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Spin-momentum locking is a unique intrinsic feature of strongly spin-orbit coupled materials and a key to
their promise of applications in spintronics and quantum computation. Much of the existing work, in topological
and nontopological pure materials, has been focused on the orthogonal locking in the vicinity of the � point
where the directions of spin and momentum vectors are locked perpendicularly. With the orthogonal case,
enforced by the symmetry in pure systems, mechanisms responsible for nonorthogonal spin-momentum locking
(NOSML) have drawn little attention, although it has been reported on the topological surface of α-Sn. Here,
we demonstrate that the presence of the spin-orbit scattering from dilute spinless impurities can produce
the NOSML state in the presence of a strong intrinsic spin-orbit coupling in the pristine material. We also observe
an interesting coupling threshold for the NOSML state to occur. The relevant parameter in our analysis is the
deflection angle from orthogonality which can be extracted experimentally from the spin-and-angle-resolved
photoemission spectra. Our formalism is applicable to all strongly spin-orbit coupled systems with impurities
and not limited to topological ones. The understanding of NOSML bears on spin-orbit dependent phenomena,
including issues of spin-to-charge conversion and the interpretation of quasiparticle interference patterns as well
as scanning-tunneling spectra in general spin-orbit coupled materials.
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I. INTRODUCTION

Spin-momentum locking (SML) occurs commonly in spin-
orbit coupled low-dimensional materials with or without
topological bands [1–4]. Its telltale signatures involve for-
bidden backscattering [5,6] from nonmagnetic impurities (no
“U-turn”) and enhancement of weak antilocalization effects
[7]. SML enables electrical control of spin polarization in
nonequilibrium transport and thus plays a key role in spintron-
ics and spin-based quantum information science applications
[2,8] in the capability to drive a spin-polarized current with
polarization perpendicular to the current density [9–11].

The orthogonal SML (OSML)—see Fig. 1(a)—is com-
mon in materials exhibiting SML [1–3]. The OSML state
is the result of in-plane Rashba spin-orbit coupling (SOC)
observed the first time on the Au (111) surface long before
the topological materials were discovered [12]. In topological
insulators, OSML with a π -Berry phase is an essential feature
of the surface electron bands [13]. It has been utilized in
the electrical detection of magnon decay [14]. Despite its
broad presence in strongly spin-orbit coupled materials, vi-
olation of the SML has been seen in real materials. In such
cases, spin and momentum are weakly unlocked within a
narrow range of angular deviations constrained by the crystal
symmetries. A spin-and-angle-resolved photoemission spec-
tra (S-ARPES) study of the Au/Ge (111) surface revealed
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such examples [15] and similar effects have been reported in
high-temperature superconductors [16]. In certain topological
insulators the spin wiggles around the Fermi surface due to
the hexagonally warped Fermi surface but respects the OSML
[17]. Deviations from the orthogonal picture were also ob-
served experimentally in the Bi2−ySbyTexSe3−x family [18]
as shown in Fig. 1(b). We can call these weak violations
from the orthogonally locked state type-I violations. It has
been shown that high-order corrections to the theoretical k · p
Hamiltonian can induce deviations from the orthogonal pic-
ture [19]. Many-body interactions also cause similar effects,
as the electron-phonon interaction in this material [20–23]
was recently studied in this context [24,25]. The triple and
septuple windings of the spin vector have also been studied
theoretically as violations of the OSML [26,27].

Another type of deviation from the perfect OSML state
is not in the locking of the spin and momentum but in their
orthogonality, i.e., the nonorthogonal spin-momentum lock-
ing (NOSML) as illustrated in Figs. 1(c) and 1(d) (called
the type-II violations of the OSML). Such a state has been
reported on the topological surface of strained α-Sn [28,29].
Here, S-ARPES and Mott polarimetry reveal the presence of
a radial component of the spin [Fig. 1(c)] with a significant
inward deviation of �0 − 90◦ � 20◦ on a circular Fermi sur-
face [30]. The out-of-plane spin Sz is observed to vanish in
conformity with the absence of the out-of-plane SOC. Note
that α-Sn is inversion symmetric in unstrained and strained
phases [29,31–37]. The authors of Ref. [28] also point out the
presence of electron-impurity interaction through an analysis
of the electronic self-energy.
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FIG. 1. A schematic of various planar spin-momentum locking
cases for a chiral band. (a) The OSML. (b) Weakly unlocked case of
Bi2Se3 and Bi2Te3. The weak out-of-plane component is not shown.
(c), (d) NOSML with δ < 0 (c) and δ > 0 (d). δ is defined in Eq. (15).

This last observation is of key importance in our theory
of the NOSML. Our approach is not limited to topological
surface states but addresses NOSML as a general phenomenon
in materials with strong SOC. The presence of inversion
and time-reversal symmetries substantially constrains the
Hamiltonian for treating noninteracting bands. The origin of
the NOSML lies beyond the realm of warped electronic bands
and details of the lattice structure are not important for gener-
ating this effect. Indeed, the OSML state is strictly enforced in
pure materials due to the C∞v symmetry. We therefore study
impurity effects in this article as the source of NOSML.

II. THE THEORY OF INTERACTING SPIN

Our starting point is the time-reversal invariant
Hamiltonian in the pseudospin |kσ 〉 basis (h̄ = 1) [1,38,39]:

H0 = (ξk − μ)σ0 + gk · σ, (1)

where σ = (σx, σy, σz ) is the pseudospin representing the
spin-orbit coupled total angular momentum states [1], k =
(kx, ky) = k(cos φ, sin φ) is the electron wave vector relative
to the Dirac point at k = 0, and ξk and μ are the spin-
independent and isotropic bare electron band and the chemical
potential, respectively. The Hamiltonian in Eq. (1) is the most
basic Hamiltonian in spintronics as well as topological sur-
faces. A pair of such Hamiltonians can be used to model states
in Dirac and Weyl semimetals as well as Rashba-type interface
states. The spin-orbit vector gk is normally composed of an
in-plane component gk = g0 ẑ × k with g0 as the Rashba-type
in-plane SOC and ẑ as the surface unit normal vector to the
xy plane defined by the k vector, and an anisotropic out-
of-plane component g⊥k. We also represent the in-plane and
out-of-plane components of the spin as well as the self-energy
vectors below using the same notation. The g⊥k as well as
the out-of-plane component of the spin are zero in our case
due to the azimuthal rotational symmetry. The eigenstates

|kλ〉 of Eq. (1), where λ = ± is the spin-orbit band index,
include the chiral spin-1/2 state not only attached to the
dominant |pz〉 orbitals as considered conventionally, but also
the in-plane orbitals |px〉 and |py〉. The role played by the in-
plane orbitals is strongly material dependent, which has been
demonstrated experimentally [40] and theoretically [41]. It is
known that these effects do not violate the OSML [13,17]. For
our purposes in this work we ignore these in-plane orbitals and
consider that the orbital texture is solely determined by the
out-of-plane |pz〉 orbitals. Further discussion on this point is
made in Sec. V. With this considered, the pseudospin is given
by 〈J〉 = 〈kλ|σ|kλ〉 = (λ/2)ĝk, where ĝk is the unit spin-orbit
vector, which coincides with the actual spin Sλ(k) = (λ/2)ĝk.
Since the in-plane component gk of the spin-orbit vector gk

is perpendicular to k, the spin Sλ(k) is locked orthogonally to
the electron momentum k throughout, yielding the OSML.

Equation (1) is clearly insufficient to describe all strongly
spin-orbit coupled surfaces and additional terms may be
present due to the symmetries. For instance, the cubic
Dresselhaus SOC is present in the absence of inversion
symmetry in ordinary semiconductors [1]. Its realization in
Bi2X3-type strong topological insulators results in the hexag-
onal warped Fermi surfaces but the OSML is still respected
[17]. In a few other cases, the anisotropy may persist down to
the � point [42]. Note that NOSML is ideally an isotropic
effect and anisotropic warping in the band structure may
hinder its observation. Therefore, we ignore the anisotropy
and examine rotational symmetry allowed Hamiltonians in the
study of the NOSML state. The minimal Hamiltonian which
can yield a NOSML state is [1,38,39]

H1 = γ k · σ. (2)

This Hamiltonian is known to be present in the Kane model
between the �7c and �6c bands of zinc-blende structures
[1,43,44]. The total Hamiltonian H0 + H1 is equivalent to
H0 by a complex rotation of the spin-orbit constant, and
effective spin-orbit coupling is defined as gk = g0 ẑ × k + γ k.
The energy spectrum is linear and the spin-momentum pair is
locked nonorthogonally at �0 = ±(π/2 + tan−1 γ /g0) with
the ± describing the upper and the lower Dirac cones. While
Eq. (2) can easily accommodate a nonorthogonal state of
the spin and momentum in zinc-blende structures [44], it is
not applicable when the inversion symmetry holds since that
requires γ = 0. This prompts us to think that the NOSML in
inversion-symmetric systems may have its origin fundamen-
tally beyond the class of symmetry-allowed single-particle
Hamiltonians.

Here we demonstrate that the impurities in the real ma-
terials may provide a striking clue for the general source
of the NOSML. It is known that the electron-impurity in-
teraction, combined with the strong SOC, gives rise to the
spin-orbit scattering in addition to the scalar scattering chan-
nels, which then leads to a number of observable transport
phenomena. These are linearly dependent on the spin-orbit
scattering strength [45] such as corrections in the momentum
and spin relaxation, spin-dependent diffusion, weak localiza-
tion/antilocalization [2], and anomalous spin texture [46]. The
spin-orbit scattering between the impurity and the electron
bands also provides a platform for NOSML and this is the
main focus of this work.
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In this work, we use the interacting Green’s function for-
malism for the renormalized spin [25]. In this approach the
spin is given by

Sλ(k) = λ

2
Ĝ(K∗). (3)

Here, the ∗ indicates that Sλ(k) is calculated at the physical en-
ergy pole position E∗ = Eλk of the full Green’s function [25].
G(K∗) = gk + �(K∗), with K∗ = (k, iE∗) in the Matsubara
Green’s function formalism, is the renormalized spin-orbit
vector where Ĝ = G/|G| is its unit vector. Here it is crucial
to note that G enters as a simple sum of the spin-orbit vector
gk of the noninteracting structure and the interactions repre-
sented by the spin-dependent self-energy (SDSE) �. The gk

is aligned perpendicularly to the momentum. The renormal-
ized spin-orbit vector G, however, develops a nonorthogonal
component as a result of the interactions. We recently demon-
strated this theoretically using the electron-phonon interaction
and the Fermi surface warping yielding sixfold-symmetric
type-I violations of the OSML in the topological insulator
Bi2Se3 [24,25] [see Fig. 1(b)]. Here, we demonstrate that
the electron-impurity interaction can have a similar conse-
quence without the need of a warped Fermi-surface yielding a
nonorthogonally locked configuration of the spin and momen-
tum [Figs. 1(c) and 1(d)].

The SDSE vector �(K∗) represents the impurity average
of the microscopic scattering events between the electron and
the impurity (see Appendix A). The full spin-neutral and the
spin-dependent parts of the self-energies can be combined in
the pseudospin matrix form as

�(K ) = �0(K )σ0 + �(K ) · σ, (4)

where �0 is the spin-neutral self-energy and � =
(�x, �y, �z ) is the SDSE as introduced before. The total
change in the spin between this interacting model and the
noninteracting one is expected to be decided by the SDSE
which is given by Sλ(k) = (λ/2) [Ĝ

∗
(k) − ĝk]. Here we

took the difference of two cases with and without interactions
using Eq. (3). In the weak-interaction limit [25] this takes an
elegant form with the leading term

Sλ(k) � λ

2

�∗
k

|gk| k̂, (5)

where �∗
k = �(K∗) · k̂ is the component of the SDSE along

the momentum. Equation (5) states that the interactions can
cause both type-I and type-II violations of the OSML. Since
there are strong symmetry considerations in the pure crystal
structure, the generation of a finite �∗

k is not trivial. In this
work, we study the electron-nonmagnetic-impurity scattering
as a new mechanism for the nonorthogonally locked type-II
state as shown in Figs. 1(c) and 1(d).

III. THE SPIN-ORBIT IMPURITY SCATTERING

Whatever the mechanism is, the formalism in Eqs. (3)–
(5) hinges upon an accurate model for the self-energy in
Eq. (4). The electron-impurity scattering is represented as a
scattering potential V ( j)

e i = V ( j)
0 + V ( j)

so ; the spin-independent
and spin-orbit scattering parts are given by V ( j)

0 and V ( j)
so ,

respectively. In the notation, the superscript refers to the jth

impurity (see Appendix B). The spin-orbit coupling in the
pristine sample is assumed to be sufficiently strong compared
to the electron-impurity interaction. By this approach a simple
picture can be obtained where the leading-order contribution
to NOSML can be isolated from the other secondary effects.
The scattering matrix between the initial |i〉 = |k σ 〉 and the
final | f 〉 = |k′ σ ′〉 states is Tσσ ′ (k, k′) = ∑

j 〈k′ σ ′|V ( j)
e i |k σ 〉

given in the Born approximation by [2,45,47–57] and
Appendix B by

Tσσ ′ (k, k′) =
∑

j

ei(k−k′ )·R j t ( j)
σσ ′ (k, k′), (6)

where the exponential phase factor accounts for the impurity
scattering phase shifts occurring at random centers R j and
t ( j)
σσ ′ (k, k′) is the scattering amplitude of the electron off the
jth impurity from the initial to the final state which can be
derived microscopically once the impurity-electron scattering
potential is known. We will assume that there is only one
kind of impurity and drop the j index in t ( j)

σσ ′ . The scattering
of an external spinless impurity with the electron under the
influence of the spin-orbit coupling is an old textbook problem
which has been studied before [52]. The effective interaction
is basically a superposition of two independent parts. The
first part is a spin-independent channel contributing to the
momentum distribution and relaxation. The second part has
been shown to arise as a result of the interaction between
spin-orbit coupled electrons and the spinless impurity. The
scattering matrix is then given by [55] (see Appendix B)

t (k, k′) = a0 σ0 + c0 k̂ × k̂
′ · σ, (7)

where the tσσ ′ in Eq. (6) corresponds to the matrix element
of Eq. (7) with the spin indices σ, σ ′. The first term describes
the spinless scattering with a0 as the scattering strength and
the second term is the spin-orbit scattering with the strength
c0. These coefficients are generally functions of k, k′ as well
as the details of the microscopic electron-impurity interaction
[2,51–54] (see Appendix B).

We further assume dilute impurity limit ni 
 λ−3
F where ni

is the impurity concentration and λF is the Fermi wavelength
of the scattered electrons. In this limit, we neglect the interfer-
ence between multiple scattering events.

IV. THE SELF-ENERGY DUE TO
THE SPIN-ORBIT SCATTERING

A. The spin-independent self-energy

The OSML is strictly enforced by the C∞v symmetry near
the � point in pure crystals [58,59]. In strongly spin-orbit
coupled materials, deviations from this orthogonal picture
requires a sufficient impurity coupling and the renormaliza-
tion of the Bloch states. Including the impurity scattering
perturbatively, the effect vanishes in the first order of the per-
turbation since at this level the electron self-energy averages
out to zero over the impurities (see Appendix A). Here, the
NOSML emerges beyond the second order in the electron
self-energy and this includes the renormalization of the Bloch
states. The Feynman diagrams of the Green’s functions and
the self-energies are summarized in Fig. 4 of Appendix A.
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Another point to stress is that the NOSML can be con-
cealed by warping or other anisotropy effects. To keep the
formulation at a fundamental level, we limit ourselves to the
case when such phenomena are absent or sufficiently weak
and consider an isotropic band ξk = k2/(2m) near the � point.
The full impurity-averaged self-energy in Eq. (4) is defined as
[47,48,60]

�(K ) = ni

2

∫
dk′

(2π )2

∑
λ

t (k, k′) [1 + λ Ĝ(k′, E ) · σ]

× Gλ(k′, E ) t (k′, k). (8)

The Gλ(k, E ) = 1/(E − Eλk ) is the Green’s function of the
eigenband with index λ and Eλk = ξ̃k + λ|G(k, E )| as the
renormalized energy band with ξ̃k = ξk + Re{�0} and G =
gk + �. The ni dependence in Eq. (8) comes from the averag-
ing over the random impurity positions Ri as given in Eq. (6)
and shown in Appendix A. We note that the dependence of
the self-energy on the impurity concentration in Eq. (8) is not
linear due to the nonlinear dependence in the renormalized
spin-orbit vector G on the self-energy. Furthermore, these
equations can be obtained from our more general theory of the
surface electrons interacting with the lattice excitations stud-
ied in Ref. [25] when the phonon excitation energy vanishes
in the static limit.

The spin-independent and spin-dependent parts of Eq. (8)
are given by

�0 = Tr{�}/2 , � = Tr{� σ}/2. (9)

We assume that the spin-orbit scattering is weak compared to
the spin-independent one. We also neglect the overall phase of
the t (k, k′) and assume that a0 is real. The latter can then be
directly related to the spin-independent self-energy �0. Using
Eqs. (9) we have

Im{�0(E )} � m

4
nia

2
0

(
1 − g0√

g2
0 + 2

m E

)
, (10)

which is related to the lifetime τ = 1/ Im{�0} of the electron
momentum due to its scattering with the impurities. Another
importance of this equation is the connection with the ex-
periment, i.e., Im{�0(E )} can be directly extracted from the
experimental quasiparticle momentum distribution [28]. We
will use the Im{�0} as a phenomenological parameter replac-
ing ni dependence throughout.

It will be shown in the next section that the SDSE as found
by the second equation in Eq. (9) has a different dependence
on ni. This is brought by the renormalized spin-orbit vector
on the right-hand side in Eq. (8) which may lead to a critical
boundary separating the OSML and the NOSML phases as
discussed below.

B. The spin-dependent self-energy and the NOSML

We now turn to the spin-dependent component � in Eq. (8),
which can be extracted by using the second of the Eq. (9).
Since the out-of-plane component of the gk is absent due to
the rotational symmetry, gk = gk and �z is absent. We start by
writing � = (�x, �y, 0) in the polar form using the radial k̂

FIG. 2. Spin deviation angle δkλ is illustrated for two different
cases δkλ < 0 and δkλ > 0. The δkλ has the same sign in the upper
and lower Dirac cones which is shown for the δkλ > 0 case in the
inset.

and the azimuthal ĝk unit vectors as

� = �g ĝk + �k k̂, (11)

where �g = � · ĝk and �k = � · k̂ are the components of
� along the ĝk and k̂ directions, respectively, and they are
scalar functions independent of the direction of k̂. Using these
scalar components is particularly useful in the impurity aver-
aging since �g and �k are not affected by the scattering direc-
tions of the k vector, a crucial factor in the impurity averaging
considering the random orientations in each scattering event
(see Appendix A). Equation (11) is equivalently written as

�x − i �y = e−i(φ+π/2)Ck, (12)

which is a quite convenient way of writing the SDSE
since Ck is represented in terms of the scalar components
of the SDSE elegantly as Ck = �g + i �k . The real part
renormalizes the spin-orbit strength since g0k → g0k + �g.
This renormalization can be ignored since g0k is sufficiently
strong. The imaginary part �k , on the other hand, is an
emerging component which is the main cause of the deviation
in the spin-momentum locking angle from the orthogonality
as shown in Eq. (5). Using Eq. (12) in Eqs. (9) and (8) we find

Ck =
∫

k′dk′

2π
z0(k, k′) F (k′), (13)

where

F (k′) =
∑

λ

g0k′ + Ck′

|G(k′, E )|
λ

E − Eλk′
, (14)

which numerically couples �g and �k . Here z0(k, k′) is
a complex scalar function depending on the scattering
strengths in Eq. (7). In the simplest case of constant scattering
strengths, z0 is just a complex number. In order to make a
connection with the spin-texture measurements and obtain
some quantitative estimates, we now define a microscopic
spin-deviation angle δλk as illustrated in Fig. 2. From the
geometry and using Eq. (3) we find [18,24,25]

sin δλk = Sλ.k̂
|Sλ| → λ

�k

|G| . (15)

We further identify two cases in Fig. 2 as δλk < 0 and δλk > 0.
Equation (15) also yields that the δλk in the upper and the
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FIG. 3. The δλk (in degrees) at the Fermi surface for the λ = +
band in Eq. (15) using Eq. (13) as the spin-orbit scattering ampli-
tude c̄ and the α are varied at a fixed spin-orbit coupling strength
corresponding to ḡ0 = g0kF /EF � 0.4. The inset at the top right
illustrates a sharp boundary between the OSML (δ = 0) and the
NOSML (δ �= 0) phases determined by the critical values of the
ḡ0 and α = Im �0/EF . The color scale is for the |δλk | and applies
to both plots. We used kF = 0.035 Å−1 and EF = 150 meV for the
normalization [28].

lower Dirac cones have opposite signs as required by the
time-reversal symmetry and shown by the inset in Fig. 2.

We now shift our attention to the numerical solution of
Eq. (13) which reveals the dependence of the spin-deviation
angle δλk on the impurity scattering as well as the spin-orbit
coupling strengths. We now define a small dimensionless
quantity α = Im �0/EF which is linearly dependent on ni.
Concerning the solution for the δλk , we concentrate on the
upper Dirac band λ = + and solve Eq. (13). It is easy to see
that δ+k vanishes when z0 is purely real and varies linearly
with c̄ = Im z0 with a steep behavior near c̄ = 0. The calcu-
lated δ+k at the Fermi level is shown in Fig. 3 as c̄ and α

are varied. The inset therein refers to the behavior when z0 is
purely imaginary.

V. DISCUSSION AND CONCLUSION

Due to the conservation of the total angular momentum
J = L + S, the orbital configurations can affect the spin tex-
ture [40,41] and, since NOSML is a weak effect due to
the small scattering strength c̄, it is important to understand
whether the in-plane orbitals |px〉 and |py〉 can change the
observed picture in Sec. IV B. Including the contribution of
these in-plane orbitals, the spin-orbital state is given up to the
linear order in k by [40,41,61]

||kλ〉 = (u0 − λv1k) (|pz〉 ⊗ |λφ〉)

− i√
2

(λv0 − u1k − w1k) (|pr〉 ⊗ |λφ〉)

+ 1√
2

(λv0 − u1k + w1k) |pt 〉 ⊗ |λ̄φ〉, (16)

where u0,1, v0,1,w1 are material-dependent coefficients,
|λφ〉 = (1/

√
2)[|↑〉 − λieiφ|↓〉] is the chiral spin-1/2 vor-

tex state, |λ̄φ〉 = |(−λ)φ〉, and pr (pt ) are the radial
(tangential) in-plane combinations of the px, py orbitals
given by |pr (pt )〉 = cos φ(− sin φ)|px〉 + sin φ(cos φ)|py〉.
One may consider that ||kλ〉 should have been used in this
work instead of |kλ〉. Although this is principally correct, is
has been studied before that the ||kλ〉 does not change the spin
or the spin-momentum orthogonality at the single-particle
Hamiltonian level [13,17].

Determination of the constants a0(k, k′) and c0(k, k′) in
Eq. (7) with their full momentum dependence is a fundamen-
tally important problem. Experimentally, the quasiparticle
interference with spectroscopic STM can be a promising
probe of spin-orbit scattering [55,57]. With this technique the
authors in Ref. [55] estimated c̄/k2

F � 80 Å2 for the polar
semiconductor BiTeI. Here, the relation between electron-
impurity scattering and the spin texture provides an alternative
method of extracting c̄ when the warping anisotropy is absent.
For a system with inversion symmetry, c̄ can be found once the
δλk of the spin texture could be measured by using S-ARPES.
We know that δ+k � −20◦ in the case of α-Sn [30] and the
warping is nearly absent in the surface bands. Using Fig. 3 and
this δ+k , we find that c̄/k2

F � −40 Å2 putting this material as
a strong topological spin-orbit impurity scatterer.

In summary, we showed that the presence of the spin-
orbit scatterings from nonmagnetic impurities, an effect which
is expected to be finite when the impurities are present in
strongly spin-orbit coupled realistic materials, can provide a
mechanism for the deviations from the well-established phe-
nomenon of OSML to the one with a nonorthogonal locking.
The NOSML angle which can be measured experimentally
is a nonlinear function of the impurity concentration and we
find that its appearance requires a critical spin-orbit strength.
It will be interesting to explore this new state experimentally
in more general topological/nontopological systems at vari-
ous spin-orbit coupling strengths and impurity concentrations.
Our theory should pave the road for the full investigation of
the effect of the impurities on the spin-momentum locking
also including the magnetic impurities. We end with a final
remark that our study highlights additional richness of spin
textures brought by the impurity effects in strongly spin-orbit
coupled materials.
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(a)

(b)

(c)

FIG. 4. Feynman diagrams corresponding to the first-order
electron-impurity vertex in Eq. (7) (a), the Green’s function in the
matrix form (b), and the electron self-energy in the matrix form (c).

APPENDIX A: IMPURITY AVERAGING

Here we discuss details of the impurity averaging of the
electron self-energy and the Green’s function. Diagrammat-
ically the electron-impurity interaction is described by the
Feynman diagrams as shown in Fig. 4.

We consider that the impurity at the random position R j is
scattered by electrons with initial and final momenta k, k′. By
the impurity averaging we mean a two-step process. The first
is that the kinetic phase ei(k−k′ )·R j of the electron wave function
acquired at the jth scattering is randomized by the random
position R j of the jth impurity. This leads to the average over
the impurity positions as described in a separate section below.
The second crucial factor is that the random impurity positions
also lead to randomized incidence direction of the electron
between two scattering events. In order to avoid averaging
over the random initial-final momentum orientations at each
scattering, we must form scalar quantities of the self-energy
vector as �k = � · k̂ and �g = � · ĝk as the component of
the self-energy along the momentum and along the spin-orbit
vector. The �k and �g are these scalar quantities which are
not affected by the random directions of the initial-state vector
k before each scattering.

We define the average over the impurity positions by

〈O〉imp =
∫

dR O(R) P(R). (A1)

Here P(R) is the classical distribution of the impurity po-
sitions and O(R) is a generic quantity to be averaged. In
our case the impurity positions are completely random with
P(R) = 1/� with � being the area in which the impurities
are randomly scattered.

Considering that the impurity-electron interaction is weak,
we use a perturbative expansion of the electron Green’s
function including the first and second order terms in the
impurity-electron scattering matrix elements Tσσ ′ (k, k′). In

this section we derive the impurity-averaged full self-energy
given by Eq. (8) of the main text. The latter is given by

〈�(K )〉imp = 〈T (k, k)〉imp

+
∫

dk′

(2π )2
〈 T (k, k′)G(k′, E ) T (k′, k)〉imp,

(A2)

where T (k, k′) is the same as Eq. (6) in the matrix form.
The Feynman diagrams corresponding to the Tσσ ′ (k, k′) are
shown in Fig. 4(a). In Eq. (A2) the G

λ′ (k
′, E ) is the interacting

electron Green’s function of the λ′ band in terms of the 2×
2-matrix form in the electron-pseudospin space. In order to
find this quantity, we first start with the matrix Dyson equation

1

G(k, E )
= 1

G0(k, E )
− �(k, E ) (A3)

with

G0(k, E ) = 1

E − ξk − gk · σ
(A4)

representing the noninteracting Green’s function and the
�(k, E ) = �0(k, E )σ0 + �(k, E ) · σ the full electron self-
energy. The G(k, E ) in Eq. (A3) can then be compactly
written as

G(k, E ) =
∑

λ

G
λ
(k, E ), (A5)

where

G
λ
(k, E ) = 1

2 [1 + λĜλ(k, E ) · σ]Gλ(k, E ) (A6)

with

Gλ(k, E ) = 1

E − Eλk
(A7)

as the exact Green’s function of the quasiparticles in the
eigenband λ of the Hamiltonian in Eq. (1). The G(k, E ) =
gk + �(k, E ) is the renormalized spin-orbit vector and Ĝ is
the unit vector of G. Equation (A6) is the direct sum of the
contributions from each spin-orbit band singled out by the
physical pole position of the Gλ(k, E ) at E = Eλk .

We now leave the Green’s functions aside and examine the
full self-energy in Eq. (A2) diagrammatically in order to de-
rive the dependence of Eq. (8) on the impurity concentration.
The first term 〈Tσσ ′ (k, k)〉imp is the impurity average of the
Eq. (6) for which we use

Nimp∑
j=1

〈ei(k−k′ )·R j 〉imp = 1

�

∫
d3R

Nimp∑
j=1

ei(k−k′ )·R

= ni δk,k′ , (A8)

where the average impurity concentration is given by
ni = Nimp/�. We therefore have that 〈Tσσ ′ (k, k′)〉imp =
niδk,k′tσσ ′ (k, k) which can be ignored since it implies the ab-
sence of scattering on the average. We now shift our attention
to the second term in Eq. (A2). This requires the knowledge of
the full Green’s function. The result is (temporarily omitting
some indices for simplicity)

〈TG(k′, E ) T ∗〉imp � 1

�

∑
i, j

〈ei(k−k′ )·(Ri−R j )〉imp

× t (k, k′)G(k′, E )t (k′, k), (A9)
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where we used t (k, k′) = t†(k′, k) for the unitarity of the scat-
tering matrix. We now work on the relevant part in Eq. (A9)
which depends on the impurity average. By definition∑

i, j

〈ei(k−k′ )·(Ri−R j )〉imp = 1

�

∑
i= j

1

+
∑
i �= j

〈ei(k−k′ )·(Ri−R j )〉imp. (A10)

The impurity averaging over a totally random impurity
distribution yields random interference between different im-
purities when Ri �= R j yielding a vanishing contribution for
k′ �= k. This term is therefore (with 1 
 Nimp)∑

i �= j

〈ei(k−k′ )·(Ri−R j )〉imp = n2
imp δk,k′ . (A11)

Hence it averages out to zero when k �= k′ like the first-order
impurity average in Eq. (A8). The net effect of this term
is therefore essentially the same as the first-order impurity
vertex. The net effect of the impurity averaging in Eq. (A10)
is therefore provided by the first term on the right-hand
side as (1/�)

∑
i 1 = Ni/� = ni. Equation (A9) is therefore

given by

〈TG T 〉imp = ni t (k, k′)G(k′, E ) t (k′, k).

Using this result in Eq. (A2) we find

〈�(K )〉imp = ni

∫
dk′

(2π )2
t (k, k′)G(k′, E )t†(k, k′). (A13)

Equation (A13) is the full electron self-energy corresponding
to Eq. (4) in the main text. Using Eq. (9), Eq. (A13) yields
Eq. (8) in the main text where we dropped the explicit impu-
rity averaging symbol 〈...〉imp.

Next we consider the second type of average which is
due to the random orientations of the initial/final momenta.
The �k = 〈� · k̂〉imp and �g = 〈� · ĝk〉imp are meaningful
quantities for impurity averaging since both are scalars and
unaffected by the random directions of the scattered electron
momenta. It can be explicitly seen that the transformation
in Eq. (12) separates the random orientation of the k̂ and k̂

′

by separating out φ − φ′ in the angular average, and indeed,
what remains is the Ck = �g + i �k which is perfectly a scalar
complex function of k.

In order to obtain a self-consistent expression for Ck =
�g − i �k , we apply Eqs. (9), (11), and (12) in Eq. (A13).
The real and imaginary parts of Ck define a coupled set of
equations given by (�− = �x − i�y, σ− = σx − iσy)

�−(k, E ) = ni

2

∫
dk′

(2π )2

∑
λ

Gλ(k′, E ) tμ(k, k′)tν (k′, k)

× 1

2
Tr{σ− σμ(1 + λG(k′, E ) · σ )σν}, (A14)

where μ, ν = 0, x, y, z and tμ(k, k′) refers to the scattering
matrix t (k, k′) = tμ(k, k′) σμ. We further assume that the co-
efficients a0 and c0 in tμ(k, k′) explicitly depend on the
scattering angle � = φ − φ′ [52]. We then use Eq. (12) on

FIG. 5. Second interference diagrams for the electron self-
energy contributing to the NOSML which have linear dependence on
the spin-orbit scattering strength c0. The solid line represents the bare
electron propagator, and the dashed line represents the two scattering
events with the impurity Rj .

both sides of this expression and carry out the angular inte-
grations for � = φ − φ′ to obtain an expression for Ck . Since
k̂ × k̂

′ = sin � ẑ, the scattering matrix is confined to those
terms with μ, ν = 0, z in Eq. (7). Applying this in Eq. (A14),
with G− = Gx − iGy = e−i(φ+π/2) g0k + �− and Eq. (12)
for �−,

Ck =
∫

k′dk′

2π
z0(k, k′) F (k′) . (A15)

Here,

z0 = Im �0

4m

∫
d�

2π
ei�[(t0t ′

0 − tzt
′
z ) + (t ′

0tz − t ′
zt0)] (A16)

and F (k) is given by Eq. (14) in the main text. In Eq. (A16)
the short notation t ′

0 and t ′
z imply that t ′

0(k, k′) = t0(k′, k)
and t ′

z(k, k′) = tz(k′, k). We now use the fact that t0(k, k′)
and tz(k, k′) in the notation of Eq. (A14) are respectively
given by a0(k, k′) and c0(k, k′) sin � in Eq. (7). These co-
efficients have been calculated for the problem at hand as
a0(k, k′) = A0 + B0 cos � and c0(k, k′) = iC0 + 4 D0 sin �

where A0, B0,C0, D0 are real constants. It can be shown that
the first parentheses on the right-hand side in Eq. (A16) con-
tribute to the real part of the Ck , whereas the second ones are
imaginary and contribute to the imaginary part �k rendering
the NOSML as an interference effect between the scalar and
the spin-orbit impurity scattering (as shown in Fig. 5). The
angular integration in Eq. (A16) can be done immediately
yielding the complex number

z0 = Im �0

4m
(A0 + i D0)B0, (A17)

which can then be used in Eq. (13).

APPENDIX B: THE SCATTERING MATRIX t(k, k′ )

In order to construct the t (k, k′) we start from a general
electron-spinless-impurity scattering potential Vei(r) as the
sum of individually localized electron-impurity potentials at
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each impurity position R j as

Vei(r) =
Nimp∑
j=1

v
( j)
ei (r − R j ). (B1)

The v
( j)
ei (r) is a sum of the spin-independent and the spin-orbit

scattering potentials v
( j)
0 and v

( j)
so , respectively, as

v
( j)
ei (r) = v

( j)
0 (r) + v( j)

so (r), where

v( j)
so (r) = σ · [∇v

( j)
0 (r) × p

]
. (B2)

We consider only one type of impurity and assume that v
( j)
ei is

the same for all impurities. The general quantum state of the
Bloch electrons is given by

�kσ (r) = eik·rukσ (r) (B3)

with ukσ (r) carrying information about the orbital symmetries.
The scattering amplitude is given by

Tσσ ′ (k, k′) = 〈k′σ ′|Vei|kσ 〉
=

∫
dr �∗

k′σ ′ (r)Vei(r)�kσ (r). (B4)

Inserting Eq. (B1) into Eq. (B4), we find

Tσσ ′ (k, k′) =
Nimp∑

j

ei(k−k′ )·R j tσσ ′ (k, k′), (B5)

where

tσσ ′ (k, k′) = [ṽ0(k, k′)]σσ ′ + [ṽso(k, k′)]σσ ′ (B6)

with

[ṽX (k, k′)]σσ ′ =
∫

dr�∗
k′σ ′ (r)(r)vX (r)�kσ (r), (B7)

where X = 0 for the spinless and X = so for the spin-orbit
scatterings as in Eq. (B2). Due to the spinless character of
the v0(r) in Eq. (B7), [ṽ0(k, k′)]σσ ′ = a0(k, k′) δσσ ′ . From
Eq. (B7) it is easily observed that, for k, k′ � 0 near the center
of the linear dispersion, a0(k, k′) and c0(k, k′) are proportional
to the Fourier transform of the spinless and the spin-orbit po-
tentials in Eq. (B2). Equations (B4)–(B7) comprise a generic
derivation of Eq. (7) in the main text. This general formu-
lation can be applied to more specific cases only when the
Bloch state in Eq. (B3) and the electron-impurity potentials in
Eq. (B2) are given.
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