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Unconventional superconductivity protected from disorder on the kagome lattice
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Motivated by the recent discovery of superconductivity in the kagome AV3Sb5 (A = K, Rb, Cs) metals, we
perform a theoretical study of the symmetry-allowed superconducting orders on the two-dimensional kagome
lattice with focus on their response to disorder. We uncover a qualitative difference between the robustness of
intraband spin-singlet (even-parity) and spin-triplet (odd-parity) unconventional superconductivity to atomic-
scale nonmagnetic disorder. Due to the particular sublattice character of the electronic states on the kagome
lattice, disorder in spin-singlet superconducting phases is only weakly pair-breaking despite the fact that the
gap structure features sign changes. By contrast, spin-triplet condensates remain fragile to disorder on the
kagome lattice. We demonstrate these effects in terms of the absence of impurity bound states and an associated
weak disorder-induced Tc suppression for spin-singlet order. We also discuss the consequences for quasiparticle
interference and their inherent tendency for momentum-space anisotropy due to sublattice effects on the kagome
lattice. For unconventional kagome superconductors, our results imply that any allowed spin-singlet order,
including for example d + id-wave superconductivity, exhibits a disorder-response qualitatively similar to
standard conventional s-wave superconductors.
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I. INTRODUCTION

The irreducible representations of a given point group
dictate the allowed homogeneous superconducting order pa-
rameters of materials [1]. However, additional complexity of,
e.g., sublattice degrees of freedom, multiple active orbitals at
the Fermi level, associated Hund’s interactions, or strong spin-
orbit coupling adds significant richness to the problem [2–11].
Whatever superconducting gap structure eventually gets sin-
gled out in a given material depends on the particular pairing
mechanism operative in that system. Determining experimen-
tally which order parameter is present in specific materials
can be a tremendous challenge due to the low temperature and
often minute energy scales of the superconducting problem. In
this respect, disorder can play an important role because it can
act as a phase-sensitive probe. Disorder effects can be studied
in terms of, e.g., atomically-resolved impurity bound states
detectable by local probes as well as the overall disorder-
averaged superconducting response as seen by, e.g., thermo-
dynamic probes or transport measurements. If nonmagnetic
disorder is able to generate in-gap bound states or if it severely
affects superconductivity, it is typically a strong indicator of
an unconventional superconducting condensate [12].

The discovery of superconductivity in vanadium-based
kagome metals AV3Sb5 (A = K, Rb, Cs) has reinvigorated
the discussion of conventional versus unconventional pairing
in novel quantum materials [13]. The kagome lattice is par-
ticularly intriguing since its basic electronic structure features
both flat bands, van Hove singularities, and Dirac points, as
seen in Fig. 1. In addition, the Fermi surface distribution
of sublattice weights of the eigenstates of the kagome tight-
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binding bands, also illustrated in Fig. 1, can play important
roles for determining, e.g., the leading instabilities arising
from electronic interactions [14,15]. This may indeed be of
relevance in the AV3Sb5 compounds where superconductivity
appears in proximity to a charge-density wave (CDW) phase,
which has been studied intensely both theoretically [16–22]
and experimentally [23–27]. For the superconducting phase,
some theoretical studies have explored Cooper pairing aris-
ing from purely electronic fluctuations [14,16,17,19,28–34].
Other studies have pointed to the important role of phonons
for the generation of superconductivity, either on their own or
in conjunction with electronic correlations [35–40].

Experimentally, the AV3Sb5 kagome metals enter their su-
perconducting phase at Tc ∼ 1 − 3 K [13,41,42]. The critical
temperature Tc, however, may be significantly enhanced by
uniaxial strain or hydrostatic pressure, e.g., for CsV3Sb5, Tc ∼
8 K at ∼2 GPa [43–46]. The detailed nature and origin of
electronic pairing in AV3Sb5 remains controversial at present,
with evidence for both standard nodeless non-sign-changing
gaps and nodal unconventional superconducting order. For ex-
ample, several STM measurements have reported “V”-shaped
STM conductance spectra [26,47,48], and thermal conductiv-
ity data has been interpreted in favor of nodal superconductiv-
ity [49]. Similarly, muon spin spectroscopy experiments on
RbV3Sb5 and KV3Sb5 samples report nodal gaps at ambi-
ent pressure [50], and a pressure-tuned transition to nodeless
order with additional evidence for spontaneous time-reversal
symmetry breaking (TRSB) setting in at Tc for high pres-
sures ∼2 GPa [50,51]. On the other hand, a Knight shift
suppression and the existence of a Hebel-Slichter coherence
peak in the spin-lattice relaxation observed by nuclear mag-
netic resonance measurements point to s-wave spin-singlet
superconductivity [52]. Penetration depth measurements and
specific heat data on CsV3Sb5 have also been analysed
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FIG. 1. (a) Illustration of the kagome lattice with lattice vectors
t1 and t2, and sublattice vectors a1, a2, and a3. The grey area denotes
the unit cell with the three different sublattice sites denoted A (blue),
B (orange), and C (green). (b) Tight-binding energy bands plotted
along the high-symmetry path shown in the inset. Here, n is a band
label, introduced for later convenience. (c) Distribution of the sublat-
tice weights across the Brillouin zone for the second band (n = 2).
The Fermi surface for μ = 0, corresponding to the upper van Hove
singularity in (b), is shown in black.

in terms of an anisotropic non-sign-changing gap with a
finite small minimum gap [41,45,53–55]. Recent laser ARPES
measurements find isotropic (momentum-independent) spec-
troscopic gaps [56]. Nodeless superconductivity also appears
consistent with multiband features and a “U”-shaped con-
ductance behavior near zero bias as seen by some scanning
tunneling microscopy (STM) measurements [48]. In addition,
the lack of sign changes in the gap function appears consistent
with the absence of in-gap states near nonmagnetic impuri-
ties [48] and a weak dependence of Tc on residual resistivity
ratios (sample quality) [57].

A main point of the current paper is that one needs to
be careful applying standard arguments about disorder and
pair breaking when the impurities are located on sites that
are not centers of the point group operations. This is indeed

the case for the kagome lattice, where the site symmetry of
the individual lattice sites does not possess the full point
group symmetry. In a nutshell, even though a gap func-
tion averages to zero over the Fermi surface,

∑
k �(k) = 0,

atomic-scale disorder necessarily selects a specific sublattice
site and thereby only scatters to certain allowed regions of
the Fermi surface. For spin-singlet order on the kagome lat-
tice this mechanism of sublattice-selective scattering in fact
renders nonmagnetic disorder nearly blind to sign changes in
the gap structure. In this sense, the kagome lattice protects
spin-singlet superconductivity from nonmagnetic disorder.

Here, we perform a theoretical study of the basic properties
of the superconducting phases on the kagome lattice and their
response to point-like defects, and determine the robustness
of different symmetry-allowed superconducting order param-
eters to disorder. As mentioned above, we demonstrate that the
sublattice weight of the band eigenstates plays a crucial role
for determining the response of superconductivity to disor-
der. Specifically, while intraband spin-triplet pairing remains
fragile to disorder, spin-singlet superconductivity is robust
to atomic-scale disorder due to the sublattice dependence of
the eigenstates. We stress that this is a generic property of
the kagome lattice, and not restricted to a specific electron
concentration and associated Fermi surface. More generally,
we expect that other lattices with substantial sublattice weight
variation present at the Fermi surface will exhibit similar
behavior. We analyze the impact of atomic-scale disorder in
terms of allowed impurity bound states and the resulting local
density of states, and discuss implications for quasiparticle
interference. Additionally, we discuss the robustness of Tc

within Abrikosov-Gor’kov theory [58] applied to both spin-
triplet and spin-singlet superconducting states, and compare
to similar calculations obtained on the square lattice.

The paper is organized as follows: In Sec. II we review the
electronic structure of the kagome lattice and in Sec. III we
construct the symmetry-allowed superconducting orders as-
suming a single s-orbital degree of freedom on each sublattice
site. From these candidates we next explore their response and
robustness to atomic-scale disorder. Section IV A focuses on
the existence of impurity bound states and the response to lo-
cal probes, whereas the disorder-averaged impact on Tc within
an Abrikosov-Gor’kov approach is described in Sec. IV B.
Finally, Sec. V contains a discussion of the relevance of the
current findings to the AV3Sb5 materials, and our conclusions.

II. PHENOMENOLOGY OF THE KAGOME LATTICE

The kagome lattice is a network of corner-sharing triangles
with three sites in the unit cell, as shown in Fig. 1. The normal
state Hamiltonian reads

H0 =
∑
kσ
αβ

(hαβ (k) − μδαβ )c†
kσαckσβ

, (1)

where σ denotes spin and α, β = A, B,C are sublattice in-
dices. The kinetic part is given by

h(k) = −2t

⎛⎜⎝ 0 cos k3 cos k1

cos k3 0 cos k2

cos k1 cos k2 0

⎞⎟⎠, (2)
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where we have restricted to nearest-neighbor (NN) hoppings.
In what follows we will set the hopping amplitude t = 1.
Here, ki = k · ai where

a1 = 1

2
(1 0), a2 = 1

2

(
1

2

√
3

2

)
,

a3 = 1

2

(
− 1

2

√
3

2

)
, (3)

are the sublattice vectors, where we have put the distance
between neighboring unit cells to one.

The Hamiltonian is diagonalized by a unitary transfor-
mation, u∗

nα (k)hαβ (k)uβm(k) = ξn(k)δnm yielding the band
energies ξn(k) and the eigenstates uαn(k) of band n. The
resulting band structure is shown in Fig. 1 and features a Dirac
point at the K point and two van Hove singularities at the M
point. In addition, for the NN tight-binding model there is a
flat band, which acquires a weak dispersion upon including
further neighbor hoppings. Furthermore, the kagome lattice is
endowed with a property, which has become known as sublat-
tice interference [14] for which specific hopping trajectories
interfere destructively resulting in electronic wavefunctions
that localize on specific sites inside the unit cell. Specifically,
electronic states at the upper van Hove singularity, at μ = 0,
are localized on only one of the three sites in the unit cell,
as shown in Fig. 1. In contrast, states at the lower van Hove
singularity, at μ = −2, localize on two of the three sublattice
sites.

III. SUPERCONDUCTING PAIRING STATES

Superconductivity is included at the mean-field level
through the Bogoliubov-de Gennes (BdG) framework. In
Nambu basis, the Hamiltonian reads

HBdG =
∑

k

�
†
kĤBdG(k)�k, (4)

where

ĤBdG(k) =
(

h(k) − μ1 −�(k)

−�(k)† −h(−k)T + μ1

)
, (5)

and �
†
k = (c†

k↑ c−k↓) with c†
kσ = (c†

kσA c†
kσB c†

kσC ) and
the hat denotes 6 × 6 matrices in Nambu and sublattice space.
In this section we discuss which form the 3 × 3 matrices �(k)
can take on the kagome lattice. Readers interested mainly
in the effects of disorder can skip directly to Sec. IV. In
what follows, we will not be concerned with the microscopic
origin of superconductivity and instead focus on which states
are allowed to exist by symmetry. A momentum-independent
microscopic pairing interaction induces only on-site terms
while any momentum dependence of the pairing interaction
generically yields both on-site terms and further neighbor cou-
plings. As shown in Fig. 1, the two-dimensional (2D) kagome
lattice has three distinct sites in the unit cell and the point
group is D6. Barring any accidental near degeneracies, the
superconducting order parameter will therefore transform as
an irreducible representation (irrep) of D6.

There are four one-dimensional (1D) irreps, A1, A2, B1, and
B2, and two 2D ones, E1 and E2. In what follows, we will

TABLE I. Summary of the different pairing states on the kagome
lattice. The first column gives the irrep, while the second and third
columns provide schematic illustrations of the form of the pairing
state in real space. The fourth and fifth columns display the projec-
tion of the form factors on the n = 2 band, as obtained from Eq. (16).
The irreps on the upper three rows originate from on-site terms while
the rest are from nearest-neighbor terms. The color and its intensity
denotes the relative sign and strength of the pairing condensate in
both the real and momentum space cases. In the triplet case, the
sign is denoted by the direction of the arrows, to highlight their
antisymmetry under exchange of the real-space indices.

decompose the possible pairing states in terms of these irreps.
For simplicity, we will confine our attention to pairing states
for which the two electrons of the Cooper pair are either on
the same site or on neighboring sites. For on-site (OS) Cooper
pairs, the pairing state can be decomposed as

f S
OS = A1 ⊕ E2. (6)

The real- and momentum-space structures of these states
are shown in Table I. Accordingly, the two matrices
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corresponding to the two on-site components of E2 are

f S
OS,E (1)

2
= 1√

6

⎛⎜⎝+1 0 0

0 −2 0

0 0 +1

⎞⎟⎠, (7)

f S
OS,E (2)

2
= 1√

2

⎛⎜⎝+1 0 0

0 0 0

0 0 −1

⎞⎟⎠. (8)

Since there is only a single orbital per site in our model, on-
site states are restricted to being of spin-singlet character. This
is no longer the case for pairing states involving NN, and we
find both singlet and triplet candidates,

f S
NN = A1 ⊕ B2 ⊕ E1 ⊕ E2, (9)

f T
NN = A2 ⊕ B1 ⊕ E1 ⊕ E2, (10)

which are illustrated in Table I. For example, the two compo-
nents of the singlet NN E2 form factor written in momentum
space are

f S
NN,E (1)

2
= 1√

12

⎛⎜⎝ 0 − cos k3 2 cos k1

− cos k3 0 − cos k2

2 cos k1 − cos k2 0

⎞⎟⎠, (11)

f S
NN,E (2)

2
= 1

2

⎛⎜⎝ 0 cos k3 0

cos k3 0 − cos k2

0 − cos k2 0

⎞⎟⎠. (12)

We illustrate the triplet order parameters using arrows to high-
light the fact that these, by their nature, are antisymmetric
under exchange of the real-space indices. We obtain the triplet
E1 components

f T
NN,E (1)

1
= i√

12

⎛⎜⎝ 0 sin k3 −2 sin k1

sin k3 0 − sin k2

−2 sin k1 − sin k2 0

⎞⎟⎠, (13)

f T
NN,E (2)

1
= i

2

⎛⎜⎝ 0 sin k3 0

sin k3 0 sin k2

0 sin k2 0

⎞⎟⎠. (14)

The form factors for all the cases shown in Table I are pro-
vided in the Appendix. We note that the appearance of the B2

and E1 singlet states and the A2 and E2 triplet states is facil-
itated only by the internal sublattice structure of the kagome
lattice. Consequently, these lead to interband pairing in mo-
mentum space [59]. For the filling factors we consider, none
of these lead to a gap opening at the Fermi level, and the elec-
tronic structure of the Bogoliubov quasiparticles in this energy
range is unchanged from the normal state. Consequently, we
do not discuss these states further in what follows. The B2

triplet and A2 singlet gap structures familiar from previous
studies of superconductivity on the kagome lattice [30,32] are
obtained at second- and third-nearest neighbors, respectively.

The gap structure is generally a sum of multiple terms. For
a generic irrep, 	, the singlet or triplet order parameter is

�	 = �0 fOS,	 + �1 fNN,	 + · · · , (15)

where �i denote constants, possibly zero, which depend on
the specific irrep and pairing interaction considered and · · ·
denotes terms beyond NN, which we do not consider in this
work. Here, we choose �0 = 0.2 and �1 = �0/2 for the
A1 and E2 cases and, in the remaining cases, �0 = 0, �1 =
0.2. These choices imply that the superconducting coherence
peaks are at comparable energies for the different cases. For
the 2D irreps, E1 and E2, the system will choose a linear
combination of the two components, aE (1)

1,2 + bE (2)
1,2 , where a

and b are complex numbers. Below, we will focus on the cases
where a = 1, b = i, which breaks time-reversal symmetry,
and a = 1, b = 0 (or a = 0, b = 1), which breaks lattice rota-
tional symmetry. �	 of Eq. (15) corresponds to the 3 × 3 ma-
trices appearing in the BdG Hamiltonian, Eq. (5). These can
be transformed to band space through a unitary transformation

�nm(k) = u∗
nα (k)�αβ (k)u∗

βm(−k), (16)

where unα (k) are the eigenstates of band n. We note that
�nm(k) is not necessarily a diagonal matrix; the off-diagonal
components correspond to interband pairing. The results for
the middle band (n = m = 2) are shown in the fourth and
fifth column of Table I. We note that the projection onto
the n = m = 1 band leads to similar results, as expected
from the symmetry of the lattice. The “interband” cases
in Table I denote the ones where the order parameter
consists of electrons from two different bands, i.e., where the
off-diagonal elements of �nm(k) are finite while the diagonal
components vanish. These states do not generally lead to a
gap opening at the Fermi level as mentioned above.

In Fig. 2 we show the density of states (DOS) for different
choices of the superconducting order parameter correspond-
ing to the singlets A1 (s wave) and E2 (d + id) and the triplets
E1 (p + ip) and B1 ( f ). The s-wave, d + id and p + ip cases
all exhibit a full gap whereas the f -wave state is nodal. We
denote the location of the superconducting coherence peak by
�c. For d + id and p + ip pairing, the full gap is facilitated
by the breaking of time-reversal symmetry, which allows the
system to avoid possible gap nodes on the Fermi surface. For
the d + id and the p + ip cases we also include the DOS for
the individual components. In this case, rotational symmetry
is broken by the superconducting order, and the DOS on the
A, B, and C sublattices can be different. The cases shown in
Fig. 2 correspond to the local density of states (LDOS) at an
A sublattice site.

IV. EFFECTS OF DISORDER ON KAGOME
SUPERCONDUCTIVITY

In this section we turn to a discussion of the effects of
disorder on the symmetry-distinct pairing states introduced
above. The discussion is divided into two parts. First, we
address the response of the system to a single impurity and
the possibility of localized in-gap bound states and second,
we discuss the disorder-averaged suppression of Tc versus the
impurity scattering rate.

A. Impurity bound states and sublattice interference

In this section, we discuss the effects of a single impurity
on superconductivity on the kagome lattice. We focus on
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(d)

FIG. 2. DOS near the Fermi energy for systems with either sin-
glet (left column) or triplet (right column) superconducting order.
The singlet cases are plotted for μ = 0 while the triplet cases are
plotted for μ = 0.08. (a) Singlet A1, resulting in the usual fully
gapped s-wave spectrum. (b) Singlet E2, which is 2D and corre-
sponds to d-wave at lowest order in momentum. In black we illustrate
the d + id TRSB combination. This combination results in a fully
gapped spectrum. In orange and blue we show the results for the
two individual components, dx2−y2 (orange) and dxy (blue). Both
exhibit nodes on the Fermi surface and lead to V-shaped gaps. They
also break rotational symmetry and the LDOS differs between the
different sublattice sites. Here we show the case corresponding to the
A sublattice. (c) Triplet B1, which is commonly denoted f wave. This
has nodes on the Fermi surface (see Table I) resulting in a V-shaped
gap. (d) Triplet E1, which is also 2D and corresponds to p wave at
lowest order in momentum. We show the TRSB p + ip variant in
black, while the px and py components are shown in orange and blue,
respectively. Both px and py break lattice rotational symmetry. Here,
we stress that we only plot the DOS on the A sublattice, which is why
the px component has a U-shaped gap; the A sublattice has vanishing
spectral weight in the regions of the BZ where px has nodes, compare
Fig. 1(c) and Table I.

isolated lattice site-centered defects, and refer to the discus-
sion section for a more general discussion of the effects of
other kinds of disorder. In the following, the existence or
absence of bound states and the resulting LDOS is stud-
ied within the T -matrix framework. In this methodology,
bound state solutions are analyzed in terms of the existence
of poles in the T matrix. These poles can occur at real or
complex energies ω inside the superconducting gap, referring
to bound or resonant impurity states, respectively. Generally,
sign-changing gap structures support in-gap bound or reso-
nant states from nonmagnetic disorder as opposed to standard
s-wave non-sign-changing superconductivity, which forbids
such solutions [12,60]

In order to investigate the response of the pairing candi-
dates to single impurities on the kagome lattice, we introduce
either a nonmagnetic impurity or a (classical) magnetic impu-
rity. We arbitrarily locate the impurity at a specific atomic site
of the lattice. For concreteness, in the following we choose
sublattice site A located at r = 0 to host the impurity. The
impurity Hamiltonian matrices in Nambu formalism are then

given by

Ĥimp = V τ z ⊗
⎛⎝1 0 0

0 0 0
0 0 0

⎞⎠, (17)

for the potential scatterer, and

Ĥimp = Szτ
0 ⊗

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠, (18)

for the case of a magnetic impurity. Here, τ z and τ 0 denote
Pauli matrices in Nambu space. The full Green’s function
described by the Hamiltonian including the impurity potential
can be obtained within the T -matrix approach,

Ĝ(r, r′, ω) = Ĝ(0)(r − r′, ω) + Ĝ(0)(r, ω)T̂ (ω)Ĝ(0)(−r′, ω),
(19)

with the T matrix defined by T̂ (ω) ≡ D̂−1(ω)Ĥimp where

D̂(ω) ≡ [1 − ĤimpĜ(0)(0, ω)]. (20)

Here, the free real-space Green’s function is calculated from
the retarded Green’s function

Ĝ(0)(k, ω) = [(ω + iη)1 − ĤBdG(k)]−1, (21)

by the Fourier transform Ĝ(0)(r, ω) = 1
N

∑
k Ĝ(0)(k, ω)eik·r

where N is number of points in momentum space. The pa-
rameter η in Eq. (21) is an infinitesimal positive smearing
resulting from the analytic continuation to the real frequency
axis. The spin-summed electronic LDOS ρα (r, ω) at sublat-
tice position α is obtained by

ρα (r, ω) = − 1

π
Im[Gαα (r, r, ω) + Gᾱᾱ (r, r,−ω)], (22)

where ᾱ refers to the same sublattice site as α but in the
complementary Nambu block. Throughout, we will use sys-
tem sizes of at least Nkx × Nky = 1500 × 1500 to calculate the
LDOS and values of the smearing η � 0.0025. As mentioned
above, the existence and location of possible impurity bound
states is typically analyzed by studying the poles of the T
matrix. In the current situation, exemplified with a single
impurity on a sublattice A site, we search for solutions of
det[D̂(ω)] = 0, which, for a nonmagnetic scattering potential,
yields

V 2
[
G(0)

AA(ω)G(0)
ĀĀ

(ω) − G(0)
AĀ

(ω)G(0)
ĀA

(ω)
]

+ V
[
G(0)

AA(ω) − G(0)
ĀĀ

(ω)
] − 1 = 0, (23)

and

S2
z

[
G(0)

AA(ω)G(0)
ĀĀ

(ω) − G(0)
AĀ

(ω)G(0)
ĀA

(ω)
]

− Sz
[
G(0)

AA(ω) + G(0)
ĀĀ

(ω)
] + 1 = 0, (24)

for a magnetic scattering potential. Here, the notation refers
to momentum-summed Green’s functions, i.e., G(0)

αβ (ω) ≡
G(0)

αβ (0, ω) = 1
N

∑
k G(0)

αβ (k, ω). Further investigation of these
equations requires determination of the functional form of
these local free Green’s function entries.

As a short intermezzo, we briefly summarize the physics of
impurity bound states in standard one-band superconductors.
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In that case, Eqs. (23) and (24) are unchanged except for
the absence of the sublattice degree of freedom. For a con-
ventional s-wave superconductor with an isotropic full gap,
Eqs. (23) and (24) allow for bound state solutions only for
the case of magnetic impurities as discovered by Yu, Shiba,
and Rusinov [61–63]. In contrast, no in-gap solutions exist
for nonmagnetic potentials in agreement with Anderson’s the-
orem [60]. This can be easily verified by utilizing analytical
expressions for the momentum-summed diagonal component

G(0)
11 (ω) = − πρ(0)ω√

|�|2 − ω2
, (25)

and the off-diagonal (anomalous) component

G(0)
11̄

(ω) = πρ(0)�√
|�|2 − ω2

, (26)

of the Green’s function at energies inside the gap, ω < |�|.
Here, ρ(0) denotes the DOS at the Fermi level. Utilizing
Eqs. (23) and (24) for determining the existence of bound
states, one sees that the properties of the anomalous Green’s
function are crucial. Typically, for sign-preserving pairing
such as standard s-wave superconductivity

∑
k �(k) �= 0,

in agreement with Eq. (26), disallowing bound state solu-
tions. On the other hand, for unconventional pairing where∑

k �(k) = 0, the anomalous momentum-summed Nambu
components vanish, and bound state solutions may exist for
both magnetic and nonmagnetic impurities. In the case of
nodal gaps, e.g., dx2−y2 -wave pairing as in the cuprates, these
states acquire a lifetime and the energies of the associated
resonant or virtual states move off the real axis [12,64].

Turning back to the kagome lattice and the relevant pairing
states discussed in the previous section, we find an interesting
twist not present in the standard cases summarized above:
Despite the fact that

∑
k �nm(k) = 0 for the spin-singlet or-

der parameters, there are no low-energy in-gap bound state
solutions generated by nonmagnetic impurities, i.e., no bona
fide bound state solutions to Eq. (23). By contrast, magnetic
impurities allow bound state solutions for all superconducting
states on the kagome lattice, and will not be further discussed
here.

For the kagome lattice it is not straightforward to obtain
analytical expressions for

∑
k G(0)

αβ (k, ω) and directly ana-
lyze Eq. (23). However, the absence of low-energy in-gap
bound states for spin-singlet order can be illustrated in several
ways. In the following, we focus initially on the fully gapped
dx2−y2 + idxy spin-singlet phase with the homogeneous DOS
shown in Fig. 2(b). Figure 3 shows the real (a) and imaginary
(b) parts of the determinant of the T -matrix denominator D̂(ω)
for a range of different scattering potentials. As seen, inside
the fully gapped region the left-hand side of Eq. (23) becomes
real [Fig. 3(b)], up to a small imaginary part proportional
to the smearing η, and exhibits no bound state solutions
[Fig. 3(a)]: the low-energy gapped region is protected from
any solutions.

What is the origin of the absence of bound states?
Figures 4(a) and 4(e) show the gap structure of dx2−y2 + idxy

on the Fermi surface. Clearly both the real and imaginary parts
sum to zero. However, for the scattering problem with point-
like defects located at specific sublattice sites, the relevant

(b)

(a)

FIG. 3. Energy dependence of the real (a) and imaginary (b) parts
of det[D̂(ω)] as given by Eq. (23) for a range of nonmagnetic scatter-
ing potentials from V = −10 to V = 10, denoted by the colors, for a
singlet dx2−y2 + idxy gap at μ = 0.0 with the DOS in the clean case
shown by the red line. The absence of impurity bound states inside
the gapped region is evident from panel (a). We note that the finite
Im(det[D̂(ω)]) inside the hard gap in (b) is due to the finite smearing
η = 0.002. Vanishing values of η lead to a vanishing imaginary part
inside the hard gap.

quantities are the anomalous Green’s function components
in sublattice space. Figures 4(b)–4(d) and 4(f)–4(h) display
the entries of the off-diagonal sublattice-resolved components
of G(0)

αᾱ (k, ω) at ω = 0 in momentum space. As seen, the
sublattice weight of the Fermi surface is directly imprinted
on the different Green’s function sublattice components. This
implies that the momentum-summed anomalous components,∑

k G(0)
αᾱ (k, ω), are finite despite the fact that the momentum

structure of dx2−y2 + idxy itself averages to zero over the Fermi
surface. In essence, the sublattice weights in conjunction with
the even-parity nature of the spin-singlet pairing structure
restore the “standard s-wave scenario” for atomic-scale im-
purities on the kagome lattice. This is the main finding of the
present paper.

In order to further understand the emergence of the above
property, we can approximately calculate the relevant com-
ponents of the anomalous Green’s function as follows. First,
we consider the Green’s function in band space, which (in the
absence of interband pairing) becomes block diagonal with
the anomalous part

Gnn̄(k, ω) = − �n(k)

ω2 − (ξn(k) − μ)2 − |�n(k)|2 . (27)

At low energies, only the band n∗ that crosses the Fermi
level contributes, and we can ignore anomalous parts of the
Green’s function of other bands. Next, we transform the
Green’s function back to sublattice space (where we want to
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 4. Momentum dependence of the real [(a)–(d)] and imag-
inary [(e)–(h)] parts of the anomalous free Green’s function
components at ω = 0 for dx2−y2 + idxy superconductivity at μ = 0.0.
Panels (a) and (e) display the Green’s function entries for the second
band (n = 2), reflecting the dx2−y2 + idxy gap structure at the Fermi
surface. The lower six panels refer to the anomalous entries in sub-
lattice space. Importantly, the individual components of the Green’s
function in sublattice space, when integrated over the Brillouin zone,
do not vanish, implying that Eq. (23) may have no real solutions.

calculate the local Green’s function), and use the matrix ele-
ments of the unitary transformation uαn(k) to obtain approxi-
mately Gαᾱ (k, ω) ≈ uαn∗ (k)Gn∗n̄∗ (k, ω)un∗α (−k). Combining
this with Eq. (27), one sees that the relevant quantity is
the product of the sublattice weight and the order parameter
|un∗α (k)|2�n∗ (k), which combined does not average to zero
on the Fermi surface even though �n∗ (k) does.

Finally, to complete the discussion of the dx2−y2 + idxy

spin-singlet superconductivity, we show in Fig. 5 the LDOS
curves in the vicinity of an impurity. In agreement with Fig. 3,
the inner gap is void of any bound state peaks. Interestingly,
the gapped region is lined by resonant states, also in agree-
ment with the T -matrix analysis from Fig. 3.

From the above discussion of the mechanism of the pro-
tection of spin-singlet superconductivity from nonmagnetic
atomic-scale disorder, it is evident that spin-triplet pairing
should not enjoy such privilege. This can be verified explic-
itly by turning to, e.g., the E1 (px + ipy) spin-triplet irrep.

FIG. 5. LDOS along a cut through the impurity site, shown in
the inset, for the case with dx2−y2 + idxy superconductivity at μ = 0.0
and an impurity potential V = −4.0. The different curves correspond
to different sites along the cut with the black curve denoting the
impurity site, while blue and green curves denote A and C sites,
respectively, as shown in the inset. The impurity is located at an A
site.

Figure 6 is equivalent to Fig. 3, i.e., it shows the real and
imaginary parts of det[D̂(ω)]. Note that the E1 intraband
irreps all have nodes at the M points, see Table I. Hence,
to achieve a fully gapped spectrum, we therefore shift the
chemical potential to μ = 0.08 in this case to move the Fermi
surface away from the nodes. In this setting, we observe
that there are bound state solutions at arbitrarily low ener-
gies inside the gap. In other words, the odd parity of the
triplet order cannot exploit the sublattice weights to “restore
s-wave behavior”. Figure 7, which can be compared directly
to Fig. 4, shows the sublattice-resolved off-diagonal Green’s
function components in momentum space for a spin-triplet
px + ipy superconductor. In this case, the sign-changes of the
gap function are preserved, also for the relevant combined
object |un∗α (k)|2�n∗ (k). Therefore, the momentum-summed
components vanish, allowing bound state solutions. Finally, in
Fig. 8 we show the resulting LDOS at the same near-impurity
sites as in Fig. 5, all clearly featuring in-gap bound state peaks
extended in real space.

Finally we turn to some of the other allowed supercon-
ducting order parameters on the kagome lattice and discuss
their ability to host bound state solutions from nonmagnetic
impurities. First of all, while we demonstrated the relevance
(irrelevance) of sublattice weights for fully gapped spin-
singlet (spin-triplet) states of the form dx2−y2 + idxy (px +
ipy), we stress that our conclusions remain valid for the indi-
vidual components, dx2−y2 , dxy (px, py), or a real combination
of the two. In that case, the LDOS spectrum depends on the
sublattice site. In Fig. 9 we show cases where the LDOS
is nodal and our discussion refers to the absence (presence)
of in-gap resonant states for spin-singlet (spin-triplet) order.
This is seen from Fig. 9 where we show the LDOS similar to
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(b)

(a)

FIG. 6. Energy dependence of the real (a) and imaginary (b) parts
of det[D̂(ω)] as given by Eq. (23) for a range of nonmagnetic scat-
tering potentials from V = −10 to V = 10, denoted by the colors,
for a triplet px + ipy gap at μ = 0.08 with the DOS for the clean
case shown by the red line. In this case, the gapped region exhibits
impurity bound states, in contrast to the case shown in Fig. 3. As in
Fig. 3, it is the finite value of η that causes a finite imaginary part
inside the hard gap in (b).

Figs. 5 and 8 for (a) B1 ( f wave), (b) E (1)
1 (px), (c) E (1)

2 (dx2−y2 )
and (d) E (2)

2 (dxy) superconducting order. As discussed above,
the crucial property of the gap function is its sign under a
parity operation. Therefore, the odd-parity spin-triplet states
exhibit in-gap resonant states, whereas the even-parity spin-
singlet cases are protected. The A2 spin-singlet even-parity
order parameter always allows for in-gap bound states on the
kagome lattice, due to the fact that it is odd under C2 rotations
around the in-plane axes.

The interplay between sublattice weights and localized
impurities may also have important consequences for other
probes and measurable quantities. Future studies might ex-
plore how competing order may locally dress the impurity
potentials. This topic has been studied extensively on other
lattices where nonmagnetic impurity bound/resonant states
were crucial for generating the induced order [65–73]. Here,
we focus on consequences for quasiparticle interference (QPI)
measurements from point-like nonmagnetic defects [74–76].
Figure 10 shows the LDOS in real-space in the vicinity of a
nonmagnetic impurity at the A sublattice site in the case of
dx2−y2 + idxy superconductivity. As seen, the resulting LDOS
modulations are highly asymmetric, preserving only D2 sym-
metry around the impurity site. This is a trivial consequence
of the fact that the site-symmetry of the lattice sites is lower
than the point group symmetry. Naturally, this anisotropy will
also carry over to the QPI images, which will only become
approximately symmetric when averaged over large fields of

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 7. Momentum dependence of the real [(a)–(d)] and imag-
inary [(e)–(h)] parts of the anomalous free Green’s function
components at ω = 0 for px + ipy superconductivity. Panels (a) and
(e) display the Green’s function entries in band space, simply re-
flecting the px + ipy gap structure at the Fermi surface. The lower
six panels refer to the anomalous entries in sublattice space. All
plots here are for the px + ipy phase at μ = 0.08. In contrast to
the dx2−y2 + idxy case, the individual components of the sublattice
Green’s function, when integrated over the Brillouin zone, all vanish.
As a consequence Eq. (23) always has real solutions.

view containing point-like disorder equally distributed on the
three sublattice sites.

B. Disorder-averaged Tc-suppression

The absence of in-gap bound states from nonmagnetic
disorder in the case of even-parity unconventional supercon-
ducting order on the kagome lattice suggests that atomic-scale
disorder may only be weakly pair-breaking. As a conse-
quence, its impact on the superconducting critical temperature
Tc may be smaller than naively expected. In order to ex-
plore this question, we have calculated the disorder-averaged
suppression of the order parameter and Tc within the stan-
dard Abrikosov-Gor’kov (AG) framework [58]. While this
method disallows actual spatial inhomogeneity and neglects
local properties when feedback or unusual band-structure ef-
fects are important [77–79], it provides a simple method to
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FIG. 8. LDOS along a cut through the impurity site, shown in
the inset, for the case with px + ipy superconductivity at μ = 0.08
and an impurity potential V = −4.0. The different curves correspond
to different sites along the cut with the black curve denoting the
impurity site, while blue and green curves denote A and C sites,
respectively, as shown in the inset. The impurity is located on an A
site. In contrast to the dx2−y2 + idxy case shown in Fig. 5, an impurity
bound state appears inside the gap for the px + ipy order parameter,
and extends along the a1 direction as shown.

probe and compare the robustness of various superconducting
condensates to disorder.

Within AG theory, translational invariance is restored upon
averaging over random impurity distributions, and the full
Green’s function is

Ĝ(k, iωn)−1 = Ĝ(0)(k, iωn)−1 − �̂(k, iωn), (28)

where Ĝ(0)(k, iωn) is the Green’s function of the super-
conducting system and �̂(k, iωn) denotes the electronic
self-energy. In the Born approximation, the self-energy is

�̂(iωn) = nV 2

N

∑
k

ĥimpĜ(0)(k, iωn )̂himp, (29)

where N is the number of points in the momentum sum, n is
the impurity concentration, and himp is the impurity potential
as given by Eq. (17) without the impurity strength prefactor,

i.e., Ĥimp = V ĥimp. The superconducting order parameter is
given by

�αβ (k) = TVSC

N

(
f βα

k

)∗ ∑
k′ωn
γ δ

f γ δ

k′ Gγ δ̄ (k′, iωn). (30)

The above expression corresponds to an assumed pairing in-
teraction of the form V αβγ δ

k,k′ = −VSC( f βα

k )∗ f γ δ

k′ where f αβ

k is a
form factor transforming as the irrep of our interest, as given
by, e.g., the matrices in Sec. III. In this manner, a supercon-
ducting order parameter transforming as a specific irrep can
be stabilized. Thus, we have two interdependent equations,
Eqs. (28) and (30), which are solved self-consistently to obtain
the order parameter �(k) as a function of temperature T .

In Fig. 11(a) we show the temperature dependence of the
superconducting gap,

� ≡ TVSC

N

∑
k ωn
γ δ

f γ δ

k Gγ δ̄ (k, iωn), (31)

in the dx2−y2 + idxy case for different impurity concentrations.
Note that this deviates from Eq. (30) by the form factor
( f βα

k )∗, which only serves to ensure the correct sublattice
and momentum dependence of the order parameter. To deter-
mine the critical temperature Tc, we fit the solutions to the
mean-field equation x = tanh(x/T ), where x is the mean-field
order parameter, to our results. This yields the solid lines in
Fig. 11(a). In Fig. 11(b), we plot Tc, determined from fitting
to the AG results in Fig. 11(a), as a function of impurity con-
centration nV 2 for different superconducting order parameters
(colored lines) and square and kagome lattices, corresponding
to dashed and full lines, respectively. The dx2−y2 + idxy case
shown in Fig. 11(a) leads to the full purple curve in Fig. 11(b).
The same suppression rate is obtained for dx2−y2 superconduc-
tivity on the kagome lattice, as shown by the full red curve in
Fig. 11(b). In this case, we have averaged over impurities on
the A, B, and C sublattices and the horizontal axis is rescaled
taking into account that the impurity potential only acts on
1/3 of the sites in the kagome lattice. The latter applies to

(a) (b) (c) (d)

FIG. 9. LDOS along a horizontal cut (same as Figs. 5 and 8) near the impurity site (black) for the case of a (a) B1 ( f wave), (b) E (1)
1 (px),

(c) E (1)
2 (dx2−y2 ), and (d) E (2)

2 (dxy) superconducting order parameter with an impurity strength of V = −4 in all cases. The spin-singlet cases
are obtained with a chemical potential μ = 0, while the triplet cases are calculated with μ = 0.08, i.e., both near the upper van Hove filling.
The LDOS for spin-triplet order parameters is visibly affected by the impurity and features low-energy resonant states whereas the singlet
d-wave order parameters are protected from in-gap resonant states.
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t1

t2

FIG. 10. LDOS ρ(r, 0) plotted for a fixed energy ω = 0 with
dx2−y2 + idxy superconductivity and an impurity of strength V = −4
located at an A sublattice site. The breaking of several point group
symmetries by the impurity position is reflected in the associated
LDOS modulations in the vicinity of the impurity.

all kagome results in Fig. 11(b). This is to be contrasted
with dx2−y2 superconductivity on the square lattice, which is
shown by the red dashed line in Fig. 11(b), which follows the
standard AG Tc-suppression curve [58,77]. The AG-curve in
Fig. 11(b) corresponds to a case with ρ(0) = 0.14, the DOS
at μ = −1 for the square lattice, and is also representative
for the kagome DOS near μ = 0 (averaged over the gap
energy scale). Remarkably, the Tc suppression of even-parity
unconventional superconductivity on the kagome lattice is
qualitatively distinct from the Tc suppression of unconven-
tional superconductivity on the square lattice. We ascribe the
origin of the reduced pair-breaking on the kagome lattice to
the interplay between sublattice weights and localized impuri-
ties, as discussed above. In Fig. 11(b) we additionally compare
the Tc suppression to standard s-wave order and triplet order
on the square and kagome lattices. As seen, standard s-wave
order exhibits the expected slow dependence on impurity con-
centration in agreement with Anderson’s theorem, whereas all
triplet orders remain fragile to nonmagnetic disorder, also on
the kagome lattice since it is not sublattice-protected.

V. DISCUSSION AND CONCLUSIONS

In this paper, after a general discussion of the allowed ho-
mogeneous superconducting order parameters on the kagome
lattice, we have focused on their properties in the presence
of atomic-scale defects. By picking specific sublattice sites,
such isolated impurities limit scattering between Bloch eigen-
states to selected regions of the Fermi surface. This leads
to an important difference between even- and odd-parity su-
perconducting order parameters in terms of the ability of
nonmagnetic impurities to generate bound states and break
Cooper pairs. This fundamental distinction between the re-
sponse to nonmagnetic disorder between spin-singlet and
spin-triplet order is unlike, e.g., the square lattice [12,80,81]
or earlier results relevant for graphene on the honeycomb
lattice [82,83] where both such superconducting condensates
support impurity bound or resonant states, and become fragile
to nonmagnetic disorder. For even-parity superconductivity on
the kagome lattice, point-like disorder studies are not phase-
sensitive probes of superconductivity.

(a)

(b)

FIG. 11. (a) The temperature dependence of the dx2−y2 + idxy

order parameter �(T ) on the kagome lattice for a range of nV 2.
The AG results (circles) have been fitted with the solutions to the
mean-field equation x = tanh(x/T ) (full lines) to obtain critical tem-
peratures Tc. (b) The critical temperatures Tc/Tc0 as a function of nV 2,
where Tc0 = Tc(nV 2 = 0), for an s-wave (blue), dx2−y2 (red), d + id
(purple), px (dark green), and p + ip (light green) order parameter.
Note that the px and p + ip results for the kagome lattice nearly
coincide. The results are for μ = 0 in the kagome lattice and μ = −1
for the square lattice. In the case of the rotational symmetry breaking
order parameters the critical temperatures were calculated with the
impurities located on sites A, B, and C, respectively, and an average
of the three values is plotted. The critical temperatures have been
matched in the nV 2 = 0 case by self-consistently solving the BdG
gap equation. The solid line in panel (b) shows the Tc suppression
from the universal AG curve [58,77].

We stress that the absence of in-gap bound states in
even-parity superconductors from nonmagnetic disorder is a
generic property of the kagome lattice, and not tied to fine-
tuned parameters of, e.g., the Fermi surface topology or the
amplitude of the impurity potential. We have focused on the
upper van Hove filling due to its relevance for the AV3Sb5

compounds and, at that filling, the protected gap region is
very pronounced. However, the Fermi surface states exhibit
significant momentum-dependent variation of the sublattice
weight also at other fillings, thus leading to qualitatively sim-
ilar effects.

As mentioned above, the amplitude of the point-like impu-
rity potential is not important. Likewise, whether the impurity
resides on sublattice site A, B, or C, is also not important.
These conclusions are based on single-impurity properties
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FIG. 12. LDOS near an impurity potential extended equally to
the A, B, and C sublattice sites, as shown in the inset, for a dx2−y2 +
idxy superconductor at μ = 0.0 and an impurity potential V = −2.0.
In the present case impurity bound states emerge inside the gap and
the in-gap bound state position is tuned by V .

and thus valid in the dilute disorder limit. When disorder
cross-talk becomes important or if the impurities correspond
to spatially extended objects, the disorder-response is altered.
For example, if the disorder potential extends equally to all
three sublattice sites, impurity scattering probes the whole
Fermi surface and bound states may get generated, also for an
even-parity spin-singlet sign-changing superconducting order.
This is illustrated in Fig. 12 where we show that there are
indeed in-gap bound state solutions for an extended triangu-
lar impurity. Since interstitials or impurities off the kagome
plane are expected to produce extended disorder potentials,
such perturbations can generate in-gap bound states. How-
ever, in such cases there is the additional complication of the
strengths of the potentials generated by more extended defects
and whether they are strong enough to produce low-energy
bound states. In particular, if the disorder potentials arise from
out-of-plane defects or interstitials, the resulting scattering
potentials in the kagome planes may simply be too weak to
generate in-gap bound states.

An outstanding question relates to the relevance of the
mechanism described in this paper of how sublattice weights
can “restore s-wave behavior” for the AV3Sb5 superconduc-
tors. These materials exhibit a significantly more complex
Fermi surface than the NN tight-binding band utilized in this
paper [13]. Thus, for the current mechanism to be active in
AV3Sb5, superconductivity in these compounds should pri-
marily be present on the vanadium d-orbital bands featuring
significant sublattice weight variation in momentum space.
Furthermore, these materials exhibit CDW order in addition
to superconductivity. However, the CDW order leads to only a
weak electronic reconstruction [84,85] and it should therefore
not be important for the current discussion. Lastly, as we
have stressed, the main source of disorder has to be point-like
defects located on specific sublattice sites. This seems to be
relevant, for example, to the STM experiments reported in
Ref. [48] finding no impurity bound states near vanadium

vacancy defects. Likewise, the irradiation studies of the pene-
tration depth in Ref. [55] introduce mainly point-like defects.
Within our scenario, the in-plane vanadium defects are not
phase sensitive to the superconducting gap structure, whereas
in-plane Sb or out-of-plane Sb and Cs defects might be. The
latter depends on their strength on the vanadium sites in the
kagome planes remaining after screening.

The understanding of slow Tc-suppression rates has also
been recently discussed in the context of, e.g., PdTe2 and
CuxBi2Se3 [86–90]. Related theoretical studies have formu-
lated a generalized Anderson theorem, clarifying under what
circumstances the nature of the disorder is benign for the par-
ticular superconducting state under consideration [87,88,91].
In the present case, the weak Tc-suppression rate cannot be
straightforwardly explained from the generalized Anderson
theorem since the gap structure and the disorder potential
do not fulfill the basic requirements of the theorem. This
is mainly due to the existence of interband components of
the superconducting gap structure. Within the formulation of
Ref. [88], an additional distinction of the current paper is the
presence of momentum dependence of the superconducting
gap structure in sublattice space. Thus, the current robustness
of superconductivity is not quantitatively in line with Ander-
son’s theorem, in agreement with the weaker robustness seen
in Fig. 11. Finally, we note an interesting study of robust su-
perfluidity in the polar phase of

3
He in the presence of oriented

columnar defects [92]. In that case the resulting anisotropic
scattering of the columnar disorder is blind to the putative
nodal line of the gap, not unlike the present case where the
point-like defects are also highly anisotropic scatterers in mo-
mentum space.

In this paper we have mainly studied unconventional super-
conductivity on the kagome lattice. Naturally, if it turns out
that the AV3Sb5 materials are conventional superconductors
with standard non-sign-changing s-wave superconductivity,
there is nothing for the sublattice weights “to restore” and the
robustness to nonmagnetic disorder follows from Anderson’s
theorem [60]. The main point of the present paper is to point
out that even unconventional sign-changing spin-singlet su-
perconducting orders on the kagome lattice exhibit an intrinsic
robustness to nonmagnetic disorder.
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APPENDIX: PAIRING MATRICES

Here we include the explicit form of all the form factor
matrices as defined in Eqs. (6), (9), and (10) for both singlet
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and triplet order parameters up to nearest neighbor. For the A1

form factor we find

f S
OS,A1

= 1√
3

⎛⎜⎝1 0 0

0 1 0

0 0 1

⎞⎟⎠, (A1)

f S
NN,A1

= 1√
6

⎛⎜⎝ 0 cos k3 cos k1

cos k3 0 cos k2

cos k1 cos k2 0

⎞⎟⎠, (A2)

while for the singlet B2 we have

f S
NN,B2

= i√
6

⎛⎜⎝ 0 − sin k3 sin k1

sin k3 0 sin k2

− sin k1 − sin k2 0

⎞⎟⎠. (A3)

Due to the sublattice degree of freedom, there is both a singlet
and a triplet order parameter with E1 character. The singlet
form factors are

f S
NN,E (1)

1
= i

2

⎛⎜⎝ 0 sin k3 0

− sin k3 0 sin k2

0 − sin k2 0

⎞⎟⎠, (A4)

f S
NN,E (2)

1
= i√

12

⎛⎜⎝ 0 sin k3 2 sin k1

− sin k3 0 − sin k2

−2 sin k1 sin k2 0

⎞⎟⎠. (A5)

The singlet E2 form factor has both OS and NN contributions

f S
OS,E (1)

2
= 1√

6

⎛⎜⎝+1 0 0

0 −2 0

0 0 +1

⎞⎟⎠, (A6)

f S
OS,E (2)

2
= 1√

2

⎛⎜⎝+1 0 0

0 0 0

0 0 −1

⎞⎟⎠, (A7)

f S
NN,E (1)

2
= 1√

12

⎛⎜⎝ 0 − cos k3 2 cos k1

− cos k3 0 − cos k2

2 cos k1 − cos k2 0

⎞⎟⎠, (A8)

f S
NN,E (2)

2
= 1

2

⎛⎜⎝ 0 cos k3 0

cos k3 0 − cos k2

0 − cos k2 0

⎞⎟⎠. (A9)

The triplet orders occur at nearest neighbor and beyond.
For the A2 form factor, we find

f T
NN,A2

= 1√
6

⎛⎜⎝ 0 − cos k3 cos k1

cos k3 0 − cos k2

− cos k1 cos k2 0

⎞⎟⎠, (A10)

and for B1,

f T
NN,B1

= i√
6

⎛⎜⎝ 0 − sin k3 − sin k1

− sin k3 0 sin k2

− sin k1 sin k2 0

⎞⎟⎠. (A11)

The E1 triplet form factor takes the form

f T
NN,E (1)

1
= i√

12

⎛⎜⎝ 0 sin k3 −2 sin k1

sin k3 0 − sin k2

−2 sin k1 − sin k2 0

⎞⎟⎠, (A12)

f T
NN,E (2)

1
= i

2

⎛⎜⎝ 0 sin k3 0

sin k3 0 sin k2

0 sin k2 0

⎞⎟⎠, (A13)

while we find the E2 triplet form factor to be
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