PHYSICAL REVIEW B 108, 144507 (2023)

Theoretical study of phonon-mediated superconductivity beyond
Migdal-Eliashberg approximation and Coulomb pseudopotential

Jie Huang,1 Zhao-Kun Yang,1 Xiao-Yin Pan,>" and Guo-Zhu Liu®!-*
' Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
2Department of Physics, Ningbo University, Ningbo, Zhejiang 315211, China

® (Received 14 February 2023; revised 9 August 2023; accepted 27 September 2023; published 20 October 2023)

In previous theoretical studies of phonon-mediated superconductors, the electron-phonon coupling is treated
by solving the Migdal-Eliashberg equations under the bare vertex approximation, whereas the effect of Coulomb
repulsion is incorporated by introducing one single pseudopotential parameter. These two approximations
become unreliable in low carrier density superconductors in which the vertex corrections are not small and
the Coulomb interaction is poorly screened. Here, we go beyond these two approximations and employ the
Dyson-Schwinger equation approach to handle the interplay of the electron-phonon interaction and Coulomb
interaction in a self-consistent way. We first derive the exact Dyson-Schwinger integral equation of the full
electron propagator. Such an equation contains several unknown single-particle propagators and fermion-boson
vertex functions, and thus seems to be intractable. To solve this difficulty, we further derive a number of
identities satisfied by all the relevant propagators and vertex functions and then use these identities to show
that the exact Dyson-Schwinger equation of the electron propagator is actually self-closed. This self-closed
equation takes into account not only all the vertex corrections, but also the mutual influence between electron-
phonon interaction and Coulomb interaction. Solving it by using proper numerical methods leads to the
superconducting temperature 7, and other quantities. As an application of the approach, we compute the 7. of the
interfacial superconductivity realized in the one-unit-cell FeSe/SrTiO; system. We find that 7, can be strongly
influenced by the vertex corrections and the competition between phonon-mediated attraction and Coulomb

repulsion.
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I. INTRODUCTION

Superconductivity develops in metals as the result of
Cooper pairing instability when the attraction between elec-
trons mediated by the exchange of phonons (or other types of
bosons) overcomes the static Coulomb repulsion, which is the
basic picture of Bardeen-Cooper-Schrieffer (BCS) theory [1].
In principle, the precise values of the pairing gap A and the
transition temperature 7, should be determined by performing
a careful theoretical study of the complicated interplay of
electron-phonon interaction (EPI) and Coulomb interaction.
This is difficult to achieve. Traditionally, these two interac-
tions are treated by using different methods [1]. The EPI is
handled within the Migdal-Eliashberg (ME) theory, and A and
T, are computed by solving a set of integral equations satisfied
by the electrons’ renormalization function and the pairing
function. In contrast, the Coulomb interaction is not handled
at such a quantitative level: its impact on 7 is approximately
measured by one single pseudopotential parameter. Over the
last decades, the ME theory and the pseudopotential have been
jointly applied [2-5] to evaluate T, and other quantities in
various phonon-mediated superconductors.

“Corresponding author: panxiaoyin@nbu.edu.cn
fCorresponding author: gzliu@ustc.edu.cn

2469-9950/2023/108(14)/144507(12)

144507-1

That EPI and Coulomb interaction are handled quite differ-
ently can be understood by making a field-theoretic analysis.
Let us first consider EPI. The EPI describes the mutual in-
fluence of the dynamics of electrons and phonons on each
other, and hence appears to be very complicated. Within
quantum many-body theory [1,2], one needs to compute an
infinite number of Feynman diagrams to accurately compute
any observable quantity, which is apparently impractical. For-
tunately, treatment of EPI can be greatly simplified as the
Migdal theorem [6] indicates that the EPI vertex corrections
are strongly suppressed by the small factor A(wp,/EF), where
A is a dimensionless coupling parameter, wp, is the Debye
frequency, and Ep is the Fermi energy. For normal metals,
Mwp/Er) < 1; thus EPI vertex corrections can be safely
ignored. Under the bare vertex approximation, Eliashberg [7]
derived a set of coupled equations, called ME equations, to
study EPI-induced superconducting transition.

We then discuss the influence of Coulomb repulsion.
After defining an auxiliary scalar field A to represent the
static Coulomb potential, one can map the Coulomb inter-
action into an equivalent fermion-boson interaction that has
a similar field-theoretic structure to EPI. But one cannot
naively use the ME theory to handle this fermion-boson
interaction since there is no Migdal-like theorem to guaran-
tee the smallness of its vertex corrections. In the absence
of a well-controlled method, it seems necessary to make
approximations. Tolmachev [8] and Morel and Anderson [9]
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introduced a pseudopotential p* to include the impact of
Coulomb repulsion. For a three-dimensional metal, the bare
Coulomb interaction is described by

477 ¢?
Vo(q) = ——. (D
q

This bare function is renormalized to become energy-
momentum dependent, namely

1 . 47 e?
Vil — (w, q)  ¢* —4ne’Tl(w, q)

Ve(w, q) = 2
The full polarization function IT(w, q) is hard to compute.
A widely used approximation is to calculate [1(w, q) at the
lowest one-loop level, corresponding to the random phase
approximation (RPA). The one-loop polarization I (w, q)
is still very complex. Nevertheless, it is easy to reveal that
I (w, q) approaches a constant in the limits of w = 0 and
q— 0, ie., IiL(w=0,q— 0) x —Ny, where Ny is the
normal-state density of states (DOS) on Fermi surface. For
metals with a large Fermi surface, both Er and N are fairly
large. Thus the Coulomb interaction becomes short ranged
and can be roughly described by [9]

Vsim (Q) X (3)

qz + Kkp '
where the static screening factor kp, oc 4 e*Ny. Morel and
Anderson [9] suggested performing an average of Vi (q) on
the Fermi surface, which yields a parameter

o (Vsim(Q))Fs.
The pseudopotential p* is related to w via the relation [9]

* _ /’L
N 1+:uln(EF/a)D).

Obviously, u* <« p in normal metals where w, < Ef, ren-
dering the robustness of superconductivity against Coulomb
repulsion.

As the above analysis demonstrates, the ME theory of
EPI and the Coulomb pseudopotential should be reliable if
the condition wp, < Eg is fulfilled. This condition is violated
in phonon-mediated superconductors that have a low carrier
density, with dilute SrTiOz being a famous example [10,11].
In such superconductors, Er and N, are both small. There
are no small factors to suppress the EPI vertex corrections,
indicating the breakdown of the Migdal theorem. Moreover,
the Coulomb interaction is poorly screened due to the small-
ness of Ny. The time dependence and spatial variation of the
Coulomb potential cannot be well described by the oversim-
plified function Vi, (q) shown in Eq. (3). Accordingly, the
pseudopotential defined in Eq. (4) may no longer be valid
as it comes directly from Eq. (3). It is more appropriate to
adopt an energy-momentum dependent Vg(w, q) to replace
the static Vi (q). Another potentially important contribution
arises from the mutual influence between EPI and Coulomb
interaction. This contribution was ignored in the original work
of Morel and Anderson [9] and also in most, if not all, the
subsequent studies on the Coulomb repulsion [12—15]. The
validity of this approximation is not clear. In principle, we
expect that EPI can affect the Coulomb interaction and vice

n “

versa, because both EPI and the Coulomb interaction result in
a redistribution of all the charges of the system. We should
not simply discard their interplay if we cannot prove that such
an interplay is negligible. In light of the above analysis, we
consider it necessary to establish a more powerful approach
to supersede the ME theory of EPI and the pseudopotential
treatment of Coulomb repulsion. To achieve this goal, we
should take up the challenge of including all the higher-order
corrections.

Recently, a nonperturbative Dyson-Schwinger (DS) equa-
tion approach [16] was developed to determine the EPI
vertex corrections. At the core of this approach is the de-
coupling of the DS equation of the full electron propagator
G(p) from all the rest of the DS equations with the help
of several exact identities. It is found [16] that the DS
equation of G(p) obtained by using this approach is self-
closed and can be solved numerically. This approach was
later extended [17] to deal with one single fermion-boson
interaction, be it EPI or Coulomb interaction, in the context
of Dirac fermion systems. More recently, the approach was
further generalized [18] to investigate the coupling of Dirac
fermions to two different bosons. According to the results
of Refs. [17,18], the DS equation of the full Dirac fermion
propagator is self-closed irrespective of whether the fermions
are subjected to either EPI or Coulomb interaction, or
both.

In this paper, we shall combine the approaches of [16] and
[18] to examine how the interplay of EPI and the Coulomb
interaction affects the transition temperature 7. of phonon-
mediated superconductors. Our analysis will be based on an
effective model that describes the couplings of the electron
field v to a phonon field ¢ and an auxiliary boson A. The
EPI is described by the ¥ — ¢ coupling and the Coulomb
interaction is described by the ¥ — A coupling. Although
there is not any direct coupling between ¢ and A, these two
bosons can affect each other since they are both coupled to the
same electrons. As a consequence, the DS equation of G(p)
becomes formally very complicated. To solve this difficulty,
we derive four exact identities after carrying out a series of
analytical calculations and then use such identities to show
that the exact DS equation of G(p) is still self-closed. The
higher-order corrections neglected in the ME theory and the
pseudopotential method are properly taken into account in this
self-closed DS equation. Solving such an equation leads us to
T, and other quantities.

We shall apply the approach to a concrete example,
the interfacial superconductivity of a one-unit-cell (1UC)
FeSe/SrTiO; system. After computing 7, by solving the self-
closed DS equation of G(p), we show that the value of T
depends strongly on the chosen approximations. In particu-
lar, T, obtained under the bare-vertex (ME) approximation
is substantially modified when the vertex corrections are
included.

The rest of the paper is organized as follows. In Sec. II,
we define the effective field theory for phonon-mediated su-
perconductors. In Sec. III, we obtain the DS equation of
G(p) and prove its self-closure with the help of four exact
identities. In Sec. IV, we present the numerical results of 7,
obtained by solving the self-consistent integral equations of
two renormalization functions and the pairing function. In
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Sec. V, we summarize the results and discuss the limitations
of our calculations.

II. MODEL

Our generic method is applicable to systems defined in any
spatial dimension. However, for concreteness, we consider a
model defined at two spatial dimensions, since later we shall
apply the approach to 1UC FeSe/SrTiO;. The interplay of
EPI and the Coulomb interaction is described by the following
effective Lagrangian density:

L=Lr+Ly+ Lo+ Lpp+ Lia, (5)
Ly =¥ (x)(i0y,00 — Evos) ¥ (x), (6)
L, = 36" D)), ©)

Ly = 3A0F (0)A), (8)
Lsp=—gp0)y" (o3 (x), ©)
Lia = =AY @)o3 ¥ (x). (10)

The electrons are represented by the Nambu spinor [19]
¥ (p) = (cpt, cT_p L)T along with four 2 x 2 matrices, includ-
ing unit matrix oy and three Pauli matrices o5 3. Although
the system is nonrelativistic, we choose to use a three-
dimensional vector x = (xg, X) = (xg, X, x») for the purpose
of simplifying notations. The time xy can be either real or
imaginary (in Matsubara formalism), and the results hold in
both cases. The fermion field ¥ (x) is obtained by making
the Fourier transformation to ¥ (p). For simplicity, here we
assume that the kinetic energy operator is &y = —ZLm?(Bf1 +

832) — W, where m, is the bare electron mass and up is the
chemical potential. As demonstrated in Ref. [16], our generic
approach remains valid if &y takes a different form. Phonons
are represented by the scalar field ¢ (x), whose equation of free
motion is expressed via the operator D (x) as

D(x)$(x) = 0. (11)

The EPI strength parameter g appearing in £ 74 is not necessar-
ily a constant and could be a function of phonon momentum.
A(x) is an auxiliary scalar field. Its equation of free motion is
given by

F(x)A(x) = 0. (12)

The Coulomb interaction is effectively described by the cou-
pling between ¥ (x) and A(x) shown in Ls4. Indeed, L4 +
L4 can be derived by performing a Hubbard-Stratonovich
transformation to the following Hamiltonian term for quartic
Coulomb interaction:

1

Ix — x|

v xX)osypr(x).  (13)

2
£ / d*xd*X' Y (X)03 (X)
47

Notice that the model does not contain self-coupling terms
of bosons. The Coulomb interaction originates from the
Abelian U(1) gauge principle and the boson field A(x) can be
regarded as the time component of the U(1) gauge field (i.e.,
scalar potential). It is well established that an Abelian gauge
boson does not interact with itself. The situation is different

for phonons. In principle phonons could interact with them-
selves. Ignoring the phonon self-couplings is justified only
when the lattice vibration is well captured by the harmonic
oscillating approximation. When the nonharmonic contribu-
tions are not negligible, the self-couplings of phonons need
to be explicitly incorporated. Such nonharmonic contributions
might lead to a considerable influence on the value of T,
as shown in a recent work [20]. In this paper, we do not
consider the nonharmonic contributions and therefore omit
self-coupling terms of ¢.

Another notable feature of the model is that the two scalar
fields ¢(x) and A(x) do not directly interact with each other.
Hence there are no such terms as ¢(x)A(x) or ¢p>(x)A%(x) in
the Lagrangian density. However, the mutual influence be-
tween ¢(x) and A(x) cannot be simply ignored since both of
them are coupled to the same electrons. It will be shown later
that the DS equation of the electron propagator has a very
complicated form due to the mutual influence between ¢(x)
and A(x). Moreover, ¢(x) and A(x) are coupled to the same
fermion density operator ¥ (x)o39 (x). This implies that the
vertex function of 1 — ¢ coupling has a very similar structure
to that of ¢ — A coupling. The different behaviors of the ¢
boson and A boson are primarily caused by the difference in
the operators D (x) and IF (x), or equivalently, the difference in
the free propagators of the ¢ boson and A boson.

The Lagrangian density £ respects the following two
global U(1) symmetries [19]:

Y — X7y, (14)
Y — €10y, (15)

Here, x is an infinitesimal constant. The first symmetry leads

to charge conservation associated with a conserved current
Ju () = (7 (x), j(x)), where

J ) =y oy ), (16)

1

2m,

{liVY T ()looy (x) — ¥ ()ooliVir ()1}, (17)

Jx) =
The second symmetry leads to spin conservation and a con-
served current j; (x) = (j;(x), J*(x)), where

700 =y ooy (x), (18)

1
2m,

30 =—{liVy oy (x) — ¥ @es iV (0]} (19)
These two conserved currents obey the identity id,, j;;*(x) =
0 in the absence of external sources. As shown in Ref. [35],
each conserved current is associated with one Ward-Takahashi
identity (WTTI).

III. DYSON-SCHWINGER EQUATION
OF ELECTRON PROPAGATOR

After defining the effective model, we now are ready to
perform a nonperturbative study of the superconducting tran-
sition. The following analysis will be largely based on the
approaches previously developed in Ref. [16] and Ref. [18].
We will not give all the derivational details and only outline
the major steps.
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In order to examine the interaction-induced effects, we
would like to investigate the properties of various n-point
correlation functions. Such correlation functions can be gen-
erated from three generating functionals [21,22]. Adding four
external sources J, K, n, and n' to the original Lagrangian
density leads to

Lr=L+Jp+KA+ ¥ n+nTy. (20)

The partition function is defined via L7 as follows:
ZIL, K, n, '] = / D¢DADY ' Dye [ Er. (21)

Here, we use notation [ dx to represent [ d’x = [dtd’x. Z
is the generating functional for all n-point correlation func-
tions. In this paper, we are mainly interested in connected
correlation functions. Connected correlation functions can be
generated by the following generating functional:

W=WI[J,K nn'l=—ilnZ[J,K,n,n']. (22)

W can be used to generate three two-point correlation func-
tions:

Glx =) = —ily O () = — (23)
= Y= ST @) |,y
o 8w
D(x —y)=—i{¢p(x)o'(y)) = —m ,  (24)

J=0
. 52w
F(x—y)=—-i{A®A®Q)) = —m . (25)
J=0

Here, G(x — y), D(x —y), and F(x — y) are the full propa-
gators of electron v, phonon ¢, and boson A, respectively.
The system is supposed to be homogeneous, so the propa-
gators depend solely on the difference x — y. In this paper,
we use the abbreviated notation J = 0 to indicate that all the
external sources are removed. All the correlation functions
under consideration are defined by the mean value of the time-
ordering product of various field operators, but we omit the
time-ordering symbols for simplicity. The mutual influence
between the properties of two bosons is embodied in two
additional two-point correlation functions:

. 8w
Drp(x —y) = —i{¢p(0)AQY)) = TSGR | (26)
J=0
2
Fp(x —y) = —i{A(x)p(y)) = —m 27
J=0

As mentioned before, the model does not have such a term as
@A; thus D = Fp = 0 at the classic tree level. But the quan-
tum (loop-level) corrections can induce nonzero contributions
to Dr and Fp.

The interaction vertex function for a fermion-boson cou-
pling can also be generated from W. In the case of EPI,
we consider the following connected three-point correlation
function:

8w
8J(x)8nT(»)8n(2) ;=9

T / dx'dy'dZ D(x — x)G(y —y')

(@YY (2))

8B
G(Z —
S Y @) |, T

— fdx’dy’dz’DF (x —x)G(y — ")
83E

AU ()Y (D)

G(Z — 2),

J=0

(28)

where the generating functional for proper (irreducible) ver-
tices & is defined via W as

oW /dxmqs) + KA + 7 + (L (29)

The interaction vertex function for EPI is defined as

§E

C,y—x,x—2z)= , 30

P T S T O @
and that for ¢ — A coupling is defined as
B

Ca(y —x,x—2) = . 31

Ay —x,x —2) AV Y@ |, (€29

Itis necessary to emphasize that I', and I'y depend on two (not
three) free variables, namely y — x and x — z. The propagators
and interaction vertex functions appearing in Eq. (28) are
Fourier transformed as follows:

G(p) = / dxe”G(x), (32)
D(q) = f dxe' ¥ D(x), (33)
Dr(q) = / dxé Dy (x), (34)

Toalg, p) = /dxdyei(p+q)(y—X)eip(x—z)

xTpay —x,x —2). (35)

Here, the electron momentum is p = (po, p) = (po, P1, P2)
and the boson momentum is ¢ = (qo, q) = (g0, g1, g2)- Per-
forming Fourier transformation to (¢(x)¥ ()% (z)), we find

/ dxdye" POV P (g ()Y ()Y T (2))

= —=D(q)G(p+ PT'p(q, p)G(p)
—Dr(q)G(p + q@)Talq, p)G(p). (36)

The ¢ — A coupling can be investigated using the same
procedure. In this case, we need to study another three-point
correlation function (A(x)¥ (y)¥7(z)). Following the calcula-
tional steps that lead Eq. (28) to Eq. (36), we obtain

/ dxdye' PO P A ()Y ()Y T (2))

= —F(@)G(p+ q)T'a(q, p)G(p)
—Fp(@)G(p + 9T p(q, pP)G(p), 37

where F(g) and Fp(q) are transformed from F(x) and Fp(x)
respectively as

F(q) = / dxe" F (x), (38)
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Fp(q) = f dxe ™ Fp(x). (39)

Making use of derivational procedure presented in
Ref. [16] and Ref. [18], we find that the full electron prop-
agator G(p) satisfies the following DS equation:

d3
G'(p)=G,'(p)—i / #goﬁ(w 9)D(@)T (g, p)
L F(q)T
—l/m03 (p+qF(@)Talq, p)

[ dq
i / 2y 8736(P + DD @Ta(g p)

[ 4 G(p+ )Fp(q)T»( (40)
_l/(Zn)3U3 P+ Fp(@T (g, p).

The electron self-energy X(p) = G~ '(p) — G, '(p) consists
of four terms, as shown on the right-hand side of Eq. (40). The
first two terms stem from pure EPI and pure Coulomb inter-
action, respectively. The last two terms arise from the mutual
influence between these two interactions. The contributions of
such mixing terms to the self-energy were entirely ignored in
the original pseudopotential treatment of Morel and Anderson
[9]. To the best of our knowledge, such mixing terms have
never been seriously incorporated in previous pseudopotential
studies [12—-15]. While ignoring them might be valid in some
normal-metal superconductors, this approximation is not nec-
essarily justified in all cases. It would be better to keep them
in calculations.

Unfortunately, retaining all the contributions to the self-
energy makes the DS equation of G(p) extremely complex.
It appears that Eq. (40) is not even self-closed since D(q),
F(q), Dr(q), Fp(q), T',(g, p), and TI'y(g, p) are unknown.
Technically, one can derive the DS equations fulfilled by these
six unknown functions by using the generic rules of quantum
field theory [16-18,21,22]. Nevertheless, such equations are
coupled to the formally more complicated DS equations of in-
numerable multipoint correlation functions and hence of little
use. Probably, one would have to solve an infinite number of
coupled DS equations to completely determine G(p), which is
apparently not a feasible scheme.

In order to simplify Eq. (40) and make it tractable, it might
be necessary to introduce some approximations by hand. For
instance, one could (1) neglect the last two (mixing) terms on
the right-hand side; (2) discard all the vertex corrections by
assuming that I', 4(g, p) — o3; (3) replace the full phonon
propagator D(g) with the bare one, i.e., D(q) — Dy(q); (4)
replace the full A-boson propagator F'(g) with a substantially
simplified expression, such as Fy,(q) = m or even with
one single (pseudopotential) parameter u* after carrying out
an average on the Fermi surface. Under all of the above
approximations, one finds that the original DS equation (40)
becomes

d’q
) 803G (p + q)Do(q)o3

1 1 .
G\ (p) = G3'(p) 1/(2

d3
i f i G+ ), @1)

which is self-closed and can be solved numerically. The free
electron propagator has the form

1
Gop)=—7—F— (42)
i€,00 — §p03
and the full electron propagator is expanded as
1
G(p) = . ,
Ai(€,, Pi€,00 — Az(€n, P)Epo3 + Alen, P)oy
(43)

where A (€,, p) and A;(e,, p) are two renormalization func-
tions and A(e,, p) is a pairing function. Inserting G(p) and
Go(p) into Eq. (41), one would obtain the standard ME
equations of A|(€,, p), A2(€,, p), and A(e,, p) with the pa-
rameter u* characterizing the impact of Coulomb repulsion.
In the past sixty years, such simplified equations have been
extensively applied [1-5] to study a large number of phonon-
mediated superconductors. However, the four approximations
that lead to Eq. (41) are not always justified. Some, or perhaps
all, of them break down in superconductors having a small
Fermi energy.

Now we seek to find a more powerful method to deal with
the original exact DS equation of G(p) given by Eq. (40)
by going beyond the above approximations. We believe that
one should not try to determine each of the six functions
D(q), F(q), Dr(q), Fp(q), T'p(q, p), and T's(q, p) sepa-
rately, which can never be achieved. Alternatively, one should
make an effort to determine such products as D(¢)I",(g, p),
F(@)Ta(q, p), Dr(@)Ta(q, p), and Fp(q)T'p(q, p). This is the
key idea of the approach proposed in Ref. [18], where we
have proved the self-closure of the DS equation of the Dirac
fermion propagator G(p) in a model describing the coupling
of Dirac fermions to two distinct bosons in graphene. Below
we show that this same approach can be adopted to prove the
self-closure of the DS equation given by Eq. (40). We shall
derive two exact identities satisfied by D(q), F(q), Dr(q),
Fp(q), T'p(q, p), and T'a(q. p).

The derivation of the needed exact identities is based on the
invariance of partition function Z under arbitrary infinitesimal
changes of ¢ and A. The invariance of Z under an arbitrary
infinitesimal change of ¢ gives rise to

(D@)p(x) — g¥ " (o3P (x) + J (x)) = 0. (44)

Using the relation (¢ (x)) = §W/§J(x), we perform functional
derivatives to the above equation with respect to n(z) and
nf(y) in order and then obtain the following new equation:

D)@Y MY () = g Doy Y MY’ (). (45)
Making a Fourier transformation to the left-hand side of
Eq. (45) yields
Dy (@I=D(9)G(p + )T (g, P)G(p)
— Dr(@)G(p + @)Talg. p)G(p)], (46)
where the free phonon propagator Dy(g) comes from
D(x). To handle the right-hand side of Eq. (45), we

use two bilinear operators ji(x) = Yoz (x) and
Jix) = YT (x)op (x) to define two current vertex functions
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Cos(x—z,2—y):

(Y @03y DY MY () = - / d¢ds'G(y — £)Tos(6 —x,x = ¢HGE' —2). (47)
Io.3(x — z, z — y) should be Fourier transformed [16,23] as
Los(t —x.x—=¢) = / dgdpe”" P OCTITIPEOL, (g, p). (48)
For more properties of such current vertex functions, see Refs. [16,23]. Then the right-hand side of Eq. (45) is turned into
/ dxdye' POy (oo s (Y ()Y (2)) = —gG(p + @To3(q. PIG(P)- (49)
After substituting Eq. (46) and Eq. (49) into Eq. (45), we obtain the following identity:
D(q)T'p(q, p) + Dr(@)Ta(q, p) = Do(q)gl'3(q. p). (50)
Similarly, the invariance of Z under an infinitesimal change of A field requires the following equation to hold:
(F(0)AX) — g¥ ()3 (x) + K(x)) = 0. D
Carrying out similar analytical calculations generates another identity,
Fp()T'p(q, p) + F(@)Talq, p) = Fo(@)T'3(q, p), (52)

where the free propagator of the A boson Fy(g) is computed by performing Fourier transformation to [ (x).
Making use of the two identities given by Eq. (50) and Eq. (52), we rewrite the original DS equation (40) as

; . [ d’q
G (p)=G, (P)—l/m[gzDo(q)+F0(61)]U3G(P+LI)F3(6]’ p). (53)

This equation is still not self-closed if the current vertex function I'3(g, p) relies on unknown functions other than G(p). As
demonstrated in the Supplemental Material [24] (see also Refs. [25-31] therein), the symmetry of Eq. (14) leads to the following

WTI:

qoT3(q. p) — (piq — £)T0(q. p) = G 1 (p + @)o3 — 053G (p). (54)

It is not possible to determine I';3(g, p) purely based on this single WTI, since ['y(q, p) is also unknown. Fortunately, from [24]
(see also Refs. [25-31] therein) we know that the symmetry of Eq. (15) yields another WTI:

qoTo(q, p) — (Ep+q — &)T3(q, p) = G~ (p+ @)oo — 030G~ (p). (55)

These two WTIs are coupled to each other and can be used to express ['3(g, p) and I'g(q, p) purely in terms of G(p). Now
I'3(g, p) can be readily obtained by solving these two WTIs, and its expression is

I3(q, p)

We can see that the DS equation (53) becomes entirely
self-closed because it contains merely one unknown function
G(p). This equation can be numerically solved to determine
G(p), provided that Go(p), Dy(q), Fo(q), and g are known.

It is useful to make some remarks here:

(1) The two WTIs given by Eq. (54) and Eq. (55) were orig-
inally obtained in Ref. [16] based on a pure EPI model. The
model considered in this work contains an additional fermion-
boson coupling that equivalently represents the Coulomb
interaction. We emphasize that such an addition coupling
does not alter the WTIs, since the Lagrangian density of
pure EPI and the one describing the interplay between EPI
and Coulomb interaction preserve the same U(1) symmetries
defined by Eq. (14) and Eq. (15).

(2) In many existing publications, it is naively deemed that
a symmetry-induced WTI imposes an exact relation between
fermion propagator G(p) and interaction vertex function. To

_ qolG' (P + @)z — 3G (P)] + (§prq — EIG (P + @)oo — 050G (p)]
- 2 _ _ 2 :
90 (Ep-&-q Ep)

(56)

(

understand why this is a misconception, let us take EPI as
an example. The EPI vertex function I',(g, p) is defined via
a three-point correlation function (¢ '), which in itself
is not necessarily related to any conserved current. There
is no reason to expect I',(g, p) to naturally enter into any
WTI. To reveal the impact of some symmetry, one should use
the symmetry-induced conserved current, say j;, to define
a special correlation function ( jﬁww*), which, according to
Eq. (47) and Eq. (49), is expressed in terms of current vertex
functions I'g(g, p) and I'3(g, p). After applying the constraint
of current conservation 9, j;, = 0 to ( j;wlﬂ), one would ob-
tain a WTI satisfied by I'g(g, p), I'3(g, p), and G(p), as shown
in Eq. (54).

(3) Our ultimate goal is to determine G(p). Its DS equation
(40) contains two interaction vertex functions I',(g, p) and
I'4(q, p). On the other hand, it is I'g(g, p) and I'3(g, p), rather
than I',(g, p) and I'4(g, p), that enter into the WTIs given by
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Eq. (54) and Eq. (55). Hence, at least superficially the DS
equation of G(p) and the WTIs are not evidently correlated.
To find out a natural way to combine the DS equation of
G(p) with WTIs, one needs to obtain the relations between
interaction vertex functions and current vertex functions. Such
relations do exist and are shown in Eq. (50) and Eq. (52).

(4) The appearance of two free boson propagators Dy(q)
and Fy(q) in the final DS equation (53) is not an approx-
imation. It should be emphasized that the replacement of
the full boson propagators D(g) and F(q) appearing in the
original DS equation (40) with their free ones is implemented
based on two exact identities given by Eq. (50) and Eq. (52).
The interaction-induced effects embodied in such functions as
D(q), F(q), Dr(q), Fp(q), I')(q, p), and I'4(g, p) are already
incorporated in the current vertex function I';(g, p).

Before closing this section, we briefly discuss whether
our approach is applicable to four-fermion interactions. The
Hubbard model is a typical example of this type. Consider a
simple four-fermion coupling term given by

Uy T owy, (57)

where W is a normal (non-Nambu) spinor. Based on this
Hubbard model, one can derive DS integral equations and
WTIs satisfied by various correlation functions. Actually, it is
straightforward to obtain a U(1)-symmetry-induced WTI that
connects the fermion propagator G(p) to a current vertex func-
tion ['y(p, p+ q) defined through the following correlation
function,

(ju¥¥') = G(pTu(p1, p2)G(p2), (58)

where j, is a conserved (charge) current operator. The
fermion propagator G(p) should be determined by solving
its DS integral equation. As demonstrated in Ref. [32], the
DS equation of G(p) contains a two-particle kernel function
T'4(p1, p2, P3, pa), which is defined via a four-point correla-
tion function as follows:

(W) — G(p))G(p2)Ta(p1, P2, P, P1)G(P3)G(pa).

It is clear that I'y is physically distinct from I'y. We are
not aware of the presence of any simple relation between
these two functions. A field-theoretic analysis reveals that the
DS integral equation of I'y is strongly coupled to an infinite
number of DS integral equations of various n-point correlation
functions (n > 4). Even though I'y can be expressed purely
in terms of G(p) after solving a number of WTIs, it cannot
be used to simplify the DS equation of G(p) because of our
ignorance of the structure of I'y. It is therefore unlikely that
our approach is directly applicable to Hubbard-type models
like Eq. (57).

Alternatively, one could introduce an auxiliary bosonic
field ¢ and then perform a Hubbard-Stratonovich trans-
formation, which turns the original Hubbard model into a
Yukawa-type fermion-boson coupling term,

Ly =—gyoWiw, (59)

It seems that this coupling could be treated in the same way as
what we have done for the Coulomb interaction. However, we
emphasize that this Yukawa coupling alone cannot describe
all the physical effects produced by the original Hubbard
four-fermion coupling. This is because boson self-interactions

cannot be simply neglected. In the case of Coulomb inter-
action, the Abelian U(1) gauge invariance guarantees the
absence of self-interactions of ay bosons. In contrast, there is
not any physical principle to prevent the auxiliary boson field
¢ from developing such a self-coupling term:

Ly = u4(p4(x). (60)

In quantum field theory, it is well established [22] that the
Yukawa interaction cannot be renormalized if the model does
not contain an appropriate quartic term. In condensed matter
physics, the boson self-interactions have been found [33-36]
to play a significant role, especially in the vicinity of a quan-
tum critical point. In fact, even if the Lagrangian originally
does not contain any boson self-coupling term, the Yukawa
coupling gyoW W can dynamically generate certain boson
self-coupling terms [33,35]. After including the term ~@*, the
invariance of Z under an arbitrary infinitesimal change of ¢
leads to

(D)(x) + 4usp®(x) — gy ¥ ()W(x) +J(x)) = 0. (61)

Comparing to Eq. (44), there appears an additional term
~uy¢>(x) owing to the boson self-interaction. After perform-
ing functional derivatives with respect to 1(z) and n'(y) in
order, one obtains

D) (@ )YO)¥(2)) + 4uy (0> )W)V (2))
= gy (VT )WY (2)). (62)

Different from Eq. (45), this equation contains an extra cor-
relation function (3 (x)W(y)¥'(z)). This correlation function
is formally very complicated and actually makes it impossible
to derive a self-closed DS equation of the fermion propagator.
Thus, our approach is applicable only when the quartic term
~¢* can be safely ignored.

IV. NUMERICAL RESULTS OF T,

In this section, we apply the self-closed DS equation of
G(p) given by Eq. (53) along with Eq. (56) to evaluate the
pair-breaking temperature 7. of the superconductivity real-
ized in the 1UC FeSe/SrTiO3 system. This material is found
[37-39] to possess a surprisingly high 7.. While it is believed
by many [38,39] that interfacial optical phonons (IOPs) from
the SrTiO; substrate are responsible for the observed high T,
other microscopic pairing mechanisms cannot be conclusively
excluded. Gor’kov [40] argued that IOPs alone are not capable
of causing such a high 7. If this conclusion (not necessarily
the argument itself) is reliable, we would be compelled to
invoke at least one additional pairing mechanism, such as
magnetic fluctuation or nematic fluctuation, to cooperate with
IOPs [39-41]. In recent years, considerable research efforts
have been devoted to calculating IOP-induced 7, by using the
standard ME theory [42—46] and a slightly corrected version
of ME theory [47]. Nevertheless, thus far no consensus has
been reached and the accurate value of T, produced by IOPs
alone is still controversial. To get a definite answer, it is
important to compute 7. with a sufficiently high precision.
This is certainly not an easy task since 7;. could be influenced
by many factors.
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Among all the factors that can potentially affect 7, the EPI
vertex corrections play a major role. Since the ratio wp,/Er
is at the order of unity, the Migdal theorem becomes invalid.
As shown in Ref. [16], including EPI vertex corrections can
drastically change the value of 7, obtained under bare vertex
approximation. However, the calculations of Ref. [16] were
based on two approximations that might lead to inaccuracies
and thus still need to be improved. The first approximation
is the omission of the influence of Coulomb repulsion [16].
As discussed in Sec. I, the traditional pseudopotential method
may not work well in 1UC FeSe/SrTiO3 owing to the small-
ness of Er. The impact of the Coulomb interaction on T,
should be examined more carefully. The second approxima-
tion is that the electron momentum was supposed [16] to
be fixed at the Fermi momentum such that &, = 0. Under
this second approximation, the DS equation of G(p) has only
one integral variable (i.e., frequency). Then the computational
time is significantly shortened. For this reason, this kind of
approximation has widely been used in the existing calcula-
tions of T,. But the pairing gap A and the renormalization
factors A; and A, obtained by solving their single-variable
equations depend solely on frequency. The momentum depen-
dence is entirely lost. Since the EPI strength depends strongly
on the transferred momentum q, it is important not to neglect
the momentum dependence of the DS equation of G(p). We
will discard the two approximations adopted in Ref. [16] and
directly deal with the self-closed DS equation (53).

We are particularly interested in how 7. is affected by
the interplay of EPI and Coulomb repulsion. To avoid the
difficulty brought by analytical continuation, we work in the
Matsubara formalism and express the electron momentum
as p = (po, p) = (i€y, p), where €, = 2n+ 1)nT, and the
boson momentum as g = (qo, q) = (iwy, q), Where w, =
2n'wT. The free phonon propagator has the form

29,

o (63)

Dy(q) =

The IOPs are found to be almost dispersionless [38,48]; thus
24 can be well approximated by a constant. Here, we choose
the value [38,48] 24 = 81 meV. The Fermi energy is roughly
[39] Er = 65 meV. The EPI strength parameter g is related to
phonon momentum q as [44]

=8 =\ [STh/giQexp(—lal/gy).  (64)

The value of A can be estimated by first-principles calculations
[44]. Here we regard A as a tuning parameter and choose a set
of different values in our calculations. The range of EPI is
characterized by the parameter g, [39]. Its precise value relies
on the values of other parameters and is hard to determine. For
simplicity, we choose to fix its value [44] at g, = 0.1pg. The
free propagator of the A boson is

2mo
Folg) = S, (65)

lql
which has the same form as the bare Coulomb interaction
function. The fine structure constant is @ = ¢?/vpe. The mag-
nitude of dielectric constant ¢ depends sensitively on the
surroundings (substrate) of the superconducting film. It is not

easy to accurately determine ¢. To make our analysis more
general, we suppose that ¢ can be freely changed within a
certain range.

As the next step, we wish to substitute the free phonon
propagator Dy(gq) given by Eq. (63), the free A-boson prop-
agator Fy(q) given by Eq. (65), the free electron propagator
Go(p) given by Eq. (42), and the full electron propagator
G(p) given by Eq. (43) into the DS equation (53) and also
into the function I';(q, p) given by Eq. (56). However, we
cannot naively do so since here we encounter a fundamental
problem. Recall that I'3(g, p) given by Eq. (56) is derived
from two symmetry-induced WTIs. Once the pairing function
A(p) develops a finite value, the system enters into super-
conducting state. The U(1) symmetry of Eq. (15) is preserved
in both the normal and superconducting states; thus the WTI
of Eq. (55) is not changed. In contrast, the U(1) symmetry
of Eq. (14) is spontaneously broken in the superconducting
state. If this symmetry breaking does not change the WTI
of Eq. (54), one could insert the expression of G(p) given
by Eq. (43) into I'3(g, p). Otherwise, one should explore the
modification of the WTI by symmetry breaking. At present,
there seems no conclusive answer. Nambu [19] adopted the
WTI from charge conservation to prove the gauge invariance
of electromagnetic response functions of a superconductor
based on a ladder-approximation of the DS equation of ver-
tex function. Following the scheme of Nambu, Schrieffer [1]
assumed (without giving a proof) that this WTI is the same
in the superconducting and normal phases and used this as-
sumption to show the existence of a gapless Goldstone mode.
Nakanishi [49] later demonstrated that, while the WTI for
a U(1) gauge field theory has the same form in symmetric
and symmetry-broken phases, it might be altered in other
field theories. Recently, Yanagisawa [50] revisited this issue
and argued that the spontaneous breaking of a continuous
symmetry gives rise to an additional term to WTI due to
the generation of Goldstone boson(s). However, the expres-
sion of such an additional term is unknown. It also remains
unclear whether the approach of Ref. [50] still works in su-
perconductors. The superconducting transition is profoundly
different from other symmetry-breaking driven transitions.
According to the Anderson mechanism [51], the Goldstone
boson generated by U(1)-symmetry breaking is eaten by the
long-range Coulomb interaction, which lifts the originally
gapless mode to a gapped plasmon mode. Thus, the WTI
coming from symmetry Eq. (14) is not expected to acquire
the additional term derived in Ref. [50] in the superconduct-
ing phase. Nevertheless, the absence of the Goldstone boson
cannot ensure that the WTI is not changed by the Anderson
mechanism.

In order to attain a complete theoretical description of the
superconducting transition, one should strive to develop a
unified framework to reconcile the nonperturbative DS equa-
tion approach with the Anderson mechanism. But such a
framework is currently not available. To proceed with our
calculations, we have to introduce a suitable approximation.
Our purpose is to compute 7,. Near T, the pairing function
A(p) vanishes and the symmetry Eq. (14) is still preserved.
So the WTI of Eq. (54) still holds. Then we substitute the
full electron propagator G(p) given by Eq. (43) into Eq. (53)
and assume the function I';(g, p) to have the following
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expression:
90[G;' (p + @)o3 = 036G (P)] + Gprq — 5)[GT (0 + )00 — 00G; ' (p)]
I'3(q, p) = 3 5 ; (66)
do — (§p+q - %'p)
where G,(p) is a simplified electron propagator of the form
1
Gi(p) = : (67)
A1(p)pooo — A2(p)épos
This manipulation leads to three coupled nonlinear integral equations:
T d’q
A€, p) =14+ — *(@)Do(@n, Fo(@m,
e P) =1+ o ; / € @Po(@n, @) + Fo@n, @)
Ar(€n + @p, P+ Qi€ + @) 33 + As(€y + O, P+ Qprql30 — Al + Wy P+ Ql3g 68)
AT(€n 4 Om, P+ Q)€ + ©n)? + AJ(€n + O, P+ Qbpyq + AX(€n + O, P+ Q)
T d?
Moo = 1= = 3 [ S 1P @D @)+ o @)
Ep " (2m)
Ai(ep + 0, P+ Qi€ + @p)30 +Ar(€y + 0, p+ q)$p+qr33 — A€y + 0, p+ QT3 (69)
A%(En + W, P+ Q)€ + wm)2 +A%(En + @Om, P+ Q)€§+q + A2(En + O, P+ Q)
d’q _,
A(en,p) = -T Z/ 20 [&"(@)Do(@m, q) + Fo(wm, )]
Ar(€n + O, P+ Qi€ + 030 — Az(€y + @y P+ q)$p+qr3l — Aep + @, p+ QI3 (70)
A€y + O P+ Q€ + 0n)? + A3(€n + 0. P+ QE g + A€+ 0m. P+ Q)
Here, we have defined several quantities:
ia)m[AZ(En + o, p + q)é:erq B AZ(Env P)fp] + (‘s;:erq - é:p)[_Al(En + @, p + (l)(lén + la)m) +A1(€nv P)lén]
I3 = 5 5 )
w;, + (éerq - sp)
Ty = iop[—A1(en + @p, P+ Qli€, + iwy) + Ai(€,, Plie,] + (Ep-‘rq - ép)[A2(En + wn, P+ q)Sp-&-q — Az (e, p)Sp]
’ a)’% + ($p+q - %_p)z '
F%] — (§p+q - Ep)[_A(En + Wy, P + (I) + A(Gn, P)]
i CU,Z,, + (§p+q - Sp)2 '
o[ A(€én + 0m, P+ Q) + Aley, P
[y = P4 Pl 1)

60,2,, + (ép-kq - ép)2

It is easy to reproduce the ME equations by replacing
the full propagator G(p) appearing in Eq. (56) with the free
propagator Go(p), which is equivalent to the bare vertex
approximation I'3; — o3. Alternatively, one could substitute
Ay = A, = 1and A = 0 into I'39, I'33, I'51, and I'34, and then
obtain

I'30=0, I';z=1, I3 =0, I3 =0. (72)

Such manipulations reduce Egs. (68)—(70) to the standard ME
equations (not shown explicitly).

The self-consistent integral equations of Aj(e,, p),
As(€,, p), and A(e,, p) can be numerically solved using the
iteration method (see Ref. [16] for a detailed illustration of
this method). The computational time required to reach con-
vergent results depends crucially on the number of integral
variables: adding one variable leads to an exponential increase
of the computational time. The coupled equations (68)—(70)
have only one variable ¢, if all electrons are assumed to reside
exactly on the Fermi surface. Such an assumption simplifies
the equations and dramatically decreases the computational

(

time, but might not be justified in the present case due to
the strong momentum dependence of EPI coupling strength.
Therefore, here we consider all the possible values of p
and directly solve Egs. (68)—(70) without introducing further
approximations. But these equations have three integral vari-
ables, namely w,,, g1, and g,. Solving them would consume
too many computational resources.

The burden of numerical computation can be greatly light-
ened if the number of integral variables is reduced. We
suppose that the system is isotropic and then make an ef-
fort to integrate over the angle 6 between p and q before
starting the iterative process. After doing so, only two free
variables, namely w,, and |q|, are involved in the process of
performing iterations. The computational time can thus be
greatly shortened. Generically, it is not easy to integrate over
6. In our case, however, although the current vertex function
I'3(q, p) is complicated, the free propagators Dy(q) and Fy(q)
are simple functions of their variables. The phonon energy 24
is a constant; thus Dy(g) depends solely on the frequency,
i.e., Do(q) = Do(w,,). In comparison, Fy(q) depends solely
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on the momentum. To illustrate why 6 can be integrated out,
it is more convenient to deal with the DS equation shown in
Eq. (53) instead of the formally complicated equations (68)—
(70). With the redefinitions p + ¢ — k and [ dq — [ dk, we
can rewrite Eq. (53) as

kdkdo
(2m)

G (e p) = Gal(en,p)”Zf 3G (€, k)

g2 ( ) > 3
X LO (o

X F3(Ena P €n + o, k) (73)

Both Gy(€,, p) and G(e,, p) are independent of #; thus @ is
not involved in the iterative process and can be numerically
integrated at each step.

Fo(q) is singular at q = 0, reflecting the long-range nature
of bare Coulomb interaction. If the electrons are treated by the
jellium model, the contribution of q = 0 must be eliminated
since it cancels out the static potential between negative and
positive charges. This can be implemented by introducing an
infrared cutoff 8. In our calculations, we set § = 10~° Dr- We
have already confirmed that the final results of 7, are nearly
unchanged as § varies within the range of [1078py, 1073 p].
Apart from the infrared cutoff, it is also necessary to introduce
an ultraviolet cutoff A for the momentum. A natural choice is
to set A = pp. Our final results are also insensitive to other
choices of A, which might be attributed to the dominance of
small-q processes.

To facilitate numerical calculations, it iS more convenient
to make all the variables become dimensionless. Dimensional
parameters can be made dimensionless after performing the
following rescaling transformations:

P k q dp

——=p ——=k ——=q ——=gq, (4
Pr Pr Pr Pg
6]’[ a)m
— =T, — =€, — — o, (75)
Eg Ep Ep
2 &p 8
— — Q,, , — — g 76
Er ¢ E &p ¢ (76)

The parameters A and « are already made dimensionless and
thus kept unchanged. The integral interval of the rescaled
variable k is [107°, 1].

After making2 rescaling transformations, the electron dis-

persion &, = % — Mg is turned into p> — 1, which is

dimensionless. The resulting integral equations of A;, A, and
A do not explicitly depend on either pp or m,. Thus, it is
not necessary to separately specify the values of pp and m,,
since the final results of the critical temperature only exhibit

a dependence on Er = % From the numerical solutions
of the DS and ME equations, we could obtain an effective
dimensionless transition temperature, denoted by 7, that is
equal to 7. /Eg. The Fermi energy Er = 65 meV amounts to
approximately ~755 K. Then the actual transition tempera-
ture 7, can be readily obtained from 7 through the relation
T, ~ T x (755 K).

It should be emphasized that the free phonon propagator
Dy(q) is used in both the DS-level and ME-level calculations.
Thus we are allowed to determine the influence of EPI vertex

corrections by comparing the values of 7. obtained under
these two approximations. The pairing gap A is supposed to
have an isotropic s-wave symmetry [44]. To make our analysis
more generic, we consider six different values of the strength
parameter A, including A = 0.05, A =0.10, A =0.15, A =
0.20, A = 0.25, and A = 0.30. The numerical results of 7, are
presented in Fig. 1, where the red and blue curves correspond
to the ME and DS results, respectively.

We first consider the simplest case in which the Coulomb
interaction is absent. In a previous work [16], it was found
that including EPI vertex corrections tends to promote 7
evaluated at the ME level (bare vertex). This conclusion was
reached based on the assumption that the electrons always
strictly reside on the Fermi surface such that §, =§,, =0
[16]. Here we resolve Egs. (68)—(70) without making this
assumption. From the numerical results presented in Fig. 1,
we observe that the impact of EPI vertex corrections on 7 is
strongly dependent of the value of EPI strength parameter A.
Specifically, we find that vertex corrections slightly reduce 7.
for . = 0.10, but considerably enhance T, for A = 0.15, A =
0.20, A = 0.25, and A = 0.30. The enhancement of 7. due
to vertex corrections becomes more significant as A further
increases. The case of A = 0.05 appears to be peculiar: the
vertex corrections play different roles as the effective strength
of Coulomb interaction is changed.

The effect of the Coulomb interaction on 7, can be readily
investigated by varying the tuning parameter . As clearly
shown by Fig. 1, 7. drops monotonically as & decreases.
Such a behavior is certainly in accordance with expectation,
since the Coulomb repulsion weakens the effective attraction
between electrons. In the case of A = 0.05, T, is slightly
reduced by vertex corrections for weak Coulomb repulsion
but is enhanced by vertex corrections when the Coulomb
repulsion becomes strong enough. Superconductivity can
be completely suppressed, with 7, — 0, once the effective
strength of Coulomb repulsion exceeds a certain threshold.
For larger values of A, the Coulomb repulsion has an anal-
ogous impact on 7.. However, superconductivity could be
entirely suppressed only when the repulsion becomes unre-
alistically strong.

For any realistic material, ¢ takes a specific value; so does
T.. T, is completely determined once all the model parameters
are fixed. In a way, our work provides a first-principles study
of the superconducting transition, although the role of the
Anderson mechanism remains to be ascertained.

V. SUMMARY AND DISCUSSION

In summary, we have performed a nonperturbative study of
the interplay of EPI and the Coulomb repulsion by using the
DS equation approach. We have shown that the DS equation of
the full electron propagator G(p) is self-closed provided that
all the higher-order corrections to EPI and the Coulomb inter-
action are incorporated via a number of exact identities. This
self-closed DS equation can be applied to study the super-
conducting transition beyond the ME approximation of EPI
and the pseudopotential approximation of Coulomb repulsion.
We have employed this approach to evaluate the pair-breaking
temperature 7. for the interfacial superconductivity in the
1UC FeSe/SrTiO3 system and found that the value of 7, could

144507-10



THEORETICAL STUDY OF PHONON-MEDIATED ...

PHYSICAL REVIEW B 108, 144507 (2023)

A=0.05 A=0.10 A=0.15
8 40
6 ——ME| | ——ME
- . 35 ]
Za <
&~ &~
30 1
2
0 25
0 0.5 1 0 0.5 1
2T 2T
A=0.20 A=0.25 A=0.30

55 : ‘ 65 : ‘ 75 ‘ ‘

50 ——ME|| 60 ——ME| | 70 ——ME|
— — — 65 4
&~ S &~ 60 1

40 1 50 55

35 : ‘ 45 : ‘ 50 : ‘

0 0.5 1 0 0.5 1 0 0.5 1
2o 2o 2T«

FIG. 1. Comparison between results of 7, obtained by solving ME and DS equations with six different values of A.

be significantly miscalculated if the vertex corrections and the
momentum dependence of relevant quantities are not taken
into account in a reliable way.

The calculations of this work ignored several effects that
might change the value of T, and thus need to be improved
in the future. First of all, the simple one-band model studied
by us should be replaced with a realistic multiband model
that embodies the actual electronic structure [46]. The phonon
self-coupling terms [20] are entirely neglected in our calcula-
tions. Including such self-coupling terms invalidates the two
identities given by Eq. (50) and Eq. (52). As a consequence,
the DS equation of the electron propagator G(p) can no longer
be made self-closed (see Ref. [16] and Ref. [17] for more

details). Moreover, we did not consider the quantum geometry
effects [52], which could enhance T, to a certain extent. In this
sense, our results of 7. cannot be directly compared to the ex-
perimental values. The main achievement of our present work
is a methodological advance in the nonperturbative study of
the superconducting transition driven by the interplay of EPI
and the Coulomb repulsion.
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