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Fracton superfluid hydrodynamics
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We examine the hydrodynamics of systems with spontaneously broken multipolar symmetries using a sys-
tematic effective field theory. We focus on the simplest nontrivial setting: a system with charge and dipole
symmetry, but without momentum conservation. When no symmetries are broken, our formalism reproduces
the quartic subdiffusion (ω ∼ −ik4) characteristic of “fracton hydrodynamics” with conserved dipole moment.
Our formalism also captures spontaneous breaking of charge and/or dipole symmetry. When charge symme-
try is spontaneously broken, the hydrodynamic modes are quadratically propagating and quartically relaxing
(ω ∼ ±k2 − ik4). When the dipole symmetry is spontaneously broken but the charge symmetry is preserved,
then we find quadratically relaxing (diffusive) transverse modes, plus another mode which, depending on
parameters, may be either purely diffusive (ω ∼ −ik2) or quadratically propagating and quadratically relaxing
(ω ∼ ±k2 − ik2). Our work provides concrete predictions that may be tested in near-term cold atom experiments,
and also lays out a general framework that may be applied to study systems with spontaneously broken multipolar
symmetries.
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I. INTRODUCTION

Multipolar symmetries are exciting widespread interest in
modern condensed matter physics, quantum information, and
quantum dynamics. They connect to exotic “fracton” phases
of quantum matter [1,2] and can provide a new route to er-
godicity breaking [3–5]. Multipolar symmetries can display
partial or complete spontaneous symmetry breaking (SSB),
through which they can stabilize new kinds of phases [6].
Of particular interest, the approach to equilibrium in systems
with multipolar symmetries is described by hydrodynamics
in an infinite family of nonstandard universality classes [7,8],
collectively termed “fracton hydrodynamics.” This “fracton
hydrodynamics”—which has been realized in ultracold atoms
[9]—provides an exciting new frontier, the exploration of
which has become an important topic of research in its own
right [10–21].

The thermodynamics of SSB of multipolar symmetries has
been discussed in [22,23], where analogs of the Mermin-
Wagner and Imry-Ma theorems were established. Different
patterns of SSB, either of the entire multipole group or of its
subgroups, correspond to condensing either monopole charges
or higher multipole charges. We will call such SSB phases
“fracton superfluids.” The hydrodynamics of conventional su-
perfluids is a well studied subject [24]—here, the Goldstone
boson of the broken symmetry becomes a hydrodynamic
mode. However, given the surprises attendant in the hydro-
dynamics of systems with unbroken multipolar symmetries,
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one might anticipate new features in hydrodynamics of fracton
superfluids. By analogy, we may term the hydrodynamics
of such generalized superfluids “fracton superfluid hydrody-
namics.” Previous literature has studied fracton superfluids
at zero temperature [6,25]. Other work has shown that mul-
tipolar symmetries and translation symmetry together lead
to exotic hydrodynamics in which one symmetry must be
spontaneously broken [21], by certain definitions of SSB; see
also [26].

In this work, we develop the theory of fracton superfluid
hydrodynamics at nonzero temperatures. We do so in the
simplest possible setting—a system with only charge and
dipole symmetry, leaving generalization to arbitrary multipole
groups and/or momentum conservation to future work. For
such charge and dipole conserving systems, we develop a
systematic effective field theory description which yields three
phases, roughly organized as in Fig. 1. One phase corresponds
to the “fracton hydrodynamics” of [7] with no symmetries
broken. Another phase, with the symmetry fully broken, has
been called the “fractonic superfluid” [25] or the “Bose-
Einstein insulator” [6]. We will call it the “charge condensate.”
Finally, the “dipole condensate,” with the dipole symmetry
spontaneously broken and the monopole symmetry unbroken,
exhibits new hydrodynamics. The two condensate phases are
both fracton superfluids.

II. EFFECTIVE ACTION

We will use the recently developed hydrodynamic effective
field theory [27–31] to explore our hydrodynamic phases. To
build the effective action for a system with charge and dipole
conservation we will use the phase fields φ and ψi. Recall
that ordinary charge conservation symmetry corresponds to
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FIG. 1. A rough organization of the three phases we find. The
axes are temperature T and mobility of the charges, which could
be controlled by a hopping parameter in a microscopic theory. The
normal phase (N) displays subdiffusion while the charge condensate
(CC) displays quadratically propagating modes. The dipole con-
densate (DC) phase displays a transition between only diffusive
modes at small T and coexisting diffusive and propagating modes at
large T .

invariance under global shifts of the form φ → φ + b. In order
to consider conservation of charge and dipole moment, we
additionally require the action to be invariant under shifts of
the form

φ → φ + b + xkck, ψi → ψi + ci. (1)

The invariant objects are ∂tφ, ∂tψi, ∇iφ − ψi, ∇iψ j , and
∇i∇ jφ. Here φ is the “monopole” field and ψi is the “dipole”
field, and the combination ∇iφ − ψi indicates that the motion
of a monopole charge involves absorption (or emission) of
a dipole. We notice that ∇i∇ jφ = ∇i(∇ jφ − ψ j ) + ∇iψ j ,
demonstrating that ∇i∇ jφ is a redundant degree of freedom.

Our most general Lagrangian is then

L = L(∂tφ, ∂tψi,∇iφ − ψi,∇iψ j ). (2)

From this, we can derive two Noether-like equations:

0 = ∂tρ + ∇iJi, (3)

0 = ∂tρi + Ji − ∇ jJi j, (4)

where we have defined

ρ ≡ ∂L
∂ (∂tφ)

Ji ≡ ∂L
∂ (∇iφ)

= − ∂L
∂ψi

ρi ≡ ∂L
∂ (∂tψi )

Ji j ≡ − ∂L
∂ (∇ jψi )

(5)

as the densities and currents. We will call (3) the monopole
continuity equation, and (4) the dipole continuity equation.
To recognize (4) as dipole conservation, we can define the
total dipole moment di ≡ xiρ + ρi so that it obeys a continuity
equation

0 = ∂t di + ∇ jJ
(d )
i j , (6)

where J (d )
i j = xiJj − Ji j .

In order to turn this into a hydrodynamic effective field
theory (EFT), following [31], we must put the action on
a doubled Schwinger-Keldysh contour, and define forward-
propagating fields φ1 and ψi1 and backward-propagating fields
φ2 and ψi2 on the two contours. In the hydrodynamic limit,

the forward and backward fields are close to equal so it is
easier to work with the “classical fields” φ = (φ1 + φ2)/2,
ψi = (ψi1 + ψi2)/2 and the “noise fields” � = φ1 − φ2, �i =
ψi1 − ψi2.

The full hydrodynamic Lagrangian will have the form

Leff = ρ∂t� + ρi∂t�i + Ji(∇i� − �i ) − Ji j∇ j�i, (7)

where the densities and currents may depend on φ, ψi, �,
and �i. We have no terms with ∇i∇ j� for the same reason
we have no terms involving ∇i∇ jφ in (2): such terms can be
converted into the terms already present in (7). For details, see
the Appendix.

The action I[φ,�,ψi, �i] = ∫
d3x dt Leff must be sym-

metric under

φ → φ + b + xkck, ψi → ψi + ci,

� → � + b′ + xkc′
k, �i → �i + c′

i, (8)

which are independent dipole transformations for the classical
and noise fields. We can see that the hydrodyanmic variables
in (7) are the currents for the transformations of the noise
fields.

Furthermore, the action must satisfy the EFT symmetries
[31],

I∗[φ,�,ψi, �i] = −I[φ,−�,ψi,−�i],

I[φ,� = 0, ψi, �i = 0] = 0,

Im I[φ,�,ψi, �i] � 0, (9)

which can be derived from the full Schwinger-Keldysh for-
malism. It also must satisfy the Kubo-Martin-Schwinger
(KMS) symmetry

φ(x, t ) → −φ(x,−t ),

�(x, t ) → −�(x,−t ) − iβ∂tφ(x,−t ),

ψi(x, t ) → −ψi(x,−t ),

�i(x, t ) → −�i(x,−t ) − iβ∂tψi(x,−t ), (10)

which is a consequence of the fact that our hydrodynamic EFT
describes relaxation toward an equilibrium thermal Gibbs
state e−β(H−μQ−··· ) [27]; similar ideas hold for more general
steady state [20].

Lastly, we have the option of enforcing the “diagonal shift
symmetries” [31]. These symmetries require that the action
only depend on φ through ∂tφ, or only depend on ψi through
∂tψi. In ordinary fluids, the EFT in the presence of the di-
agonal shift symmetry describes the normal phase, while the
EFT in the absence of the diagonal shift symmetry describes
superfluidity. Thus, condensed degrees of freedom need not
obey the diagonal shift symmetry, while normal degrees of
freedom must.

III. HYDRODYNAMIC PHASES

We will approach the hydrodynamics by imposing the di-
agonal shift symmetries for each phase independently, and
then finding the lowest-order action in that phase. To count
scaling dimensions, we note that ψi must scale as ∇iφ in order
to preserve the dipole symmetry. First, we will impose the
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diagonal shift symmetry on both φ and ψi. This should de-
scribe the normal phase, with no condensation. If we suppose
that the dynamical scaling exponent is z = 4, the most general
effective action consistent with the KMS and EFT symmetries
is

Leff = χ∂tφ∂t� + [−σ∂t (∇iφ − ψi )](∇i� − �i )

− [B1∂t∇i∇ jφ + B2∂t∇iψ j + B3∂t∇ jψi]∇ j�i, (11)

to leading order. All coefficients must be positive, by a combi-
nation of the KMS and EFT symmetries and thermodynamic
stability. We have named χ and σ in reference to ordinary
systems. Although χ is the susceptibility, σ does not play the
role of a measurable electrical conductivity.

The density and currents are, at leading order,

ρ = χ∂tφ, ρi = 0, Ji = −σ∇i∂tφ + σ∂tψi,

Ji j = B1∇i∇ j∂tφ + B2∇i∂tψ j + B3∇ j∂tψi. (12)

Although ρi has nonzero contributions at higher order, we will
not need to include them. The dipole continuity equation reads

0 = −σ∇i∂tφ + σ∂tψi − B1∇2∇i∂tφ

− B2∇i∇ j∂tψ j − B3∇2∂tψi, (13)

which imposes that ∂tψi = ∇i∂tφ, plus higher-order correc-
tions. The monopole continuity equation then reads

0 = ∂tρ − ∂t∇iρi + ∇i∇ jJi j

= χ∂2
t φ + (B1 + B2 + B3)∇4∂tφ + · · · , (14)

so that the dispersion is

ω = −i
B1 + B2 + B3

χ
k4, (15)

which describes subdiffusion. This is consistent with previous
results [7], and also with experiments on cold atomic gases
with approximate dipole symmetry [9].

For the remaining phases we will presciently suppose z =
2. Then, the most general effective action consistent with the
KMS and EFT symmetries, but without any diagonal shift
symmetries imposed, is

Leff = χ∂tφ∂t� + [− κ
φ

1 (∇iφ − ψi ) + κ
φ

2 ∇2∇iφ + g2∇2ψi

+ g3∇i∇ jψ j − σ∂t (∇iφ − ψi )
]
(∇i� − �i )

− [
κφψ∇i∇ jφ + κ

ψ

1 ∇iψ j + κ
ψ

2 ∇ jψi
]∇ j�i, (16)

to leading order. The κ coefficients act as generalized super-
fluid stiffnesses in the system. The symmetries require that all
coefficients except g2 and g3 are positive. Furthermore, κφψ =
κ

φ

2 + g2 + g3 by KMS (see the Appendix). This action should
describe the charge condensate. Under these conditions, all
terms in the effective action are allowed and the density and
currents are

ρ = χ∂tφ, ρi = 0, Ji = −κ
φ

1 ∇iφ + κ
φ

1 ψi + · · · ,

Ji j = κφψ∇i∇ jφ + κ
ψ

1 ∇iψ j + κ
ψ

2 ∇ jψi, (17)

to leading order. The dipole continuity equation now imposes
that ψi = ∇iφ plus higher-order corrections. The monopole

continuity equation is

0 = ∂tρ − ∂t∇iρi + ∇i∇ jJi j

= χ∂2
t φ + (κφψ + κ

ψ

1 + κ
ψ

2 )∇4φ + · · · , (18)

so that the dispersion is

ω2 = κφψ + κ
ψ

1 + κ
ψ

2

χ
k4, (19)

which describes a propagating mode with ω ∼ k2. Going be-
yond leading order, including generic dissipative terms, such
as ∂t∇iψ j∇i� j , in the action contributes a subleading −ik4 to
the dispersion.

The quadratic propagation matches previous expectations
at T = 0 from a microscopic model [25], field theory [22],
and a more generic model called the Dipolar Bose-Hubbard
Model (DBHM) [6], so that the charge condensate behaves
like a zero-temperature fluid. The effects of dissipation are
subleading and do not modify the zero-temperature behavior
at low wave vector. In Ref. [6], the authors show that the
existence of only a single mode in the charge condensate
phase of the DBHM is a result of a Higgs-like effect, where
ψi plays the role of a gauge field. The same effect appears in
the hydrodynamics as the requirement that ψi = ∇iφ.

Finally, we can try imposing the diagonal shift symmetry
on φ but not ψi. This corresponds to the dipole conden-
sate, where dipole symmetry is spontaneously broken but
monopole symmetry is not. The diagonal shift symmetry on
φ requires that κ

φ

1 , κ
φ

2 , and κφψ vanish, which in turn requires
that g3 = −g2. The density and currents are

ρ = χ∂tφ, ρi = 0,

Ji = g2(∇2ψi − ∇i∇ jψ j ) − σ∇i∂tφ + σ∂tψi,

Ji j = κ
ψ

1 ∇iψ j + κ
ψ

2 ∇ jψi. (20)

The dipole continuity equation will no longer result in a con-
straint because now Ji and ∇ jJi j are of the same order. Instead,
we will have to simultaneously solve both equations.

The two continuity equations are

0 = χ∂2
t φ − σ∇2∂tφ + σ∂t∇iψi,

0 = −σ∇i∂tφ + σ∂tψi − (
κ

ψ

2 − g2
)∇2ψi

− (
κ

ψ

1 + g2
)∇i∇ jψ j . (21)

We can simplify the analysis by splitting ψi into a transverse
and longitudinal part ψi = ψ t

i + ψ
i , where the longitudinal

part is ψ
i = kik j/k2ψ j and obeys ∇iψ


i = ∇iψi. The trans-

verse part is ψ t
i = Ptψ j, where Pt = (δi j − kik j/k2) is the

transverse projector. Applying the transverse projector to the
dipole continuity equation results in

0 = σ∂tψ
t
i − (κψ

2 − g2)∇2ψ t
i , (22)

with solution

ω = −i
κ

ψ

2 − g2

σ
k2, (23)

which is an ordinary diffusive mode. Note that the value
κ

ψ

2 − g2 is always positive (see the Appendix). Furthermore,
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this dispersion represents two hydrodynamic modes, corre-
sponding to the two transverse polarizations of ψi.

To access the longitudinal part we may take the divergence
of the dipole continuity equation. The monopole continuity
equation and the divergence of the dipole continuity equa-
tion together read

0 =
[
χ∂t − σ∇2 σ∂t

−σ∇2 σ∂t − κψ∇2

](
∂tφ

∇ jψ j

)
, (24)

where κψ = κ
ψ

1 + κ
ψ

2 , showing that φ and ∇iψi are coupled.
Their joint dispersion relation is

0 = ω2 + i
κψ

σ
ωk2 − κψ

χ
k4 (25)

or

ω = −i
κψ

2σ
k2 ±

√
−(κψ )2

4σ 2
+ κψ

χ
k2, (26)

which displays a transition from pure diffusion to quadratic
propagation, controlled by the dimensionless parameter
κψχ/σ 2. For κψχ � 4σ 2, the dispersion approaches

ω = −i
κψ

σ
k2, ω = −i

σ

χ
k2, (27)

with two quadratically diffusing modes. In the opposite limit
the dispersion approaches

ω = −i
κψ

2σ
k2 ±

√
κψ

χ
k2, (28)

which is simultaneously quadratically propagating and
quadratically diffusive. While we might have expected the
dissipative coefficient σ to play a damping role, the large-σ
regime is underdamped and the small-σ regime is over-
damped. This effect, opposite to expectations, would be an
interesting avenue for further research.

IV. EXPLORING THE DIPOLE CONDENSATE

Since the subdiffusion of the normal phase and quadratic
propagation of the charge condensate have been studied in the
literature [6,7], we here focus on better understanding differ-
ent regimes of the dipole condensate. We can tune various
parameters to be small, bringing us to limiting points of the
phase diagram. The small parameters define a quasihydrody-
namic timescale τ [32], which is parametrically long.

To begin, let us study the hydrodynamics in the charge con-
densate but near the phase transition to the dipole condensate.
We allow terms that break the diagonal shift symmetry for φ,
but require them to be small. The important coefficients are
κ

φ

1 and κφψ (κφ

2 , g2, and g3 will all be subleading). This gives
a longitudinal continuity equation,

0 = ω2 + κψ

κ
φ

1 − iωσ
ω2k2 − κφψ + κψ

χ
k4, (29)

with κψ = κ
ψ

1 + κ
ψ

2 as before. This dispersion defines a
quasihydrodynamic time scale τ = σ/κ

φ

1 . At times much
longer than τ , the dispersion is ω2 = (κφψ + κψ )k4/χ , re-
covering the subdiffusive dispersion of the charge condensate.

FIG. 2. Parametric plot of the dispersion in the charge conden-
sate but close to the dipole condensate. Arrows point from small to
large k. The left figure is plotted near the diffusive regime of the
dipole condensate (κψχ/σ 2 = 25), while the right figure is plotted
near the propagating regime of the dipole condensate (κψχ/σ 2 = 1).
At small k both dispersions look like the charge condensate, while at
large k they look like their respective DC dispersions.

This shows that we are truly in the charge condensed phase.
At times below the scale τ , the dispersion looks like the dipole
condensate [compare to (25)]. There is no transverse mode in
the charge condensate, even near the dipole condensate phase
transition.

The quasihydrodynamic crossover between the charge con-
densate at the low k and the dipole condensate at large k
can be visualized by examining parametric plots of the dis-
persion (29). The dimensionless parameter κψχ/σ 2 places us
on either side of the transition in the dipole condensate. In
Fig. 2 we can see the dispersion with κψχ/σ 2 = 25 chosen
to place us firmly within the diffusive regime. At small k (the
true hydrodynamic regime), the dispersion looks like that of
the charge condensate, ω2 ∼ k4, together with an additional
gapped mode. At large k (the quasihydrodynamic regime) the
dispersion becomes completely imaginary and looks like the
diffusive regime of the dipole condensate (ω ∼ −ik2). One
of the diffusive modes becomes gapped at small k, while the
other diffusive mode collides with the large-k gapped mode to
give the propagating modes.

Increasing κ
φ

1 moves the system deeper into the charge
condensate and results in a smaller τ , which pushes the quasi-
hydrodynamic regime to larger k. Accordingly, this causes the
circle in Fig. 2 to grow, so that the ω2 ∼ k4 behavior of the
charge condensate persists for larger k. On the other hand, a
larger τ results in a smaller circle in Fig. 2, and the crossover
to quasihydrodynamics occurs for smaller and smaller values
of k. The phase transition occurs when τ → ∞, the circle
shrinks entirely, and the small k behavior is purely diffusive.

The right side of Fig. 2 shows the dispersions at a value
of κψχ/σ 2 = 1, near a point deep in the propagating regime
of the dipole condensate (recall the critical value is four). The
propagating modes of the charge condensate at small k cross
over to the propagating and diffusing modes of the dipole
condensate at large k with no collision. Additionally, there
is an extra mode that is gapped at large and small k. This
mode is not a hydrodynamic or quasihydrodynamic mode, but
it cannot be removed from the analysis because it is the same
mode that goes from diffusive to gapped in the other regime.
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FIG. 3. Real and imaginary parts of the dispersion in the dipole
condensate phase close to the dissipationless limit. The transverse
mode and one of the modes of the longitudinal/monopole composite
display the same behavior, shown here. At small k the dispersion
looks like the diffusive regime of the dipole condensate (ω ∼ −ik2),
while at large k it looks like the T = 0 limit of the dipole condensate
(ω ∼ ±k).

As before, a larger κ
φ

1 results in a smaller τ and pushes
the quasihydrodynamic regime to larger k. This “opens” the
initially rounded region near k = 0 so that the ω2 ∼ k4 hy-
drodynamics persists for larger k. Conversely, a larger τ

leads to a smaller rounded region so that the crossover to
the quasihydrodynamic ω ∼ ±k2 − ik2 occurs for smaller and
smaller k.

Another surprising facet of the dipole condensate phase
is its quadratic propagation. At T = 0 in the DBHM, the
dipole condensate consists of d modes (one for each space
dimension), all propagating linearly [6,22]. We can view the
hydrodynamic phase explored here as consisting of both the
dipole condensate and a background normal (subdiffusive)
fluid. Although the hydrodynamics EFT does not provide a
mechanism for studying the behavior of the fluid as T → 0,
we can instead reproduce the T = 0 behavior in the nondissi-
pative (small-σ ) limit.

Specifically, let us take the small-σ limit of (20). This
forces us to retain ρi in the continuity equations, with the im-
portant contribution being ρi = χψ∂tψi. The transverse part
of the dipole continuity equation reads

0 = χψ∂2
t ψ t

i + σ∂tψ
t
i − (

κ
ψ

2 − g2
)∇2ψ t

i , (30)

with solution

ω = −iσ

2χψ
±

√
−σ 2

2(χψ )2
+

(
κ

ψ

2 − g2
)
k2

χψ
, (31)

introducing a timescale τ = χψ/σ . The new timescale τ is
large in the small-σ limit. On timescales smaller than τ the
quasihydrodynamics consists of a linear propagating mode,

ω = ±
√(

κ
ψ

2 − g2
)
k2

χψ
, (32)

matching the T = 0 expectation. At timescales larger than τ

the propagating mode splits into a gapped mode and a dif-
fusive mode with diffusion constant (κψ

2 − g2)/σ , as in (23).
This behavior is shown in Fig. 3.

With the introduction of χψ , the analog of (24) for the
transverse mode is

0 =
[
χ∂t − σ∇2 σ∂t

−σ∇2 χψ∂t + σ∂t − κψ∇2

](
∂tφ

∇ jψ j

)
, (33)

with the same timescale τ = χψ/σ . In the small-σ limit, the
solutions are

ω = −i
σ

χ
k2, ω = −iσ

2χψ
±

√
−σ 2

2(χψ )2
+ κψ k2

χψ
. (34)

The first solution matches one of the diffusion modes from
the dipole condensate phase, with a diffusion constant that
vanishes in the small-σ limit. The other mode behaves similar
to the transverse mode, crossing over from linear propagation
in quasihydrodynamics to a gapped mode and a diffusive
mode in the late-time hydrodynamics, as shown in Fig. 3.

In contrast to the charge condensate, where dissipation had
little effect on the physics, in the dipole condensate the mode
propagation at low wave number is immediately modified in
the presence of dissipation. The dissipative coefficient σ is
crucial in that it completely changes the nature of the disper-
sion relation from T = 0 to finite T , going from a ballistic to
a quadratic scaling. While we determined the presence of this
transport coefficient in terms of simple symmetry arguments,
we note that this term can be argued to be finite based on
microscopic reasoning. Consider a lattice model described by
a complex boson bx and with dipole symmetry bx → bxeiα·x.
In the condensed dipole phase, hopping of a single boson is
allowed through the term bxbx+e j e

iψ j + H.c., where e j de-
notes a unit vector in the j direction [6]. Note that ψi can
exactly be viewed as a spatial gauge field Ai = ψi. Treating
ψi as a background nondynamical field, at finite temperature,
this coupling will generically lead to a finite conductivity term
in the current Ji = σEi = σ∂tψi, which is precisely the last
term in the third line of (20). This argument not only confirms
that σ must generically be finite, it also shows that, given a
U (1)-invariant system without dipole symmetry, this can be
straightforwardly extended to a dipole symmetric system in
the dipole condensed phase.

V. DISCUSSION

We have developed a systematic, effective field theory
based treatment of hydrodynamics in systems with charge
and dipole symmetry, allowing for the possibility of sponta-
neous symmetry breaking. In the absence of any SSB, we find
quartic subdiffusion, consistent with [7]. With both charge
and dipole symmetries broken, we find a quadratically prop-
agating (and quartically subdiffusing) mode, consistent with
[6]. We also introduced the phase where dipole symmetry is
spontaneously broken but monopole symmetry is preserved,
corresponding to a “dipole condensate.” In this phase we find
that there exist diffusive transverse modes, as well as longitu-
dinal modes which, depending on parameters, can be either
purely diffusive or quadratically propagating and relaxing.
This phase does not match any in the literature, and reflects
intrinsically nonzero-temperature effects.

Our results can be tested in ultracold atom experiments
analogous to [9]. Further afield, they could be generalized to
systems with momentum conservation and/or systems with
more complex multipolar symmetries [33]. We leave such
generalizations to future work.
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APPENDIX: DERIVATION OF THE EFFECTIVE ACTION

The effective actions we consider must obey the KMS symmetry in (10). Reference [34] shows that we can construct KMS-
invariant terms in two distinct ways, which correspond to dissipative and nondissipative terms in the effective action. The
nondissipative terms are

Lnd =
(

�
δ

δφ
+ �i

δ

δψi

) ∫
d3x dt �, (A1)

where � is a Lagrangian that depends on φ and ψi but not on � or �i. Thermodynamic stability of the effective action requires
that � is negative when Wick-rotated. The dissipative terms are

Ld = 1
2 (X (φ,ψi,�,�i ) + XKMS(φ,ψi,�,�i ) − X (φ,ψi, 0, 0) − XKMS(φ,ψi, 0, 0)), (A2)

where X is quadratic in � and �i, and is even under time reversal. The function XKMS is the result of the transformation in (10)
applied to X .

For the nondissipative part, we will consider terms of order ω2, ω2k2, k2, and k4. This is not a strictly valid gradient expansion
at any value of z, but will give us all the terms we need for our analysis. Then, we have

2� = χ (∂tφ)2 + χ
φ

2 (∂t∇iφ)2 + 2g1∂t∇iφ∂tψi + χψ (∂tψi )
2 − κ

φ

1 (∇iφ − ψi )
2

− κ
φ

2 (∇i∇ jφ)2 − 2g2∇i∇ jφ∇iψ j − 2g3∇2φ∇iψi − κ̃
ψ

2 (∇iψ j )
2 − κ̃

ψ

1 (∇iψi )
2, (A3)

where we have included various factors of two for convenience. All χ and κ coefficients must be nonnegative. The g
coefficients may be positive or negative, but must obey the stability conditions |g1| � min(χφ

2 , χψ ), |g2| � min(κφ

2 , κ̃
ψ

2 ),
|g3| � min(κφ

2 , κ̃
ψ

1 ), and |g2 + g3| � κ
φ

2 . The Lagrangian becomes

Lnd = [
χ∂tφ − χ

φ

2 ∂t∇2φ − g1∂t∇iψi
]
∂t� + [g1∂t∇iφ + χψ∂tψi]∂t�i + [−κ

φ

1 (∇iφ − ψi )
]
(∇i� − �i )

+ [−κ
φ

2 ∇i∇ jφ − g2∇iψ j − g3δi j∇kψk
]∇i∇ j� + [−g2∇i∇ jφ − g3δi j∇2φ − κ̃

ψ

2 ∇iψ j − κ̃
ψ

1 δi j∇kψk
]∇i� j

= [
χ∂tφ − χ

φ

2 ∂t∇2φ − g1∂t∇iψi
]
∂t� + [

g1∂t∇iφ + χψ∂tψi
]
∂t�i + [−κ

φ

1 (∇iφ − ψi ) + κ
φ

2 ∇2∇iφ + g2∇2ψi

+g3∇i∇ jψ j
]
(∇i� − �i ) − [(

κ
φ

2 + g2 + g3
)∇i∇ jφ + (

κ̃
ψ

1 + g3
)∇iψ j + (

κ̃
ψ

2 + g2
)∇ jψi

]∇ j�i, (A4)

where we used ∇i∇ j� = ∇i(∇ j� − � j ) + ∇i� j and integration by parts. Note the sign and order of indices in the last
line, chosen to match the convention in (7). We can identify the new coefficients κφψ = κ

φ

2 + g2 + g3, κ
ψ

1 = κ̃
ψ

1 + g3, and
κ

ψ

2 = κ̃
ψ

2 + g2, all of which are nonnegative.
The dissipative terms we need for our analysis descend from the expression

2βX = ib0(∇i� − �)2 + ib1(∇i∇ j�)2 + 2iξ∇i∇ j�∇i� j + 2iξ2∇2�∇i�i + ib2(∇i� j )
2 + ib3(∇i�i )

2, (A5)

where the b coefficients must be positive and |ξ1| � min(b1, b2), |ξ2| � min(b1, b3), and |ξ1 + ξ2| � b1 by (9). Then,

Ld = X − b0∂t (∇iφ − ψi )(∇i� − �i )

− [b1∂t∇i∇ jφ + ξ1∂t∇iψ j + ξ2δi j∂t∇kψk]∇i∇ j�

− [ξ1∂t∇i∇ jφ + ξ2δi j∂t∇2φ + b2∂t∇iψ j + b3δi j∂t∇kψk]∇i� j

= X + [−b0∂t (∇iφ − ψi ) + b1∂t∇2∇iφ + ξ1∂t∇2ψi + ξ2∂t∇i∇ jψ j](∇i� − �i )

− [(b1 + ξ1 + ξ2)∂t∇i∇ jφ + (b2 + ξ1)∂t∇iψ j + (b3 + ξ2)δi j∂t∇kψk]∇i� j, (A6)

from which we can identify σ = b0, B1 = b1 + ξ1 + ξ2, B2 = b2 + ξ1, and B3 = b3 + ξ2. The other terms end up being
subleading so we may drop them. The terms in X itself are quadratic in � and �i, so they contribute to the fluctuating
hydrodynamics but can be ignored for the purpose of computing the dispersion relations.
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