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Quantum many-body scars in spin models with multibody interactions
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We introduce and study several classes of quantum spin models with multibody interactions that exhibit
quantum many-body scars. The models are constructed by two different methods: one exploiting boundary
states in integrable spin chains and the other based on a variant of existing methods such as restricted spectrum
generating algebras. The first method allows us to construct deformations of the Majumdar-Ghosh and Affleck-
Kennedy-Lieb-Tasaki models—prototypes of frustration-free systems. With the second method, we construct a
large class of spin-1 models involving scalar spin chirality in both one and two dimensions. Interestingly, in some
cases, the models so constructed have towers of scar states of different character. For each example, we show
that the scar states behave differently from thermal states by comparing their spectral and dynamical properties
with those of other states. We also show that a superposition of the scar states constructed by the second method
exhibits perfectly periodic revivals in the dynamics.
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I. INTRODUCTION

Since the early days of quantum mechanics, thermalization
of isolated quantum systems has been of great theoretical
interest, as it is at the heart of statistical mechanics. Recently,
thanks to the development of quantum simulators such as
systems with ultracold atoms [1], superconducting circuits
[2], trapped ions [3], and Rydberg atoms [4], we have been
able to delve into the quantum many-body dynamics in detail,
leading to a better understanding of the nature of thermaliza-
tion. Theoretically, the eigenstate thermalization hypothesis
(ETH) was introduced as a plausible mechanism to explain
thermalization phenomena in isolated quantum systems [5–7],
and was subsequently discussed in a number of papers such
as Refs. [8–12]. Roughly speaking, the ETH is a quantum
counterpart of ergodicity in classical systems [13,14]. The
strong version of ETH asserts that all energy eigenstates are
thermal states [15], which are locally indistinguishable from
the microcanonical average. It has been confirmed by nu-
merical calculations that the ETH is valid for many isolated
quantum systems [16–18].

Even though the ETH has been tested and confirmed in
many studies, it does not hold in some special cases [19].
For example, quantum integrable models and many-body lo-
calized systems are known to violate the strong ETH [18].
Moreover, there are systems that do not have these char-
acteristics but still have eigenstates that do not thermalize.
These nonthermal states are called quantum many-body scars
(QMBS) [20–22].

The signatures of QMBS have been observed in recent
experiments [4,23,24] and several experimental platforms to
realize QMBS have been proposed [25–28]. Of particular in-
terest are systems involving Rydberg atoms [4]. Such systems
exhibit nonthermal dynamics, despite being nonintegrable

[29,30]. The theoretical understanding of QMBS has pro-
gressed rapidly in recent years, and to date, many models with
exact QMBS have been known. Examples include the PXP
model [31–33], the Affleck-Kennedy-Lieb-Tasaki (AKLT)
model [34–36], the Ising- and XY-like models [37–39], the
perturbed Potts model [40], and the Onsager scars [41] (see
Ref. [21] for a review). They motivated the development of
systematic methods for constructing concrete models with
exact QMBS [42–50]. Also, the fate of exact QMBS under
perturbations has been a subject of debate [51–53]. For a
more mathematical approach, an attempt has been made to
comprehensively understand QMBS using commutant alge-
bras [54,55]. However, despite these developments, the overall
picture is far from complete. Therefore, to better understand
the general framework and origin of QMBS, it is important
to explore different methods for constructing new models that
host QMBS in a systematic manner.

In this paper, we introduce and study several classes of
spin models with multibody interactions that exhibit QMBS.
To construct the models, we employ two different meth-
ods: one based on integrable boundary states [56–61], and
the other using a variant of the existing methods based on
restricted spectrum generating algebras [62,63] or quasisym-
metry groups [46]. The first method allows one to construct an
infinite family of models with a scar state. However, since this
approach heavily relies on the integrability of some terms in
the Hamiltonian, its application is limited to one dimension.
In addition, with this method, one cannot obtain a tower of
scar states with equal energy spacing. In contrast, the second
method allows for the construction of models with towers of
scar states. We will demonstrate that a superposition of these
scar states shows perfectly periodic revivals in the dynamics.
Unlike the first method, the second method is capable of con-
structing models in higher dimensions. We will illustrate this
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using a model on a triangular lattice as an example. It should
be noted that both methods allow the models to accommodate
designed inhomogeneities that do not affect QMBS.

The paper is organized as follows. In Sec. II A, we explain
the two methods in more detail. In Sec. II B, we discuss how
to distinguish QMBS from thermal states. In Sec. III, we
consider the spin-1/2 Majumdar-Ghosh model deformed by
the spin-1/2 scalar spin chirality as an example of a scarred
model constructed by the first method. In Sec. IV, we show
another example constructed by the same method, namely, the
spin-1 AKLT model deformed by the third conserved quantity
of the SU(3) Sutherland model. We also discuss possible
generalizations to higher spins. In Sec. V, we introduce a
model consisting of the AKLT Hamiltonian and the spin-1
scalar spin chirality as an example of a model constructed by
the second method. In Sec. VI, we first construct exact zero-
energy eigenstates of the spin-1 scalar spin chirality term.
Then we show that they form towers of scar states in a class
of models obtained by perturbing the scalar spin chirality by
tailored disorder and discuss that they are examples of models
constructed by the second method. We conclude with a sum-
mary and some open questions in Sec. VII. Some technical
details are relegated to the Appendices.

II. METHODS

A. Construction of scarred models

To construct models with QMBS, we adopt the following
two methods (i) the method based on integrable boundary
states [57–61], and (ii) the method relying on a tower of states
generated by some operator. First, let us describe (i), which
is deeply related to quantum integrable systems. Let H be a
nearest-neighbor integrable Hamiltonian. One can construct
an infinite number of conserved quantities Qn successively
starting from Q2 ∝ H by Qn+1 = [B, Qn], where B is the boost
operator [64–67]. Each operator Qn can be written as a sum
of local operators spanning at most n consecutive sites. The
conserved quantities can be divided into two groups by their
behavior under spatial reflection. The even ones, Q2n, are
symmetric under the parity operation, whereas the odd ones
Q2n+1 are antisymmetric.

An integrable boundary state, say |�0〉, is defined as a state
that is annihilated by all odd conserved charges [57], i.e.,

Q2k+1|�0〉 = 0 (1)

for all k = 1, 2, . . .. One can see that if |�0〉 is an energy
eigenstate of another Hamiltonian H0, then |�0〉 is an exact
eigenstate of the Hamiltonian

H (t1, t2, . . . , tn) = H0 +
n∑

k=1

tkQ2k+1, (2)

where {tk}n
k=1 are real numbers. If this new Hamiltonian is

nonintegrable and the energy of |�0〉 is in the middle of the
spectrum, then |�0〉 is likely to be a scar state. Note that
this method allows one to construct an enormous number of
scarred models by changing parameters {tk}n

k=1.

Next, we describe the second approach (ii). This is a vari-
ant of the existing methods [41,46,62,63]. We first assume
that the tower of states generated by an operator Q, namely,
Q |ψ〉,Q|ψ〉,Q2|ψ〉, · · · ,Qn|ψ〉, are energy eigenstates of
some Hamiltonian H . Then, we can create the system with
QMBS by considering the property of operator Q other than
each eigenstate. To be more specific, if there exists an oper-
ator � such that �Qk|ψ〉 = λkQk|ψ〉 (λk ∈ R) for all k =
0, 1, 2, ..., n, each Qk|ψ〉 is also an eigenstate of the new
Hamiltonian H ′ = H + �. However, almost all eigenstates
of H are no longer eigenstates of H ′. Thus, it is highly
likely that Qk|ψ〉 are the only nonthermal eigenstates of the
Hamiltonian H ′.

B. Numerical verification

To discuss whether a given model has QMBS or not, we
need to answer at least the following two questions:

(1) Is the model nonintegrable?
(2) Are the likely scar states nonthermal?
We can answer the first question by checking the level-

spacing distribution. It is defined as follows. Let E1 � E2 �
· · · � EN be the eigenenergies of a Hamiltonian in ascending
order. The normalized level spacing si is then defined as
si := (Ei+1 − Ei )/δ, where δ := (EN − E1)/(N − 1) denotes
the average over all neighboring level spacings. Then, the
level-spacing distribution function P(s) is defined such that
P(s)�s is the probability of finding si in the interval [s, s +
�s]. It is empirically known that the level-spacing distribution
follows the Poisson distribution

P(s)Poisson = e−s (3)

for integrable systems [68], whereas for nonintegrable mod-
els, it follows the Gaussian orthogonal ensemble (GOE)

P(s)GOE = π

2
se− π

4 s2
(4)

for a Hamiltonian with time-reversal symmetry, or it follows
the Gaussian unitary ensemble (GUE)

P(s)GUE = 32

π2
s2e− 4

π
s2

(5)

for a Hamiltonian without time-reversal symmetry [69–72].
To check which distribution the level spacing follows, we can
use r value other than the histogram of the level spacings si

[73]. It is defined as follows. Let ri = min(si/si+1, si+1/si )
be a ratio of neighboring level spacings, and let 〈r〉 be the
r value, the average of ri. By calculating the r value for each
of the distributions, we get 〈rPoisson〉 = 2 ln 2 − 1 ≈ 0.386 for
Poisson, 〈rGOE〉 = 4 − 2

√
3 ≈ 0.536 for GOE, and 〈rGUE〉 =

2
√

3
π

− 1
2 ≈ 0.603 for GUE [74].

To answer the second question, we examine several phys-
ical quantities for all energy eigenstates. In particular, we
use the entanglement entropy as a diagnostic tool to identify
nonthermal states. It is defined as follows. Let |ψ〉 be a state of
the system and let A be a subsystem. Then the reduced density
matrix of A is defined as ρA = TrB(|ψ〉〈ψ |)/〈ψ |ψ〉, where B
is the complement of A. The entanglement entropy of |ψ〉 is
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FIG. 1. The definition of subsystems A and B for one-
dimensional systems. Note that the number of sites in A is one less
than that in B when L is odd.

then defined as

SA(|ψ〉) = −TrA[ρA ln ρA]. (6)

It is known that the entanglement entropy of a thermal state
obeys a volume law, i.e., SA is proportional to the system size
[75]. On the other hand, nonthermal states have sub-volume-
law entanglement entropy even if they are in the middle of the
energy spectrum. Therefore, nonthermal states such as QMBS
can be identified as low-entanglement outliers in the plot of
energy versus SA. In this paper, we calculate the half-system
entanglement entropy for one- and two-dimensional systems
(see Figs. 1 and 22 below).

III. SPIN-1/2 MAJUMDAR-GHOSH
MODEL + SCALAR SPIN CHIRALITY

This is one example of a scarred model constructed by
method (i) in Sec. II A.

A. Hamiltonian

In this section, we consider a one-dimensional spin-1/2
model with two- and three-body interactions. The Hamilto-
nian of the model depends on a parameter t ∈ R and is given
by

H (t ) = HMG + tCSC, (7)

where

HMG =
L∑

j=1

[
(S j + S j+1 + S j+2)2 − 3

4

]
, (8)

CSC =
L∑

j=1

S j · (S j+1 × S j+2), (9)

and S j = (Sx
j , Sy

j , Sz
j ) is the spin-1/2 operator acting on site j,

Sx
j = 1

2

(
0 1
1 0

)
j

, Sy
j = 1

2

(
0 −i
i 0

)
j

, Sz
j = 1

2

(
1 0
0 −1

)
j

.

(10)

We impose periodic boundary conditions and assume that the
number of sites L is even. The first term HMG is the Hamil-
tonian of the Majumdar-Ghosh model exhibiting exact dimer
ground states [76–78], while the second term CSC is the scalar
spin chirality [79]. Note that CSC is the third conserved charge
of the spin-1/2 Heisenberg model [80]. Physically, this term
appears at third order in perturbation theory starting from the
SU(2) Hubbard model at half-filling in an external magnetic
field [81]. We also note in passing that a similar three-spin

FIG. 2. Level-spacing statistics in the middle half of the spec-
trum of H (t ) in Eq. (7) with t = 8 and L = 20. The data are taken in
the symmetry sector where (Sz,S,T ,F ) = (0, 0, 1, 1). The curves
P(s)GOE (orange) and P(s)Poisson (green) are shown for comparison.
The distribution follows P(s)GOE.

interaction has recently been realized experimentally in Ryd-
berg atom arrays [82].

B. Symmetries and nonintegrability

The Majumdar-Ghosh model has several symmetries: The
Hamiltonian is invariant under time-reversal 
: S j 	→ −S j ,
SU(2) spin rotation, translation T : S j 	→ S j+1, bond-centered
inversion Ib: S j 	→ SL− j+1, site-centered inversion Is: S j 	→
S− j , and spin-flip F : S j 	→ (Sx

j ,−Sy
j ,−Sz

j ) [83]. Among
these symmetries, time-reversal and bond-centered- and site-
centered-inversion symmetries are absent in the scalar spin
chirality CSC. However, the combination of 
 and Is leaves
CSC invariant, which we call pseudo-time-reversal symmetry.
Therefore, the entire model H (t ) has SU(2), translation, spin-
flip, and pseudo-time-reversal symmetries. Among them, the
first three are unitary symmetries and allow us to diagonalize
the Hamiltonian sector by sector. For convenience we de-
fine the total spin operators as Sα := ∑L

j=1 Sα
j (α = x, y, z)

and write the eigenvalue of SU(2) Casimir operator S2 =∑
α=x,y,z(Sα )2 as S (S + 1). With a slight abuse of notation,

we will denote the eigenvalues of the operators Sz, T , and F
by the same symbols.

The Hamiltonian Eq. (7) is nonintegrable. This can be
shown by studying the level-spacing statistics in a symme-
try sector labeled by Sz, T , and F . Figure 2 clearly shows
that the level-spacing distribution of H (t ) is close to the
GOE Wigner-Dyson distribution. This is consistent with
the pseudo-time-reversal symmetry of the model. In addition,
the r value calculated from the histogram in Fig. 2 is 〈r〉 �
0.538, which is close to 〈rGOE〉. Thus, we conclude that the
model (7) is nonintegrable.

Figure 3 shows 〈r〉 as a function of t for the model (7) with
different system sizes. Clearly, the results for L = 18 and 20
have the same trend. When t < 20, the r value 〈r〉 is close to
the GOE value 0.536, whereas 〈r〉 gets closer to the Poisson
value 0.386 as t increases further. This implies that for large t
the whole Hamiltonian (7) is dominated by the integrable part
tCSC and the system behaves more like an integrable system.
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FIG. 3. The mean level-spacing ratio 〈r〉 as a function of t for the
Hamiltonian (7) in the symmetry sector (Sz,S,T ,F ) = (0, 0, 1, 1)
for L = 16, 18, and 20. The green and orange dotted lines indicate
〈rGOE〉 ≈ 0.536 and 〈rPoisson〉 ≈ 0.386, respectively.

C. Scar states

The zero-energy ground states of HMG can be written as the
following dimer states:

|�1〉 = |sing〉1,2 ⊗ |sing〉3,4 ⊗ · · · ⊗ |sing〉L−1,L, (11)

|�2〉 = |sing〉2,3 ⊗ |sing〉4,5 ⊗ · · · ⊗ |sing〉L,1, (12)

where |sing〉i, j = 1√
2
(|↑↓〉i, j − |↓↑〉i, j ) denotes the normal-

ized spin singlet formed between site i and j. The two states
are related to each other by |�2〉 = T |�1〉.

As discussed in [57], these states are integrable boundary
states of the spin-1/2 Heisenberg XXX chain, meaning that
they are annihilated by all parity-odd conserved charges of
the Heisenberg Hamiltonian. Since CSC is one of the parity-
odd conserved charges, it is clear that |�1〉 and |�2〉 are
simultaneously annihilated by both HMG and CSC. Thus they
are zero-energy eigenstates of H (t ) in Eq. (7) for all t . We
now argue that the states |�1〉 and |�2〉 can be thought of as
QMBS. To this end, we compute the half-chain entanglement
entropies (SA) of all energy eigenstates for several system
sizes.

Figure 4 shows the results in the subspace spanned
by translation-invariant states with zero magnetization, i.e.,

FIG. 5. Size dependence of the half-chain entanglement entropy
of the ferromagnetic state |FL/2〉. The red line represents the right-
hand side of Eq. (13).

(Sz, T ) = (0, 1). Clearly, there is a low-entanglement state
distinguished from the other at zero energy. This state can
be identified as |dimer〉 = (2 + (− 1

2 )
L
2 −2)−

1
2 (|�1〉 + |�2〉),

which is invariant under translation by one site. It is known
that the half-chain entanglement entropy of |dimer〉 becomes
SA = 2 ln 2 for sufficiently large L [84]. We can see that the
entanglement entropy of the dimer state matches this value.
Furthermore, this state remains an outlier from the rest of the
states with increasing L.

We note that the low-entanglement state near the upper
edge of the spectrum (E = 54) is a ferromagnetic state with
zero magnetization written as |FL/2〉 = (S−)L/2|⇑〉, where
S− := Sx − iSy and |⇑〉 denotes the all-up state. The asymp-
totic form of the half-chain entanglement entropy of this state
can be read off from Eq. (16) of [85] (see also Appendix A).
The result reads

SA(|FL/2〉) ≈ 1

2
ln L + 1

2
ln

eπ

8
(L � 1). (13)

Figure 5 shows the size dependence of SA(|FL/2〉). It clearly
demonstrates that the entanglement entropy obeys a sub-
volume law SA ∼ ln(L). For L = 18, we obtain SA(|FL/2〉) ≈

FIG. 4. Entanglement entropy SA in all eigenstates of H (t ) in Eq. (7) with t = 8 in the symmetry sector (Sz,T ) = (0, 1) for L = 14, 16,
and 18. The density of data points is color coded. The red and green circles indicate the dimer state |dimer〉 and the ferromagnetic state |FL/2〉,
respectively. The orange dotted line indicates SA = 2 ln 2 � 1.386.
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FIG. 6. The expectation values of Hst with ε = 0.2 in all eigen-
states of H (t ) in Eq. (7) with t = 8, and L = 18 in the symmetry
sector (Sz,T ) = (0, 1). The density of data points is color coded.
The red circle indicates the dimer state |dimer〉 with 〈Hst〉 � −6.72,
which agrees with the analytical value 〈Hst〉 = −1143/170 obtained
from Eq. (15).

1.478, which agrees with the numerical result shown by
the green circle in Fig. 4. It should be noted that the
ferromagnetic state is not an example of a scar state because
the state belongs to the subspace with maximum total spin,
which is an irreducible representation of the global SU(2)
symmetry of the model Eq. (7).

We remark that since the dimer states are integrable
boundary states of the spin-1/2 Heisenberg chain, one can
construct other models involving higher-order conserved
charges Q2k+1 (k > 1), which have the dimer states as QMBS.
See Refs. [65,86] for the explicit expressions of Q2n+1.

Another characteristic of QMBS is that the expectation
values of physical quantities in these states do not match the
microcanonical averages. Thus, we can identify QMBS by
comparing the expectation value of an observable for each
energy eigenstate. Here, we choose the staggered Heisenberg
Hamiltonian

Hst =
L∑

j=1

(1 + (−1) jε)S j · S j+1 (14)

as a generic observable and calculate the expectation value
〈Hst〉 = 〈ψ |Hst|ψ〉 for each normalized eigenstate |ψ〉 of H (t )
in Eq. (7). Figure 6 shows the numerical results for t = 8 and
L = 18 in the symmetry sector (Sz, T ) = (0, 1). They clearly
indicate that the expectation value in the dimer state, which is
calculated as

〈dimer|Hst|dimer〉 = −3L
[( − 1

2

) L
2 + 1

4

]
2 + ( − 1

2

) L
2 −2

, (15)

is far from those in the states near E = 0.
Although we have shown the results only for the symmetry

sector (Sz, T ) = (0, 1), we note that similar results hold for
(Sz, T ) = (0,−1), where |dimer′〉 ∝ |�1〉 − |�2〉 is singled
out as a scar state.

IV. SPIN-1 AKLT MODEL + H3

This is another example of a model with QMBS con-
structed by method (i) in Sec. II A.

A. Hamiltonian

In this section, we consider a spin-1 model with two- and
three-site interactions. Consider a spin-1 chain of length L
with periodic boundary conditions, and let S j = (Sx

j , Sy
j , Sz

j )
be the operators of the spin-1 representation of the SU(2)
algebra acting on site j,

Sx
j = 1√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠

j

, Sy
j = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠

j

,

Sz
j =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠

j

. (16)

As usual, we define the total spin operators by Sα := ∑L
j=1 Sα

j
(α = x, y, z) and write the eigenvalue of the Casimir operator
S2 = ∑

α=x,y,z(Sα )2 as S (S + 1).
The Hamiltonian of the model is given by

H (t ) = HAKLT + tH3, (17)

where

HAKLT =
L∑

j=1

[
S j · S j+1 + 1

3
(S j · S j+1)2 + 2

3

]
(18)

is the Affleck-Kenedy-Lieb-Tasaki (AKLT) Hamiltonian
[87–89] and

H3 =
L∑

j=1

8∑
a,b,c=1

fabcλ
a
jλ

b
j+1λ

c
j+2, (19)

is the third conserved quantity of the SU(3) Sutherland model
[90–93]. Here λa

j (a = 1, ..., 8) represent the Gell-Mann ma-
trices acting on site j, and fabc are the structure constants
determined by [λa, λb] = 2i fabcλ

c. The term H3 is an SU(3)
generalization of the scalar spin chirality. This can be seen by
noting that the scalar spin chirality discussed in Sec. III can
be rewritten as

CSC =
L∑

j=1

∑
a,b,c=x,y,z

εabcSa
j S

b
j+1Sc

j+2, (20)

where εabc is the totally antisymmetric tensor, which is also
known as the structure constants of the SU(2) algebra.

There is an interesting alternative expression for H3. Let
Pi, j be the permutation operator that swaps the state at site i
with the state at site j,

Pi, j | . . . , si, . . . , s j, . . .〉 = | . . . , s j, . . . , si, . . .〉. (21)

Here, si ∈ {+, 0,−} denotes the spin state at the site i. Us-
ing Pi, j , we define the three-site ring-exchange operator as
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FIG. 7. Level-spacing statistics in the middle half of the spec-
trum of H (t ) in (17) with t = 3 and L = 14. The data are taken in
the symmetry sector where (Sz,S,T ,F ) = (0, 0, 1, 1). The curves
P(s)GUE (magenta) and P(s)Poisson (green) are shown for comparison.
The distribution follows P(s)GUE.

Pi, j,k := Pj,kPi, j . Then the following relation holds [94]:

λi · λ j = 2Pi, j − 2
3 , (22)

where λi = (λ1
i , λ

2
i , · · · , λ8

i ) is a collection of the eight Gell-
Mann operators acting on site i. Then, using this relation
and

∑
c fabcλ

c
j+2 = 1

2i [λ
a
j+2, λ

b
j+2], we arrive at the alternative

expression for H3 in terms of Pi, j,k ,

H3 = −2i
L∑

j=1

(Pj, j+1, j+2 − P†
j, j+1, j+2), (23)

where P†
i, j,k = P−1

i, j,k = Pi, jPj,k . We note in passing that there
are some studies on spin models containing the SU(3) scalar
spin chirality term [95].

B. Symmetries and nonintegrability

The AKLT Hamiltonian is invariant under time-reversal 
,
SU(2) spin rotation, translation T , bond-centered inversion
Ib, site-centered inversion Is, and spin-flip F , whereas H3

lacks time-reversal and inversion symmetries among them
[see Appendix B for a discussion of the SU(2) symmetry
of H3]. However, the combined symmetry 
Is leaves H3

invariant. Therefore, the model H (t ) in Eq. (17) has SU(2),
translation, spin-flip, and pseudo-time-reversal symmetries.

Since the SU(3) Sutherland model is integrable, the third
conserved charge H3 can be considered as a quantum inte-
grable Hamiltonian as well. On the other hand, the AKLT
Hamiltonian is nonintegrable. Thus, the model Eq. (17), an
interpolation between the two, is expected to be noninte-
grable. To verify this, we compute the level-spacing statistics
(Fig. 7). The results show that the level-spacing distribu-
tion follows the GUE Wigner-Dyson distribution instead of
the Poisson distribution, which provides strong evidence that
this model is nonintegrable. It can also be checked by the
r value 〈r〉 � 0.599, which is close to 〈rGUE〉 � 0.603. We
remark that the model is expected to belong to the GOE
class, as it has pseudo-time-reversal symmetry. The observed
discrepancy may be due to the crossover between different

FIG. 8. Entanglement entropies in all eigenstates of H (t ) in
Eq. (17) for L = 9, t = 3 in the Sz = 0 sector. The density of data
points is color coded. The points enclosed by the red and green
circles indicate the VBS state |�VBS〉 and ferromagnetic state |FL〉,
respectively. The orange dotted line indicates SA = 2 ln 2 � 1.386.

universality classes [96,97] or finite-size effects, which are
also pronounced in the PXP model [29,51].

C. Scar state

We now argue that the ground state of the AKLT model,
known as the valence-bond solid (VBS) state, can be thought
of as a scar state. The VBS state can be written as a matrix
product state [88].

|�VBS〉 =
∑
{s}

Tr[As1 As2 · · · AsL ]|s1, s2, . . . , sL〉, (24)

where s j ∈ {+, 0,−} denotes the spin state at site j and

A+ =
√

2

3
σ+, A0 = −

√
1

3
σ z, A− = −

√
2

3
σ−, (25)

with σ± and σ z being the Pauli matrices. The summation is
taken over all possible spin configurations.

The VBS state is an exact ground state of HAKLT with zero
energy, i.e., HAKLT|�VBS〉 = 0. In addition, the VBS state is
an integrable boundary state of the Sutherland model (see
Appendix C for details). Thus, |�VBS〉 is a zero-energy eigen-
state of H (t ) in Eq. (17) for all t and is likely to be a scar
state. In order to establish this, we need to consider the case
of moderate t . This is because, if t is close to zero, then the
energy of the VBS state is near the lower edge of the spectrum.
However, such a state cannot be thought of as QMBS, as its
energy is not in the bulk of the spectrum. In addition, t should
not be too large so that the model is away from the integrable
case (H3). With these in mind, we study the model with t = 3.

To confirm that the VBS state is indeed a scar state, we
numerically compute half-chain entanglement entropies SA.
The results are shown in Fig. 8. It is known that SA of the
VBS state is [98,99]

SA(|�VBS〉) = −3λA ln λA − λB ln λB (26)
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with

λA = 1

4

(1 − p�L/2�)(1 − p�L/2�)

1 − pL−1
, (27)

λB = 1

4

(1 + 3p�L/2�)(1 + 3p�L/2�)

1 − pL−1
, (28)

where p = −1/3. �x� and �x� denote the floor and ceiling
functions, respectively. In the thermodynamic limit, we obtain

lim
L→∞

SA(|�VBS〉) = 2 ln 2. (29)

Figure 8 clearly shows that the VBS state at E = 0 with
SA ∼ 2 ln 2 is isolated from the other states, indicating that the
VBS state exhibits a different behavior from the other thermal
states.

The other low-entanglement state at E = 18 is a ferromag-
netic state |FL〉 (see Appendix D). This state is not an example
of a scar state because it is a state in the subspace with
maximum total spin, which is an irreducible representation of
the SU(2) symmetry of the model Eq. (17).

D. Inhomogeneous generalization

In the previous model, it was necessary to increase t in
order to make the energy density of the VBS state (relative
to the ground state) finite. However, the problem is that this
would increase the effect of H3 and make the behavior of the
system more like that of an integrable system. To avoid such
a situation, we consider an inhomogeneous generalization of
the AKLT Hamiltonian. In this case, the VBS state is still
a zero-energy eigenstate of the inhomogeneous Hamiltonian,
yet locating in the middle of the spectrum. The Hamiltonian
of the inhomogeneous model is given by

H̃ (t ) = H̃AKLT + tH3 (30)

with

H̃AKLT =
L∑

j=1

c j

[
S j · S j+1 + 1

3
(S j · S j+1)2 + 2

3

]
. (31)

In principle, each coefficient c j can be any real number. How-
ever, for our purpose, we choose |c j | � t in order to keep the
magnitudes of the two terms (H̃AKLT and H3) comparable. In
the following, we set t � 1 and draw c j uniformly from the
interval [−1, 1], in which case the model is no longer invariant
under the combination of 
 and Is.

Like H (t ) in Eq. (17), H̃ (t ) in Eq. (30) is also noninte-
grable. As Fig. 9 shows, the level-spacing statistics of the
model behave as that of the GUE. Also, the calculated r
value r � 0.598 is compatible with the r value of the GUE
〈rGUE〉 � 0.603.

1. Entanglement entropy

In order to check whether the VBS state is a scar state,
we compute entanglement entropies. The results are shown in
Fig. 10. Clearly, there are two entanglement outliers. The one
at E = 0 is the VBS state. The other one that is also far from
other ordinary states is the ferromagnetic state. Its energy is
2
∑

c j (see Appendix D), and it is a trivial state rather than a
scar because of the SU(2) symmetry of the model (30).

FIG. 9. Level-spacing statistics in the middle half of the spec-
trum of the inhomogeneous model H̃ (t ) in Eq. (30) with t = 1 and
L = 11. Each c j is randomly chosen from [−1, 1]. The data are taken
in the symmetry sector where (Sz,S,F ) = (0, 0, 1). The curves
P(s)GUE (magenta) and P(s)Poisson (green) are shown for comparison.
The distribution follows P(s)GUE.

2. Other thermodynamic quantities

We provide further evidence that the VBS state is a scar
state in this model. To this end, we study the expectation val-
ues of some physical observable in all energy eigenstates. The
physical quantity we consider here is the AKLT Hamiltonian
Eq. (18) whose expectation value in a normalized state |ψ〉
is denoted as 〈HAKLT〉 := 〈ψ |HAKLT|ψ〉. Figure 11 shows the
numerical result for the distribution of 〈HAKLT〉. Clearly, the
VBS state at (0,0) can be distinguished from other eigenstates.

E. Further generalizations

Now we generalize the model in the previous subsection
in two ways. First, we consider a generalization of the spin-
1 AKLT model to include next-nearest-neighbor interactions.
Based on the results obtained in [100,101], we find that the

FIG. 10. Entanglement entropies in all eigenstates of the inho-
mogeneous model H̃ (t ) in Eq. (30) for L = 9, t = 1 in the Sz = 0
sector. The density of data points is color coded. Each c j is randomly
chosen from [−1, 1]. The red and green circles indicate the VBS and
the ferromagnetic states, respectively.
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FIG. 11. The expectation values of HAKLT in all eigenstates of
(30) with t = 1, L = 9 in the symmetry sector where Sz = 0. The
density of data points is color coded. The red circle indicates the
VBS state.

VBS state in Eq. (24) is annihilated by

H̃ ′
AKLT =

L∑
j=1

d j

[
S j · S j+1 + S j+1 · S j+2

+ 1

2
S j · S j+2 − 1

2
(S j · S j+2)2 + 3

]
, (32)

where each coefficient dj can be any real number. This
means that adding this term to the Hamiltonian H̃ (t ) in
Eq. (30) leaves the scar state unaffected. Second, we consider
higher-order conserved charges Q2k+1 (k > 1) of the SU(3)
Sutherland model, whose explicit expressions can be found
in Ref. [65]. Since the VBS state is an integrable boundary
state, it is annihilated by all Q2k+1 (see Appendix C). Thus,
adding these terms with arbitrary coefficients does not affect
the scar state. Combining these two generalizations leads to
the following Hamiltonian:

H̃ (t1, t2, ..., tn) = H̃ (t1) + H̃ ′
AKLT +

n∑
k=2

tkQ2k+1, (33)

in which the VBS state survives as a scar state.
Let us finally discuss higher-spin generalizations. The spin-

1 AKLT model can be generalized to models with SO(5) and
more generally SO(2l + 1) symmetry [102–104]. The exact
ground states of these models, which we dub SO(2l + 1)
VBS states, take the form of a matrix product state built from
2l + 1 gamma matrices. According to the general theory of
integrable boundary states [61], the SO(2l + 1) VBS state is
an integrable boundary state of the SU(2l + 1) Heisenberg
model, meaning that the state is annihilated by all parity-odd
conserved charges of the model. Thus, the construction of
deformed models proceeds in much the same way as in the
SU(2) case. We also note that the parent Hamiltonian of the
SO(2l + 1) VBS state can be inhomogeneous, like the one in
Eq. (31). We thus expect that the models constructed in this
way are nonintegrable for general l and can be thought of as
scarred models.

FIG. 12. Level-spacing statistics in the middle half of the spec-
trum of the model (34) with t = 3 and L = 13. The data are taken in
the symmetry sector where (Sz,S,T ,F ) = (0, 0, 1, 1). The curves
P(s)GOE (orange) and P(s)Poisson (green) are shown for comparison.
The distribution follows P(s)GOE.

V. SPIN-1 AKLT MODEL + SCALAR SPIN CHIRALITY

The model considered in this section is an example of a
scarred model constructed by method (ii) with n = 0 men-
tioned in Sec. II A.

A. Hamiltonian

In this section, we consider another spin-1 model in which
the VBS state in Eq. (24) is a scar state. The Hamiltonian of
the model is given by

H (t ) = HAKLT + tCSC, (34)

where HAKLT is the AKLT Hamiltonian in Eq. (18), and

CSC =
L∑

j=1

S j · (S j+1 × S j+2), (35)

is the scalar spin chirality term with S j being the spin-1
operators in Eq. (16).

This model has the same symmetries as H (t ) in Eq. (17),
i.e., SU(2) spin rotation, translation, spin-flip, and pseudo-
time-reversal symmetries. (See Sec. IV for details.) Since the
AKLT Hamiltonian is nonintegrable, it is quite likely that
the model Eq. (34) is not integrable either. This is indeed
the case as can be seen from Fig. 12. Clearly, the level-spacing
distribution is close to the GOE Wigner-Dyson distribution.
To provide further evidence for this, we compute the r value
from the histogram and obtain 〈r〉 � 0.536, which agrees with
〈rGOE〉 � 0.536.

B. Scar state

The VBS state |�VBS〉 in Eq. (24) is the zero-energy ground
state of HAKLT. Interestingly, one can show that |�VBS〉 is an
eigenstate of CSC with eigenvalue 0 using its matrix prod-
uct state representation (see Appendix E for a proof). Thus,
|�VBS〉 is a simultaneous eigenstate of HAKLT and CSC, and
is likely to be a scar state of the system. We checked it by
computing half-chain entanglement entropies (Fig. 13). The
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FIG. 13. Entanglement entropies in all eigenstates of H (t ) in
Eq. (34) with t = 3 for L = 10 in the Sz = 0 sector. The density
of data points is color coded. The red and green circles indicate the
VBS and ferromagnetic states, respectively. The orange dotted line
indicates SA = 2 ln 2 � 1.386.

obtained results show that the VBS state has sufficiently low
entanglement entropy compared to other states, confirming
that it is indeed nonthermal.

VI. PERTURBED SPIN-1 SCALAR SPIN CHIRALITY

In this section, we consider a class of Hamiltonians consist-
ing of the spin-1 scalar spin charity term CSC in Eq. (35) and
some other terms. They are examples of models constructed
by method (ii) discussed in Sec. II A. To provide some insight
into what is special about this class of models, we have calcu-
lated the half-chain entanglement entropies in all eigenstates
of the Hamiltonian

H0(h) = CSC + h
L∑

j=1

Sz
j, (36)

for h = 1 and L = 8. The results in Fig. 14 indicate towers
of low-entanglement states forming multiple arcs bridging
E = ±8, but it is hard to distinguish them clearly because of
degeneracies due to additional symmetries. In the following
subsections, we classify these eigenstates and remove the
degeneracies by introducing extra inhomogeneous terms.

A. Zero-energy states of CSC

Interestingly, one can explicitly construct some zero-
energy states of CSC by acting with certain ladder operators
on reference states |⇑〉 := | + + · · · +〉 and |0〉 := |00 · · · 0〉,
where |+〉, |0〉, and |−〉 are eigenstates of Sz with eigenvalues
+1, 0, and −1, respectively. We define the ladder operators by

O−
p =

L∑
j=1

eip jS−
j , Q−

p =
L∑

j=1

eip j (S−
j )2, (37)

where S−
j = Sx

j − iSy
j . The subscript p indicates that the op-

erator carries momentum p, which takes the values p = 2πn
L

FIG. 14. Entanglement entropies in all eigenstates of (36) for
L = 8, h = 1. The density of data points is color coded. The red and
blue circles indicate the positions of |A0,n〉 in Eq. (38) and |B0,n〉 in
Eq. (39), respectively.

with n = 0, 1, ..., L − 1. We find that the following states are
zero-energy states of CSC:

|Am,n〉 := (O−
0 )m(O−

π )n|⇑〉 (0 � m + n � 2L), (38)

|Bm,n〉 := (O−
0 )m(Q−

0 )n|⇑〉 (n � 1, 1 � m � 2L − 2n).

(39)

Note that |Am,n〉 are well defined only for even L. To see that
the above states are zero-energy states of CSC, it suffices to
consider the case m = 0. This is because the operator O−

0 is
exactly the spin-lowering operator S− = ∑L

j=1 S−
j commut-

ing with CSC due to the SU(2) symmetry. For convenience,
we introduce the notation |Ān〉 := |A0,n〉, |B̄n〉 := |B0,n〉 to de-
note the above states with m = 0. One can prove that |Ān〉
and |B̄n〉 are zero-energy eigenstates of CSC by noting that
CSC and either O−

π or Q−
0 satisfy a restricted spectrum gen-

erating algebra of order 2 [62]. See Appendix F for the
proof.

The towers of states |Am,n〉 and |Bm,n〉 do not exhaust the
zero-energy manifold of CSC. In fact, there are other towers of
zero-energy states generated by O−

p ,

|+m〉 := (O+
0 )m|0〉, (40)

|−m〉 := (O−
0 )m|0〉, (41)

|Km,p〉 := (O−
0 )mO−

p O−
−p|⇑〉, (42)

where 0 � m � 2L − 2 and p = 2π
L , 4π

L , · · · , 2π
L (� L

2 � − 1).
Again since O−

0 commutes with CSC, it suffices to consider
the case m = 0. It is easy to see that |+0〉 = |−0〉 = |0〉 is an-
nihilated by each local term in CSC, and hence CSC|±m〉 = 0.
To see that CSC|Km,p〉 = 0, it is convenient to rewrite the state
|K0,p〉 as

|K0,p〉 =
L∑

n=1

einp|�n〉 (43)
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where

|�n〉 =
L∑

j=1

S−
j S−

j+n|⇑〉. (44)

One can show that each |�n〉 is annihilated by CSC. Therefore,
it follows that CSC|Km,p〉 = 0. See Appendix F for a detailed
proof.

In this way, we have constructed a number of exact zero-
energy states of CSC. It should be noted that they are exact
eigenstates of H0(h) = CSC + hSz as well because each of
them is a superposition of states with fixed Sz. We also remark
that the obtained states in Eqs. (38)–(42) are not orthogonal to
each other. In fact, they are not even linearly independent. This
can be seen by considering, for example, the L = 3 site chain.
In this case, |B1,1〉, |B3,0〉, and |+0〉 satisfy 3|B1,1〉 − |B3,0〉 +
12

√
2|+0〉 = 0, and hence linearly dependent. In Appendix F,

we derive a lower bound on the number of zero-energy states
of CSC, which proves that the number grows exponentially
with the system size. Such an exponentially large degeneracy
can be a source of QMBS and Hilbert space fragmentation, as
discussed in the context of geometrically frustrated systems
[105,106].

In the following, we will consider H0(h) in Eq. (36) under
tailored disorder, which is designed such that some of the
obtained zero-energy states of CSC remain intact.

B. Random single-ion anisotropy—scarred |B̄n〉
In this subsection, we focus on the model in which |B̄n〉 =

(Q−
0 )n|⇑〉, (n = 1, 2, . . . , L) become scars. We consider the

Hamiltonian

H1(h, {Dj} j ) = CSC + h
L∑

j=1

Sz
j +

L∑
j=1

Dj
(
Sz

j

)2
, (45)

where Dj are any real numbers. In what follows, we omit the
dependence of H1 on h and {Dj} j unless necessary.

Since H1 commutes with Sz, one can split the Hilbert
space into subspaces labeled by the eigenvalues of Sz. The
Sz = 0 subspace is special in that it is invariant under spin
flip F . Thus, this subspace can be further divided into
two sectors: one with F = 1 and the other with F = −1.
We have analyzed the level-spacing statistics in the sector
(Sz,F ) = (0, 1) and found that the distribution is close to
the GUE Wigner-Dyson distribution. We also calculated the
r value and obtained 〈r〉 � 0.593, which is consistent with
the GUE.

1. Tower of eigenstates

The states |B̄n〉 constitute a tower of eigenstates of H1. This
can be seen as follows. In the previous subsection, we have
already shown that each |B̄n〉 is a simultaneous eigenstate of
CSC and Sz. Thus it remains to show that these states are
eigenstates of the third term on the RHS of Eq. (45), which
we call the D term. To show this, we take a closer look at
|B̄n〉. In the basis of Sz

j eigenstates, they read

|B̄0〉 = |⇑〉 = | + + · · · +〉, (46)

...

FIG. 15. Entanglement entropies in all eigenstates of H1(h, {Dj})
in Eq. (45) for L = 8, h = 1, Dj ∈ [−1, 1]. The density of data points
is color coded. The red circle corresponds to |B̄n〉 (n = 0, 1, . . . , L).

|B̄n〉 = (Q−
0 )n|⇑〉 = 2n × n!

∑
1� j1< j2<···< jn�L

| + + · · · − j1 · · · − j2 · · · − jn · · · +〉, (47)

...

|B̄L〉 = 2L × L!| − − · · · −〉. (48)

As one can see, each |B̄n〉 consists of sequences of |±〉, in
which the state |0〉 never appears. Therefore, each |B̄n〉 is an
eigenstate of (Sz

j )
2 with eigenvalue 1 for all j, implying that

|B̄n〉 is an eigenstate of the D term with eigenvalue
∑

j D j .
One can calculate the half-chain entanglement entropy of

|B̄n〉 in the same way as the ferromagnetic states with spin-
1/2. The result reads

SA(|B̄n〉) = −
n∑

k=0

(L/2
k

)(L/2
n−k

)
(L

n

) ln

(L/2
k

)(L/2
n−k

)
(L

n

) . (49)

(see Appendix A for details). The state |B̄L/2〉 has the largest
entanglement entropy in {|B̄n〉}n=0,1,...,L, and the asymptotic
form of SA(|B̄L/2〉) for L � 1 is given by

SA(|B̄L/2〉) ≈ 1

2

(
ln

πL

8
+ 1

)
, (50)

which obeys a sub-volume law.
Figure 15 shows the half-chain entanglement entropy as a

function of energy for H1 with L = 8, h = 1, and Dj randomly
chosen from [−1, 1]. As one can see, the states |B̄n〉 form a
tower of low-entanglement states. They are, however, not well
separated from other states due to the presence of other low-
entanglement states. The obtained result also suggests that the
energy E = 0 is highly degenerate even in the presence of
disorder in Dj . Since we obtain superpositions of degenerate
eigenstates in numerical diagonalization, the entanglement
entropy of the state |B̄L/2〉 at this energy is obscured. This may
be the reason why a data point is missing in the red circle at
E = 0.

In order to resolve the degeneracy, we now consider
the sector with fixed quantum numbers (Sz,F ) = (0, 1).
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FIG. 16. Entanglement entropies in all eigenstates of H1(h, {Dj})
in Eq. (45) for L = 10, h = 1 in the symmetry sector (Sz,F ) =
(0, 1). Each Dj is randomly chosen from [−5, 5]. The density of
data points is color coded. The entanglement entropy of each state
obeys a volume-law except for |B̄L/2〉, the symmetric state |ψs〉 = | +
− + − · · · 〉 + | − + − + · · · 〉, and the trivial state |0〉 = |00 · · · 0〉.
The orange dotted line indicates SA = 1.236, which is obtained from
Eq. (49) for L = 10.

Figure 16 shows the entanglement entropies of the eigenstates
of H1 in this symmetry sector. Clearly, the state |B̄L/2〉 is
isolated from the other states, indicating its nonthermal nature.
In addition to this state, there are two other entropy out-
liers: |ψs〉 = | + − + − · · · 〉 + | − + − + · · · 〉 and |0〉. These
states are zero-energy states of CSC that remain intact under
the influence of the D term. However, |0〉 cannot be thought of
as a scar. This is because the projection onto this state, namely
P = ∏L

j=1 (1 − (Sz
j )

2), commutes with the Hamiltonian H1,
which simply means that |0〉 is the state that is uniquely
specified by the eigenvalue 1 of P . Thus, out of the three
entropy outliers, only |B̄L/2〉 and |ψs〉 are identified as QMBS.
Figure 17 shows the expectation values of a local observable
for all eigenstates of H1 in the sector with (Sz,F ) = (0, 1).
As an observable, we consider HAKLT in Eq. (18). As we can
see, the expectation values in these three states are isolated
from other thermal states, which implies a violation of strong
ETH.

2. Dynamics

To illustrate the nonthermal features of scarred states, we
study the quench dynamics of the system. The initial states we
consider are coherent states of Q−

0 , namely superpositions of
|B̄n〉 defined as

|β〉 := C−1
L exp(βQ−

0 )|⇑〉 = C−1
L

L∑
n=0

βn

n!
|B̄n〉, (51)

where β ∈ C and CL := (1 + 4|β|2)
L
2 is a normalization factor

such that 〈β|β〉 = 1. Under time evolution by the Hamiltonian
(45), the initial state |β〉 evolves into

|β(t )〉 := e−iH1t |β〉 (52)

FIG. 17. 〈HAKLT〉 in all eigenstates of H1(h, {Dj}) in Eq. (45) for
L = 10, h = 1 in the symmetry sector (Sz,F ) = (0, 1). Each Dj is
randomly chosen from [−5, 5]. The density of data points is color
coded. The red, blue, and green circles indicate |B̄L/2〉, |ψs〉, and
|00 · · · 0〉, respectively.

at time t . Since the states |B̄n〉 are common eigenstates of the
D term with eigenvalue D = ∑

j D j , we can rewrite it as

|β(t )〉 = e−iDt e−ihSzt |β〉. (53)

We first consider the fidelity between initial and time-
evolved states. For an arbitrary initial state |φ(0)〉, it is defined
by

F (t ) = |〈φ(0)|φ(t )〉|, (54)

where |φ(t )〉 = e−iH1t |φ(0)〉. For the coherent states |β〉, we
can calculate the fidelity as

F (t ) = C−2
L

∣∣∣∣∣∣
L∑

m,n=0

(β∗)mβn

m!n!
〈B̄m|e−ihSzt |B̄n〉

∣∣∣∣∣∣
= C−2

L

∣∣∣∣∣
L∑

n=0

|β|2n

(n!)2
e2ihnt 〈B̄n|B̄n〉

∣∣∣∣∣
= C−2

L

∣∣∣∣∣
L∑

n=0

(4|β|2e2iht )n

(
L

n

)∣∣∣∣∣
=

∣∣∣∣1 + 4|β|2e2iht

1 + 4|β|2
∣∣∣∣L. (55)

Clearly, it is a periodic function with period T = π/h, ex-
hibiting perfect revivals, i.e., F (t ) = 1 at t = nT (n ∈ N),
irrespective of the system size. We show in Fig. 18 the numer-
ical results of the fidelity dynamics with several initial states.
As we can see, the coherent states show perfectly periodic
revivals, indicating that they never thermalize. This is in stark
contrast to the fidelity of a generic state, which decays rapidly
to zero. We remark that a perfect revival of the initial state
after a time of at most O(poly(L)), in general, implies the
existence of QMBS [107].

We next examine the time evolution of the half-chain en-
tanglement entropy for several initial states. In the following,
we consider the case of even L. The half-chain entanglement
entropy of the coherent state |β(t )〉 does not evolve in time. In
fact, it is always 0. This can be seen by noting that |β(t )〉 is
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FIG. 18. The dynamics of the fidelity with L = 8, h = 1, and
Dj ( j = 1, 2, . . . , L) chosen randomly from [−1, 1]. Perfectly pe-
riodic revivals can be seen when the initial state is a coherent state,
whereas for other generic states the fidelity decays rapidly to zero.

just a product of two states,

|β(t )〉 = e−iDt e−ihSz
At |β〉A ⊗ e−ihSz

Bt |β〉B, (56)

where Sz
A(B) = ∑

j∈A(B) Sz
j and

|β〉A(B) := C−1
L/2 exp

⎛
⎝β

∑
j∈A(B)

(S−
j )2

⎞
⎠|⇑〉A(B) (57)

with |⇑〉A(B) = ⊗ j∈A(B)|+〉 j . Let us slightly generalize the ini-
tial state by considering a superposition of coherent states with
different β, namely,

∑n
i=1 ci|βi〉. Since |βi〉L = |βi〉A ⊗ |βi〉B,

the entanglement entropy is obtained as [108,109]

SA = −Tr[M2 ln M2]

Tr[M2]
+ ln Tr[M2], (58)

where the matrix elements of M are defined as

Mi, j = c∗
i c j〈βi|β j〉A = c∗

i c j (1 + 4β∗
i β j )N

(1 + 4|βi|2)
N
2 (1 + 4|β j |2)

N
2

. (59)

It is then clear that the entanglement entropy for this class of
states is constant in time.

Figure 19 shows the time evolution of the half-chain en-
tanglement entropy SA for several initial states. Clearly, the
coherent states and their superposition do not gain entangle-
ment. By contrast, SA of the product state | − 0 + −0 + −0〉
grows rapidly and saturates near the Page value [110] of a
random state

SPage = L

2
ln 3 − 1

2
. (60)

C. Scarred |Ān〉
1. Tower of eigenstates

As we have seen in the previous subsection, the key to
finding a suitable perturbation is to find an operator that acts
on a set of target states as a constant. To find such an operator
for |Ān〉, let us take a closer look at these states. The operator
O−

π that generates |Ān〉 is invariant under translation by two
sites. Therefore, considering its action on the two neighboring

FIG. 19. Dynamics of the half-chain entanglement entropies
with the same setup as Fig. 18. The dashed line indicates the Page
value SPage [Eq. (60)]. Initial coherent states have constant entan-
glement entropy, but that of | − 0 + −0 + −0〉 rapidly grows and
saturates near SPage.

sites may suggest a suitable operator. The operator O−
π acts

as S−
j − S−

j+1 at the two neighboring sites ( j, j + 1), and as a
result, we get the states listed in Table I by repeatedly applying
it to the state | + +〉 j, j+1.

Each state in the table is a simultaneous eigenstate of
Sz

j + Sz
j+1 and Pj, j+1, the permutation operator between site

j and j + 1 [see Eq. (21)]. From this result, we see that
(−1)Sz

j+Sz
j+1 Pj, j+1 = 1 holds in the subspace spanned by these

states. Therefore, each |Ān〉 is an eigenstate of the following
Hamiltonian:

H2(h, {Dj} j ) = CSC + h
L∑

j=1

Sz
j +

L∑
j=1

Dj (−1)Sz
j+Sz

j+1 Pj, j+1,

(61)

where Dj are any real numbers. One can, in principle, con-
struct a more complicated Hamiltonian involving more than
two-spin interactions using the same strategy.

In what follows, we assume that the number of sites L
is even and omit the dependence of H2 on h and Dj unless
necessary. Interestingly, the states |B̄n〉 are also eigenstates
of H2 since |B̄n〉 is totally symmetric, i.e., Pi, j |B̄n〉 = |B̄n〉 for
any i, j and Sz

j + Sz
j+1 is even for any j. We can see from

Fig. 20(a) that the states |Ān〉 behave as QMBS in this system.
On the other hand, the data points for the states |B̄n〉 are mostly
missing due to the degeneracies.

TABLE I. The explicit form of (S−
j − S−

j+1)n| + +〉 j, j+1 up to
constant factors. The third and fourth columns indicate the eigen-
values of the corresponding operators for each state.

n State Sz
j + Sz

j+1 Pj, j+1

0 | + +〉 2 1
1 |0+〉 − | + 0〉 1 −1
2 | − +〉 − 2|00〉 + | + −〉 0 1
3 |0−〉 − | − 0〉 −1 −1
4 | − −〉 −2 1
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(a) (b)

FIG. 20. (a) Entanglement entropies in all eigenstates in Eq. (61) with L = 10, h = 1. Each Dj is randomly chosen from [−1, 1]. The
density of data points is color coded. The states |Ān〉 (red circles) and |B̄n〉 (blue circles) have relatively low entanglement entropy. Note that
although |Ān〉 and |B̄n〉 are eigenstates of H2(h, {Dj} j ), some circles do not overlap with corresponding data points because of degeneracies.
(b) Entanglement entropies in all eigenstates of inhomogeneous model Eq. (61) for L = 10, h = 1 in the symmetry sector Sz = 0. Each Dj is
randomly chosen from [−1, 1]. The density of data points is color coded. The red, blue and green circles indicate |ĀL〉, |B̄L/2〉, and |000 · · · 〉,
respectively.

Since the last term in Eq. (61) does not break U(1) sym-
metry associated with Sz, we can divide the Hilbert space
into subspaces according to the eigenvalues of Sz. The Sz = 0
subspace can be further decomposed into two sectors with op-
posite F . We have analyzed the level-spacing statistics in the
sector (Sz,F ) = (0, 1) and found that the distribution is close
to the GUE Wigner-Dyson distribution. We also calculated the
r value and obtained 〈r〉 � 0.593, which is consistent with the
GUE.

Figure 20(b) shows the entanglement entropies of eigen-
states of H2 in the sector Sz = 0. In the figure, both |ĀL〉
and |B̄L/2〉 can be identified as entanglement outliers, which
leads us to the conclusion that |B̄n〉 are also QMBS for H2.
It should be noted that another entanglement outlier, i.e.,
|0〉 = |000 · · · 〉 in Fig. 20(b), cannot be thought of as a scar.
This is because the projection onto this state, namely P =∏L

j=1 (1 − (Sz
j )

2), commutes with H2, which simply means
that this state is uniquely specified by the eigenvalue 1 of P .

2. Dynamics

Similarly to the previous subsection, we introduce a coher-
ent state of Oπ , namely a superposition of |Ān〉 defined by

|α〉 = C̃−1
L exp(αO−

π )|⇑〉 = C̃−1
L

2L∑
n=0

αn

n!
|Ān〉, (62)

where C̃L = (1 + |α|2)L is the normalization constant. When
the initial state is the coherent state |α〉, the fidelity defined in
Eq. (54) can be computed as

F (t ) = C̃−2
L

∣∣∣∣∣∣
2L∑

m,n=0

α∗mαn

m!n!
〈Ām|e−iH2t |Ān〉

∣∣∣∣∣∣
= C̃−2

L

∣∣∣∣∣
2L∑

n=0

|α|2n

(n!)2
eihnt 〈Ān|Ān〉

∣∣∣∣∣

= C̃−2
L

∣∣∣∣∣
2L∑

n=0

(|α|2eiht )n

(
2L

n

)∣∣∣∣∣
=

∣∣∣∣1 + |α|2eiht

1 + |α|2
∣∣∣∣2L

. (63)

Thus, it attains the maximum fidelity F (t ) = 1 periodically
with period T = 2π/h. Figure 21 shows the numerical results
of the fidelity dynamics with several initial states. Here we
set h = 1. Clearly, the coherent states attain F (t ) = 1 period-
ically with period 2π , whereas the fidelities of the other states
decay rapidly to zero. We also calculated the time evolution
of the entanglement entropy for these states and obtained a
result similar to that shown in Fig. 19. See Appendix G for
the dynamics from a more complex initial state.

FIG. 21. The dynamics of the fidelity with h = 1, L = 8, and
Dj ( j = 1, 2, . . . , L) chosen randomly from [−1, 1]. The fidelity
shows perfectly periodic revivals when the initial state is a coherent
state, whereas it decays rapidly to zero for other generic states.
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FIG. 22. An example of the triangular lattice. The integers de-
note the site indices, and the black and white sites with the same
index are identified by the periodic boundary conditions. We take the
subsystem A to be the set of sites enclosed by the dashed lines, which
is used to calculate the entanglement entropy.

D. Two-dimensional model

In the same way as before, we can construct two-
dimensional models with QMBS. Here we consider the
generalization of the model H1 in Eq. (45) on a triangular
lattice with periodic boundary conditions (Fig. 22). Let � be
the triangular lattice. The Hamiltonian is

H2d
1 (h, {Dj} j ) = C2d

SC + h
∑
j∈�

Sz
j +

∑
j∈�

Dj
(
Sz

j

)2
, (64)

where

C2d
SC =

∑
�/�

S j · (Sk × Sl ), (65)

and the summation is over all triangles. The subscripts j, k,
and l are in the clockwise (counterclockwise) order in each
upward (downward) triangle.

Analogously to the states |B̄n〉, one can define the following
states:

|�n〉 = (Q−
0 )n|⇑〉 =

⎛
⎝∑

j∈�

(S−
j )2

⎞
⎠n

|⇑〉. (66)

Since Q−
0 can be decomposed into Q−

0 = QX + Q�\X with
QX := ∑

i∈X (S−
i )2 and Q�\X := Q−

0 − QX for any X =
{ j, k, l} forming an upward or downward triangle, we obtain

|�n〉 =
n∑

p=0

(
n

p

)
(QX )p| + ++〉X

⊗ (Q�\X )n−p| + + · · · +〉�\X . (67)

Then, one can show that S j · (Sk × Sl )(QX )p| + ++〉X = 0
for any X and p in the same way as in the one-dimensional
case. Therefore, |�n〉 is an eigenstate of C2d

SC with eigen-
value 0. Furthermore, since Dj (S j )2 acts only on one site,
Dj (S j )2|�n〉 = Dj |�n〉 can be shown in the same way as in the
one-dimensional case. Therefore, each |�n〉 is an eigenstate
of H2d

1 in Eq. (64) with eigenvalue h(|�| − 2n) + ∑L
j=1 Dj ,

where by |�| we denote the total number of sites in �.
To see whether |�n〉 are QMBS, we calculate entanglement

entropies in all eigenstates of H2d
1 in the symmetry sector

with Sz = 1. In the calculation, we take the subsystem A to

FIG. 23. Entanglement entropies in all eigenstates of
H 2d

1 (h, {Dj}) in Eq. (64) for L = 9, h = 1 in the symmetry
sector Sz = 1. Each Dj is randomly chosen from [−1, 1]. The
density of data points is color coded. The red circle indicate the scar
state |�n=4〉.

be {0, 3, 6} (see Fig. 22 for the site labels). As shown in
Fig. 23, the state |�n=4〉 has significantly lower entanglement
entropy than the other states, indicating that this state is a scar
state. We have also checked numerically that the entanglement
entropy of |�n〉 is extremely low regardless of the choice of
the subsystem A.

VII. DISCUSSION

We have constructed several examples of quantum spin
models with two- and three-body interactions that exhibit
QMBS using the two different methods: one based on inte-
grable boundary states and the other focusing on towers of
states generated by the raising and lowering operators. We
demonstrated that the QMBS in the models behave differently
from thermal states by comparing their spectral, dynamical,
and entanglement properties with those of other typical states.
The methods presented in this paper can be used to systemati-
cally construct other models with QMBS. For example, using
another combination of conserved charges {Q2k+1}k=1,2,... in
the first method, one can construct a family of new models
in which an integrable boundary state is an exact zero-energy
state. The second method discussed in Sec. II is a variant of
existing methods, and in particular, it is similar to that of Tang
et al. [47], where the authors constructed models with towers
of scar states generated by irreducible tensor operators. How-
ever, their main focus is on spin-1/2 systems, whereas our
paper is primarily concerned with spin-1 systems. Moreover,
we demonstrated that our method allows for the construction
of a two-dimensional model with QMBS.

In future research, it would be interesting to construct
nonintegrable models that have multiple integrable boundary
states as QMBS. To this end, we need to find a noninte-
grable Hamiltonian in which these integrable boundary states
become degenerate. Since the idea of integrable boundary
states can be traced back to those of integrable quantum
field theories [111], it would also be interesting to con-
struct nonintegrable quantum field theories with QMBS by
extending our method. In this regard, we note that QMBS in
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continuous models have also been discussed in previous stud-
ies [112–115].

Another direction worth investigating is to apply our
methods to open quantum and periodically driven systems.
Previous studies have shown that there are some open or
driven systems that fail to thermalize at late times [63,116–
119], where algebraic approaches were also widely used.
Finally, it would also be interesting to extend the notion
of integrable boundary states to such systems and construct
models exhibiting nonthermalizing dynamics. In this respect,
dissipative systems described by integrable Lindblad superop-
erators [120–122] and integrable Floquet systems [123–125]
may serve as a good starting point for constructing concrete
examples.
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APPENDIX A: ENTANGLEMENT ENTROPY
OF THE FERROMAGNETIC STATES

We consider the general spin-σ case (σ = 1/2, 1,

3/2, . . .). The basis states |ζ 〉 (ζ = σ, σ − 1, . . . ,−σ +
1,−σ ) on each site are defined such that Sz|ζ 〉 = ζ |ζ 〉 and
S±|ζ 〉 = √

σ (σ + 1) − ζ (ζ ± 1)|ζ ± 1〉. We denote the fully
polarized state, i.e., |σ 〉⊗L by |⇑〉L. Then the ferromagnetic
states as the SU(2) descendants of |⇑〉L are defined as

|Fn〉L = 1√
Nσ (n, L)

(S−)n|⇑〉L, n = 0, 1, ..., 2σL (A1)

where Nσ (n, L) is a normalization constant such that
〈Fn|Fn〉L = 1. One can show that

Nσ (n, L) = n!(2σL)!

(2σL − n)!
(A2)

for all σ , L, and n using [S+,S−] = 2Sz and the mathematical
induction on n. The proof goes as follows.

First, it is obvious that ‖(S−)0|⇑〉L‖2 = ‖|⇑〉L‖2 = 1. On
the other hand, we obtain 0!2σL!

(2σL−0)! = 1. Thus, Eq. (A2) is valid
for n = 0. Next, we assume Eq. (A2) is true for n = k. Then
we can calculate Nσ (k + 1, L) as

Nσ (k + 1, L) = 〈⇑|(S+)k+1(S−)k+1|⇑〉L (A3)

= 〈⇑|(S+)k (S−S+ + 2Sz )(S−)k|⇑〉L (A4)

= 2(σL − k)Nσ (k, L)

+〈⇑|(S+)kS−(S−S+ + 2Sz )(S−)k−1|⇑〉L

(A5)

= · · ·
= 2{(σL − k) + (σL − k + 1) + · · ·

+ σL}Nσ (k, L) (A6)

= (k + 1)!(2σL)!

(2σL − (k + 1))!
(A7)

Thus, Eq. (A2) is true for n = k + 1. Hence Eq. (A2) is true
for all n = 0, 1, . . . , 2σL.

To compute the entanglement entropy, we divide the whole
chain into two subsystems, A and B, with lengths LA and LB,
respectively. Since S− = ∑L

j=1 S−
j is the sum of single-site

operators, we can rewrite S− as S− = S−
A + S−

B , where S−
A =∑

j∈A S−
j and S−

B = ∑
j∈B S−

j . Then, we see that |Fn〉L can be
written in the Schmidt decomposition form

|Fn〉L = 1√
Nσ (n, L)

(S−
A + S−

B )n|⇑〉L (A8)

=
n∑

k=0

1√
Nσ (n, L)

(
n

k

)
(S−

A )k (S−
B )n−k|⇑〉L (A9)

=
n∑

k=0

√
Nσ (k, LA)Nσ (n − k, LB)

Nσ (n, L)

×
(

n

k

)
|Fk〉LA ⊗ |Fn−k〉LB ,

(A10)

from which the entanglement entropy is obtained as

SA(|Fn〉L ) = −
n∑

k=0

Nσ (k, LA)Nσ (n − k, LB)

Nσ (n, L)

(
n

k

)2

× ln
Nσ (k, LA)Nσ (n − k, LB)

Nσ (n, L)

(
n

k

)2

(A11)

= −
n∑

k=0

(
2σL

n

)−1(2σLA

k

)(
2σLB

n − k

)

× ln

[(
2σL

n

)−1(2σLA

k

)(
2σLB

n − k

)]
. (A12)

We now discuss the asymptotic behavior of SA(|Fn〉L ) for
large L. In particular, we consider the case where L is even,
LA = LB = L/2, and n = σL. In this case, one can rewrite
Eq. (A8) as

SA(|FσL〉L )

= −
σL∑

k=0

(
2σL

σL

)−1(
σL

k

)2

ln

(
2σL

σL

)−1(
σL

k

)2

(A13)

=
(

2σL

σL

)−1 σL∑
k=0

[(
σL

k

)2

ln

(
2σL

σL

)
−

(
σL

k

)2

ln

(
σL

k

)2
]
.

(A14)
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Using the Vandermonde identity, we can rewrite the first term
in the bracket as

σL∑
k=0

(
σL

k

)2

ln

(
2σL

σL

)
=

(
2σL

σL

)
ln

(
2σL

σL

)
. (A15)

On the other hand, we cannot directly compute the second
term for finite L. However, in the large-L limit, the dominant
contribution to the summation comes from large k. Thus, we
can apply the de Moivre-Laplace theorem and evaluate (n

k) as

(
n

k

)
= 2n√

1
2 nπ

exp

[
−2

(
k − n

2

)2

n

]
×

(
1 + O

(
1√
n

))

(A16)

in the limit n → ∞ [85,128–130]. Using this asymptotic ex-
pansion and the Vandermonde identity, we have

σL∑
k=0

(
σL

k

)2

ln

(
σL

k

)2

=
(

2σL

σL

)[
2σL ln 2 − 2 ln

√
πσL

2

− σL

2σL − 1
+ O

(
1√
L

)]
. (A17)

Substituting this and Eq. (A15) into Eq. (A14), we find

SA(|FσL〉L ) = ln

(
2σL

σL

)
+ σL

2σL − 1

− 2

[
σL ln 2 − ln

√
πσL

2

]
+ O

(
1√
L

)
.

(A18)

Finally, using Stirling’s formula, ln n! = n ln n − n + 1
2 ln n +

1
2 ln 2π + O(n−1), we get

ln

(
2σL

σL

)
= 2σL ln 2 − 1

2
ln σL − 1

2
ln π + O

(
1

L

)
,

(A19)

and hence we obtain the asymptotic form of Eq. (A14) as

SA(|FσL〉L ) = 1

2
ln σL + 1

2

(
ln

π

4
+ 1

)
+ O

(
1√
L

)
(L � 1). (A20)

APPENDIX B: SU(2) SYMMETRY OF H3

In this section, we provide a proof that H3 in (19) has
global SU(2) symmetry. As in the main text, we define the
total spin operators by Sα = ∑L

j=1 Sα
j (α = x, y, z), where

Sα
j is the spin-1 operator at site j in Eq. (16). They are the

generators of the global SU(2), i.e., for any U ∈ SU(2) there
exists {θα} such that U = exp(i

∑
α∈{x,y,z} θαSα ). Any U can

be decomposed into U = 1 + X , where X is a polynomial
in {Sx,Sy,Sz}. Thus, to prove that [H3,U ] = 0 for all U ∈
SU(2), it suffices to show [H3,Sα] = 0 for all α ∈ {x, y, z}.

For simplicity, we introduce the SU(3) generators T a :=
λa/2 satisfying [T a, T b] = i fabcT c, in terms of which H3/8 is
written as

1

8
H3 =

L∑
j=1

fabcT a
j T b

j+1T c
j+2, (B1)

where the summation over repeated indices a, b, and c is
implied. Due to the tracelessness of the SU(2) generators,
Sx

j , Sy
j , and Sz

j can be written as linear combinations of the

SU(3) generators. By Tr[T aT b] = 1
2δab [131], we have Sα

j =
2Tr j[Sα

j T u
j ]T u

j . Now we calculate the commutator

1

8

[
H3,

L∑
k=1

T u
k

]
=

⎡
⎣ L∑

j=1

fabcT a
j T b

j+1T c
j+2,

L∑
k=1

T u
k

⎤
⎦ (B2)

=
L∑

j=1

fabc
([

T a
j , T u

j

]
T b

j+1T c
j+2 + T a

j

[
T b

j+1, T u
j+1

]
T c

j+2 + T a
j T b

j+1

[
T c

j+2, T u
j+2

])
(B3)

= i
L∑

j=1

fabc
(

fauvT v
j T b

j+1T c
j+2 + fbuvT a

j T v
j+1T c

j+2 + fcuvT a
j T b

j+1T v
j+2

)
(B4)

= i
L∑

j=1

( fvbc fvua + favc fvub + fabv fvuc︸ ︷︷ ︸
(∗)

) T a
j T b

j+1T c
j+2. (B5)

Then it follows from the Jacobi identity that (∗) = 0, which yields the desired result [H3,Sα] = 0 (α = x, y, z), i.e., the global
SU(2) symmetry of H3.
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APPENDIX C: PROOF THAT |�VBS〉
IS AN INTEGRABLE BOUNDARY STATE

In this section, we prove that the VBS state |�VBS〉 in
Eq. (24) is an integrable boundary state of the Sutherland
model. The Hamiltonian of the model is defined as

HS = −
L∑

i=1

(Pi,i+1 − 1), (C1)

commuting with H3 in Sec. IV. The quantum integrability of
the model can be summarized by the transfer matrix T (λ),

T (λ) = Tra

⎛
⎝ L∏

j=1

Ra, j (λ)

⎞
⎠, (C2)

with the R matrix

Ra, j (λ) = 1

λ + i
(λ + iPa, j ) (C3)

satisfying the celebrated Yang–Baxter equation. The sub-
index a stands for the three-dimensional auxiliary space,
which is traced over in Eq. (C2), resulting in an operator act-
ing only on the physical Hilbert space. From the Yang–Baxter
equation, it is easy to deduce that T (λ) is in involution,

[T (λ), T (μ)] = 0, ∀λ,μ ∈ C. (C4)

Moreover, we have

HS = −i
∂

∂λ
log T (λ)

∣∣∣∣
λ=0

, H3 = −2i
∂2

∂λ2
log T (λ)

∣∣∣∣
λ=0

.

(C5)

As shown in [57], for an integrable boundary state |�0〉
with even system size L,

Q2k+1|�0〉 = 0 (k = 1, 2, ...)

⇔ T (λ)|�0〉 = I T (λ) I |�0〉, (C6)

where the parity (spatial inversion) operator

I =
L/2∏
j=1

Pj,L− j+1. (C7)

Our aim is to show that the VBS state |�VBS〉 satisfies the
condition (C6) with the Sutherland model transfer matrix.
To begin with, for any similarity transformation with local
density

U =
L∏

j=1

u j, (C8)

the transfer matrix T (λ) commutes with it, i.e.,

UT (λ)U −1 = Tra

⎛
⎝ L∏

j=1

u jRa, j (λ)u−1
j

⎞
⎠

= Tra

⎛
⎝ L∏

j=1

u−1
a Ra, j (λ)ua

⎞
⎠ = T (λ), (C9)

using (C3). We choose the similarity transformation to be

u j = 1√
2

⎛
⎝ 1 i 0

0 0 −√
2

−1 i 0

⎞
⎠

j

, (C10)

such that after acting with U −1 on |�VBS〉, we get [57]

U −1|�VBS〉 = 3−L/2|�0〉,
|�0〉 =

∑
{s}

Tr[Bs1 Bs2 · · · BsL ]|s1, s2, · · · sL〉, (C11)

where

B+ = σ x, B0 = σ y, B− = σ z. (C12)

Acting on |�0〉 with the parity operator, we have

I|�0〉 =
∑
{s}

Tr
[
BT

s1
BT

s2
· · · BT

sL

]|s1, s2, · · · sL〉

=
∑
{s}

(−1)n0 Tr[Bs1 Bs2 · · · BsL ]|s1, s2, · · · sL〉, (C13)

where T denotes transpose and n0 counts the number of spin
0 in state |s1, s2, · · · sL〉. Since the transfer matrix T (λ) is a
matrix product operator, we can express the state

T (λ)Tr[Bs1 Bs2 · · · BsL ]|s1, s2, · · · sL〉
= Tr[Cs1Cs2 · · ·CsL ]|s1, s2, · · · sL〉, (C14)

where the matrices Cs (s = +, 0,−) are 6-dimensional. In
addition, one can show that there exists a similarity transfor-
mation V such that

CT
± = VC±V −1, CT

0 = −VC0V
−1, (C15)

i.e.,

ITr[Cs1Cs2 · · ·CsL ]|s1, s2, · · · sL〉
= Tr

[
CT

s1
CT

s2
· · ·CT

sL

]|s1, s2, · · · sL〉
= (−1)n0 Tr[Cs1Cs2 · · ·CsL ]|s1, s2, · · · sL〉. (C16)

We are now ready to show that |�0〉 is an integrable boundary
state. Using Eqs. (C13), (C14), and (C16), we have

I T (λ) I |�0〉 = I
∑
{s}

(−1)n0 Tr[Cs1Cs2 · · ·CsL ]|s1, s2, · · · sL〉

=
∑
{s}

(−1)2n0 Tr[Cs1Cs2 · · ·CsL ]|s1, s2, · · · sL〉

= T (λ)|�0〉.
(C17)

From this, we find

I T (λ) I |�VBS〉 = 3−L/2U I T (λ) I |�0〉
= 3−L/2UT (λ)|�0〉 = T (λ)|�VBS〉, (C18)

which shows that the VBS state is an integrable boundary state
of the Sutherland model.
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APPENDIX D: EIGENENERGY
OF FERROMAGNETIC STATES

In this section, we compute the energy of the ferromag-
netic states, which are eigenstates of the Hamiltonian H (t )
in Eq. (17). The ferromagnetic states are defined as |Fn〉 =
(S−)n|F0〉, where |F0〉 = | + + · · · +〉 and 0 � n � 2L. They
are the same as |Fn〉L with σ = 1 in Appendix A up to a
normalization factor. Because HAKLT and H3 commute with
S− (see Appendix B), all ferromagnetic states |Fn〉 have the
same energy. Thus it suffices to consider the energy of |F0〉.

Since |F0〉 is invariant under any permutation, we have
Pj, j+1, j+2|F0〉 = P†

j, j+1, j+2|F0〉 = |F0〉. Thus we obtain

H3|F0〉 =
L∑

j=1

(Pj, j+1, j+2 − P†
j, j+1, j+2)|F0〉 = 0, (D1)

and hence H3|Fn〉 = H3|F0〉 = 0 for all n. Moreover, since
(S j · S j+1)|F0〉 = |F0〉 for all j, we obtain

HAKLT|F0〉 =
L∑

j=1

[
1 + 1

3
+ 2

3

]
|F0〉 = 2L|F0〉. (D2)

Therefore, the ferromagnetic states are eigenstates of H (t )
with eigenvalue 2L. A similar calculation shows that the
eigenenergy of the ferromagnetic states in the inhomogeneous
model (30) is 2

∑
j c j .

APPENDIX E: PROOF OF CSC|�VBS〉 = 0

In this section, we show

CSC|�VBS〉 = 0. (E1)

First, we rewrite |�VBS〉 as

|�VBS〉 = 3−L/2Tr[A1A2 · · · AL],

A j =
( |0〉 j −√

2|+〉 j√
2|−〉 j −|0〉 j

)
. (E2)

Next, we introduce a convenient representation of CSC,

S j · (S j+1 × S j+2) = i

2
ταβγ Sα

j Sβ

j+1Sγ

j+2, (E3)

where α, β, γ ∈ {+,−, z} and τ is the totally antisymmetric
tensor with τ+−z = 1. Then, by acting on |�VBS〉 with each
term, we obtain

ταβγ Sα
j Sβ

j+1Sγ

j+2|�VBS〉
= 3−L/2Tr

[
A1 · · · A j−1Bαβγ

j, j+1, j+2A j+3 · · · ], (E4)

where

B+−z
j, j+1, j+2 =

√
2

( | + 0−〉 −| − +−〉
2|00−〉 − | + −−〉 −√

2|0 − +〉
)

,

(E5)

B+z−
j, j+1, j+2 =

√
2

(
0 −| + +−〉

−| + −−〉 √
2(| + −0〉 − |0 + −〉)

)
,

(E6)

B−z+
j, j+1, j+2 =

√
2

(√
2(|0 − +〉 − | − +0〉) | − ++〉

| − −+〉 0

)
,

(E7)

B−+z
j, j+1, j+2 =

√
2

(√
2|0 + −〉 | − ++〉 − 2|00+〉
| − +−〉 −√

2| − 0+〉
)

, (E8)

Bz+−
j, j+1, j+2 =

√
2

(−√
2| + 0−〉 2| + 00〉 − | + +−〉

−| − +−〉 √
2| − +0〉

)
,

(E9)

Bz−+
j, j+1, j+2 =

√
2

( −√
2| + −0〉 | + −+〉

| − −+〉 − 2| − 00〉 √
2| − 0+〉

)
,

(E10)

and Bαβγ

j, j+1, j+2 = 0 for any other choice of (α, β, γ ). There-
fore, we obtain

S j · (S j+1 × S j+2)|�VBS〉
= 3−L/2Tr[A1 · · · A j−1B j, j+1, j+2A j+3 · · · ], (E11)

where

B j, j+1, j+2 = i

2

∑
α,β,γ∈{+,−,z}

Bαβγ

j, j+1, j+2

= i

(
|0 − +〉 − | − +0〉 + |0 + −〉 − | + −0〉 √

2(| + 00〉 − |00+〉 + | − ++〉 − | + +−〉)√
2(|00−〉 − | − 00〉 + | − −+〉 − | + −−〉) | + −0〉 + | − +0〉 − |0 − +〉 − |0 + −〉

)
. (E12)

Then, we can decompose B j, j+1, j+2 into

B j, j+1, j+2 = A jC j+1, j+2 − C j, j+1A j+2, (E13)

where

C j, j+1 = i

(| + −〉 + | − +〉 − |00〉 0
0 | + −〉 + | − +〉 − |00〉

)
. (E14)

Therefore, we have

CSC|�VBS〉 = 3−L/2
L∑

j=1

{Tr[A1 · · · A j−1A jC j+1, j+2A j+3 · · · AL] − Tr[A1 · · · A j−1C j, j+1A j+2A j+3 · · · AL]} = 0. (E15)
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APPENDIX F: ZERO ENERGY STATES OF CSC

In this section, we prove that |Ān〉, |B̄n〉, and |K0,p〉 are
annihilated by CSC. We also derive a lower bound on the
number of zero-energy states of CSC.

1. CSC|Ān〉 = 0

To prove CSC|Ān〉 = 0, we first prove the following:
Theorem F.1. Consider CSC with an even number of sites

L. Then the following relations hold:

CSCO−
π |⇑〉 = 0, (F1)

CSC(O−
π )2|⇑〉 = 0, (F2)

[O−
π , [O−

π , [O−
π ,CSC ] ] ] = 0. (F3)

Proof. We first prove Eq. (F1). We can write O−
π |⇑〉 in the

Sz basis as

O−
π |⇑〉 =

√
2

L∑
j=1

(−1) j | j〉, (F4)

where we have used the shorthand notation | j〉 := | + · · · +
0 j + · · · +〉. Then we find CSC| j〉 = i(| j − 2〉 − | j + 2〉),
which yields

CSCO−
π |⇑〉 =

√
2i

L∑
j=1

(−1) j (| j − 2〉 − | j + 2〉) = 0. (F5)

We can also see this as follows. First note that CSCO−
π |⇑〉 is

odd under the site-centered inversion Is. We then note that it
is invariant under translation by two sites T 2. However, there
is no single-magnon state (a linear combination of | j〉) that
is compatible with these constraints. Thus, CSCO−

π |⇑〉 must
vanish identically.

Next, we consider Eq. (F2). By acting on |⇑〉 with O−
π

twice, we get

(O−
π )2|⇑〉 = 2

⎛
⎝2

∑
1� j<k�L

(−1) j+k| j, k〉 +
L∑

j=1

| j̄〉
⎞
⎠, (F6)

where | j, k〉 := | + · · · + 0 j + · · · + 0k + · · · +〉 and | j̄〉 :=
| + · · · + − j + · · ·+〉. We can rewrite the first term as∑

j<k

(−1) j+k| j, k〉

=
L∑

j=1

⎛
⎝L/2−1∑

r=1

(−1)r | j, j + r〉 + (−1)
L
2 | j, j + L

2
〉
⎞
⎠. (F7)

We now examine the action of CSC on | j, j + r〉. For r � 3,
we get

CSC| j, j + r〉 = i(| j − 2, j + r〉 − | j + 2, j + r〉
+ | j, j + r − 2〉 − | j, j + r + 2〉) (r � 3).

(F8)

Therefore, we obtain

CSC

L∑
j=1

| j, j + r〉 = 0 (r � 3). (F9)

Next, we consider the case with r = 2. In this case, the action
of CSC is

CSC| j, j + 2〉 = i(| j − 2, j + 2〉 − 2| j − 1, j + 2〉
+ | j + 1, j + 2〉 + | j〉 − | j + 2〉
+ 2| j, j + 3〉 − | j, j + 1〉 − | j, j + 4〉),

(F10)

which yields

CSC

L∑
j=1

| j, j + 2〉 = 0. (F11)

Similarly, for | j, j + 1〉, we obtain

CSC| j, j + 1〉 = i(| j − 2, j + 1〉 − | j − 1, j + 1〉
+ 2| j + 1〉 − 2| j〉 + | j, j + 2〉 − | j, j + 3〉).

(F12)

Thus, we have

L∑
j=1

CSC| j, j + 1〉 = 0. (F13)

We next examine | j〉. Acting with CSC on | j〉, we obtain

CSC| j〉 = i(| j − 2, j〉− 2| j − 1, j〉+ 2| j, j + 1〉 + | j, j + 2〉).

(F14)

Thus, we have

L∑
j=1

CSC| j̄〉 = 0. (F15)

Putting this all together, we get

CSC(O−
π )2|⇑〉 = 0. (F16)

Finally, we consider Eq. (F3). Since CSC is a sum of
terms of the form Sα

j Sβ

j+1Sγ

j+2 ({α, β, γ } = {+,−, z}) and
O−

π is a linear combination of S−
k , the nested commuta-

tor [O−
π , [O−

π , [O−
π ,CSC ] ] ] is a sum of S−

j S−
j+1S−

j+2. Let

Oαβγ
j := [O−

π , [O−
π , [O−

π , Sα
j Sβ

j+1Sγ

j+2 ] ] ] for {α, β, γ } =
{+,−, z}, we obtain

O+−z
j = 3[O−

π , [O−
π , S+

j ] ] S−
j+1 [O−

π , Sz
j+2 ]

= 3 · (−2) · (−1)2 jS−
j · S−

j+1 · (−1) j+2S−
j+2 (F17)

= −6(−1) j+2S−
j S−

j+1S−
j+2, (F18)

O−+z
j = 3S−

j [O−
π , [O−

π , S+
j+1 ] ] [O−

π , Sz
j+2 ]

= 3 · S−
j · (−2) · (−1)2( j+1)S−

j+1 · (−1) j+2S−
j+2 (F19)

= −6(−1) j+2S−
j S−

j+1S−
j+2. (F20)
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Hence, O+−z
j = O−+z

j . Similarly, one can show that O−z+
j =

O+z−
j and Oz+−

j = Oz−+
j . Therefore, we have

[O−
π , [O−

π , [O−
π ,CSC ] ] ] = i

2

L∑
j=1

∑
α,β,γ

ταβγ Oαβγ

j = 0.

(F21)
From Theorem F.1, CSC|Ān〉 = 0 follows immediately.

2. CSC|B̄n〉 = 0

Next we prove that CSC|B̄n〉 = 0. To this end, we first prove
the following:

Theorem F.2. The following relations are true:

[Q−
0 ,CSC ]|⇑〉 = 0, (F22)

[Q−
0 , [Q−

0 ,CSC ] ]|⇑〉 = 0, (F23)

[Q−
0 , [Q−

0 , [Q−
0 ,CSC ] ] ] = 0. (F24)

Proof. We consider the coherent state |β〉, which can be
written as

|β〉 ∝ eβQ−
0 |⇑〉 =

L∏
j=1

(1 + β(S−
j )2)|⇑〉 =:

L⊗
j=1

|ψβ〉 j,

(F25)

where |ψβ〉 j = |+〉 j + 2β|−〉 j . One can prove that |β〉 is
annihilated by CSC. This can be seen as follows. First note
that S+

j |ψβ〉 j = 2
√

2β|0〉 j and S−
j |ψβ〉 j = √

2|0〉 j , and hence
(S+

j S−
k − S−

j S+
k )|ψβ〉 j ⊗ |ψβ〉k = 0. Next, we note that each

summand of CSC can be cast in the form

S j · (S j+1 × S j+2) = i

2
{(S+

j S−
j+1 − S−

j S+
j+1)Sz

j+2

+ (S+
j+1S−

j+2 − S−
j+1S+

j+2)Sz
j

+ (S+
j+2S−

j − S−
j+2S+

j )Sz
j+1}. (F26)

From this, it is clear that each summand annihilates |β〉, and
hence CSCeβQ−

0 |⇑〉 = 0. Acting with e−βQ−
0 from the left on

both sides of this equation and expanding it by the Baker-
Campbell-Hausdorff formula, we have(

CSC − β[Q−
0 ,CSC ] + β2

2
[Q−

0 , [Q−
0 ,CSC ] ] + · · ·

)
|⇑〉 = 0,

(F27)

which proves Eqs. (F22) and (F23) since β ∈ C can be taken
arbitrarily.

Finally, we show Eq. (F24). Let Qαβγ
j = [Q−

0 ,

[Q−
0 , [Q−

0 , Sα
j Sβ

j+1Sγ

j+2 ] ] ] (α, β, γ = +,−, or z). Then,
we obtain

Q+−z
j = 3[Q−

0 , [Q−
0 , S+

j ] ]S−
j+1[Q−

0 , Sz
j+2 ]

= 3 · (−8(S−
j )3) · S−

j+1 · 2(S−
j+2)2 = 0. (F28)

In the same way, one can show Q−+z
j = Q−z+

j = Q+z−
j =

Qz+−
j = Qz−+

j = 0. Therefore,

[Q−
0 , [Q−

0 , [Q−
0 ,CSC ] ] ] = i

2

L∑
j=1

∑
α,β,γ

ταβγ Qαβγ

j = 0.

(F29)
From Theorem F.2, CSC|B̄n〉 = 0 follows immediately.

3. CSC|K0,p〉 = 0

Here we prove that CSC|K0,p〉 = 0. From Eq. (44), each
|K0,p〉 can be expressed as a linear combination of |�n〉 =∑L

j=1 | j, j + n〉, where n = 0, 1, . . . , �L/2� and | j, j〉 = | j̄〉.
However, it has already been shown by Eqs. (F9), (F11),
(F13), and (F15) that these states are annihilated by CSC.
Therefore, |K0,p〉 are zero-energy states of CSC.

4. Lower bound on the number of zero-energy states

In this subsection, we derive a lower bound on the num-
ber of zero-energy states of CSC. We follow the argument in
Ref. [51], where the authors obtained a lower bound on the
number of zero-energy states of the PXP model. The key point
is that the site-centered inversion Is anticommutes with the
Hamiltonian CSC in Eq. (35), i.e., IsCSC = −CSCIs.

Let H be the Hilbert space of a spin-1 chain of length
L. This Hilbert space can be decomposed as H = Ke ⊕
Ko, where Ke = {|ψ〉 ∈ H | Is|ψ〉 = |ψ〉} and Ko = {|ψ〉 ∈
H | Is|ψ〉 = −|ψ〉}. It follows from {Is,CSC} = 0 that if
|ψ〉 ∈ Ke/o then CSC|ψ〉 ∈ Ko/e. Therefore, CSC can be written
in block-matrix form as

CSC =
(

O D†
SC

DSC O

)
. (F30)

Here the operator DSC can be regarded as a linear map from
Ke to Ko. Let Im DSC and Ker DSC be the image and kernel of
DSC, respectively. It is clear that if |ψ〉 ∈ Ker DSC, then |ψ〉
is annihilated by CSC. Thus, the dimension of Ker DSC gives
a lower bound on the number of zero-energy states. We now
apply the rank-nullity theorem to estimate dim Ker DSC. The
theorem implies that

dim Im DSC + dim Ker DSC = dim Ke. (F31)

Since dim Im DSC � dim Ko, we have

dim Ker DSC � dim Ke − dim Ko, (F32)

which gives a lower bound on the number of zero-energy
states.

Before deriving a general expression for the right-hand
side of Eq. (F32), let us consider a simple example that
illustrates the strategy. For L = 3, the Hilbert space H is
spanned by 27 states. Consider the inversion about site 2.
Then Ke is spanned by the states of the forms |s1, s2, s1〉 and
|s1, s2, s3〉 + |s3, s2, s1〉 (s1 < s3). The number of these states
amounts to 9 + 9 = 18. On the other hand, Ko is spanned by
the states of the form |s1, s2, s3〉 − |s3, s2, s1〉 (s1 < s3), the
number of which amounts to 9. Thus, dim Ke − dim Ko = 9.

The above example clearly illustrates that the difference
between the dimensions of even and odd subspaces counts
the number of product states invariant under Is. Let NL be
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TABLE II. The number of zero-energy states (ZL) and the bound
(NL) up to L = 11 sites.

L 3 4 5 6 7 8 9 10 11

ZL 11 35 45 127 141 435 473 1451 1553
NL 9 27 27 81 81 243 243 729 729

the number of such states for the L-site system. Let ZL be the
exact number of zero-energy states of CSC. It is easy to see that
NL = 3

L+1
2 for L odd and NL = 3

L+2
2 for L even. These results

can be summarized as ZL � NL = 3� L
2 �+1, which proves that

ZL grows exponentially with the system size. Table II shows
the comparison between ZL obtained by exact diagonalization
and the bound NL. Clearly, ZL grows more rapidly than NL.
We expect that a better lower bound can be obtained by con-
sidering other symmetries of the Hamiltonian, but leave this
possibility for future work. We note in passing that a lower
bound on ZL for general spin quantum number σ can also be
derived in a similar manner; the result is ZL � (2σ + 1)�

L
2 �+1.

APPENDIX G: TIME EVOLUTION
OF A SUPERPOSITION OF |Ān〉 and |B̄n〉

We have discussed the dynamics of the coherent states
|α〉 and |β〉 in Sec. VI. In this Appendix, we consider the
dynamics from a more complex initial state. As we have
seen, the system with the Hamiltonian H2 in Eq. (61) has two
types of scar states: |Ān〉 and |B̄n〉. We will show that their
superpositions exhibit more complex dynamics than those in
the main text.

To be specific, let us consider the following superposition
of |α〉 and |β〉:

|ξ 〉 = 1

Z
(u|α〉 + v|β〉), (G1)

where u, v ∈ C are arbitrary constants and Z is the normaliza-
tion constant. The fidelity between |ξ 〉 and the time evolved
state |ξ (t )〉 = e−iH2t |ξ 〉 can be expressed as

F (t ) = |〈ξ |ξ (t )〉| = 1

Z2
||u|2〈α|α(t )〉 + u∗v〈α|β(t )〉

+ uv∗〈β|α(t )〉 + |v|2〈β|β(t )〉|, (G2)

where |α(t )〉 = e−iH2t |α〉 and |β(t )〉 = e−iH2t |β〉. To get a
more explicit expression for F (t ), let us compute the overlaps.
Along the same lines as in Eqs. (55, 63), one can calculate the
first and fourth overlaps in Eq. (G2) as

〈α|α(t )〉 = e−it (hL+D)

(
1 + |α|2eiht

1 + |α|2
)2L

,

〈β|β(t )〉 = e−it (hL+D)

(
1 + 4|β|2e2iht

1 + 4|β|2
)L

, (G3)

where D = ∑L
j=1 Dj and we have used the fact that |Ān〉 and

|B̄n〉 are eigenstates of H2 with eigenvalues h(L − n) + D and
h(L − 2n) + D, respectively. Next, let us compute the second
and third overlaps in Eq. (G2). To this end, we consider the
overlap between |Ām〉 and |B̄n〉. Since they are eigenstates

FIG. 24. The dynamics of the fidelity of the superposition of
two coherent states |α〉 and |β〉 driven by H2 [Eq. (61)] with h =
1, L = 8, and Dj ( j = 1, 2, . . . , L) chosen randomly from [−1, 1].
The period of the revivals is 2π/h.

of Sz with eigenvalues L − m and L − 2n, respectively, it is
easy to see that 〈Ām|B̄n〉 ∝ δm,2n. The overlap for m = 2n is
calculated as

〈Ā2n|B̄n〉 = 〈⇑|(O+
π )2n(Q−

0 )n|⇑〉

= (2n)!

2n
〈⇑ |

⎛
⎝ ∑

1� j1<···< jn�L

(
S+

j1

)2(
S+

j2

)2 · · · (S+
jn

)2

⎞
⎠n!

×
⎛
⎝ ∑

1�l1<···<ln�L
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from which we obtain

〈α|β(t )〉 = e−it (hL+D)(1 + 2(α∗)2βe2iht )L

(1 + |α|2)L(1 + 4|β|2)
L
2

,

〈β|α(t )〉 = e−it (hL+D)(1 + 2α2β∗e2iht )L

(1 + |α|2)L(1 + 4|β|2)
L
2

. (G5)

Plugging Eqs. (G3) and (G5) into Eq. (G2) yields

F (t ) = 1

Z2

∣∣∣∣|u|2
(

1 + |α|2eiht

1 + |α|2
)2L

+ |v|2
(

1 + 4|β|2e2iht

1 + 4|β|2
)L

+ u∗v
(1 + 2(α∗)2βe2iht )L

(1 + |α|2)L(1 + 4|β|2)
L
2

+ uv∗ (1 + 2α2β∗e2iht )L

(1 + |α|2)L(1 + 4|β|2)
L
2

∣∣∣∣, (G6)

with

Z2 =
∣∣∣∣∣|u|2 + |v|2 + 2�[u∗v(1 + 2(α∗)2β )]

(1 + |α|2)L(1 + 4|β|2)
L
2

∣∣∣∣∣. (G7)

Figure 24 shows F (t ) for two different choices of (α, β ).
We can see that the fidelity shows revivals with period 2π/h,
which is the smallest common period of the two fidelity
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oscillations shown in Figs. 18 and 21. Clearly, the trend of
the curves is more complicated than the previous ones, with

small peaks originating from the interference terms 〈α|β(t )〉
and 〈β|α(t )〉.
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