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Highly nonperturbative nature of the Mott metal-insulator transition:
Two-particle vertex divergences in the coexistence region
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We thoroughly analyze the divergences of the irreducible vertex functions occurring in the charge channel
of the half-filled Hubbard model in close proximity to the Mott metal-insulator transition (MIT). In particular,
by systematically performing dynamical mean-field theory (DMFT) calculations on the two-particle level, we
determine the location and the number of the vertex divergences across the whole coexistence region adjacent to
the first-order metal-to-insulator transition. We find that the lines in the parameter space, along which the vertex
divergences occur, display a qualitatively different shape in the coexisting metallic and insulating phase, which
is also associated to an abrupt jump of the number of divergences across the MIT. Physically, the systematically
larger number of divergences on the insulating side of the transition reflects the sudden suppression of local
charge fluctuation at the MIT. Further, a systematic analysis of the results demonstrates that the number of
divergence lines increases as a function of the inverse temperature β = (kBT )−1 by approaching the Mott
transition in the zero-temperature limit. This makes it possible to identify the zero-temperature MIT as an
accumulation point of an infinite number of vertex divergence lines, unveiling the highly nonperturbative nature
of the underlying transition.
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I. INTRODUCTION

The multifaceted manifestations [1–10] of the breakdown
of the self-consistent perturbation theory for the many-
electron problem have been recently in focus of several studies
[11–28]. In particular, it has been demonstrated [10] how the
breakdown of the perturbative expansion corresponds to the
crossings of different solutions [3,4] of the Luttinger-Ward
functional or, equivalently, to multiple divergences [1,9,13]
of the two-particle vertex functions irreducible in the charge
channel, i.e., the kernel of the Bethe-Salpeter equation de-
scribing the charge response of the many-electron system
under consideration.

On a less formal perspective, the crucial role [21,23,25,27]
of the local moment formation in triggering the perturbation-
theory breakdown as well as the contra-intuitive physical
consequences associated to nonperturbative scattering pro-
cesses [20] have been extensively investigated in the most
recent literature, e.g., for the Anderson impurity and the
Hubbard model.

Hitherto, however, the analysis of an equally important
aspect of this problem, namely the precise relation linking
the above-mentioned manifestations of the perturbative break-
down to the occurrence of Mott-Hubbard metal-to-insulator
transitions (MITs) [29], has been put, to some extent, aside. In
fact, in some of the earliest studies [1,9] on this subject, it was
suggested that the divergences of the irreducible vertex could
be viewed as “precursors” of the Mott-Hubbard MIT. In later
studies, however, it was shown [13] that multiple irreducible

vertex divergences were also occurring in cases, such as the
Anderson impurity model (AIM), where no Mott-Hubbard
transition takes place. The contradiction of this observation
with the previously proposed interpretation has left the full
understanding of this aspect of the perturbative breakdown
unsolved.

In this paper, we will hence address the still outstanding
question of how the Mott MIT, which represents an intrinsi-
cally nonperturbative phenomenon, is actually related to the
breakdown of the perturbation expansion by analyzing one
of its characterizing manifestations, the divergences of the
irreducible vertex functions.

To this aim, we will perform systematic dynamical mean-
field theory (DMFT) [30] calculations of the two-particle
Green’s/vertex functions [31] of the Hubbard model in one of
its most delicate parameter regimes, the coexistence region of
the Mott MIT, which was not considered in preceding studies
on this specific topic.

In particular, we will determine the location, the number,
and the properties of the vertex divergences occurring in both
the (coexisting) metallic and insulating DMFT solution of the
half-filled Hubbard model in the proximity of the Mott tran-
sition. Hereby, we focus on the changes taking place across
the finite-T first-order transition and on the extrapolation
of the corresponding results towards the T =0 second-order
(quantum) critical endpoint of the MIT. This procedure
will eventually allow to draw rigorous conclusions about
the link between vertex divergences and the Mott-Hubbard
MIT.
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FIG. 1. Location of the irreducible vertex divergence lines in the phase-diagram of Hubbard model on a square lattice solved by dynamical
mean-field theory (DMFT). Left panel: Schematic illustration of the MIT and its coexistence region in DMFT. The insets show examples
of the imaginary part of the one-particle Green’s function on the Matsubara frequency axis for the PM (left inset) and the PI (right inset)
DMFT solution, featuring completely different low-energy behaviors. The arrows represent the scanning direction for the respective convergent
solution of the two phases in the coexistence region. Middle panel: Reproduced from Ref. [9], solid red and orange lines [34] mark the first five
�∞

c lines of the HM bending around the metal-insulator transition (blue solid line). Red and orange dashed lines show the first two �∞
c lines of

the Hubbard atom (HA) for comparison. Right panel: Close-up of the region near the MIT marked in the middle panel. The blue shaded area
indicates the coexistence region of the MIT. The thermodynamic phase transition (Uc) is marked in blue and the borders of the coexistence
region (Uc1 and Uc2) are displayed as dark blue lines. To the left in red and orange the closest vertex divergence lines from [9] are visible.

The plan of the paper is the following: In Sec. II, we
introduce the model and the formalism necessary for our
analysis and briefly recapitulate results of previous studies
relevant for our scopes. In Sec. III we illustrate our DMFT
results for the divergences of the irreducible vertex functions
systematically obtained in the coexistence region of the Mott
MIT and the corresponding extrapolation performed down to
zero temperature. Then in Sec. IV we will discuss the overall
scenario emerging from our study, and, eventually, in Sec. V
we will present the conclusions and the outlook of our paper.

II. MODEL, FORMALISM, AND METHODS

A. Model

In this study we consider a single-band Hubbard model
(HM) [32] on the Bethe lattice with infinite connectivity,
whose density of state is semicircular with half-bandwidth
D=1, which serves as unit of energy throughout the paper.

The Hamiltonian reads

H = −t
∑
〈i j〉 σ

c†
iσ c jσ + U

∑
i

ni↑ni↓ , (1)

where t = 1
2D is the (spin-independent) nearest-neighbor hop-

ping between neighboring lattice sites i and j, and c†
iσ ,

(ciσ ) the fermionic creation (annihilation) operator with spin
σ =↑,↓ at site i, and U is the local (Hubbard) repulsive
interaction between two electrons on the same lattice site
(niσ =c†

iσ ciσ denoting the particle-number operator at site i for
spin σ ).

We set the density to half-filling (〈n↑〉=〈n↓〉= 1
2 ), where

the HM we consider, which can be exactly solved by means of
dynamical mean-field theory (DMFT), is known to feature a
paradigmatic realization of the Mott-Hubbard MIT transition.
Specifically, we briefly recall here [30] that, by neglecting
possible SU(2) symmetry-broken phases, the DMFT solution
of Eq. (1) yields a first-order transition between a paramag-
netic metallic (PM) and a paramagnetic insulating phase (PI)
along a Uc(T ) transition line, ending with second-order criti-

cal points at finite T =Tc ≈ 1
39 and at T =0, as schematically

shown in the leftmost panel of Fig. 1. The first-order nature
of the transition is witnessed by the presence of a broad hys-
teresis region, delimited by the lines Uc1 (T ) [<Uc(T ) on the
left side] and Uc2 (T ) [>Uc(T ) on the right side] where a PM
and a PI numerical DMFT solution coexists [33], with distinct
physical properties (as exemplified by the qualitatively differ-
ent shape of the corresponding one particle Green’s functions,
shown in the inset of the leftmost panel in Fig. 1).

B. Formalism

As mentioned in the Introduction, an evident manifestation
of the breakdown of the self-consistent perturbation expansion
in many-electron problems is the divergence of the kernel of
the Bethe-Salpeter equation (BSE) for the system response in
the charge sector. Hence, the central quantity for our DMFT
investigation will be the on-site generalized susceptibility,
which, in the imaginary time domain, is defined as

χσ1,σ2,σ3,σ4
(τ1, τ2, τ3, τ4)

:= [〈Tτ c†
σ1

(τ1)cσ2 (τ2)c†
σ3

(τ3)cσ4 (τ4)〉
− 〈Tτ c†

σ1
(τ1)cσ2 (τ2)〉〈Tτ c†

σ3
(τ3)cσ4 (τ4)〉] (2)

:= G(2)
σ1,σ2,σ3,σ4

(τ1, τ2, τ3, τ4)

− Gσ1,σ2 (τ1, τ2) Gσ3,σ4 (τ3, τ4), (3)

in terms of the one Gσ1,σ2 (τ1, τ2) and two-particle
G(2)

σ1,σ2,σ3,σ4
(τ1, τ2, τ3, τ4) local Green’s functions of the DMFT

solution, where σi denotes the spins of the incoming/outgoing
particles and τi their imaginary time arguments [31]. By
taking the Fourier transform into Matsubara frequencies, and
exploiting the time-translational invariance as well as the
SU(2) symmetry of the problem, one then obtains [31]

χνν ′�
ph,σσ ′ =

∫ β

0
dτ1dτ2dτ3 e−iντ1 ei(ν+�)τ2 e−i(ν ′+�)τ3 ·

× χσ,σ,σ ′,σ ′ (τ1, τ2, τ3, 0), (4)
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FIG. 2. Diagrammatic representation of the Bethe-Salpeter equa-
tion (BSE) χ=χ0−χ0�χ, where χ is the generalized susceptibility,
χ0 the bubble term (∝−βG(ν ) G(ν+�) δνν′ ), and � contains all
irreducible vertex diagrams [9,35].

where, in the particle-hole convention we adopted, ν, ν ′ (�)
denote fermionic (bosonic) Matsubara frequencies, respec-
tively. We recall that the expression in Eq. (4) can be directly
connected to the physical charge response χc(�) of the system
by performing a summation over both fermionic Matsubara
frequencies ν, ν ′ and spin indices,

χc(�) = 1

β2

∑
ν,ν ′

(
χνν ′�

ph,↑↑ + χνν ′�
ph,↑↓

)
. (5)

Consistent with the SU(2) symmetry of the problem, the
BSE of the generalized response in the charge sector
χνν ′�

c =χνν ′�
ph,↑↑+χνν ′�

ph,↑↓ can be recasted, for each value of the
bosonic frequency �, in a closed matrix equation for the
fermionic Matsubara frequency space, as diagrammatically
shown in Fig. 2.

The equation describes the infinitely repeated insertions
of (two-particle) irreducible vertex corrections (�c) to the
independent propagation of a particle and a hole (i.e., the
so-called bubble term: χνν ′,�

c,0 =−β G(ν) G(ν+�) δνν ′ , where
G(ν) denotes the one-particle local DMFT Green’s function
on the Matsubara axis). Hence, the irreducible vertex function,
which represents the kernel of the BSE, is defined (and can be
explicitly computed) as [9]

�νν ′�
c = β2([χ�

c

]−1

νν ′ − [
χ�

c,0

]−1

νν ′
)
. (6)

In this paper, we consider the case of zero bosonic fre-
quency, which is linked, according to Eq. (5), to the isothermal
(or static) charge response [36,37] of the system, as the
corresponding vertex divergences are the first to occur by
increasing values of U and are those directly related [10] to the
crossing of solutions of the Luttinger-Ward functional. Hence,
for the sake of readability, we will denote �νν ′�=0

c ≡ �νν ′
c and

χνν ′�=0
c ≡ χνν ′

c .
By a quick inspection of Eq. (6), one understands that, at

any finite temperature, no divergence of �c can be caused
by the inversion of the (frequency diagonal) bubble term, as
G(ν) �=0 for all ν. As a consequence, all divergences of �c

must originate from the noninvertibility of the generalized
susceptibility matrix or, more formally, from the vanishing of
one of its eigenvalues λi [1,9]. Hence, all points (T,U ), where
a specific eigenvalue λi of χc crosses zero, define a line in the
phase diagram of the half-filled HM, where the corresponding
irreducible charge vertex diverges (�∞

c line). It is important to
stress here that since for small U , χc ≈χc,0, and the latter is
a positive definite (diagonal) matrix, the number of negative
eigenvalues (Nλ<0) of the generalized charge susceptibility
matrix at a specific parameter set corresponds to the number
of crossed �∞

c lines coming from U =0 and can be also used

to approximate the shape of the �∞
c lines in close proximity

to the MIT (where they will become particularly dense) and
analyze their behavior towards T →0.

C. Limitations of existing results

The occurrence of divergences of the irreducible vertex
functions in several fundamental many-electron problems
has been recently investigated in different publications [9,
12–14,16,17]. In particular, one of the most systematic anal-
ysis made for the case of the half-filled HM on a square
lattice solved in DMFT (essentially equivalent [38] to the
case considered here) has been reported in [9], whose results
are summarized in the central/right most panels of Fig. 1.
Specifically, the right panel of the figure, a zoom of the pa-
rameter region marked by a black box in the DMFT phase
diagram of the central panel, shows the first few �∞

c lines
of the DMFT solution of the HM, marked in red or orange,
depending whether the corresponding vertex divergence oc-
curs in the charge sector only or, simultaneously, in the charge
and in the particle-particle channels [39]. As it was already
noted [9], all the �∞

c lines tend to approach the corresponding
vertex divergences lines of the Hubbard atom (straight dashed
lines starting from U =0) for large values of T and U , while
displaying a clear bending around the Mott MIT.

Evidently, the clear bending of the first divergences lines,
and their somewhat similar shape as the rightmost border
of the MIT hysteresis Uc2 (T ), may suggest the originally
proposed interpretation of the occurrence of the vertex di-
vergences as precursors of the Mott MIT itself. However,
as already mentioned in the Introduction, subsequent studies
have demonstrated the occurrence of similar vertex diver-
gences in models, such as the AIM [13], where no Mott MIT
takes place, and ascribed [8,13,21,27] them to suppressive
effects of the on-site/impurity charge fluctuation triggered by
the formation of a local magnetic moment.

Hence, in order to clarify the nature of the relation link-
ing the Mott MIT and the occurrence of divergences in the
irreducible vertex functions of the charge sector, it is neces-
sary to extend the DMFT studies performed hitherto to the
most challenging parameter regime, namely, the coexistence
region across the MIT, which represents the central goal of
the present paper.

D. Methods

The DMFT calculations of the generalized local charge
susceptibility have been performed by using a continuous-
time quantum Monte Carlo (CT-QMC) solver [40] to sample
the one and two-particle Green’s functions in Eq. (3) for the
auxiliary AIM of the corresponding self-consistent DMFT
solutions. Specifically, we used the CT-QMC solver of the
w2dynamics package [41,42]. Further technical details about
the numerical calculations are shortly reported in Appendix A.
Here, we want to concisely recall, how the PM and PI DMFT
solutions in the coexistence region are obtained: Starting
from outside of the coexistence region, the interaction U
is changed step-by-step for a fixed temperature T , whereby
the previously converged DMFT calculations are used as a
starting point of the new self-consistent DMFT cycle (as
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schematically illustrated by the two arrows in the leftmost
panel of Fig. 1). By entering the coexistence/hysteresis re-
gion, the variation steps in U must be small [e.g., O(0.1) −
O(0.01)], in order to allow for convergence to different
metastable DMFT solutions, depending on the initial condi-
tion used. In this way two different solutions can be stabilized,
at a given temperature T , in the interval Uc1(T )<U <Uc2(T ),
the PM (PI) one being obtained along the path from the
left to the right Uc1(T )→Uc2(T ) [the right to the left
Uc2(T )→Uc1(T )]. For each PM or PI converged DMFT so-
lution obtained in the coexistence region, the corresponding
on-site generalized charge susceptibility is then computed as
explained above, and Fourier transformed in Matsubara fre-
quencies. The diagonalization of their corresponding matrix
representation in the fermionic Matsubara frequencies allows
to determine the number of negative eigenvalues Nλ<0, which,
as discussed in Sec. II B, corresponds to the number of crossed
�∞

c lines and can then be used to approximate the �∞
c lines

(see Appendix B for further details) in the region of the phase
diagram close to the Mott MIT.

III. RESULTS

A. Metallic coexistence region

Our results for the PM solutions of the MIT coexistence
region are shown in the upper panel of Fig. 3. Here the
coexistence region is indicated as a blue framed and shaded
area in the T -U phase diagram. The two-particle calculations
performed by scanning the MIT starting from the PM side
are marked, respectively, with green diamonds or red squares,
depending on whether a PM or a PI solution is found [the
stabilization of the first PI solutions evidently corresponds
to the crossing of the Uc2(T ) line]. The calculated number
Nλ<0 of negative eigenvalues of χνν ′

c is shown right below the
corresponding markers. In the background of the data points,
a color scale, interpolating between the numerical results, in-
dicates the change of Nλ<0 within the coexistence region. We
emphasize here that, in order to make the comparison between
the results obtained in the different parameter regimes more
easily accessible, the same color scale has been used for all
intensity plots shown in the paper.

In the lower panel of Fig. 3 instead, we show the corre-
sponding vertex divergence (�∞

c ) lines, starting with the �∞
c

line associated to Nλ<0 =nHM =19, and we adopt the same
(red and orange) color coding [34] as introduced in Sec. II C.
As reference for the Mott insulating phase, the �∞

c lines of
the Hubbard atom (HA) [9,14] are shown as dashed red and
orange lines on the right (PI) side of the coexistence region,
starting with Nλ<0 =nHA =26.

In both panels of Fig. 3 a clear bending of the �∞
c lines

towards the critical point of the Mott MIT at T =0 (U T =0
c2 ) is

observed in the whole PM coexistence region, corresponding
to an increase of Nλ<0 along an increase of U and T . One
also notices that the �∞

c lines occur particularly dense for
increasing U at low temperatures. More specifically, the shape
of the bending reminds on the first �∞

c lines encountered in the
correlated metallic regime of the DMFT solution of the HM
[9] (central panel in Fig. 1), as well as the �∞

c lines found
in low-T region of the phase diagram of the AIM [13]. On a

FIG. 3. Phase diagrams of the MIT with PM solution in the coex-
istence region (blue-shaded area) for the Hubbard model (HM) on the
Bethe lattice. Uc (blue), taken from Ref. [43], denotes the thermody-
namic transition. Upper panel: Coexistence region with phase points
of performed DMFT calculations, where green diamonds correspond
to a metallic solution and red squares to an insulating one. The
numbers next to markers are Nλ<0 and the background of the points
within the coexistence region shows an interpolating color scale of
Nλ<0 for the metallic solution. Lower panel: Same phase diagram
as the upper panel, but showing the distinct �∞

c lines approximated
from the data of the phase points (see Appendix B). Here, nHM

indicates the number of crossed �∞
c lines of the Hubbard model,

coming from U =0. Dashed red and orange lines (in both panels)
mark the �∞

c lines of the Hubbard atom (HA) according to [9] as
reference, where nHA is the number of crossed lines coming from
U =0.

more physical perspective, the �∞
c lines in the PM coexistence

region display a qualitative similarity with the Mott transition
line Uc (solid blue line in Fig. 3), especially for low tempera-
tures, while no significant match with the effective [23] Kondo
temperature associated to the auxiliary AIM of the DMFT so-
lution (estimated through the so-called “fingerprints criterion”
[21]) can be noticed. These observations suggest the existence
of a direct connection between the vertex divergences and the
Mott MIT itself.

155101-4



HIGHLY NONPERTURBATIVE NATURE OF THE MOTT … PHYSICAL REVIEW B 108, 155101 (2023)

FIG. 4. Phase diagrams of the MIT with PI solution in the coex-
istence region (blue-shaded area) for the Hubbard model (HM) on
the Bethe lattice. The blue line Uc, taken from Ref. [43], denotes the
thermodynamic transition. Upper panel: The data points, red squares
for an insulating phase and green diamonds for a metallic phase,
mark the performed DMFT calculations. The number next to the
points shows the corresponding Nλ<0 and the background of the data
points in the coexistence region shows an interpolating color scale
of Nλ<0. Lower panel: Same phase diagram as the upper panel with
approximated �∞

c lines of the HM, nHM is the number of crossed lines
coming from U =0. Dashed red and orange lines (in both panels)
mark the �∞

c lines of the Hubbard atom (HA) according to [9] as
reference, where nHA is the number of �∞

c lines of the HA.

B. Insulating coexistence region

Our results for the PI solutions of the MIT coexistence
region are shown in the upper panel of Fig. 4. The two-particle
calculations performed by scanning the MIT starting from the
PI side are marked, respectively, with red squares or green
diamonds, depending on whether a PI or a PM solution is
found [the stabilization of the first PM solutions evidently
corresponds to the crossing of the Uc1(T ) line].

As before, the color scale shows the interpolation of Nλ<0

in the coexistence region. In the lower panel of Fig. 4, the
distinct �∞

c lines (orange/red) are shown. The �∞
c lines are

now straight lines, similar to the dashed (orange/red) lines of

the HA (i.e., the extreme case of an HM with t =0), shown
as reference on the right side of the coexistence region. Due
to the different shape of the divergences lines with respect
to the PM solution analyzed before, Nλ<0 still increases with
increasing U , but, differently from the PM case of Fig. 3, it
increases for decreasing T .

At the same time, the qualitative similarity between the �∞
c

line shape in the HA and the PI phase of the HM solved in
DMFT cannot represent, evidently, an identity [44], reflecting
the intrinsic difference between the “perfect” localization of
the HA and the actual one of the Mott PI phase, where finite
(though quite small) double occupancy is found even in the
ground state. In fact, by comparing the results for the HA
and the PI phase in DMFT, on a quantitative level, (e.g., by
considering the 28th line of the HA nHA =28, and the corre-
sponding line of the HM Nλ<0 =nHM =28 in the lower panel
of Fig. 4) a systematic shift of HM-�∞

c lines with respect
to the HA-�∞

c lines can be noted. To effectively account for
this shift, one might rescale the interaction of the HA [45],
by comparing the number of nHA to nHM for all phase points
within the coexistence region, which yields an average factor
of η= nHA

nHM
=1.19 ± 0.03 (see Appendix C for further details).

Hence, at least in terms of vertex divergences, it might be
tempting to “approximate” the PI phase of the HM in a similar
spirit as in Ref. [44], as HA with “reduced” effective interac-
tion Ueff ,

HPI = Ueff

∑
i

ni↑ni↓ with Ueff = U

η
. (7)

Obviously, this analogy cannot be pushed too far: In the limit
of U →∞, the HM-�∞

c lines will gradually approach the
HA-�∞

c lines asymptotically, i.e., Ueff →U and η→1 for
U →∞. In practice, η ≈1.19 can be used as a good approxi-
mation for the vertex divergences of the PI phase of the HM,
in the (physically relevant) regime of the MIT [46].

C. Vertex divergence lines at the phase transition

After separately analyzing how vertex divergences occur
in the two (PM and PI) sets of DMFT solutions in the co-
existence region, the question of their behavior across the
thermodynamic transition can be now readily addressed. We
briefly recall that the actual thermodynamic phase transition
takes place at U =Uc(T ) (cf. Ref. [43]), when the free energy
of the PM and the PI converged DMFT solutions become
equal. The corresponding transition line [43] marked as white
line in all three panels of Fig. 5, thus separates the thermody-
namically stable PI and PM solutions (labeled as physical in
Fig. 5) on the two sides of the coexistence region and is asso-
ciated, except at its second-order (quantum) critical endpoints,
to an abrupt (first-order) jump of the physical properties from
a PM to a PI behavior, except at its second-order (quantum)
critical endpoints.

After these premises, we summarize in Fig. 5 our results
for the vertex divergences in the proximity of the Mott MIT.
In the first two panels, the respective values Nλ<0 for the PM
(left panel) and the PI (middle panel) solutions are shown as
color-intensity plots, making the qualitatively different shape
of the �∞

c lines between the PM and the PI quite evident. From
the direct comparison of the first two panels, the quantitative
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FIG. 5. T -U diagram of the MIT coexistence regions for the Hubbard model on the Bethe lattice showing the number of negative
eigenvalues of the generalized charge susceptibility Nλ<0 as interpolating color scale for the metallic solution (left), the insulating solution
(middle), and comparing Nλ<0 at the thermodynamic stable (physical) transition Uc of Ref. [43] (right panel).

difference in Nλ<0 becomes also clearly visible, as the values
of Nλ<0 appear to be systematically higher in the PI than in
the PM realization of the coexistence region.

Hence, when directly considering the vertex divergence
behavior for the thermodynamic transition, as we do in the
rightmost panel of Fig. 5, Nλ<0 displays an evident jump
�Nλ<0 between the PM and PI, at the first-order transition
Uc(T ). On a more quantitative level, we note that �Nλ<0

between the PM and the PI along Uc increases with decreas-
ing temperature. Only at the second-order critical point at
T =Tc ≈ 1

39 we observe a continuous transition of Nλ<0 with
�Nλ<0 =0, as expected. In this regard, �Nλ<0 appears to
reflect well the behavior of the order parameter characterizing
the transition. As discussed in the next subsection, however,
the same analogy will not directly apply to the other extreme
(T = 0) of the Mott MIT line, as this point will be character-
ized by a divergence of Nλ<0.

D. Accumulation of vertex divergence lines

Our calculations for Nλ<0 in the coexistence region at finite
temperatures naturally raise the question of how Nλ<0 will
behave at temperatures lower than those accessible by our nu-
merical calculations and, in particular, for T →0. To this aim,
we performed numerical extrapolations for Nλ<0(T ) from our
data and tested the validity of those by comparing them to
additional, numerically heavier calculations, performed at a
“testbed” temperature value (e.g., β = 300 for the PM-phase)
lower than the temperature-interval used for the extrapolation.

Our results for the PM solution are shown in Fig. 6. Specif-
ically, in the left panel, we show, as a guidance, β-U paths
in the coexistence region, along which our extrapolation are
performed, superimposed to the corresponding color-intensity
plot for (the numerically interpolated) Nλ<0. In the right panel,
then, we report our numerically calculated data Nλ<0 as func-
tion of the inverse temperature β (black markers) together
with the corresponding fits along Uc1, Uc, Uc2 (solid lines)
as well as along intermediate (dash dotted) paths in param-
eter space (see Appendix D for further details). The range
of the Nλ<0(β ) values in the coexistence region is indicated
as blue-shaded area. As mentioned before, the reliability of
our extrapolation has been tested by comparing additional

calculations at β =300 (crosses) to the extrapolated values
(empty markers), which yielded a good agreement.

By a closer inspection of the results, we note the fol-
lowing differences in the T →0 behavior of Nλ<0 along the
distinct paths we selected. For instance, starting with the tran-
sition line Uc1(β ) we find Nλ<0

∼=a1+b1β
−1 [47] for β →∞

(a1 ≈6.25), which would be compatible with Nλ<0 =6 at
Uc1(T =0). Along the intermediate lines at Uc1 <U <Uc we
find Nλ<0

∼=ai+biβ
−1 with finite ai >a1. At the transition

lines Uc(β ) and Uc2(β ), which both end at the second-order
critical point at Uc2(T = 0), Nλ<0(β ) is observed to grow
logarithmically and linearly in β, respectively. Consistently,
the intermediate lines in the interval Uc <U <Uc2 feature a
divergent behavior of Nλ<0(β )∝βx with 0<x<1. This indi-
cates that an infinite number of �∞

c lines need to be crossed
before reaching Uc2(T =0), i.e., the location of the Mott-
Hubbard MIT in the ground-state.

Our extrapolations for Nλ<0(β ) of the PI solution are
displayed Fig. 7. Again, in the left panel of the figure the
respective location of the paths considered in the β-U coex-
istence region are shown, superimposed to the corresponding
values of Nλ<0(β ) for the PI solutions. Due to the numerical
hurdles of performing two-particle DMFT calculations for
low T in the PI phase (see Appendix A 1), the extrapolations
(solid lines) and the test calculations (empty markers) have
been performed at higher temperatures than for the PM phase
(PI test calculations at β =200), which likely explains the
overall less satisfactory agreement between extrapolation and
test calculations w.r.t. the PM case. The inset in the right
panel presents a close-up of the corresponding deviations. Fits
including the β = 200 calculations, which should be regarded
as the most precise results, which we could obtain in the
PI phase, are displayed as dashed lines. As comparison,
dashed dotted lines present Nλ<0(β ) of the HA along Uc1, Uc,
and Uc2, all showing higher values than the PI solution of the
HM in the coexistence region.

The extrapolations for Nλ<0(β ) in the PI (with and with-
out test calculations) display a linear behavior in β for all
three transition lines Uc1, Uc, Uc2, corresponding to an infinite
number of �∞

c lines to be crossed before reaching T =0.
On a more quantitative level, we note that a comparison be-
tween the slopes αi of the extrapolations of Nλ<0(β ) and the
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FIG. 6. Left panel: Phase diagram of the inverse temperature β = (kBT )−1 and interaction U showing the MIT and the coexistence region
with an interpolating color scale of the number of negative eigenvalues of the generalized charge susceptibility Nλ<0 for the metallic phase,
where the thermodynamic transition line Uc is taken from Ref. [43]. Right panel: Nλ<0(β ); black markers are calculated values of Nλ<0

for Uc1 (triangles), Uc (circles) and Uc2 (squares) according to the left panel. The solid lines correspond to fits for these data points, yielding
NUc1

λ<0(β )∼=a1+b1β
−1 [47] for β → ∞ with the red dashed line as asymptotic value (the red dotted lines are a guide to the eye), NUc

λ<0(β )∝ ln(β )
and NUc2

λ<0(β )∝β. Black empty markers are estimated values from the fits for β =300 and colored crosses are the results of corresponding DMFT
test calculations. The dashed dotted lines are intermediate lines (U int

i ) interpolating between Uc1, Uc, and Uc2.

corresponding results of the HA, can be also used to obtain
η= αHA

αHM
for an effective HA like description of the PI solution

of the HM in Eq. (7) of Sec. III B, e.g., η=1.22219 for Uc1(T )
(for details see Appendix C).

From our extrapolations of Nλ<0(β ) we can now try to esti-
mate the overall behavior of Nλ<0 at T =0 across the MIT. By
crossing the MIT from PM→PI at T =0, the number of �∞

c
lines increases to infinity at the critical endpoint Uc2(T =0).
In this respect, at T >0 the physical transition line Uc(T )

can bee seen as the first of the intermediate line paths in
β,U of Fig. 6 along which Nλ<0(β ) diverges for β →∞,
namely logarithmically. In the metastable metallic phase for
Uc <U <Uc2—along the intermediate lines—Nλ<0(β ) can di-
verge faster than log β, and finally Nλ<0(β )∝β at Uc2. The
same β dependence, namely Nλ<0(β )∝β, occurs in the PI
coexistence region as well as in the HA.

On the basis of this numerical evidence, we can then con-
clude that at the Mott-Hubbard MIT at T =0 an accumulation

FIG. 7. Left panel: Phase diagram of the MIT and its coexistence region with an interpolating color scale of the number of negative
eigenvalues Nλ<0 of the generalized charge susceptibility for the insulating results. The thermodynamic transition line Uc is taken from [43].
Right panel: Nλ<0(β ); black markers are determined values of Nλ<0 for Uc1 (triangles), Uc (circles), and Uc2 (squares) according to the left
panel. The solid lines mark fits of these data, yielding linear behavior for the three transition lines. Black empty markers are estimated values
from these fits for β =200 and colored crosses are the results of corresponding test calculations (a close-up is shown in the inset on the right).
The dashed lines are fits including the test calculations and the dashed dotted ones present the number of crossed �∞

c lines of the Hubbard
atom along Uc1, Uc, and Uc2
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point of an infinite number of vertex divergence lines occurs,
a clear link between the Mott MIT at T =0 and the vertex
divergence lines. Clearly, the different paths in the {U, β}
parameter plane, through which the T =0 transition can be
approached, e.g., Uc(β ) or Uc2(β ), reflect in correspondingly
different ways in which the divergence of Nλ<0(β → ∞) is
eventually achieved [48]. However, as the asymptotic value
of Nλ<0(β → ∞) always diverges when approaching Uc(T =
0)=Uc2(T =0) independently of the path, our extrapolated
results for Nλ<0(β → ∞) appear consistent [49] with the
smooth evolution of several physical quantities (such as the
quasiparticle spectral weight, the double occupancy, etc.) nu-
merically reported [50,51] at the T = 0-Mott MIT.

IV. THEORETICAL AND ALGORITHMIC IMPLICATIONS

Our analysis of the irreducible vertex divergences in the
close proximity of the Mott MIT has several important impli-
cations both of algorithmic as well as of conceptual nature. We
demonstrated the existence of a large number of divergence
lines found in the coexistence region of the MIT, increasing
up to infinity along all calculated parameter paths towards
the T =0 MIT at Uc2(T =0) evidently poses a huge chal-
lenge to the applicability of all algorithmic approaches using
and/or explicitly manipulating irreducible vertices of DMFT
as input, such as the full-fledged, parquet-equation based
version of the dynamical vertex approximation [52–56]
and the QUADRILEX scheme [57]. In fact, while one could
realistically cope with a situation of a few well-separated
divergence lines, it becomes hard to stabilize the numerical
manipulation of irreducible vertices in parameter regimes,
where their frequency structure will display large oscillations,
due to the proximity of several and closely spaced divergence
lines.

At the same time, we recall that the occurrence of vertex
divergences has been recently proven to be pivotal [21,27]
to ensure the correct transfer of physical information among
the spin/magnetic and the charge/density or the pairing
channels in the nonperturbative regimes, e.g., to feature the
proper freezing of the local charge (or pairing) fluctuations
associated to the preformation of local magnetic moments.
Hence, it becomes clear why self-consistent diagrammatic
approaches, whose irreducible vertex functions cannot diverge
per construction [58], such as the truncated functional renor-
malization group (fRG) [59] or the parquet approximation
[60], will not be able to yield a consistent picture of the Mott
MIT and its related phenomena.

While it is beyond the scope of this paper to address the is-
sue of possible strategies how to include this relevant piece of
physical information in diagrammatic treatments of the many-
electron problems in nonperturbative regimes, e.g., by means
of the merger of DMFT and fRG [61–66] or by rewriting
ladder diagrammatic resummations or parquet equations in
terms of the full two-particle scattering amplitude of the local
problem [31,54,67,68], here we want to discuss some more
fundamental theoretical implication of our results.

Indeed, the identification of the Mott-Hubbard MIT at zero
temperature with the accumulation point of an infinite number
of �∞

c lines does not only clarify the precise relation linking
the occurrence of vertex divergences in the charge channel

and the MIT, highlighting the profoundly nonperturbative na-
ture of the MIT itself, but also allows to draw interesting,
more general considerations about how the vertex divergences
affect different many-electron problems. In particular, our re-
sults for the HM in DMFT (summarized in the central panel of
Fig. 8) can be put into a broader perspective by directly com-
paring them to the corresponding ones for the Hubbard atom
[9,14] (HA, left panel) and the (metallic) Anderson impurity
model of Ref. [13] (AIM, right panel) in Fig. 8, where we
used the same color coding for denoting the different vertex
divergence lines.

Thereby, we note that for the HA, i.e., for an
Hubbard model with t ≡0, which features a perfect local-
moment/insulating behavior for all U >UMIT =0, an accumu-
lation point of vertex divergence lines occurs exactly at the
origin of the phase diagram, namely at U =T =0. On the other
hand, by looking at the phase diagram of the AIM, where no
transition to an insulating ground state occurs for any value
of U , we do not observe an accumulation point of vertex
divergence lines in the available data [13] and, in general,
we do not expect one at T =0. We can note, nonetheless,
that their low-T distribution becomes denser by increasing
interaction values. One can then assume the asymptotic value
UMIT =+∞ as an hypothetical value for the transition to
an insulating state in the AIM. In this regime, the physics
would be eventually dominated by U , similarly to the insu-
lating phases of the other two cases, and the progressively
denser distribution of vertex divergence lines by increas-
ing U could then lead asymptotically to an accumulation
point.

Within this framework [69], the results we obtained
for the HM in DMFT can be naturally interpreted as an
“intermediate” case between the two extreme situations of the
HA (with accumulation point at UMIT =0) and the AIM (at
UMIT =+∞), where UMIT yields the finite value of Uc2(T =0),
as schematically illustrated by the black arrow sketched below
the three panels of Fig. 8. Heuristically, one could imagine
to start from the AIM case (where UMIT =+∞). Then, by
progressively moving the value of UMIT first towards lower
finite values and, subsequently, down to 0, one could qual-
itatively “reconstruct” the other two cases by squeezing the
corresponding �∞

c lines against the corresponding accumula-
tion points.

On a more formal level, we note that the presence or
the absence of an accumulation point of vertex divergence
lines, as those discussed here, might play an important role
in the way vertex divergences may affect the (T =0)-physical
properties of strongly correlated electron systems, such as,
e.g., the validity (or the violation) of the Luttinger theorem
[70]. Further, the presence of a increasing number of vertex
divergences when approaching the Mott MIT at T =0 from
the correlated PM-side appears to provide a key to reconcile
the analytical derivation of [71] with the numerical evidence
[50] of the occurrence of a smooth transition in DMFT cal-
culations. Indeed, in [71] the impossibility of observing such
a smooth Mott MIT at zero temperature was demonstrated
by assuming the convergence of the (self-consistent) skeleton
expansion for all U <Uc(T =0), an assumption, which our
study (see also the Appendix of [9]) demonstrated to break
down for U much smaller than Uc(T =0).
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FIG. 8. Phase diagrams of the Hubbard atom (HA) (reconstructed from Ref. [9]), Hubbard model (HM), and Anderson impurity model
(AIM) (reconstructed from Ref. [13]) with the corresponding �∞

c lines and their accumulation point (blue dot) at T =0 (UMIT0 for the HA,
UMIT =U T =0

c2 for the HM and UMIT →∞ for the AIM). The black arrow below sketches the shift of the accumulation point of the �∞
c lines

between the different models. The accumulation point at the MIT of the DMFT solution of the Hubbard model at Uc2(T =0) can be seen as
intermediate case with respect to the “extreme” cases of the purely insulating Hubbard atom and the purely metallic Anderson impurity model.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated the relation between a
characteristic aspect of the breakdown of the self-consistent
perturbation expansion [10], namely the occurrence of diver-
gences of irreducible vertex functions in the charge channel
[1,9] and the Mott-Hubbard metal-to-insulator transition. To
this aim, by performing DMFT calculations on the two-
particle level for the half-filled Hubbard model on a Bethe
lattice, we have systematically studied the occurrence of irre-
ducible vertex divergences in the coexistence region adjacent
to the MIT. Our results demonstrate how the shape and the
number of irreducible vertex divergence lines (�∞

c lines) in
the coexistence region is significantly different in the PM and
the PI solutions, with an abrupt jump across the thermody-
namic first-order transition line, reflecting the different degree
of suppression of on-site charge fluctuations [8,10,21,27] in
the two phases. Further, we could show that, in spite the
evident backward bending displayed by the �∞

c lines in the
correlated PM phase, the number of divergences crossed by
approaching the T =0 MIT at U =Uc2(T =0) is diverging,
making the location of the MIT itself an accumulation point
for �∞

c lines. This finding establishes a clear connection be-
tween the irreducible-vertex divergences and the occurrence
of the MIT, clarifying the difference with cases where vertex
divergences appear in systems where no MIT takes place,
and substantiating the interpretation of the Mott transition
as highly-nonperturbative phenomenon in a more precise
context.

Beyond the possible algorithmic implications of our
results, especially relevant for Feynman diagrammatic ap-
proaches to treat intermediate-to-strong coupling regimes
[54,72], it would be interesting, in the future, to extend
our study by including the effects on nonlocal correlations,
e.g., by means of cluster extensions [73] of DMFT. In
particular, one could investigate, whether the shift towards
lower U values of the Mott MIT, found [73,74] by includ-
ing spatial correlations of progressively larger size in the

two-dimensional Hubbard model on a square lattice as well
as the change of slope in the associated transition line Uc(T ),
would be accompanied by a corresponding shift of the accu-
mulation point of the �∞

c lines as well as by a corresponding
change of their bending. This piece of information would be of
particular importance for precisely characterizing the nonper-
turbative nature of electronic correlations in two-dimensional
systems, for which the location of the MIT, in absence of
geometrical frustration, may be shifted [75] down to U =0+
in the low-temperature limit.
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APPENDIX A: DMFT-CALCULATIONS OF THE
TWO-PARTICLE GREEN’S FUNCTION G(2)

As mentioned in Sec. II D, we use a continuous-time
quantum Monte Carlo solver (CT-QMC) in the hybridization
expansion (CT-HYB) [40] of the w2dynamics package [41,42]
for the DMFT calculations of the two-particle Green’s func-
tion G(2) of the auxiliary impurity model and performed our
calculations on the Vienna scientific cluster (VSC-4).

The detailed calculation process for the two-particle
Green’s function for a specific phase point in U , T is the
following:
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FIG. 9. Left column: Real part of the generalized charge suscep-
tibility χνν′

c for β =60 and U =2.46 for a PI solution. Right column:
Corresponding eigenvalues λχc around zero. Upper row is calculated
with state sampling, lower row with worm sampling.

(1) Calculations of the one-particle Green’s function G(1)

with a comparable low number of measurements (e.g.,
∼105) at each DMFT iteration, to converge the DMFT self-
consistence cycle. The convergence is verified by tracking the
behavior of G(1) for the first Matsubara frequency and the
double occupancy.

(2) The first computations are followed by a calculation
with a high number of measurements (e.g., ∼107) and a small
number of DMFT iterations to obtain G(1) as function of
Matsubara frequencies with a satisfactory error to noise res-
olution as starting point for a two-particle calculation.

(3) One DMFT iteration including a calculation of G(2)

with a high number of measurements (e.g., ∼107) using a
frequency box size of 100×100 fermionic frequencies for
high temperatures and a box size up to 200×200 frequencies
for our lowest temperatures. Thereby, we ensure that the num-
ber of negative eigenvalues, originating from lower frequency
structure of G(2) (see e.g., [31,76–78]), is not effected by a
further increase of the frequency box size. Each individual
computation required an average of ∼10 000 CPU hours.

Sampling methods

Within the CT-HYB calculations of the w2dynamics pack-
age, different sampling methods for the computation of one-
and two-particle Green’s function can be used. For most of the
parameter regimes we have used partition-function sampling
with the superstate-sampling method [42] (segment sampling
[79] yielded no computational advantage).

However, for the insulating solution in the coexistence
region of our model and especially at low temperatures, parti-
tion function sampling runs into problems. This manifests in
numerical artifacts, which occur as diagonal stripes in the χc
matrix causing complex pairs of the eigenvalues (see Fig. 9),
which are however prohibited by the particle-hole and SU(2)
symmetry of the model considered (χc must be a real bisym-
metric matrix with only real eigenvalues [17]), and therefore
result in unusable data. This is presumably caused by the sup-
pressed hybridization function �(τ ) in the insulating phase,
resulting in a Monte Carlo estimator with high variance,

FIG. 10. Sketch of the extrapolation scheme to obtain the inter-
action value U =U�∞

c
of the zero crossing of the eigenvalue λl of

χνν′
c from two-particle DMFT calculations at different Um for a fixed

temperature T .

stemming from functional derivatives of the partition function
with respect to the hybridization function [80]. To over-
come these numerical difficulties we used the worm-sampling
method of w2dynamics [41], which uses Monte Carlo sam-
pling in both the partition function and the Green’s function
space. Since, the worm-sampling method is numerically more
expensive than superstate-sampling, we used worm sampling
only for lower temperatures in the insulating phase (β >60).

APPENDIX B: APPROXIMATION
OF VERTEX DIVERGENCE LINES

Our numerical two-particle calculations for the determi-
nation of Nλ<0 have been performed for a finite set of T , U
parameters. To extract the points in the phase space, where
the vertex divergence occurs, i.e., λ=0, from our data, we
compared different approaches, which are detailed in the fol-
lowing subsections. For our results in Sec. III we used the
polynomial fits described in Appendix B 2. For both methods
the symmetry of the eigenvectors was not taken into account.
Hence, a possible crossing of divergence lines [13] was not
investigated. Instead, the line ordering found in Refs. [9,17] is
assumed.

1. Approximation via eigenvalues of χc

For fixed temperature T scans with two-particle calcula-
tions close to the divergence, one can use a straightforward
approach to extract the approximate interaction value U�∞

c
,

where λ=0 and a vertex divergence occurs: Linearly ex-
trapolating from the first two data points, where λ<0 is
already negative. U�∞

c
is obtained, where the extrapolation

equals zero. This is schematically presented in Fig. 10. The
corresponding �∞

c line of λl =0 for U, T is approximated by
connecting the obtained results for different T . The results for
the �∞

c lines are presented in Fig. 12 (see below), where the
left panel corresponds to the extrapolation approach.
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FIG. 11. Polynomial fits of Nλ<0(U ) for several temperatures.
Black markers indicate Uc1(T ) (triangles), Uc(T ) from [43] (circles),
and Uc2(T ) (squares) for the temperatures of the fits. The inset shows
a zoom for low β and U .

2. Approximation via number Nλ<0 of negative eigenvalues of χc

Alternatively to the previously described extrapolation
scheme to approximate the �∞

c lines, Nλ<0 may be fitted by
polynomial functions p(U ) for fixed T by using the least
square method. This approach, using the total number of
negative eigenvalues, will in general yield less accurate po-
sitions of the divergence lines as compared to the approach
of Appendix B 1. However, this approach takes the nonlinear
behavior of Nλ<0 along the temperature scans into account.
The fits of the metallic coexistence region are shown in
Fig. 11. For those fits we used p(U ) with different polynomial
degrees. The polynomial degree thereby increases with de-
creasing T (increasing β), due to the rapid nonlinear increase
of Nλ<0: p(U )∝U for β ∈{40, 44, 50, 60, 75}, p(U )∝U 2 for
β ∈{100, 133}, and p(U )∝U 3 for β = 200. The �∞

c lines are
approximated by connecting the points in T , U with the same
value of Nλ<0. The results for these lines are shown in the right
panel of Fig. 12.

Let us stress that, although, the precise position of the
�∞

c lines in T,U differs between the different approximation
schemes, the overall behavior of Nλ<0(U, T ) and its asymp-
totic for T →0 does not dependent on them. Eventually, we
note that, to generate Nλ<0 as function of U , T for the param-
eter space, which is shown as color scale plots in Sec. III, an
additional linear interpolation between different temperatures
T has been used.

APPENDIX C: EFFECTIVE HUBBARD ATOM LIKE
DESCRIPTION OF THE INSULATING HUBBARD MODEL

To approximately describe the behavior the divergence
lines of the Mott insulating phase of the Hubbard model with
Eq. (7) and to account for the correct limit of Ueff →∞, we
can construct a simple function

η(U ) = U T =0
c1

U
(η0 − 1) + 1 , (C1)

where η0 =1.19±0.03≈U T =0
c1 /2 is the mean shift between

�∞
c lines of the HM and the HA within the coexistence region.

TABLE I. Parameter η0 calculated from the quotient of the slopes
of Nλ<0 along the transition lines Uc1(T ), Uc(T ), and Uc2(T ) in Fig. 7
for the effective HA description of the HM in the insulating phase.

Uc1(T ) Uc(T ) Uc2(T )

η
slopes
0 1.22 1.16 1.15

In Eq. (C1) we interpolate between η0 at the beginning of the
Mott insulating phase and η→1 at U →∞ to account for the
asymptotic behavior of the �∞

c lines. Hence, for Ueff in HPI

of Eq. (7) we get

Ueff = U

η(U )
= U 2

U + U T =0
c1 (η0 − 1)

2η0∼U T =0
c1= U 2

U + U T =0
c1

(
1
2U T =0

c1 − 1
) . (C2)

The results for the temperature behavior of Nλ<0 of the PI
solution in Sec. III D suggest to introduce another way to
evaluate η0, by comparing the slopes αi of Nλ<0(β ) in Fig. 7
of Sec. III B between the HA and the HM at the same U .
We can estimate the parameter η0 by η

slope
0 =αHA/αHM. The

resulting values are listed in Table I. In Table II we com-
pare nHA =Nλ<0, calculated from Ueff (η0) for two different
η0, with the exact nHM =Nλ<0 of the HM for two U values
at β =40: η

slope
0 =1.22 at Uc1(T ) (the first U value where a

Mott insulating phase is possible) and η0 =1.19, from our
considerations in Sec. III B. We see that nHA for η

slope
0 provides

us a particularly good approximation for the Mott insulating
phase of the Hubbard model.

APPENDIX D: CALCULATION OF INTERMEDIATE LINES

The dashed dotted lines in the left panel of Fig. 6 are
intermediate lines interpolating between the Uc1(T ), Uc(T ),
and Uc2(T ) lines according to

U int
1 (T ) = 1

2 [Uc1(T ) + Uc(T )], (D1)

U int
2 (T ) = 1

6 [Uc1(T ) + 5Uc(T ), ] (D2)

U int
3 (T ) = 1

4 [3Uc(T ) + Uc2(T ), ] (D3)

U int
4 (T ) = 1

2 [Uc(T ) + Uc2(T )], (D4)

U int
5 (T ) = 1

4 [Uc(T ) + 3Uc2(T )]. (D5)

TABLE II. Test calculation results for the number of crossed
vertex divergence lines and corresponding values according to the
Hubbard atom with effective interaction Ueff for η0 =1.19 and
η

slope
0 =1.22.

nHA at Ueff

β = 40 nHM η0 η
slope
0

U = 3.1 31 30 30
U = 3.5 34 36 34
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FIG. 12. Phase diagrams with approximated �∞
c lines for the PM solution in the coexistence region, according to the approximations of B 1

and B 2 for several fixed T : (left) extrapolation of the eigenvalues of χνν′
c and (right) polynomial fits of Nλ<0 along U . While the precise position

of the �∞
c lines in T,U differs between the different approximation schemes, the qualitative behavior of Nλ<0(U, T ) does not dependent on

them.

We used the polynomial fits (Fig. 11) to evaluate the cor-
responding Nλ<0 along those lines at inverse temperatures
β ={40, 44, 50, 60, 75, 100, 133, 200} and applied the same

fitting routine as along Uc1(T ), Uc(T ), and Uc2(T ) to gen-
erate the corresponding dashed dotted lines in the right
panel.
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