
PHYSICAL REVIEW B 108, 144503 (2023)

Superfluid phase transition of nanoscale-confined helium-3
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We investigate theoretically the superfluid phase transition of helium-3 under nanoscale confinement of one
spatial dimension realized in recent experiments. Instead of the 3 × 3 complex matrix order parameter found
in the three-dimensional system, the quasi-two-dimensional superfluid is described by a reduced 3 × 2 complex
matrix. It features a nodal quasiparticle spectrum, regardless of the value of the order parameter. The origin of the
3 × 2 order parameter is first illustrated via the two-particle Cooper problem, where Cooper pairs in the px and
py orbitals are shown to have a lower bound-state energy than those in pz orbitals, hinting at their energetically
favorable role at the phase transition. We then compute the Landau free energy under confinement within the
mean-field approximation and show that the critical temperature for condensation of the 3 × 2 order parameter is
larger than for other competing phases. Through exact minimization of the mean-field free energy, we show that
mean-field theory predicts precisely two energetically degenerate superfluid orders to emerge at the transition
that are not related by symmetry: The A-phase and the planar phase. Beyond the mean-field approximation,
we show that strong-coupling corrections favor the A-phase observed in experiment, whereas weak-coupling
perturbative renormalization group predicts the planar phase to be stable.
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I. INTRODUCTION

Superfluid He-3 is a quantum liquid that exhibits some of
the most exotic ground states in condensed-matter physics.
In the absence of a magnetic field, bulk He-3 hosts two
stable superfluid phases: The B and A phases [1]. The
isotropic, fully gapped B phase occupies the vast majority
of the pressure-temperature phase diagram and its energetic
stability is well understood based on the weak coupling
Bardeen–Cooper–Schrieffer (BCS) theory. As a time-reversal
symmetric topological superfluid, interest in the B phase has
recently resurfaced as a promising platform to realize Majo-
rana fermions [2–8]. The anisotropic, nodal A phase, on the
other hand, is stabilized only at pressures above 21 bar and in
a small range of temperatures. Its stability is not captured by
weak-coupling theory. Instead, spin fluctuations become more
pronounced at high pressures and strong-coupling effects need
to be incorporated [9,10]. With two point nodes in the quasi-
particle spectrum, the A phase can be regarded as a superfluid
analog of a Weyl semimetal and can host Majorana–Weyl arc
states connecting the two nodes [11].

Recent experiments on He-3 have indicated significant
changes to the phase diagram when geometrically confined
in the z direction to a quasi-two-dimensional (quasi-2D) set-
ting on scales comparable to the superfluid coherence length
[12–20]. The most prominent feature is the expansion of the
A-phase stability region in the phase diagram, down to zero
pressure where weak-coupling theory might be applicable
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[21–25]. Furthermore, the phase transition from the normal
Fermi liquid state to the superfluid phase is always towards
the A phase. In addition, a third, potentially inhomogeneous
phase appears in the phase diagram separating the A and
planar-distorted B phases, which has been conjectured to be
a pair density wave state [12,17,26–32].

In this work, we elucidate theoretically the reason for
the dominance of the A phase of superfluid He-3 in the
quasi-2D case under confinement. In the three-dimensional
(3D) system, the order parameter is a 3 × 3 complex matrix
which transforms under the s = � = 1 representation of the
symmetry group G = U(1) × SO(3)S × SO(3)L × T, which
captures particle number conservation, spin rotation symme-
try, orbital rotation symmetry, and time-reversal symmetry
[33]. Our crucial observation is that, under confinement of the
z dimension, the superfluid order parameter that condenses
at the phase transition is a 3 × 2 complex matrix instead.
It transforms under an irreducible representation (irrep) of
G̃ = U(1) × SO(3)S × SO(2)L × T. For temperatures that are
much lower than the critical temperature, the usual 3 × 3
matrix order parameter might become energetically competi-
tive with the 3 × 2 matrix, similarly spatially inhomogeneous
phases, but in this work we will not address resolving this
competition and focus on the vicinity of the phase transition
instead.

The sole absence of a third column in the order parameter
matrix explains several experimentally accessible properties
of the superfluid phase transition of He-3 in the quasi-2D case.
For one, the reduced order parameter limits the number of
possible superfluid phases at the phase transition. In particular,
the B phase is no longer accessible, as observed in Ref. [12].
Furthermore, no other fully gapped phase is accessible,
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regardless of the precise values of the quartic coefficients
in the Ginzburg–Landau free-energy functional, since the
algebraic structure of the 3 × 2 matrix order parameter im-
mediately implies nodal points in the quasiparticle excitation
spectrum.

To illustrate the emergence of the 3 × 2 order parameter at
the phase transition, we first study the Cooper instability of
the Fermi surface under confinement in Sec. II. We show that
the degeneracy between the three p-wave Cooper pair bound
states is lifted under confinement, and Cooper pairs in the px

and py orbitals have a lower energy, hence are energetically
favored to undergo condensation. In Sec. III, we confirm this
perspective within the framework of mean-field theory. We
show that the 3 × 3 order parameter splits into two sub-order
parameters with different transition temperatures: A 3 × 2
matrix and a 3 × 1 matrix. We find that the 3 × 2 matrix has
a higher transition temperature and is thus the only relevant
order parameter at the superfluid transition.

A fascinating problem, inherent to symmetry breaking
described by matrix order parameters in general, concerns
the question of which particular matrix is chosen during
spontaneous symmetry breaking. In the present case, the
Ginzburg–Landau free-energy functional derived from mean-
field theory features many energetically degenerate ground
states. For instance, mean-field theory does not dictate
whether time-reversal symmetry is broken at the transition.
This degeneracy of ground states at the mean-field level is
common in similar systems such as bulk He-3 [1], d-wave
superconductivity in 3D [34,35], triple-point fermions [36], or
complex tensor order [37,38]. Remarkably, we find that, in the
present case, the many degenerate ground states actually only
consists of two physically inequivalent configurations, the A
phase and the planar phase, whereas all other minima are
related to these two via a symmetry transformation from G̃.

To resolve the question of whether the A phase or the
planar phase is energetically favored, we apply two theoretical
approaches. First, we use the best available strong-coupling
corrections for the Landau free energy from the 3D system
and confirm that the A phase is favored at the transition
for all pressures. Second, we use weak-coupling perturbative
renormalization group (RG) to incorporate order-parameter
fluctuations in the confined system, which predicts the planar
phase to be favorable instead. This mismatch with observa-
tions indicates that even low pressures do not correspond to a
weak coupling, but we also speculate on general issues of the
perturbative RG to resolve second-order phase transitions of
matrix order parameters. The lifting of the mean-field degen-
eracy due to fluctuations in the RG is unlike the case discussed
in Ref. [36], where the degeneracy is protected by an enlarged
symmetry. Experimentally, measuring the absence or presence
of time-reversal symmetry at the transition could determine
the condensation of the A phase or planar phase, respectively.

II. PHYSICAL PICTURE: THE COOPER PROBLEM

To illuminate the effect of confinement on the superfluid
state, we first examine the associated Cooper problem. This
amounts to solving the two-particle Schrödinger equation in
the presence of a static Fermi surface (FS). The forma-
tion of a bound state, the Cooper pair, and its functional

dependence on the system parameters is often a good approx-
imation of the superfluid instability found within mean-field
theory for the actual many-body system, such as in spin- or
mass-imbalanced ultracold Fermi gases [39].

In the original Cooper problem, two atoms in 3D that
experience a two-dimensional FS are interacting attractively,
which leads to the formation of a shallow bound state. The
atoms are described by the two-particle Schrödinger equation[

− h̄2

4m
∇2

R − h̄2

m
∇2

r − 2μ − V (r)

]
ψ (R, r) = Eψ (R, r),

(1)

where R = (X,Y, Z )T and r = (x, y, z)T are the center-of-
mass and relative coordinates of the two atoms, respectively,
μ is the chemical potential, and V (r) the interaction potential.
Here ψ (R, r) is the orbital part of the two-particle wave
function. The spin part of the wave function is assumed to
be a triplet state and has been factored out. To model con-
finement to quasi-2D, place the atoms in a box with length
Li in the i = x, y, z direction. The system is confined in the
z direction in that Lz is comparable to the superfluid co-
herence length ξ = 70 nm of the bulk 3D system, whereas
Lx, Ly � ξ . The Schrödinger equation is then solved with
Dirichlet boundary conditions for the center-of-mass coordi-
nate Z , i.e., ψ (X,Y, Z = 0, r) = ψ (X,Y, Z = Lz, r) = 0, and
periodic boundary conditions for the other coordinates.

To solve Eq. (1), it is convenient to expand the wave
function in basis functions that are compatible with the
boundary conditions according to ψ (R, r) = ∑

q,k sin(qzZ )
ei(qxX+qyY )eik·rψq(k)/V2. Here q = (qx, qy, qz )T and k =
(kx, ky, kz )T denote the center of mass and relative wave vec-
tors, respectively, and V = LxLyLz is the system volume. The
wave vector qz has a different quantization condition arising
from the different boundary condition. We have qz = πn/Lz

whereas qx,y = 2πmx,y/Lx,y and kx,y,z = 2π lx,y,z/Lx,y,z, with
n = 1, 2, . . . and mx,y, lx,y,z ∈ Z. In this basis, the Cooper
problem reads

(ξk+ + ξk− )ψq(k) − 1

V
∑

k′
V (k − k′)ψq(k′) = Eψq(k),

(2)

where k± = k ± q/2, ξk = h̄2k2/(2m) − μ is the single-
particle energy dispersion, and V (k) = ∫

d3re−ik·rV (r) is
the interaction matrix element. In He-3, the dominant an-
gular momentum channel is l = 1, and we choose V (k −
k′) = 4πg

∑1
m=−1 Y1m(k̂)Y ∗

1m(k̂′), where g > 0 is the coupling
constant and Ylm(k̂) = Ylm(θk, φk ) is the spherical harmonic
of degree l and order m. The corresponding Hamiltonian
is time-reversal symmetric and, importantly, conserves the
center-of-mass momentum q. Generally, a large q will in-
crease the energy of the bound state. Thus, we take q to be the
smallest admissible wave vector q = (0, 0, π/Lz ). This breaks
the three-dimensional spatial rotational symmetry, leaving
only SO(2) rotation symmetry about the z-axis. This contrasts
with an unconfined system in which qz can be arbitrarily
small.

Crucially, because of the Pauli exclusion principle, the
Cooper pair must live on top of the FS. This amounts to
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imposing the constraint ψq(k) = 0 whenever ξk+ or ξk− is
negative. Thus the wave function can be assumed to take the
form ψq(k) = �(ξk+ )�(ξk− )φq(k), where �(x) is the Heav-
iside step function. As the Hamiltonian is SO(2) symmetric,
it is convenient to decompose the Schrödinger equation into
SO(2) angular-momentum channels. To this end, we express
the wave function and potential in SO(2) partial waves ac-
cording to φq(k) = ∑

m∈Z φq,m(k, θk )eimφk and V (k, k′) =
4πg

∑1
m=−1 Y1m(θk, 0)Y1m(θk′ , 0)eim(φk−φk′ ). For the angular-

momentum channels m = 0,±1, the Cooper problem be-
comes

1

4πg
=

∫
dkdθk

(2π )2
k2 sin θk

�(ξk+ )�(ξk− )

ξk+ + ξk− − E
Y 2

1m(θk, 0). (3)

A negative-energy solution to Eq. (3) signifies a Cooper pair
bound state. Note that, because Y 2

1,1(θk, 0) = Y 2
1,−1(θk, 0), the

m = +1 and m = −1 states have the same energy, which is a
consequence of time-reversal symmetry.

The center-of-mass wave vector q diminishes the region in
momentum space where the helium atoms can interact attrac-
tively. Making the change of variable k �→ x = h̄2k2/2m − μ,
Eq. (3) becomes

1

4πN (0)g
=

∫ 	

0
dx

∫ π

0
dθk

sin θk

2

× �(x − h̄vFq| cos θk|/2)

2x − E ′ Y 2
1m(θk, 0), (4)

where N (0) = (2m/h̄2)3/2√μ/(4π2) is the density of states
per spin at the Fermi level, E ′ = E − 2εq/2, εk = h̄2k2/(2m),
and 	 is the energy cutoff. For q 
= 0, in contrast to the
unconfined case, the step function increases the lower limit of
the x integral, reducing the domain of integration. Physically,
a nonzero center-of-mass momentum presents an obstacle
to forming Cooper pairs in the vicinity of the FS. Take,
for example, a pair of atoms with wave vectors ±(0, 0, kz ),
where kF < kz < kF + q/2, as shown in Fig. 1. Now suppose
they acquire a nonzero q, i.e., their wave vectors become
±(0, 0, kz + q/2). Then one of the atoms enter the Fermi sea,
which is prohibited by the exclusion principle. Thus, when
q 
= 0, the region where atoms cannot pair extends beyond
the Fermi sea.

Performing the integrals in Eq. (4), when h̄vFq < |E ′|, the
energy levels in the m = 0 angular-momentum channel satisfy
the transcendental equation

1

N (0)g
= 1

2
ln

(
E ′ − 2	

E ′

)
+ 3y

8
3F2(1, 1, 4; 2, 5; y), (5)

whereas for m = 1 we obtain

1

N (0)g
= 1

2
ln

(
E ′ − 2	

E ′

)
+ 3y

16
4F3(1, 1, 2, 4; 2, 3, 5; y).

(6)

Here pFq(a1, . . . , ap; b1, . . . , bq; y) is the generalized hyper-
geometric function and y = h̄vFq/E ′. In the experimentally
accessible regime, h̄vFq � |E |, the bound state energy of a
Cooper in the angular-momentum channel m is

Em � −2	e−2/(N (0)g) +
{

3h̄vFq/4, m = 0

3h̄vFq/8, m = ±1.
(7)

FIG. 1. Cooper pairing under confinement. In this schematic,
helium atoms are depicted as black circles above the Fermi surface
(gray). When q = 0, a Cooper pair can be formed as long as the
atoms are above the FS. When q 
= 0, however, a Cooper pair cannot
be formed within the dashed line because at least one atom will be in
the Fermi sea.

Importantly, the m = ±1 bound states have a lower energy
than m = 0. This result has a simple interpretation. When
q = 0, the angular parts of the Cooper pair wave functions
are precisely the l = 1 spherical harmonics, Y1m(θk, φk ). The
center-of-mass wave vector reduces the region in momen-
tum space where the atoms can pair. This reduction is not
isotropic, but most prominent near the poles. Thus, atoms in
the Y10(θk, φk ) state, whose probability density is more con-
centrated at the poles compared with the Y1,±1(θk, φk ) states,
have a greater reduction in momentum space where they can
interact attractively, and therefore a higher energy.

III. MEAN-FIELD THEORY

The above simple analysis illustrates that, under quasi-2D
confinement, the Fermi surface is unstable to the formation of
Cooper pairs in the px and py orbitals. Thus we expect only
atoms in these two orbitals to condense at the superfluid phase
transition. In this section, we provide a many-body justifica-
tion of this picture within the mean-field approximation.

A. Free energy

As illustrated above, the crucial element under confinement
is that the Cooper pairs acquire a nonzero center-of-mass wave
vector q. To incorporate this into the mean-field analysis, we
consider the imaginary-time action

F [ψ] = 1
2 (Fq[ψ] + F−q[ψ]), (8)
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where

Fq[ψ] =
∫ β

0
dτ

[ ∑
ks

ψ̄ks(∂τ − ξk )ψks − 1

2V
∑
kk′

s1s2s3s4

× ψ̄k+s1ψ̄−k−s2Vs1s2s3s4 (k, k′)ψ−k′−s3ψk′+s4

]
. (9)

Here ψks is a Grassmann field with wave vector k and spin
s =↑,↓, β = 1/(kBT ) is the inverse temperature, and k± =
k ± q/2 as before. The interaction matrix element remains
SO(3) symmetric under confinement and takes the p-wave
form

Vs1s2s3s4 (k, k′) = 2πg
3∑

μ=1

∑
m=−1,0,1

Y1m(k)Y ∗
1m(k′)

× (σμiσy)s1s2 (−iσyσμ)s3s4 . (10)

We denote the Pauli spin matrices by σμ, with index μ =
1, 2, 3 = x, y, z. The wave vector sums over k and k′ are re-
stricted to a momentum shell of thickness 	 around the Fermi
surface. The action Sq[ψ] describes He-3 atoms interacting
attractively in the Cooper channel, except that the Cooper
pairs have a conserved center-of-mass momentum q, and S[ψ]
consists of contributions from the two Fourier modes q and
−q. The inclusion of both Fourier modes is necessary in order
to satisfy the boundary conditions.

In anticipation of a p-wave superfluid transition, we intro-
duce the 3 × 3 complex matrix order parameter

Aμ j (q) = g

2V
∑

k,s1s2

〈c−k−s1 ck+s2〉(iσyσμ)s1s2

√
3k j

kF
. (11)

A nonvanishing Aμ j (q) signifies the condensation of Cooper
pairs in the p j orbital with zero spin projection in the μ direc-
tion. To satisfy the boundary conditions, the order parameter
must satisfy Aμ j (−q) = −Aμ j (q). The superfluid transition
can be captured with a bosonic theory for the order parameter
Aμi(q). Performing a Hubbard–Stratonovich transformation
in the Cooper channel and integrating out the fermions, we
obtain the trace-log effective action

F [A] = βV
g

∑
μ, j

A∗
μ j (q)Aμ j (q) − 1

2

∑
k

tr ln G−1(q, k). (12)

Herein, G−1(q, k) = ikn − H (q, k) is the inverse Nambu–
Gorkov Green’s function and

H (q, k) =
[

ξk+12 �(q, k)

�†(q, k) −ξ−k−12

]
(13)

is the Bogoliubov–de Gennes (BdG) Hamiltonian. We denote
the 2 × 2 unit matrix by 12 and the gap matrix by

�s1s2 (q, k) =
∑
μ, j

Aμ j (q)(σμiσy)s1s2

√
3k j

kF
. (14)

Bosonic Matsubara frequencies are given by kn = 2πn/β

with n ∈ Z and we employ the short-hand notation k =
(ikn, k)T .

The nature of the phase transition can be understood from
the Ginzburg–Landau free energy expanded to quartic order
in Aμ j ,

F [A] = F (2)[A] + F (4)[A] + · · · , (15)

where F (2) (F (4)) is quadratic (quartic) in the order parameter
and + · · · denotes higher-order terms. In the following, we
summarize the result of the expansion. The detailed calcula-
tion can be be found in Appendix A. The quadratic term in
the Ginzburg–Landau free energy determines the form of the
order parameter and transition temperature. In the mean-field
regime we find

F (2)[A] = αxy(q)TrÃ†Ã + αz(q)TrA†
zAz. (16)

In contrast with the unconfined case, the 3 × 3 matrix order
parameter Aμ j is split into a 3 × 2 matrix Ã and a 3 × 1 matrix
Az because of the broken SO(3) symmetry. The two order
parameters are defined as

Ã =
⎛
⎝Axx Axy

Ayx Ayy

Azx Azy

⎞
⎠, Az =

⎛
⎝Axz

Ayz

Azz

⎞
⎠. (17)

Thus Ã comprises the first two columns of A, Az the third
column, and we can write

A = (Ã Az) (18)

in matrix notation. Physically, Ã 
= 0 signals the condensation
of Cooper pairs in the px and py orbitals, and Az 
= 0 in the pz

orbital.
The mean-field quadratic coefficients in the confined quasi-

2D geometry are

αxy(q) � βV
[
α(0) + 7ζ (3)

20π2

N (0)μ

(kBT )2 εq

]
, (19)

αz(q) � βV
[
α(0) + 21ζ (3)

20π2

N (0)μ

(kBT )2 εq

]
, (20)

where εq = h̄2q2/(2m), α(0) = 1/g−N (0) ln(2eγ 	/(πkBT )),
ζ (z) is the Riemann zeta function, and γ � 0.5772 is
the Euler-Mascheroni constant. The Cooper logarithmic di-
vergence persists under confinement, which guarantees a
superfluid transition at a sufficiently low temperature. Impor-
tantly, αxy(q) � αz(q). This implies that the order parameter
Ã has a higher transition temperature than Az for q 
= 0. Con-
sequently, under confinement, the phase transition from the
Fermi-liquid phase is captured by the 3 × 2 order parameter Ã
as opposed to the full 3 × 3 matrix A in the unconfined case.

The specific reduction of the order parameter under con-
finement is a result of the explicit symmetry breaking from
SO(3)L to SO(2)L in conjunction with time-reversal sym-
metry. In the 3D system, the order parameter transforms
under an irrep of G, which is labeled by the spin and or-
bital angular-momentum quantum numbers s and l , and is a
(2s + 1) × (2l + 1) matrix, with s = l = 1, and so the order
parameter is a 3 × 3 matrix. In the confined quasi-2D system,
the introduction of q breaks the symmetry group from G to G̃.
While the spin part of the order parameter remains unchanged,
under the restriction to SO(2)L, the irreps are labeled by
the azimuthal quantum number m. As a result, the p-wave
order parameter splits into three components with orbital basis
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functions Y1m(k̂), where m = 0,±1. However, time-reversal
maps Y1,1(k) and Y1,−1(k) onto each other, stitching the irreps
m = +1 and m = −1 together into a single irrep. Thus, the
p-wave order parameter separates into two: One with orbital
basis functions Y11(k) and Y1,−1(k), or equivalently, kx and
ky, which corresponds to Ã, and the other with Y10(k) ∼ kz,
corresponding to Az. Note that time-reversal symmetry does
not play a role in the classification of irreps in 3D as all
representations of SO(3)L are real or pseudoreal, whereas it
does under confinement since the irreps of SO(2)L, except for
m = 0, are all complex.

An important consequence of the reduced order parameter
is that the superfluid phase under confinement is necessarily
nodal. Indeed, as the components (Az)μ = Aμz of the order
parameter do not condense and are thus zero, the pairing
matrix �(q, k) in Eq. (14) vanishes at the poles of the FS
given by the momenta

k0 = ±(0, 0, kF)T . (21)

This is the case regardless of the components of Ã. Conse-
quently, the quasiparticle spectrum in the confined case ] is
always gapless in the vicinity of the phase transition. This is
one of the key findings of the present analysis.

The actual ground state and ensuing order parameter Ã at
a second-order phase transition is determined by the quartic
coefficients in the Ginzburg–Landau free energy. The most
general contribution to the free-energy quartic in Ã compatible
with the symmetry is

F (4)[Ã] =
5∑

a=1

βa(q)Ĩa(Ã), (22)

with

Ĩ1(Ã) = |tr(ÃÃT )|2, (23)

Ĩ2(Ã) = [tr(ÃÃ†)]2, (24)

Ĩ3(Ã) = tr[(ÃÃT )(ÃÃT )∗], (25)

Ĩ4(Ã) = tr[(ÃÃ†)2], (26)

Ĩ5(Ã) = tr[(ÃÃ†)(ÃÃ†)∗]. (27)

These are the usual five quartic invariants known from the
study of He-3 in 3D, evaluated here, however, for the 3 × 2
order parameter. The quartic coupling constants calculated
from mean-field theory satisfy the relation

−2β1(q) = β2(q) = β3(q) = β4(q) = −β5(q), (28)

with

β2(q) = 21ζ (3)

40π2

N (0)

(kBT )2 − 279ζ (5)

560π4

N (0)μ

(kBT )4 εq. (29)

Remarkably, these ratios in the quasi-2D system with q 
=
0 are identical to those found for the 3D system with
q = 0. The details of the calculation are presented in
Appendix A.

B. Minimizing the free energy

Remarkably, the mean-field Landau free energy for the
reduced order parameter can be minimized exactly. Let us
write Ã = �0Ã′, where �0 is a complex number and Ã′ a
3 × 2 complex matrix normalized such that

trÃ′†Ã′ = 1. (30)

Here �0 characterizes the magnitude of the order parame-
ter and Ã′ the internal structure of the Cooper pair. In this
parametrization, the free energy becomes

F [�0, Ã′] = αxy|�0|2 +
5∑

a=1

βaĨa(Ã′)|�0|4. (31)

Minimizing the free energy with respect to �0 for αxy < 0,
the minimum occurs at |�0|2 = −αxy/[2

∑
a βaĨa(Ã′)]. At this

value of �0, the free energy is

Fmin[Ã′] = − α

4
∑5

a=1 βaĨa(Ã′)
. (32)

Thus, the free energy is minimized when the quartic contribu-
tion to the free energy,

F (4)[Ã′] =
5∑

a=1

βaĨa(Ã′), (33)

is minimized subject to the condition (30).
We now proceed to minimize the quartic free energy. Here

we only outline the procedure and summarize the results.
The detailed calculation is presented in Appendix B. First,
we establish a lower bound for the quartic free energy. If
an order-parameter configuration saturates the bound, then it
is necessarily a ground state. To this end, we reorganize the
quartic free energy as

F (4)[Ã′] = β2

[
1 +

(
Ĩ3 − Ĩ1

2

)
+ (Ĩ4 − Ĩ5)

]
. (34)

Here we have used that Ĩ2(Ã′) = 1 by the normalization condi-
tion Eq. (30). The motivation for such groupings of invariants
originates from the following inequalities:

Ĩ3 − Ĩ1

2
� 0, (35)

Ĩ4 − Ĩ5 � 0. (36)

As β2 > 0, if a state saturates the bounds in both inequalities,
then it is a ground state. Based on this, we find only two
ground states not related by symmetry transformations. The
first is the time-reversal symmetry-breaking A phase, with
order parameter

Ã′ = 1√
2

⎛
⎝0 0

0 0
1 i

⎞
⎠. (37)

The other is the time-reversal symmetry preserving planar
phase,

Ã′ = 1√
2

⎛
⎝1 0

0 1
0 0

⎞
⎠. (38)

144503-5



CANON SUN, ADIL ATTAR, AND IGOR BOETTCHER PHYSICAL REVIEW B 108, 144503 (2023)

FIG. 2. Strong-coupling corrections. We display the quartic free
energy of the A phase (red dots) and planar phases (blue dots) from
strong-coupling corrections at the critical temperature vs pressure.
We observe the A phase to have a lower free energy and hence
to be the stable superfluid ground state. The quartic free energy is
normalized to the weak-coupling value for β2.

These two phases define two symmetry-inequivalent classes
of ground states.

C. Strong-coupling corrections

To study the relative stability of the two classes of ground
states, we compare their quartic free energies when strong-
coupling corrections beyond the mean-field approximation are
incorporated. In Ref. [40], the βa coefficients of F [A] at vari-
ous pressures were obtained experimentally by measurements
of, for example, the nuclear magnetic resonance g shift or
the specific-heat jump. These experiments were performed
on a 3D system. However, as our above calculation shows,
the effects of confinement on the βa coefficients are small,
and thus it is justified to take the bulk values. Using these
strong-coupling coefficients, we compute the quartic free en-
ergy of the A and planar phases at the critical temperature
and various pressures, as shown in Fig. 2. The degeneracy at
weak coupling is lifted upon the inclusion of strong-coupling
corrections. We find that the A phase always has a lower
energy than the planar phase.

IV. PERTURBATIVE RENORMALIZATION-GROUP
ANALYSIS

Mean-field theory predicts a second-order phase transition
towards superfluidity at a critical temperature Tc with 3 × 2
complex matrix order parameter Ãμi. Since the order param-
eter vanishes directly at the phase transition, its fluctuations
can be substantial. These fluctuation effects are not captured
by mean-field theory, but can be incorporated with the RG
[41,42]. In the following, we discuss the predictions from
perturbative RG for the phase transition in nanoscale-confined
He-3, with the full calculation presented in Appendix C.

The bosonic theory for the order parameter field
Ã(τ, R) after integrating out the fermions is given by the
mean-field Ginzburg–Landau free energy, to quartic order in

the field,

FMF[Ã] =
∫ 1/T

0
dτ

∫
d2R⊥

∫ Lz

0
dZ

×
[
ZMFÃ∗

μi∂τ Ãμi + KMF∇Ã∗
μi · ∇Ãμi

+ KMF(γMF − 1)(∂iÃ
∗
μi )(∂ j Ãμ j ) (39)

+ αMF tr(Ã†Ã) +
5∑

a=1

βa,MF Ĩa

]
. (40)

Here τ is imaginary time and R = (R⊥, Z ) = (X,Y, Z ) is
the center-of-mass coordinate of the Cooper pair. The vari-
able R is conjugate to the momentum q from Sec. III. The
coordinates in the unconfined directions, R⊥ = (X,Y ), are
assumed to be infinitely extended. In contrast, the z direction
is confined to the interval Z ∈ [0, Lz] with Dirichlet boundary
conditions for Ã at the endpoints. In Eq. (40), repeated in-
dices are summed, with μ = 1, 2, 3, i = 1, 2. The mean-field
coefficients ZMF, KMF, αMF, βa,MF depend on the thermody-
namic variables (T, μ) or (T, P), whereas γMF = 3. There are
two kinetic terms: The first, with ∇ = (∂X , ∂Y , ∂Z ), contains
derivatives in all three spatial directions, whereas the second
one proportional to γ − 1 only depends on ∂X and ∂Y .

Finite temperature is incorporated in Eq. (40) through the
imaginary time τ such that the field Ã(τ, R) is periodic in
τ with period 1/T . As a result, temporal fluctuations of Ã
have quantized bosonic Matsubara frequencies 2πνT with
ν ∈ Z. These are energetically unfavorable unless ν = 0, so
that we can ignore the bosonic modes with ν 
= 0. This, on
the other hand, implies that Ã(τ, R) = ∑

ν Ã(R)ei2πνT τ does
not depend on τ . In fact, Ã(R) acts like a classical bosonic
field with free energy

F [Ã] =
∫

d2R⊥
∫ Lz

0
dZ

[
∇Ã∗

μi · ∇Ãμi

+ (γ − 1)(∂iÃ
∗
μi )(∂ j Ãμ j )

+ α tr(Ã†Ã) +
5∑

a=1

β̄aĨa

]
. (41)

Here we normalized the order-parameter field Ã such that the
coefficient of the leading gradient term is unity.

The symmetry group of the free energy in Eq. (41) is
G̃. The difference in the number of spatial indices i of
Aμi(R), which is two, and the number of spatial coordinates
R = (X,Y, Z ), which is three, makes this bosonic theory
rather nontrivial. In the following, we call the situation with
0 < Lz < ∞ the quasi-2D limit. For Lz = 0, which is equiva-
lent to ignoring the Z dependence of Aμi(R), we recover the
SO(3)S × SO(2)L × U(1) theory studied by Jones, Love, and
Moore [43] when γ = 1. We refer to the situation without Z
coordinate as the 2D limit.

The spontaneous breaking of the continuous symmetry
group G̃ leads to the presence of several Goldstone modes
in the superfluid phase. They correspond to gapless fluctua-
tions, i.e., fluctuations that do not cost energy in the limit of
infinite wavelengths, which are prone to destroy the superfluid
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TABLE I. Typical experimental scales. We collect typical experi-
mental length and temperature scales for settings as in Ref. [12]. Here
kF is the Fermi momentum and TF = h̄2k2

F/(2mkB) is the Fermi tem-
perature with m the mass of a He-3 atom. The thermal wavelength is
λT = [2π h̄2/(mkBT )]1/2, evaluated here at the phase transition with
T = Tc. The coherence length at zero temperature is ξT =0 and Eξ =
h̄2/(2mξ 2) is the associated energy scale. The spatial extensions in
the (confined) z direction and (unconfined) x direction are Lz and Lx ,
respectively, corresponding to the energy scales Ez = h̄2/(2mL2

z ) and
Ex = h̄2/(2mL2

x ).

Length k−1
F λTc ξT =0 Lz Lx

0.1 nm 30 nm 70 nm 1000 nm 1 mm
Temperature TF Tc Eξ /kB Ez/kB Ex/kB

8 K 1 mK 0.01 mK 0.1 µK 10−7 µK

long-range order. These gapless modes lead to divergences in
diagrammatic contributions to the free energy that require a
regularization and renormalization scheme.

In the following, we apply the weak-coupling momentum-
shell RG [44] to incorporate the effect of fluctuations of the
order parameter, especially the associated Goldstone modes.
For this purpose, we restrict the momentum integration in
Feynman diagrams due to order-parameter fluctuations to a
momentum shell via∫ ′

q⊥
(. . . ) = 1

2π

∫ �

�/b
dq⊥q⊥(· · · ). (42)

Here, q⊥ = (qx, qy) is the two-dimensional momentum in
the unconfined xy plane, � ∼ √

T is the ultraviolet cutoff
of the bosonic theory, and b > 1 is the RG flow parameter.
Since all momenta inside the momentum shell have q⊥ > 0,

the infrared singularity at q⊥ = 0 is avoided. Successively
increasing b → ∞ amounts to including all order-parameter
fluctuations.

Within the RG picture, the coefficients of the free energy,
and in particular the quartic couplings β1(b), . . . , β5(b), de-
pend on the RG flow parameter b. Any fixed valued of b > 1
corresponds to a system with typical momentum scale ktyp ∼
�/b and typical wavelength of excitations λtyp ∼ (�/b)−1.
As b → ∞, ktyp ∼ 0, and λtyp ∼ ∞, and fluctuations on all
length scales are included. In any realistic system, there is
a maximal length scale set by the system size—in our case
this is Lx ∼ Ly. The RG needs to be stopped at b ∼ Lx�,
since fluctuations cannot have wavelengths that are larger than
the system size. Characteristic length scales of nanoscale-
confined experiments with He-3 are listed in Table I.

A. Two-dimensional limit

We first discuss the perturbative RG in the 2D-limit, where
the Z dependence of Ãμi(X,Y, Z ) is neglected. This assumes
that fluctuations in the z direction are not important at the
phase transition. However, the 2D-limit captures the contri-
butions from the divergent, gapless modes. For this reason, it
shares the same qualitative features as the more elaborate RG
flow in the quasi-2D regime, which is discussed below. The
one-loop flow equations for the rescaled couplings

βa(b) = β̄a(b)

8π�2
(43)

have the form
dβa

d ln b
= 2βa − Ca(γ )

γ 2
, (44)

where Ca(γ ) is a quadratic form of the couplings. We explic-
itly have

dβ1

d ln b
= 2β1 − 1

γ 2

[
24(κ2 + 2κ + 2)β2

1 + 12(κ + 2)2β1β2 + 4(5κ2 + 8κ + 8)β1β3 + 8(κ2 + 2κ + 2)β1β4

+ 24(κ2 + 2κ + 2)β1β5 + 4κ2β2β5 + 2(5κ2 + 16κ + 16)β3β5 + 2κ2β4β5 + 3κ2β2
5

]
, (45)

dβ2

d ln b
= 2β2 − 1

γ 2

[
4(κ2 + 8κ + 8)β2

1 + 16(κ2 + 2κ + 2)β1β2 + 4κ2β1β3 + 4κ2β1β4 + 4κ2β1β5

+ 2(17κ2 + 40κ + 40)β2
2 + 4(9κ2 + 16κ + 16)β2β3 + 4(11κ2 + 20κ + 20)β2β4

+ 24(κ2 + 2κ + 2)β2β5 + 2(3κ2 + 4κ + 4)β2
3 + 16(κ2 + κ + 1)β3β4 + 2(5κ2 + 8κ + 8)β3β5

+ 12(κ2 + 2κ + 2)β2
4 + 2(5κ2 + 8κ + 8)β4β5 + (κ2 + 8κ + 8)β2

5

]
, (46)

dβ3

d ln b
= 2β3 − 1

γ 2

[
4κ2β2

1 + 4κ2β1β3 + 4(κ2 + 8κ + 8)β1β4 + 4(κ2 + 8κ + 8)β1β5 + 2κ2β2
2

+ 12(κ + 2)2β2β3 + 4κ2β2β4 + 2(7κ2 + 8κ + 8)β2
3 + 16(κ2 + 5κ + 5)β3β4

+ 2(κ2 + 8κ + 8)β3β5 + 4κ2β2
4 + 2κ2β4β5 + κ2β2

5

]
, (47)

dβ4

d ln b
= 2β4 − 1

γ 2

[
4κ2β2

1 + 4(κ2 + 8κ + 8)β1β3 + 4κ2β1β4 + 4(5κ2 + 8κ + 8)β1β5 + 2κ2β2
2 + 4κ2β2β3

+ 12(κ + 2)2β2β4 + 2(3κ2 + 20κ + 20)β2
3 + 16(κ2 + κ + 1)β3β4 + 2κ2β3β5

+ 4(3κ2 + 10κ + 10)β2
4 + 2(κ2 + 8κ + 8)β4β5 + (17κ2 + 32κ + 32)β2

5

]
, (48)
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dβ5

d ln b
= 2β5 − 1

γ 2

[
8κ2β1β2 + 8(κ + 2)2β1β3 + 16(κ2 + 2κ + 2)β1β4 + 16(κ2 + 3κ + 3)β2β5

+ 4(3κ2 + 4κ + 4)β3β5 + 4(7κ2 + 16κ + 16)β4β5 + 6(κ + 2)2β2
5

]
. (49)

Here we denote κ = γ − 1. These equations for γ 
= 1 con-
stitute a central result of this work. For γ = 1, they agree with
the flow equations derived in Ref. [43]. The initial conditions
for the RG flow at b = 1 are given by the mean-field values

(β1(1), . . . , β5(1)) = β2,MF
(− 1

2 , 1, 1, 1,−1
)
. (50)

The flow equation for γ in the 2D limit has been computed
in Ref. [43] and reads

dγ

d ln b
= 16

3
(1 − γ )

(
1

γ 2
+ 3

)
fγ , (51)

where fγ > 0 is a positive-definite function given by

fγ = 12β2
1 + 2β1β2 + 8β1β3 + 2β1β4 + 6β1β5

+ 13

2
β2

2 + 4β2β3 + 7β2β4 + 5β2β5 + 8β2
3

+ 4β3β4 + 13

2
β2

4 + 5β4β5 + 15

2
β2

5 . (52)

The associated flow of γ (b) has an infrared stable fixed point
at γ� = 1 where the kinetic term in the action simplifies con-
siderably. However, the initial value from mean-field theory
is

γ (1) = γMF = 3. (53)

Consequently, in the initial stages of the flow with b � 1, the
parameter γ > 1 needs to be taken into account. However, the
flow of γ (b) has only a quantitative effect on the running of
the quartic couplings βa(b).

Solving the RG flow equations in the 2D limit, we find that
the five quartic couplings βa(b) for b > 1 quickly deviate from
the fixed ratios of the mean-field initial conditions in Eq. (50),
see Fig. 3. This lifts the accidental energetic degeneracy of the
A phase and planar phase. The coefficients βa(b) in the early
stages b ≈ 1 are such that the planar phase is energetically
favored over the A phase.

We observe that the flow quickly enters an unphysical
regime at b ∼ b0, where either one of the couplings βa(b0)
diverges (violating the assumptions of weak coupling), or the
free energy becomes unbounded from below due to β2(b0) =
0 (invalidating the expansion of the free energy to quartic
order in the field). We discuss below how this behavior should
be interpreted, but the perturbative RG equation can no longer
be applied in this regime. We find that for all b � b0, the pla-
nar phase is energetically favored over the A phase. We also
observe that these features of the RG flow are independent
of whether we incorporate the full flow equation for γ (b), or
simply set γ (b) to the constant values of either three or one.

B. Quasi-two-dimensional limit

In the quasi-2D limit, fluctuations of the order parameter in
the confined z direction are taken into account. The RG flow

depends on Lz through the additional parameter [45]

L̃z = ktypLz = �Lz

b
. (54)

The physical meaning of the dimensionless number L̃z is
the effective length of the z dimension seen by a fluctuation
with typical wave vector ktyp = �/b. For instance, the exper-
imental value of Lz ≈ 500 nm is large for a fluctuation with
wavelength λ ≈ 10 nm, but would appear small for fluctu-
ations with λ ≈ 10 µm. With ktyp = 2π/λ, these exemplary
parameter sets correspond to L̃z = 600 and L̃z = 0.6, respec-
tively. In experiment, a typical value of Lz� is

(Lz�)expt ≈ 30, (55)

hence L̃z � 1 in the early stages of the flow with b ≈ 1.
Our mathematical treatment of the order parameter fluctu-

ations of Ãμi(X,Y, Z ) in the quasi-2D limit is as follows: For
the Fourier transform of Ãμi with wave vector q = (qx, qy, qz ),
we assume that the momentum components q⊥ = (qx, qy) are

(arb. units)

FIG. 3. RG flow in the 2D limit. (top) Fluctuations of the order
parameter lead to a scale-dependence or “running” of the quartic
coefficients βa(b), where b represents the typical wavelength of
fluctuations according to λ ∼ bλT (with λT ∝ √

T the thermal wave-
length). The RG is such that the flow enters an unphysical regime
with β2(b) < 0 at some value of b ∼ b0, indicated by the dashed
vertical line, which corresponds to a breakdown of the perturbative
RG. (bottom left) The kinetic coefficient γ (b) quickly flows from its
mean-field value γ (0) = 3 to the infrared stable fixed point at γ� = 1.
The dashed vertical lines in both bottom panels again indicates b0.
(bottom right) The free energy of the A phase, FA, and the planar
phase, Fpl, are such that the planar phase is energetically favored in
the initial stage of the flow, when the perturbative RG is applicable.
We plot their difference versus b in arbitrary units.
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part of a continuum of modes. The relative spacing between
these discrete momenta would be of order π/Lx ∼ π/Ly,
which we can safely neglect. On the other hand, we assume
that fluctuations in the z direction are quantized according to

qz = πn

Lz
, (56)

with integer n = 1, 2, . . . , implementing Dirichlet boundary
conditions. The lowest possible excitation has wave vector
q = (0, 0, π/Lz ), corresponding to n = 1. This is the gapless
Goldstone mode in the confined geometry. The associated
nonzero kinetic energy can be compensated by an appropriate
choice of the quadratic coefficient α = −π2/L2

z . On the other
hand, fluctuations or excitations with n > 1 are energetically
suppressed.

The different quantization schemes applied to q⊥ and qz

introduce a spatial anisotropy that is reflected in the RG flow
equations. For γ 
= 1, there is an additional anisotropy that
stems from the fluctuation propagator, because γ − 1 only
multiplies the momentum components qx and qy. We assume
the flow of the coefficient γ to be determined by the 2D-limit
from Eq. (51). For γ = 1, the flow of the quartic couplings
has the simple form

dβa

d ln b
= 2βa − L(L̃z ) Ca(1), (57)

with Ca(1) = Ca(γ = 1) from Eq. (44), and the scaling func-
tion

L(L̃z ) = L̃3
z

4

−2 + η coth (η) + η2/ sinh2 (η)

η4
> 0, (58)

with η = (L̃2
z − π2)1/2. The 2D-limit from Eq. (44) with γ =

1 is obtained by setting L(L̃z ) = 1. Similarly, the flow equa-
tions in the quasi-2D regime with γ 
= 1 can be computed
analytically, see Appendix C 3.

In Fig. 4 we show the solution to the RG flow equations in
the experimental regime Lz� ≈ 30. The flow of the coeffi-
cient γ is incorporated via Eq. (51), although a quantitatively
similar result is obtained by setting γ (b) = 1 in the flow
equations for the quartic couplings, since γ (b) is attracted to
the value γ� = 1. We observe that the running of the quartic
couplings βa(b) in the quasi-2D limit is qualitatively similar
to the result in the 2D-limit. The RG flow quickly enters an
unphysical regime with negative β2(b) at b0 ≈ 1, although b0

is slightly larger in the quasi-2D regime than the 2D-limit. For
all b < b0, the planar phase is energetically favored over the
A phase.

C. Interpretation of the perturbative
renormalization-group flow

In the study of both classical and quantum phase transi-
tions, second-order phase transitions are commonly associ-
ated with stable infrared fixed points of the RG flow. Such
fixed points capture the experimentally observed scale in-
variance and allow us to determine experimentally observed
critical exponents. This procedure has been applied and
benchmarked successfully for superfluid order parameters in
three-dimensional bosonic XY -models, or models containing
fermions in the Gross–Neveu–Yukawa class. More involved

(arb. units)

FIG. 4. RG flow in the quasi-2D limit. The RG flow in the quasi-
2D regime, plotted here for the experimental value Lz� = 30, differs
only quantitatively from the 2D limit shown in Fig. 3 with the same
choice of labels. In particular, the planar phase is again energetically
favored over the A phase. On the other hand, the value of b0 is slightly
larger in the quasi-2D regime.

scenarios such as the Berezinskii–Kosterlitz–Thouless tran-
sition of the two-dimensional XY -model still fall into this
scheme when allowing for lines of fixed points in parameter
space.

On the other hand, the absence of a stable infrared fixed
point, or more generally a runaway flow of couplings (if the
initial conditions are not within the basin of attraction of a
stable infrared fixed point), is commonly interpreted as sign of
a fluctuation-induced first-order phase transition. For instance,
the fluctuations of the photon gauge field in an ordinary
superconductor have this effect. Depending on the size of
the parameter b0 > 1, which characterizes the breakdown of
the RG flow, the fluctuation-induced first-order transition is
considered to be either weak or strong. For this note that we
associate the value of b0 with a typical momentum of fluctu-
ations k0 ∼ �/b0, or typical energy E0 ∼ �2/b0 = T/b2

0. For
a first-order phase transition at T = Tc, the typical energy is
the induced jump of the order parameter E0 ∼ �1st, hence

�1st ∼ Tc

b2
0

. (59)

If b0 � 1, then the induced jump is small and the first-order
transition is considered to be weak. In contrast, if b0 � 1, then
the first-order transition is considered to be strong and should
be experimentally detectable.

In the present case of nanoscale confined He-3, with run-
away RG flow and b0 � 1, we would be led to the conclusion
that the transition from the normal to the superfluid phase is
a strong fluctuation-induced first-order transition. Similarly,
for bulk He-3 in 3D, the RG flow computed by Jones, Love,
and Moore does not yield a stable infrared fixed point and
so would also predict that the transition in 3D He-3 is not
of second order. This conclusion, however, is in strong con-
trast with the experimental finding of a seemingly smooth
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second-order transition without jump in the superfluid density
[12,46]. One may explain this by a weak first-order transition
with b0 � 1, assuming that the experiments do not resolve
energy differences or temperature scales as low as E0 ∼ Tc/b2

0.
But given that b0 ≈ 1 in the study of the RG flow of the
He-3 order parameter in various geometries, theory and ex-
periment clearly disagree on the nature of the superfluid phase
transition.

To explain this discrepancy, one may, of course, argue
that perturbative RG does not apply to He-3, because the
system is strongly coupled even at low pressures. However,
another, perhaps additional explanation for the shortcoming
strikes us to be the following. The fixed points of perturba-
tive RG are computed close to the noninteracting, Gaussian
fixed point through expansion in some small parameter
ε � 1, which here is the difference from four dimensions.
An infrared-stable fixed point is characterized by purely neg-
ative eigenvalues of the stability matrix at the fixed point;
furthermore, the dimension of the stability matrix is equal to
the number of quartic couplings. For the Wilson–Fisher fixed
point of classical O(N ) models, there is only one coupling
constant, and its stability eigenvalue at the interacting fixed
point is, indeed, proportional to −ε, whereas it is +ε at the
Gaussian fixed point. In the present matrix model, on the
other hand, there are five quartic couplings and the eigenvalues
of the Gaussian fixed point are (ε, ε, ε, ε, ε). It seems rather
unlikely that a single one-loop calculation can change the sign
of five eigenvalues to yield an infrared-stable interacting fixed
point that could describe the second-order phase transition. As
such, it may also hardly be surprising that many other tensor
field theories do not find stable fixed points in the perturbative
RG, see, e.g., Refs. [43,44,47–53].

V. SUMMARY AND OUTLOOK

In conclusion, we have studied the superfluid transition of
He-3 under uniaxial nanoscale confinement. The key observa-
tion made in this work is the reduction of the 3 × 3, p-wave,
triplet matrix order parameter in 3D to a 3 × 2 matrix under
confinement. This has important physical consequences, such
as guaranteeing a nodal quasiparticle spectrum, regardless of
the exact form of the ground state obtained from minimizing
the Ginzburg–Landau free-energy functional.

The key insight in our work is the reduced form of the
superfluid order parameter resulting from the explicit breaking
of symmetry under confinement. The conventional approach
takes the symmetry group to be the bulk symmetry group,
even under confinement, because the particle-particle interac-
tion remains unchanged. In our work, we showed that, despite
the microscopic interaction remaining SO(3)L symmetric, the
Ginzburg-Landau free energy does not have the full symmetry
of the bulk. The symmetry group is reduced from G to G̃,
which results in a different Tc for Ã and Az. The reduction
of the order parameter simplifies the problem of energy min-
imization significantly and allows us to find the mean-field
ground-state manifold exactly through analytical methods.
Furthermore, the RG flow of He-3, while thoroughly studied
in various dimensions in Ref. [43], was previously unknown
in the quasi-2D case.

To illustrate the emergence of the 3 × 2 matrix order
parameter, we first analyzed the Cooper problem of two
interacting atoms in the presence of a Fermi surface. Un-
der confinement, in order to satisfy the Dirichlet boundary
conditions, the Cooper pair must acquire a nonzero center-
of-mass momentum. This momentum acts as an obstacle to
forming Cooper pairs near the Fermi surface, reducing the
region in momentum space where Cooper pairs can form. This
anisotropic reduction of momentum space raises the energy of
a Cooper pair in a pz orbital more than in a px or py orbital.
Thus the px and py orbitals are energetically favored and more
likely to condense at the phase transition.

While the Cooper problem provides tremendous physical
intuition, to capture many-body effects and obtain the precise
thermodynamic ground state, we derive the Landau free en-
ergy under confinement within the mean-field approximation.
We observed the 3 × 3 matrix order-parameter splitting into
two, a 3 × 2 matrix Ã and a 3 × 1 matrix Az, with Ã possessing
a higher critical temperature. Hence, in the vicinity of the
Fermi liquid to superfluid phase transition, only Ã remains
relevant. Remarkably, the mean-field Landau free energy for
the reduced order parameter can be minimized exactly. The
ground-state manifold is categorized into two classes of states.
The first consists of time-reversal broken states that are sym-
metry related to the A phase, and the second class of states
is related by symmetry to the time-reversal symmetric planar
phase. While they are degenerate on a mean-field level, the
A phase has a lower free energy once strong-coupling correc-
tions are included.

To complement the mean-field theory and strong-coupling
analysis, we also performed a perturbative RG analysis to
investigate the effects of order-parameter fluctuations at the
putative second-order phase transition. The interplay between
the anisotropic geometry and the matrix nature of the order
parameter leads to a rather intricate bosonic field theory.
Nevertheless, we have been able to analytically determine
the RG flow equations both in the presence of confinement
(for 0 � Lz < ∞) and nonstandard kinetic terms (for γ 
= 1).
Integration of the RG flow yields a runaway flow of the quartic
couplings, which indicates a fluctuation-induced first-order
transition, with the planar phase energetically preferred over
the A phase. We argued that the perturbative RG might fall
short to capture the superfluid transition in He-3—even in the
3D case—and that the straightforward interpretation of the
outcome is hence questionable.

Given the five quartic couplings β1, . . . , β5 of the Landau
free energy F (4)[Ã] in any approximation, it is a very non-
trivial problem to determine the ensuing minimum of F (4)[Ã].
This is because the order parameter Ã has many compo-
nents and the symmetry group G̃ relating equivalent states
is also large. Nonetheless, we were able to exactly minimize
the mean-field free energy by showing that it is the sum of
three positive terms and subsequently searching for config-
urations that minimize each term. We found that only two
symmetry-inequivalent ground states exist, the A phase and
the planar phase, which break or preserve time-reversal sym-
metry, respectively. Beyond the mean-field approximation,
the minimization of F (4)[Ã] is more complicated. According
to Michel’s theorem, one can look for ground states within
all stationary states that are invariant under subgroups of G̃.
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Here we only considered the A phase and planar phase, since
these are the energetically degenerate ground states dictated
by mean-field theory, and leave the more detailed search for
future work.

Our analysis supplies a simple and analytically tractable
picture for superfluid orders of He-3 under confinement. The
crucial observation is that despite the microscopic interac-
tion remaining unchanged under confinement, the boundary
conditions necessitate a nonzero center-of-mass momentum,
reducing the symmetry of the Hamiltonian. Thus the order
parameter is modified and needs to be reclassified accordingly.
In fact, a similar mean-field analysis can be performed for
He-3 in a cylinder confined in the radial direction. In this
geometry, the order parameter again splits into Ã and Az, but
Az has a higher critical temperature. This is consistent with
previous work simulating the phase diagram with maximal
pair breaking boundary conditions [54–58].
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APPENDIX A: DERIVATION OF THE GINZBURG-LANDAU
FREE ENERGY

In this Appendix, we provide more details regarding the
derivation of the Ginzburg–Landau free energy [Eq. (15)] in
the main text.

Our starting point is the action Eq. (12) from the main
text,

F [A] = βV
g

∑
μ, j

Āμ jAμ j − 1

2

∑
k

tr ln G−1(k). (A1)

For notational compactness, we omit the q dependence in Aμ j

and G−1. As the order parameter is small in the vicinity of the
phase transition, we expand the action in powers of Aμ j . To
this end, we write the inverse Green’s function as

G−1(k) = G−1
0 (k) + �̂(k), (A2)

where

G−1
0 (q, k) =

[
ikn − ξk+ 0

0 ikn + ξk−

]
, (A3)

�̂(k) =
[

0 −�(k)

−�∗(k) 0

]
. (A4)

Here G−1
0 (k) is the inverse Green’s function in the normal

state. The trace-log term in the action can be expanded in

powers of �(k) as

tr ln G−1(k) = tr ln
[
G−1

0 (, k)
(
1 + G0(k)�̂(k)

)]
= tr ln G−1

0 (k) + tr ln[1 + G0(k)�̂(k)]

= tr ln G−1
0 (k) +

∞∑
m=1

(−1)m+1

m
tr[(G0(k)�̂(k))m]

= tr ln G−1
0 (k) −

∞∑
m=1

1

2m
tr[(G0(k)�̂(k))2m]

= tr ln G−1
0 (k) −

∞∑
m=1

1

m

tr[(�∗(k)�(k))m]

(ikn − ξk+ )m(ikn + ξk− )m
.

(A5)

The first term is a constant that does not depend on �(k);
as such it is inessential for our purposes and will be ignored.
The free energy can thus be expressed as the perturbative
expansion

F [A] = βV
g

∑
μ j

A∗
μ jAμ j

+ 1

2

∑
k

∞∑
m=1

1

m

tr[(�∗(k)�(k))m]

(ikn − ξk+ )m(ikn + ξk− )m
. (A6)

1. Quadratic coefficients

The quadratic term in Eq. (A6) is

F (2)[A] = βV
∑

μ, j1 j2

A∗
μ j1

[
δ j1 j2

g
− Kj1 j2

]
Aμ j2 , (A7)

where we abbreviate

Kj1 j2 ≡ − 1

βV
∑

k

1

(ikn − ξk+ )(ikn + ξk− )

3k j1 k j2

k2
F

. (A8)

Evaluate the Matsubara sum according to

Kj1 j2 = 1

V
∑

k

1 − nF(ξk+ ) − nF(ξk− )

ξk+ + ξk−

3k j1 k j2

k2
F

, (A9)

where nF(x) = (eβx + 1)−1 is the Fermi-Dirac distribution. As
|q| � |k| ∼ kF, we expand K in powers in q. To second order
we have

1 − nF(ξk+ ) − nF(ξk− )

ξk+ + ξk−

= 1 − 2nF(ξk )

2ξk
− n′′

F(ξk )εkεq cos2 θk−q

2ξk
+ O(q3), (A10)

where θk−q is the angle between k and q. This expansion is
a good approximation when βμq/kF � 1, which is generally
the case. In this expression we have omitted terms that are
odd in ξk as they would be zero once the radial integral is
performed. We now take the continuum limit. As the mo-
mentum sum is over a thin shell about the Fermi surface, we
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can replace the sum 1
V

∑
k �→ ∫

d3k
(2π )3 �→ N (0)

∫ 	

−	
dξ

∫
d�
4π

.
Making this substitution, the kernel becomes

Kj1 j2 = δ j1 j2 N (0)
∫ 	

0
dξ

1

ξ
tanh

(
βξ

2

)
︸ ︷︷ ︸

→ln
(

2eγ

π
	

kBT

)
(A11)

− N (0)μεq

∫ 	

−	

dξ
n′′

F(ξ )

2ξ︸ ︷︷ ︸
→β2 7ζ (3)

4π2

∫
d�

4π
cos2 θk−q

3k j1 k j2

k2
F

. (A12)

Here the radial integrals were evaluated in the limit β	 → ∞.
The angular integral is∫

d�

4π
cos2 θk−q

3k j1 k j2

k2
F

= δ j1 j2

5
×

{
1, j1 = x, y
3, j1 = z.

(A13)

Hence,

Kj1 j2 = δ j1 j2 N (0) ln

(
2eγ

π

	

kBT

)

− δ j1 j2
7ζ (3)

20π2

N (0)μεq

(kBT )2 ×
{

1, j1 = x, y
3, j1 = z.

(A14)

Combining Eqs. (A7) and (A14), we obtain Eqs. (16), (19),
and (20) from the main text.

2. Quartic coefficients

The quartic coefficients can be computed analogously. The
quartic contribution to the free energy in Eq. (A6) is

F (4)[A] = 1

4

∑
k

tr[�∗(k)�(k)�∗(k)�(k)]

(ikn − ξk+ )2(ikn + ξk− )2
. (A15)

Let us write

F (4)[A] ≡ βV
∑
μ, j

A∗
μ1 j1 A∗

μ2 j2 Lμ, jAμ3 j3 Aμ4 j4 , (A16)

where the kernel

Lμ j = 1

4βV
∑

k

tr
(
σμ1σμ2σμ3σμ4

)
(ikn − ξk+ )2(ikn + ξk− )2

9k j1 k j2 k j3 k j4

k4
F

.

(A17)

Here we have used the short-hand notation μ to denote the
four indices μ1, μ2, μ3, and μ4, and similarly for j. As Ã has
a higher critical temperature than Az, we focus solely on the
3 × 2 matrix by allowing the indices j1, j2, j3, and j4 to only
run over x and y.

The evaluation of the kernel Eq. (A17) can be split into
three parts. First, the trace over the four spin matrices evalu-
ates to

1
2 tr

(
σμ1σμ2σμ3σμ4

) = δμ1μ3δμ2μ4 + δμ1μ4δμ2μ3

− δμ1μ2δμ3μ4 . (A18)

Second, evaluating the Matsubara sum and expanding
the resulting expression to second order in q we

obtain

1

β

∑
ikn

1

(ikn − ξk+ )2(ikn + ξk− )2

= 2[1 − nF (ξk+ ) − nF (ξk− )]

(ξk+ + ξk− )3
+ n′

F (ξk+ ) + n′
F (ξk− )

(ξk+ + ξk− )2

= [1 − 2nF (ξk )] + 2ξkn′
F (ξk )

4ξ 3
k

− εkεq cos2 θk,q

4ξ 3
k

[n′′
F (ξk ) − ξkn′′′

F (ξk )] + O(q3). (A19)

As before, we have ignored terms that are odd in ξk. Finally,
the angular integrals are∫

d�

4π

9k j1 k j2 k j3 k j4

k4
F

= 3

5

(
δ j1 j2δ j3 j4 + δ j1 j3δ j2 j4 + δ j1 j4δ j2 j3

)
,

∫
d�

4π

9k2
z k j1 k j2 k j3 k j4

k6
F

= 3

35

(
δ j1 j2δ j3 j4+δ j1 j3δ j2 j4 + δ j1 j4δ j2 j3

)
.

Combining everything, we obtain

Lμ j = β2
(− 1

2 Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 − Ĩ5
)
, (A20)

where

β2 = 3N (0)

20

[ ∫ 	

−	

dξ
[1 − 2nF(ξ ) + 2ξn′

F(ξ )]

ξ 3
(A21)

− μεq

7

∫ 	

−	

dξ
n′′

F(ξ ) − ξn′′′
F (ξ )

ξ 3

]
. (A22)

Here we have used that εk � μ for μ � 	. In the limit β	 →
∞, the integrals are∫ 	

−	

dξ
[1 − 2nF(ξ ) + 2ξn′

F(ξ )]

ξ 3
→ 7ζ (3)

2π2
β2, (A23)∫ 	

−	

dξ
n′′

F(ξ ) − ξn′′′
F (ξ )

ξ 3
→ 93ζ (5)

4π4
β4. (A24)

Therefore,

β2 = 21ζ (3)

40π2

N (0)

(kBT )2 − 279ζ (5)

560π4

N (0)μ

(kBT )4 εq, (A25)

which is Eq. (29) of the main text.

APPENDIX B: EXACT MINIMIZATION
OF THE MEAN-FIELD FREE ENERGY

To minimize F (4), it is convenient to express the orbital part
of the order parameter Ã in the angular-momentum basis. We
define the 3 × 2 complex matrix

B̃′ ≡ Ã′UL, UL = 1√
2

(
1 1
−i i

)
. (B1)

The order parameter B̃ can be written in matrix form as

B̃′ = (S T), (B2)

where S and T are three-component complex column vectors.
Under a spin rotation, the vectors S and T transform in the
vector representation of SO(3)S, but under an orbital rotation
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from SO(2)L by an angle φ, we have

S �→ eiφS, (B3)

T �→ e−iφT. (B4)

In other words, S (T) transforms in the m = +1(−1) angular-
momentum representation of SO(2)L. Time-reversal acts as
S �→ T∗ and T �→ S∗. The basis transformation Eq. (B1) pre-
serves the normalization condition Eq. (30), namely,

trB̃′†B̃′ = |S|2 + |T|2 = 1. (B5)

In this notation, the quartic invariants read

Ĩ1 = 4|S · T|2, (B6)

Ĩ2 = (|S|2 + |T|2)2 = 1, (B7)

Ĩ3 = 2(|S|2|T|2 + |S · T∗|2), (B8)

Ĩ4 = |S|4 + |T|4 + 2|S · T∗|2, (B9)

Ĩ5 = |S2|2 + |T2|2 + 2|S · T|2. (B10)

We show these inequalities for normalized B̃, implying
they are valid for the non-normalized as well (yielding an
overall prefactor |�0|4). To prove Eq. (35), we first write,
using the Binet–Cauchy identity,

Ĩ3 − Ĩ1

2
= 2[|S|2|T|2 + (S × S∗) · (T∗ × T)]. (B11)

Separating S and T into real and imaginary parts, S = S1 +
iS2 and T = T1 + iT2, where S1, S2, T1, T2 ∈ R3, we have

Ĩ3 − Ĩ1

2
= 2

(
S2

1 + S2
2

)(
T 2

1 + T 2
2

)
+ 8S1S2T1T2(Ŝ1 × Ŝ2) · (T̂1 × T̂2). (B12)

Here S1 = |S1| denotes the magnitude of S1 and Ŝ1 = S1/S1,
and likewise for S2, T1, and T2. Because of the normaliza-
tion condition, Eq. (B5), it is helpful to introduce angular
variables θ, φS, φT ∈ [0, π/2] to parametrize the magnitudes:
S1 = cos θ cos φS , S2 = cos θ sin φS , T1 = sin θ cos φT , and
T2 = sin θ sin φT . In this parametrization,

Ĩ3 − Ĩ1

2
= sin2 2θ

2
[1 + sin 2φS sin 2φT

· (Ŝ1 × Ŝ2) · (T̂1 × T̂2)] (B13)

� sin2 2θ

2
(1 − sin 2φS sin 2φT ) (B14)

� 0. (B15)

The second inequality, Eq. (36), can be proven in much the
same way; the result is

Ĩ4 − Ĩ5 = 4(S1 × S2 + T1 × T2)2 � 0. (B16)

The inequality (36), in fact, remains true in the 3D case
when the order parameter is a 3 × 3 matrix A, namely

I4 − I5 � 0 (B17)

for I4 = tr[(AA†)2] and I5 = tr[(AA†)(AA†)∗]. However, in-
equality (35) is generally not satisfied in 3D. Take, as
a counterexample, the order parameter of the B phase
A = diag(1, 1, 1)/

√
3, for which it can be easily verified that

I3 − I1/2 = −1/6.
The fact that both inequalities (35) and (36) can be satisfied

by the 3 × 2 order parameter makes the minimization of the
mean-field free energy analytically tractable. For this we clas-
sify all superfluid ground states by seeking order parameters
that saturate both bounds. From Eq. (B13), there are two
instances when Ĩ3 − Ĩ1/2 = 0. The first is when

θ = 0 or
π

2
, (B18)

and the second when

φS = φT = π

4
, (Ŝ1 × Ŝ2) · (T̂1 × T̂2) = −1. (B19)

By (B16), Ĩ4 − Ĩ5 = 0 when

S1 × S2 = −T1 × T2. (B20)

Based on these conditions, the ground-state manifold can be
categorized into two classes:

(1) States that satisfy Eqs. (B18) and (B20). In this class,
one of S or T is zero and the nonzero vector, say S, satisfies
S1 ‖ S2. In other words, S1 and S2 must point in the same
direction but their relative magnitude is unconstrained.

The states within this class are related to one another by G̃
transformations. Without the loss of generality, suppose S 
= 0
and T = 0. By an SO(3)S transformation, S1 can be brought to
the form (0, 0, cos φS )T . The ground state and normalization
constraints then demand S2 = ±(0, 0, sin φS )T . Performing
the U(1) transformation S → e∓iφS S, T → e∓iφS T, we obtain

S1 =
⎛
⎝0

0
1

⎞
⎠, S2 = T1 = T2 = 0. (B21)

Any state in this class can be brought to this canonical form
through G̃ transformations. In the Cartesian basis, this repre-
sentative state takes the form

Ã′ = 1√
2

⎛
⎝0 0

0 0
1 i

⎞
⎠, (B22)

which is the A phase. The case with S = 0 and T 
= 0 is
related by time-reversal symmetry. Note that states in this
class necessarily break time-reversal symmetry.

(2) States that satisfy Eqs. (B19) and (B20). The mag-
nitudes are constrained to S1 = S2 = T1 = T2 = 1/2 and the
directions satisfy the three conditions Ŝ1 ⊥ Ŝ2, T̂1 ⊥ T̂2, and
Ŝ1 × Ŝ2 antiparallel to T̂1 × T̂2.

States in this class are also all related by G̃ transformations.
By an SO(3)S rotation, Ŝ1 can be chosen to be Ŝ1 = (1, 0, 0)T .
The vector Ŝ2 must be perpendicular to Ŝ1, and, by a spin
rotation about Ŝ1, we can choose Ŝ2 = (0,−1, 0)T . As for the
vectors T̂1 and T̂2, in order for T̂1 ⊥ T̂2 and Ŝ1 × Ŝ2 to be an-
tiparallel to T̂1 × T̂2, we must have T̂1 = cos βŜ1 + sin βŜ2

and T̂2 = sin βŜ1 − cos βŜ2 for some β ∈ [0, 2π ). The pa-
rameter β, however, can be eliminated by performing the
U(1) transformation S �→ e−iβ/2S, T → e−iβ/2T and SO(2)L
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transformation S �→ eiβ/2S, T �→ e−iβ/2T. After this sequence
of transformations, we obtain

Ŝ1 =
⎛
⎝1

0
0

⎞
⎠, Ŝ2 =

⎛
⎝ 0

−1
0

⎞
⎠, (B23)

T̂1 = Ŝ1, T̂2 = −Ŝ2. (B24)

In other words, all the states in this class are G̃ related to
this time-reversal symmetric state. Reverting to the Cartesian
basis, this representative state reads

Ã′ = 1√
2

⎛
⎝1 0

0 1
0 0

⎞
⎠, (B25)

which is the planar phase.
To summarize, our weak-coupling calculation predicts two

classes of ground states that are not related by symmetry.
The states in the first class are related to the A phase by G̃
transformations, and to the planar phase in the second.

APPENDIX C: PERTURBATIVE
RENORMALIZATION-GROUP EQUATIONS

Our derivation of the perturbative RG equations is based
on using the (bosonic) one-loop effective action as a generat-
ing functional for the one-loop beta functions of the quartic
couplings. This is an efficient way of deriving the one-loop
flow of models with matrix order parameters and many quartic
couplings, where otherwise a substantial number of Feynman
diagrams would have to be considered. The technique is ex-
plained in detail in Appendix D of Ref. [44].

1. One-loop effective action

We parametrize the effective free-energy functional for the
order parameter at a given RG scale b through the ansatz

F [Ã(R)] =
∫

R
[(∂kÃ∗

μi )(∂kÃμi ) + (γ − 1)(∂iÃ
∗
μi )(∂ j Ãμ j )

+ U (Ã(R)]. (C1)

Note that

tr[(∂kÃ†)(∂kÃ)] = (∂kÃ∗
μi )(∂kÃμi ). (C2)

The effective potential U (Ã) contains all terms in the free-
energy density that are allowed by symmetry and independent
of derivatives of Ã(R). We limit the perturbative study to the
RG-relevant couplings close to the phase transition and make
the ansatz

U (Ã) = −α tr(Ã†Ã) +
5∑

a=1

β̄aĨa. (C3)

In Eqs. (C1) and (C3), the couplings γ , α, β̄a depend on the
RG scale parameter b.

The one-loop correction to the effective potential is given
by the “trace-log” formula

δU (Ã) = 1

2

∫ ′

q
ln G−1(q, Ã), (C4)

where G−1 is the Fourier transform of the inverse propagator
in the presence of an arbitrary background field Ã(R), de-
noted G−1, evaluated at a constant background field Ã(R) =
Ã. It is defined through

G−1(q, Ã) =
(
G−1

ÃÃ
(q) G−1

ÃÃ∗ (q)

G−1
Ã∗Ã

(q) G−1
Ã∗Ã∗ (q)

)∣∣∣∣∣
Ã(R)=Ã

, (C5)

where each block is an 3 × 2 matrix defined by the functional
derivatives

δ2F

δÃμi(R)δÃν j (R′)
= [

G−1
ÃÃ

(R, Ã(R))
]
μi,ν j

δ(3)(R − R′),

(C6)
δ2F

δÃμi(R)δÃ∗
ν j (R

′)
= [

G−1
ÃÃ∗ (R, Ã(R))

]
μi,ν j

δ(3)(R − R′),

(C7)

with analogous formulas for G−1
Ã∗Ã

and G−1
Ã∗Ã∗ . After setting

Ã(R) → Ã to a constant, the Fourier transform R → q can be
computed. (This would yield a complicated convolution for a
nonconstant order parameter field.) It is important though to
keep the value of Ã arbitrary in G−1(q, Ã) so that derivatives
of δU (Ã) with respect to Ã can be computed. After these
derivatives have been obtained, we insert a vanishing back-
ground field Ã = 0. For this we define

G−1
0 (q) = G−1(q, Ã = 0) (C8)

and the associated inverse matrix G0(q). The choice of mo-
mentum shell integration

∫ ′
q in Eq. (C4) is discussed below in

Eq. (C33).
To determine the one-loop corrections to the five couplings

β̄a we define

J1 = ∂4δU

∂Ã11∂Ã∗
11∂Ã11∂Ã∗

11

∣∣∣∣∣
Ã=0

, (C9)

J2 = ∂4δU

∂Ã11∂Ã∗
11∂Ã22∂Ã∗

22

∣∣∣∣∣
Ã=0

, (C10)

J3 = ∂4δU

∂Ã11∂Ã∗
11∂Ã12∂Ã∗

12

∣∣∣∣∣
Ã=0

, (C11)

J4 = ∂4δU

∂Ã11∂Ã∗
11∂Ã21∂Ã∗

21

∣∣∣∣∣
Ã=0

, (C12)

J5 = ∂4δU

∂Ã12∂Ã∗
11∂Ã32∂Ã∗

31

∣∣∣∣∣
Ã=0

, (C13)

and find

J1 = 4(δβ̄1 + δβ̄2 + δβ̄3 + δβ̄4 + δβ̄5), (C14)

J2 = 2δβ̄2, (C15)

J3 = 2(δβ̄2 + δβ̄4 + δβ̄5), (C16)

J4 = 2(δβ̄2 + δβ̄3 + δβ̄4), (C17)

J5 = 2δβ̄3. (C18)
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Here we denote the one-loop correction to β̄a by δβ̄a. This is
inverted by

δβ̄1 = 1
4 (J1 − 2J3 − 2J5), (C19)

δβ̄2 = 1
2 J2, (C20)

δβ̄3 = 1
2 J5, (C21)

δβ̄4 = 1
2 (−J2 + J4 − J5), (C22)

δβ̄5 = 1
2 (J3 − J4 + J5). (C23)

These expressions are quadratic in the couplings {β̄a} and the
RG flow equations for the {βa} can be derived from them, as
we explain in the next section.

To compute the derivatives of δU in Eqs. (C9)–(C13) in
practice we make repeated use of

d

dt
M(t ) = −M(t )

(
d

dt
M(t )−1

)
M(t ) (C24)

for any matrix M(t ) that depends on a parameters t . This
yields

∂4δU

∂Ã∗
μi∂Ã∗

ν j∂Ãσk∂Ãτ l

∣∣∣∣∣
Ã=0

= −1

2
tr

∫ ′

q
G0

∂2V
∂Ã∗

μi∂Ã∗
ν j

G0
∂2V

∂Ãσk∂Ãτ l

− 1

2
tr

∫ ′

q
G0

∂2V
∂Ã∗

μi∂Ãσk
G0

∂2V
∂Ã∗

ν j∂Ãτ l

− 1

2
tr

∫ ′

q
G0

∂2V
∂Ã∗

μi∂Ãτ l
G0

∂2V
∂Ã∗

ν j∂Ãσk
. (C25)

Here V (Ã) is derived from the ansatz for F in Eqs. (C1) and
(C3). We have

G−1(q, Ã) = G−1
0 (q) + V (Ã), (C26)

with

V (Ã)μi,ν j =
⎛
⎝ ∂2U

∂Ãμi∂Ãν j

∂2U
∂Ãμi∂Ã∗

ν j

∂2U
∂Ã∗

μi∂Ãν j

∂2U
∂Ã∗

μi∂Ã∗
ν j

⎞
⎠, (C27)

G−1
0 (q)μi,ν j = δμν[(q2δi j − qiq j ) + γ qiq j]

(
0 1
1 0

)
. (C28)

These are 2(3 × 2) × 2(3 × 2) = 18 × 18 matrices. The ver-
tex term V (Ã) in Eq. (C26) contributes terms proportional to
the quartic couplings {βa} when computing the derivatives in
Eqs. (C13). It depends on the particular ansatz used for U (Ã)
in Eq. (C3).

In the momentum integrals, we parametrize q as

q =
(

q⊥
qz

)
=

⎛
⎝qx

qy

qz

⎞
⎠ =

⎛
⎝q cos φ

q sin φ

qz

⎞
⎠, (C29)

where q⊥ = (qx, qy) is the momentum in the (unconfined)
two-dimensional xy plane, and qz is the momentum compo-
nent in the (confined) z direction. Under confinement, qz is

quantized to values

qz = π

Lz
n. (C30)

The integration over qz is replaced by a Matsubara-type sum

1

Lz

∑
n�1

. (C31)

We assume qz � p⊥ so that typically only the n = 1 term con-
tributes significantly. The integral over the two-momentum q⊥
is given by

1

(2π )2

∫ �

�/b
dq⊥ q⊥

∫ 2π

0
dφ, (C32)

where q⊥ = |q⊥| is limited to the momentum shell �/b �
q⊥ � � with ultraviolet cutoff � ∼ √

T . We combine these
consideration into the prescription∫ ′

q
f (q⊥, qz ) := 1

Lz(2π )2

∑
n�1

∫ �

�/b
dq⊥ q⊥

×
∫ 2π

0
dφ f (q⊥, πn/Lz ) (C33)

for an arbitrary function f (q⊥, qz ).

2. From one-loop corrections to renormalization-group
flow equations

In this section we explain how the one-loop corrections δβ̄a

to the quartic couplings β̄a translate into a set of coupled RG
flow equations. To simplify the presentation, we consider a
model that has only one quartic coupling λ̄ with a scaling
dimension of two. (This means that if k is a momentum
scale, then λ̄/k2 is dimensionless in appropriate natural units.)
We explain at the end of the section how this generalizes to
models with several couplings.

The one-loop correction is assumed to have the form

δλ̄ = Cλ̄2
∫ ′

q⊥

1

q4
⊥

, (C34)

where C is a dimensionless number. In fact, the λ̄ that appears
on the right-hand side is the coupling λ̄(b) at the scale b = 1,
so we write

δλ̄ = Cλ̄(1)2
∫ ′

q⊥

1

q4
⊥

. (C35)

The momentum-shell integral is evaluated in two dimensions
and given by ∫ ′

q⊥

1

q4
⊥

= b2 − 1

4π�2
. (C36)

We now define the renormalized coupling at scale b via

λ̄(b) = b2[λ̄(1) + δλ̄] (C37)

= b2

(
λ̄(1) + Cλ̄(1)2 b2 − 1

4π�2

)
. (C38)
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The scale derivative with respect to ln b yields

dλ̄(b)

d ln b
= b

dλ̄(b)

db
(C39)

= 2λ̄(b) + C
2π�2

[b2λ̄(1)]2. (C40)

In the loop-correction term, we now self-consistently replace

b2λ̄(1) → λ̄(b). (C41)

This is justified, for instance, if the coupling corrections are
small, or if b is close to unity. We arrive at

dλ̄(b)

d ln b
= 2λ̄(b) + C

2π�2
λ̄(b)2. (C42)

This is the one-loop RG flow equation for the coupling λ̄.
Since in many situations the overall prefactor of λ̄ does not
play a role, it is convenient to introduce the rescaled coupling

λ(b) = λ̄(b)

2π�2
(C43)

to arrive at the equation

dλ

d ln b
= 2λ + Cλ2. (C44)

Note that λ, in contrast to λ̄, is a dimensionless number. The
case of several coupling constants λ̄i is obtained by replacing
Cλ̄2 with the quadratic form

Ci j λ̄iλ̄ j (C45)

in the one-loop correction.
Note that the scale-derivative of the integral in the one-loop

correction can also be obtained through a derivative with re-
spect to the lower integration boundary. This does not require
to evaluate the integral first, which is advantageous in certain
situations. Indeed, we have

d

d ln b

∫
q⊥

1

q4
⊥

= d

d ln b

1

2π

∫ �

�/b
dq⊥

1

q3
⊥

(C46)

= −
(

d

d ln b

�

b

)
1

2π

1

(�/b)3 (C47)

= −
(

−�

b

)
1

2π

1

(�/b)3 (C48)

= b2

2π�2
. (C49)

Consider then a more complicated model with one-loop cor-
rection

δλ̄ = λ̄(1)2
∑

qz

∫ ′

q⊥

Cq4
⊥ + Dq2

⊥
(
q2

z + α
) + E

(
q2

z + α
)2(

q2
⊥ + q2

z + α
)4(

γ q2
⊥ + q2

z + α
)2 ,

(C50)

which models the case of confinement in the z direction. Here
γ is a dimensionless parameter, α = −π2/L2

z , qz = πn/Lz,
n = 1, 2, . . . , and

∑
qz

(· · · ) = 1

Lz

∞∑
n=1

(· · · ). (C51)

We have

d

d ln b

∫ ′

q⊥

Cq4
⊥ + Dq2

⊥
(
q2

z + α
) + E

(
q2

z + α
)2(

q2
⊥ + q2

z + α
)2(

γ q2
⊥ + q2

z + α
)2

= −
(
−�

b

)
1

2π

C(�/b)4+D(�/b)2
(
q2

z +α
)+E

(
q2

z + α
)2[

(�/b)2 + q2
z + α

]2[
γ (�/b)2 + q2

z + α
]2

= b3

2π�3

C + D b2

�2

(
q2

z + α
) + E b4

�4

(
q2

z + α
)2

γ 2
[
1 + b2

�2

(
q2

z + α
)]2[

1 + 1
γ

b2

�2

(
q2

z + α
)]2

.

(C52)

The total one-loop correction can be written as

dδλ̄

d ln b
= λ̄(1)2 b2

2π�2
h(L̃z ), (C53)

with

h
(
L̃z

) = 1

L̃z

∞∑
n=1

C + D b2

�2

(
q2

z + α
) + E b4

�4

(
q2

z + α
)2

γ 2
[
1 + b2

�2

(
q2

z + α
)]2[

1 + 1
γ

b2

�2

(
q2

z + α
)]2

.

(C54)

In this expression, the Lz dependence is only due to the di-
mensionless combination L̃z = �Lz/b because

b2

�2

(
q2

z + α
) = π2

L̃2
z

(n2 − 1). (C55)

The flow equation for λ̄(b) becomes

dλ̄

d ln b
= 2λ̄ + 1

2π�2
λ̄2h(L̃z ). (C56)

3. Flow of quartic couplings

The one-loop corrections to the quartic couplings depend
on qz = πn/Lz, n � 1 only through the combination q2

z + α.
By setting α = −q2

z and neglecting the sum over qz, we for-
mally obtain the 2D limit. In the 2D limit, we have

δβa = −Ca(γ )

γ 2

∫ ′

q⊥

1

4q4
⊥

, (C57)
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with

C1(γ ) = 24(κ2 + 2κ + 2)β2
1 + 12(κ + 2)2β1β2 + 4(5κ2 + 8κ + 8)β1β3 + 8(κ2 + 2κ + 2)β1β4

+ 24(κ2 + 2κ + 2)β1β5 + 4κ2β2β5 + 2(5κ2 + 16κ + 16)β3β5 + 2κ2β4β5 + 3κ2β2
5 , (C58)

C2(γ ) = 4(κ2 + 8κ + 8)β2
1 + 16(κ2 + 2κ + 2)β1β2 + 4κ2β1β3 + 4κ2β1β4 + 4κ2β1β5 + 2(17κ2 + 40κ + 40)β2

2

+ 4(9κ2 + 16κ + 16)β2β3 + 4(11κ2 + 20κ + 20)β2β4 + 24(κ2 + 2κ + 2)β2β5 + 2(3κ2 + 4κ + 4)β2
3

+ 16(κ2 + κ + 1)β3β4 + 2(5κ2 + 8κ + 8)β3β5 + 12(κ2 + 2κ + 2)β2
4 + 2(5κ2 + 8κ + 8)β4β5 + (κ2 + 8κ + 8)β2

5 ,

(C59)

C3(γ ) = 4κ2β2
1 + 4κ2β1β3 + 4(κ2 + 8κ + 8)β1β4 + 4(κ2 + 8κ + 8)β1β5 + 2κ2β2

2 + 12(κ + 2)2β2β3 + 4κ2β2β4

+ 2(7κ2 + 8κ + 8)β2
3 + 16(κ2 + 5κ + 5)β3β4 + 2(κ2 + 8κ + 8)β3β5 + 4κ2β2

4 + 2κ2β4β5 + κ2β2
5 , (C60)

C4(γ ) = 4κ2β2
1 + 4(κ2 + 8κ + 8)β1β3 + 4κ2β1β4 + 4(5κ2 + 8κ + 8)β1β5 + 2κ2β2

2 + 4κ2β2β3 + 12(κ + 2)2β2β4

+ 2(3κ2 + 20κ + 20)β2
3 + 16(κ2 + κ + 1)β3β4 + 2κ2β3β5 + 4(3κ2 + 10κ + 10)β2

4 + 2(κ2 + 8κ + 8)β4β5

+ (17κ2 + 32κ + 32)β2
5 , (C61)

C5(γ ) = 8κ2β1β2 + 8(κ + 2)2β1β3 + 16(κ2 + 2κ + 2)β1β4 + 16(κ2 + 3κ + 3)β2β5

+ 4(3κ2 + 4κ + 4)β3β5 + 4(7κ2 + 16κ + 16)β4β5 + 6(κ + 2)2β2
5 . (C62)

Here we write κ = γ − 1. For γ = 1, these corrections agree
with the result of Ref. [43] for the choice of symmetry group
SO(3)S × SO(2)L × U(1).

In the quasi-2D case, we have

α = −π2

L2
z

, (C63)

and so q2
z + α = �q2

z with

�q2
z = π2

L2
z

(n2 − 1), n � 1. (C64)

The modes with n > 1 are massive, but can lead to a quan-
titative effect in the RG equations. The flow equations in the
quasi-2D regime have the form

δβ̄a = −
∑

qz

∫ ′

q⊥

Ca(γ )q4
⊥ + Ca(1)

[
(γ + 1)q2

⊥�q2
z + �q4

z

]
4
(
q2

⊥ + �q2
z

)2(
γ q2

⊥ + �q2
z

)2 .

(C65)

The coefficients Ca(1) appear because the integrand needs to
be a function of the three-dimensional rotation invariant q2

⊥ +
q2

z + α for γ = 1. We have

C1(1) = 16
(
3β2

1 + 3β1β2 + 2β1β3 + β1β4

+ 3β1β5 + 2β3β5
)
, (C66)

C2(1) = 8
(
4β2

1 + 4β1β2 + 10β2
2 + 8β2β3 + 10β2β4

+ 6β2β5 + β2
3 + 2β3β4 + 2β3β5 + 3β2

4

+ 2β4β5 + β2
5

)
, (C67)

C3(1) = 16
(
2β1β4 + 2β1β5 + 3β2β3 + β2

3

+ 5β3β4 + β3β5
)
, (C68)

C4(1) = 8
(
4β1β3 + 4β1β5 + 6β2β4 + 5β2

3 + 2β3β4

+ 5β2
4 + 2β4β5 + 4β2

5

)
, (C69)

C5(1) = 8
(
4β1β3 + 4β1β4 + 6β2β5 + 2β3β5

+ 8β4β5 + 3β2
5

)
. (C70)

Since the momentum components qz are not affected by the
momentum shell cutoff, we can analytically evaluate the sum
over the modes qz. For γ = 1, we have

δβ̄a|γ=1 = −Ca(1)

Lz

∞∑
n=1

∫ ′

q⊥

1

4
(
q2

⊥ + �q2
z

)2 . (C71)

For γ 
= 1, we have

dδβ̄a

d ln b
= − b2

8π�2
Ha(γ , L̃z ), (C72)

with

Ha(γ , L̃z ) = 1

L̃z

∞∑
n=1

Ca(γ ) + Ca(1)
[
(γ + 1)�q̃2

z + �q̃4
z

]
γ 2

[
1 + �q̃2

z

]2[
1 + 1

γ
�q̃2

z

]2 ,

(C73)

and

�q̃2
z = π2

L̃2
z

(n2 − 1). (C74)

The summation over n can be performed analytically. The
flow equations for the rescaled couplings

βa(b) = β̄a(b)

8π�2
(C75)
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read

dβa

d ln b
= 2βa − Ha(γ , L̃z ). (C76)

For γ = 1 we have

Ha(1, L̃z ) = Ca(1)

L̃z

∞∑
n=1

1(
1 + �q̃2

z

)2 (C77)

= Ca(1)
L̃3

z

4

−2 + η coth (η) + η2/ sinh2 (η)

η4
> 0,

(C78)

with η = (L̃2
z − π2)1/2. Here we assumed η > 0 as applies to

the physical system.

4. Flow of kinetic coefficient

The flow equation for the parameter γ can be obtained
from Ref. [43]. To fix the normalization with respect to our
choice of βa, we denote the quartic coefficients in Ref. [43] as
β̃a. The flow of β̃1 for (m, n) = (3, 2) in the 2D limit reads

˙̃β1 = 2β̃1 − 1

4π2
mnβ̃2

1 + · · · (C79)

= 2β̃1 − 1

4π2
6β̃2

1 + · · · . (C80)

Compared with our flow equation, in the 2D limit and for
γ = 1, given by

β̇1 = 2β1 − 48β2
1 + · · · , (C81)

we conclude that both schemes are related via the rescaling

1

4π2
β̃a = 8βa ⇒ βa = 1

2

1

16π2
β̃a. (C82)

The beta function for the kinetic coefficient γ is given by

γ̇ = γ 2 1

(16π2)2

4

3

1

γ

(
1

γ
− 1

)(
1

γ 2
+ 3

)
f̃γ (C83)

= 1

(16π2)2

4

3
(1 − γ )

(
1

γ 2
+ 3

)
f̃γ , (C84)

where f̃γ > 0 is a positive-definite quadratic form of the
quartic couplings taken from Ref. [43]. Consequently, the
prefactor (16π2)−2 changes to four when the expressed in
terms of the rescaled couplings,

1

(16π2)2 f̃γ (β̃a) = 4 fγ (βa). (C85)

We then have

γ̇ = 16

3
(1 − γ )

(
1

γ 2
+ 3

)
fγ , (C86)

with

fγ = 12β2
1 + 2β1β2 + 8β1β3 + 2β1β4 + 6β1β5 + 13

2 β2
2

+ 4β2β3 + 7β2β4 + 5β2β5 + 8β2
3 + 4β3β4

+ 13
2 β2

4 + 5β4β5 + 15
2 β2

5 . (C87)

The flow of γ has an infrared-stable fixed pint at γ� = 1. The
stability is guaranteed due to fγ > 0 for any set of values of
the quartic couplings. The initial value for the flow of γ (b) is
γ (1) = 3 from mean-field theory.
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