the
high-symmetry displacement index of layer 3. The twist and
shift operations are described by the parameters δ1 = d1 − d2

and δn
3 = d2 − d3 + δn

0, where di = θi ẑ × r, θi is the twist an-
gle of layer i, r is the spatial position, and δn

0 = n(a1 + a2)/3.
The moiré Hamiltonian for the configurations with twists

is given by

H
(
k, r, δ1, δ

n
3

) =

⎛
⎜⎝

−h̄2(k−κ+ )2

2m∗ + �1(δ1) �T
12(δ1) 0

�T
12(δ1)† −h̄2(k−κ− )2

2m∗ + �2a(δ1) + �2b
(
δn

3

)
�T

23

(
δn

3

)
0 �T

23

(
δn

3

)† −h̄2(k−κ± )2

2m∗ + �3
(
δn

3

)
⎞
⎟⎠, (4)

where r is the position vector, κ± are vectors that are located
at the corners of the moiré Brillouin zone, as illustrated in
Fig. 1. In the last element of H, κ− corresponds to a top
twist and κ+ to a middle twist. Note that shifting the momenta
by κ± allows us to maintain a consistent definition of k, i.e.,
consistent choice of coordinate system, for all layers despite
the various rotations involved.

To investigate the electronic properties, we numerically
calculate moiré band structures near the +K point [see
Fig. 1(e)]. These are obtained by diagonalizing the moiré
Hamiltonian in Eq. (4) using a plane-wave expansion based
on Bloch’s theorem,

Hnm(q) = 〈φn|H(k̂ + q)|φm〉, (5)

where φn is a plane-wave state corresponding to a reciprocal
lattice vector with label n and q is the crystal momentum.
Bloch’s theorem was used to cast the Hamiltonian into this
form that allows the expansion in terms of plane waves. The

FIG. 1. (a) A top twist of trilayer MoTe2 is realized by twisting
layer 1 (red) by an angle +θ/2 and both layers 2 and 3 (green
and blue) by an angle −θ/2, whereas a middle twist (b) is realized
by twisting layer 2 by an angle −θ/2 and both layers 1 and 3 by
an angle +θ/2. We consider shifting layer 3 by a high-symmetry
displacement n(a1 + a2)/3, a top view of n = 1 and n = −1 shifts
are shown in (c) and (d), respectively. (e) Brillouin zones of layer
1 (red) and layer 2 (green) for top-twist configuration (the Brillouin
zone of layer 3 is hidden), and the moiré Brillouin zone (black).

set of reciprocal lattice vectors that is used is truncated in a
way that respects sixfold rotational symmetry to avoid trunca-
tion artifacts.

To understand topological features we compute the Chern
numbers by discretizing the Brillouin zone using the Fukui-
Hatsugai-Suzuki method [50], which we summarize below.
We start by discretizing the Brillouin zone (in our case as a
30 × 30 grid, which was enough points to ensure convergence
of the Chern numbers in all cases considered in this work) and
denote its reciprocal lattice points by kl , where l is an integer
that spans the lattice positions. We then define so-called link
variables,

Uα,n(kl ) = 〈φn(kl )|φn(kl + μα )〉
|〈φn(kl )|φn(kl + μα )〉| , (6)

here μα = α̂Lα/N , where α refers to the x or y coordinate,
Lα is the length of the lattice in the α direction, and N is the
number of points (30 points in our case). We then define the
lattice field strength at site l and for band n as

Fn(kl ) = ln

(
Ux,n(kl )Uy,n(kl + μx )

Ux,n(kl + μy)−1Uy,n(kl )−1

)
. (7)

The valley Chern number of the nth band is then given by

Cn = 1

2π i

∑
l

Fn(kl ). (8)

In the analysis that follows we focus on Chern numbers Cn for
the top three valence bands, which we label in a descending
order of energy, i.e., Cn is the Chern number of the nth band
from the top.

As possible twist angles, we consider θ ∈ [1.0◦, 4.0◦]. The
lower bound is set such that a numerically reasonable number
of plane waves is needed to get convergence for the band
structure and Chern numbers in the chosen energy range. For
this we use 91 K points (number of plane waves), which were
chosen in such a way that our choice preserves the sixfold
rotational symmetry. The upper limit of 4.0◦ is set to ensure
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TABLE I. Summary of different twist and shift configurations.

Configuration δ1 δn
3

C0
t θ ẑ × r 0

C−1
t θ ẑ × r −(a1 + a2)/3

C1
t θ ẑ × r (a1 + a2)/3

C0
m θ ẑ × r −θ ẑ × r

C−1
m θ ẑ × r −θ ẑ × r − (a1 + a2)/3

C1
m θ ẑ × r −θ ẑ × r + (a1 + a2)/3

that we stay in an angle range where a twist operation can
be safely treated as linear in angle, i.e., δi ≈ θ ẑ × 	r (see Ta-
ble I). Going further beyond this angle range would require a
treatment involving rotation matrices, which would introduce
a second length scale into the Hamiltonian. Such a second
length scale gives rise to a quasicrystal structure when it is
noncommensurate, i.e., a nonrational fraction, with the first
length scale. In such a case, Bloch’s theorem would not be
applicable anymore. Of course, this is a very exciting regime
that has attracted recent attention [51–55], but goes beyond
the topic of this work.

III. RESULTS AND DISCUSSION

In this section, we discuss the most interesting electronic
and topological features of the different stacking configura-
tions of the twisted homotrilayer TMD as a function of twist
angle θ . We base our discussion for each configuration on
two themes of results presented in separate figures: (i) band
structure calculations, in which we show the flat bands and
capture band touchings with the second band (we discuss but
do not show touchings between the third and lower bands
as they happen frequently), and (ii) summarized numerical

calculations, in which we show the bandwidths, band gaps,
and valley Chern numbers of the top three bands as a function
of θ .

A. Top twist with no relative shift between the
bottom two layers C0

t

As first configuration, we consider C0
t (see Table I), which

is a trilayer where the top layer is rotated with respect to the
bottom two layers and there is no relative shift between the
bottom two layers: they are exactly on top of one another.
In what follows below we discuss all the physical effects we
observe as twist angles are increased from an angle 1◦ up to
the final value of 4◦.

In Fig. 2(a), which shows the band structure of C0
t at θ =

1.00◦, we observe extreme flat bands. Indeed, the first band
(at E ≈ 40 meV) is extremely flat with bandwidth �Ew1 ≈
0.1 meV and so is the third band (at E ≈ 29 meV) with
a bandwidth of �Ew3 ≈ 0.6 meV [see Fig. 3(a)]. Here, the
first two bands are topologically trivial while the third band
is nontrivial with a valley Chern number C3 = −1. At this
angle, θ = 1.00◦, the band gap between the first and second
bands (we call it band gap 1) is at its maximum value (within
our chosen angle range) of �Eg1 = 8 meV [see Fig. 3(b)],
whereas the band gap between the second and third bands
(we call it band gap 2) is only �Eg2 ≈ 0.5 meV. Such a band
gap �Eg1, which is two orders of magnitude larger than the
bandwidth of the first band �Ew1, is interesting because it
suggests that there is a frequency ω regime, �Ew1 < ω <

�Eg1, where one could periodically drive the system without
having to worry about resonances. For example, this could
be via light of frequency ω, in which case a safe frequency
range would be in the infrared regime. A second reason the
flat bands like the ones observed are interesting is because

FIG. 2. Moiré band structures of C0
t for twist angles (a) θ = 1.00◦, (b) θ = 1.74◦, (c) θ = 2.16◦, (d) θ = 2.64◦, and (e) θ = 3.56◦. Ci

denotes the Chern number of the ith band (counting from above).
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FIG. 3. Summary of C0
t calculations. (a) Bandwidths of the top three bands in a logarithmic scale of energy at different twist angles θ .

(b) The first two band gaps as a function of θ , where band gap 1 refers to the gap between band 1 and band 2, and band gap 2 refers to the gap
between band 2 and band 3. (c) Valley Chern numbers of the top three bands as a function of θ .

they can often be found to play host to strongly correlated
phases. Indeed, flat bands contribute little as a kinetic term,
which makes interactions between electrons relatively more
important, an often important condition for the existence of
strongly correlated phases.

In Fig. 3(b) we see that as we increase the twist angle θ ,
band gap 1 starts to decrease linearly. To contrast this, band
gap 2 first increases slightly up to θ ≈ 1.2◦, where it reaches
its maximum of �Eg2 ≈ 1 meV. Next in Fig. 3(c), at angle
θ ≈ 1.29◦ we observe that the valley Chern number of the
third band changes C3 = −1 −→ −2 as it touches lower bands.
We observe that the first and third bands have bandwidths of
less than �Ew ≈ 2 meV for a substantial angle range up to
θ = 1.5◦ [Fig. 3(a)]. While there seems to be no consensus in
the literature on what is considered a flat band (some defining
them as bands with small derivatives and some as bands with
a width smaller than some cutoff), we state that for this angle
range bands 1 and 3 can be considered as relatively flat, at
least when compared to the initial gap between bands 1 and 2.

The next interesting observation occurs at θ ≈ 1.74◦ [see
Fig. 2(b)], where the second band crosses the third band at
k = κ−, resulting in a change in valley Chern numbers for
both bands as C2 = 0 −→ 1 and C3 = −2 −→ −3. Therefore,
the gap between the first trivial band and the second nontrivial
band is expected to play host to an edge mode. Notice that
band gap 2 in this case is not zero, as we see in Fig. 3(b), but
�Eg2 ≈ −2.5 meV, as the top of band 3 is not located at the
touching point. We observe a kink at this angle in Fig. 3(b)
that correlates with this topological transition.

Interestingly, another crossing between the second band
and third band occurs at θ = 2.16◦. This band crossing hap-
pens at a k point along the γ − κ− path [see Fig. 2(c)], which
results in the valley Chern numbers changing as C2 = 1 −→
−2 and C3 = −3 −→ 0.

Next, at θ = 2.64◦, we observe that the first band and the
second band touch at k = κ+ and k = κ′+ [see Fig. 2(d)]. This
band touching is accompanied with a change of Chern num-
bers. Indeed, the uppermost band for the first time becomes
topologically nontrivial as C1 = 0 −→ −1 and C2 = −2 −→
−1. One may notice that the simultaneous crossing at the two
k points κ+ and κ′

+ is a manifestation of inversion symmetry
in the k space, which is not broken by a change in twist angle.
Furthermore, at the same angle θ = 2.64◦, we observe in
Fig. 3(b) that the band gap 1 displays a local minimum of zero
gap size accompanied with a discontinuity. The discontinuity
in the gap size correlates with the topological transition in this
case.

Various additional topological phase transitions are iden-
tified for the third band and are displayed in Fig. 3(c). An
interesting such transition occurs at θ ≈ 2.9◦. Here, the third
band’s topology undergoes a series of sudden changes as
C3 = 0 −→ 3 −→ −3, which happens due to multiple crossings
with lower bands (such as band 4) that occur at intermediate
angles close to θ ≈ 2.9◦. Such crossings between the third
band and lower bands happens again at θ ≈ 3.49◦, resulting
in a change in valley Chern number C3 = −3 −→ −2.

For the angle range we consider, the last exciting change
happens at θ ≈ 3.56◦, where the second band and the third
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FIG. 4. Moiré band structures of C−1
t for twist angle θ = 1.00◦.

The superimposed orange dashed lines refer to the band structure of
the bottom right entry of the moiré Hamiltonian in Eq. (4).

band touch at k = κ− [see Fig. 2(e)]. This band crossing is
accompanied by a change in valley Chern numbers according
to C2 = −1 −→ −2 and C3 = −2 −→ −1.

B. Top twist with a negative high-symmetry shift between the
bottom two layers C−1

t

Next, we investigate configuration C−1
t (see Table I), which

is a trilayer where the top layer is rotated with respect to the
bottom two layers and there is a high-symmetry relative shift
between the bottom two layers, i.e., the third layer is displaced
by −(a1 + a2)/3.

Figure 4 shows the band structure of C−1
t for θ = 1.00◦. We

observe the appearance of parabolic bands. This observation
indicates that the trilayer structure effectively decouples into a
bilayer and single-layer structure. That this is indeed the case
can be seen from the moiré Hamiltonian in Eq. (4). Indeed,
the interlayer coupling term �T

23(δ−1
3 ) vanishes for all angles

in this case. To demonstrate this visually, we have superim-
posed an orange dashed line on top of the band structure in
Fig. 4. The orange line corresponds to the band structure of the
bottom right entry of Eq. (4) only. Note also the presence of
various flat bands. We observe one at E ≈ 25 meV and a pair
around E ≈ 10 meV. These bands arise from the decoupled
bilayer layer structure, and they have valley Chern numbers,
counting from above, of 0, −1, and 1, respectively.

C. Top twist with a positive high-symmetry shift between the
bottom two layers C1

t

As a third configuration we study C1
t (see Table I). This

is a trilayer with the top layer rotated relative to the bottom
two layers and the third layer shifted by the high-symmetry
displacement (a1 + a2)/3 relative to the second layer. Note
that �T

23(δ1
3) = 0 in Eq. (4). Therefore, similar to C−1

t , C1
t also

decouples into a bilayer and single-layer structure. However,
for C1

t , the parabolic bands, which we do not show in this
paper, appear deep down the valence bands in the moiré band
structure (E < −40 meV for θ = 1◦). The valence bands we
display in Fig. 5 arise from the decoupled bilayer structure
of C1

t .
Again starting from a twist angle θ = 1.00◦ we see

the band structure in Fig. 5(a). We observe that all three

FIG. 5. Moiré band structures of configuration C1
t for twist angles (a) θ = 1.00◦, (b) θ = 1.35◦, (c) θ = 2.78◦, and (d) θ = 3.89◦.
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FIG. 6. Summary of C1
t calculations. (a) Bandwidths of the top three bands in a logarithmic scale of energy at different twist angles θ .

(b) The first two band gaps as a function of θ , where band gap 1 refers to the gap between band 1 and band 2. (c) Valley Chern numbers of the
top three bands as a function of θ . Note that the gap between band 2 and band 3, referred to in other configurations as band gap 2, is zero in
this case for all twist angles.

topmost bands exhibit extreme flatness with �Ew < 1 meV.
The top band at E = 66 meV is exceptionally flat with a
width of only �Ew1 ≈ 0.015 meV, however, it is topolog-
ically trivial. This is contrasted by the second and third
bands, which are in close proximity to one another and lo-
cated near E ≈ 52 meV. As we see in Fig. 6(b), they are
topologically nontrivial with valley Chern numbers C2 = −1
and C3 = 1.

It is important to notice that the spacing between bands is
larger than the top-twist case with no relative shift between
the bottom two layers C0

t . This is because the Hamiltonian
decouples into a block for the top two layers and a block
for the bottom two layers, similar to the case with a neg-
ative shift between the bottom two layers. However, unlike
the previous case, the energies associate with the single-layer
block are shifted down by ∼80 meV, which is why we do
not see parabolic bands in our plots. The same reasoning
also explains why the bands shown in the figures bear a
lot of similarity to the twisted homobilayer that was stud-
ied in Refs. [34,42]; differences arise from the �2b term in
Eq. (4).

From Fig. 6(c), we see that the first topological phase
transition happens somewhere between angles θ = 1.3◦ and
1.4◦. However, unlike previously discussed transitions, the
sum of valley Chern numbers on a first glance seems not to
be conserved. However, this discrepancy is easily resolved
when we consider a finer twist angle mesh. Indeed, when

at twist angle θ = 1.32◦, the third band touches a lower
band (band 4) and yields a topological transition C3 = 1 −→ 0.
As we slightly increase the twist angle to θ = 1.35◦, the
second and third bands touch at k = κ−, which is accom-
panied by the following changes in valley Chern numbers
C2 = −1 −→ 0 and C3 = 0 −→ −1 [see Fig. 5(b)]. At the
same angle we also observe the first and third bands remain
very flat. In fact, the first band has a bandwidth �Ew1 <

2 meV for angle ranges up to θ ≈ 1.8◦, whereas the third
band reaches the same bandwidth at θ ≈ 1.5◦. This has
been contrasted with the previously studied configuration
C0

t (see Sec. III A), where both the first and third bands
reached bandwidths �Ew = 2 meV much earlier for a twist
angle θ ≈ 1.5◦.

The bands of the C1
t configuration undergo several addi-

tional topological transitions as the twist angle θ increases.
In Fig. 6(c), we see that the valley Chern number of the
third band changes C3 = −1 −→ −2 as it touches a lower band
(band 4) at an angle θ = 2.41◦. At θ ≈ 2.78◦, the second band
crosses the third band at k = κ−, as shown in Fig. 5(c), which
change their valley Chern numbers according to C2 = 0 −→ 1
and C3 = −2 −→ −3. Last, at θ = 3.85◦, the first band touches
the second band at k = κ+ (and also at k = κ′

+ due to in-
version symmetry in k space). The first band now becomes
topologically nontrivial for the first time because C1 = 0 −→
−1 and C2 = 1 −→ 2 [see Fig. 5(d)]. These two transitions
show up as kinks in Fig. 6(b). Finally, notice that at θ = 4.0◦,
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FIG. 7. Moiré band structures of Cn
m for twist angles (a) θ = 1.00◦, (b) θ = 1.39◦, (c) θ = 2.44◦, and (d) θ = 3.31◦. Note that in this case

we choose a different high-symmetry path than before to capture the main features of the configurations.

C3 is not an integer since the third band is touching the fourth
band.

D. Middle twist for any high-symmetry shift between the
bottom two layers Cn

m

The last configurations we investigate are the trilayers
where the middle layer is rotated with respect to the other two
layers (see the last three rows in Table I). Interestingly, our cal-
culations show that all three configurations display identical
band structures regardless of the high-symmetry displacement
of layer 3, i.e., C0

m, C−1
m , and C1

m are equivalent for the purpose
of this study. Hence, we refer to them collectively as Cn

m.
Figure 7(a) shows the band structures of Cn

m for θ = 1.00◦.
Similar to the previous configuration C1

t , all top bands are
extremely flat, with the second and third bands reaching
unprecedented flatness. The first band, at E = 59 meV, is
topologically trivial and it is separated by a large band gap
from the second and third bands, which appear as a single
band in Fig. 7(a) due to their extremely small separation (our
calculations show that �Eg2 = −0.06 meV). At this angle,
θ = 1.00◦, the latter two bands are on the verge of a topo-
logical transition that changes their valley Chern numbers
according to C2 = 0 −→ −1 and C3 = 0 −→ 1.

We take a closer look at the bandwidths of the top three
bands in Fig. 8(a). Interestingly, we observe that the first
band reaches its minimum bandwidth at θ = 1.2◦, �Ew1 ≈
0.013 meV, a behavior that we did not see in the previous
configurations in which the width of the first band always
increased with θ . In this configuration we also see that the

width of band 2 is for the first time comparable in flatness to
the other two bands at the first few twist angles. This means
that we are observing an ultraflat and topologically nontrivial
band. A width of �Ew = 2 meV (previously set arbitrarily
to characterize flatness) is reached by the second band at
θ ≈ 1.3◦, by the third band at θ ≈ 2.0◦, and by the first band
at θ ≈ 2.3◦, which are significantly wider angle ranges than
those displayed by the previous configurations we discussed,
C0

t and C1
t .

In addition to being superior to the previous configurations
when it comes to the appearance of interesting flat bands, Cn

m
exhibits at θ = 1.0◦ a considerably larger band gap of �Eg1 =
22 meV between the first and second bands [see Fig. 8(b)].
This band gap reaches its maximum at θ = 1.3◦ with �Eg1 =
24 meV.

The second topological transition takes place at θ = 1.39◦
[see Fig. 7(b)] when the second and third bands cross at
a k point between κ− and κ+ to yield a change in valley
Chern numbers C2 = −1 −→ 0 and C3 = 1 −→ 0. Afterwards,
the third band undergoes a series of topological transitions
as it touches a lower band (band 4) multiple times, resulting
in the following changes in its valley Chern number: C3 =
0 −→ −1 −→ −2 −→ 1 at the twist angles θ = 1.4◦, 1.5◦, 1.6◦,
and 1.7◦, respectively [see Fig. 8(c)]. Later, when θ ≈ 2.44◦,
there is a crossing between the second and third bands close
to the κ− point [see Fig. 7(c)]. The bands swap valley Chern
numbers as C2 = 0 −→ 1 and C3 = 1 −→ 0.

Last, in Fig. 8(c) we see that there are two different topo-
logical transitions that happen in the vicinity of θ = 3.3◦. The
first happens at θ = 3.26◦, when the the second and third
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FIG. 8. Summary of Cn
m calculations. (a) Bandwidths of the top three bands in a logarithmic scale of energy at different twist angles θ .

(b) The first two band gaps as a function of θ , where band gap 1 refers to the gap between band 1 and band 2, and band gap 2 refers to the gap
between band 2 and band 3. (c) Valley Chern numbers of the top three bands as a function of θ .

bands touch so that C2 = 1 −→ −1 and C3 = 0 −→ 2. A second
one happens at θ = 3.31◦ [see Fig. 7(d)], when the first band
comes in contact with the second band for the first time. This
band touching happens along the κ′

0 − γ path and yields a
change in Chern numbers C1 = 0 −→ −1 and C2 = −1 −→ 0.

IV. CONCLUSION

We have studied the band structure and band topology of
various stacking configurations of twisted TMD homotrilay-
ers for small twist angles using an idealized continuum model
that neglects nearest-layer hopping. Some of the interesting
results we obtained were extremely flat bands of bandwidths
<1 meV separated by wide band gaps and bands with rela-
tively high valley Chern numbers. These effects were present
in a variety of stacking configurations. Interestingly, the con-
figuration with a top twist and nonzero high-symmetry shifts
between the bottom two layers gave different phenomenology.
Here, we observe that the trilayer structure decouples, for all
twist angles, into a bilayer and single-layer structure. This
decoupling manifests itself in a band structure that consists of
parabolic bands, a signature of a single layer and flat bands
at small twist angles, due to the twisted bilayer TMD that
appears on top of the decoupled single layer.

Our work demonstrates that twisted trilayer TMDs are a
platform that hosts much exciting physics. Studies on twisted
trilayer TMDs are scarce compared, for example, to stud-
ies on trilayer graphene [25–28,56–60]. Additional work in

understanding TMD trilayers can be very fruitful. Indeed,
numerous directions can be explored following this work. For
example, our theoretical model can be a starting point for
further investigations on the effects of introducing new param-
eters that give a more accurate model, e.g., next-nearest-layer
hopping. Additionally, since it is a simple continuum model,
it allows studying additional effects, such as differences in
potential between layers, which could arise, for instance, due
to a substrate or an external electric field. Another interest-
ing direction would be to investigate the effects of changing
the stacked TMD materials and thus consider hetrotrilayer
structures.

Our study reveals aspects of the richness of trilayer TMDs
compared to their bilayer counterparts. With the rapid devel-
opment of experimental techniques, it can be expected that
control over the stacking configurations of moiré materials
will vastly improve in the future. It is possible that such
improvements might lead to future applications of different
trilayer TMD configurations in technology. After all, we have
demonstrated that many physical properties could be highly
tunable for intended applications.
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