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Spin and orbital Hall currents detected via current-induced magneto-optical Kerr effect in V and Pt
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We have studied the film thickness dependence of the current-induced magneto-optical Kerr effect in Pt and
V thin films. The Kerr signal for Pt shows little dependence on the thickness in the range studied (20–80 nm).
In contrast, the signal for V increases with increasing thickness and saturates at a thickness near 100 nm to
a value significantly larger than that of Pt. These experimental results are accounted for assuming that spin
and orbital Hall effects are responsible for the Kerr signal. We show that the Kerr signal is proportional to
the product of the dc spin (orbital) Hall conductivity and the energy derivative of the ac spin (orbital) Hall
conductivity. Contributions from the spin and orbital Hall effects mostly add up for V whereas they cancel out
for Pt. Assuming that the orbital Hall conductivity matches that predicted from first-principles calculations, the
thickness dependence of the Kerr signal suggests that the orbital diffusion length of V is considerably smaller
compared to its spin diffusion length.
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I. INTRODUCTION

Efficient generation of spin current is one of the key
challenges in developing random access and storage class
memory technologies [1,2]. The spin Hall effect [3,4] of
5d transition metals is considered to be, by far, the most
viable approach in generating spin current using materials
that are compatible with semiconductor manufacturing pro-
cesses [5]. The efficiency to generate spin current is often
represented by the spin Hall angle of the host material. The
spin Hall angle is proportional to the product of the spin
Hall conductivity and the resistivity. With regard to techno-
logical applications, it is preferable to reduce the resistivity
to limit power consumption. Significant effort has thus been
put into finding/developing materials with large spin Hall
conductivity.

It has been shown that, in 5d transition metals, spin Hall
conductivity is determined by its band structure and/or spin-
dependent scattering [6]. The latter, often referred to as the
extrinsic spin Hall effect, can enhance the spin Hall con-
ductivity if the appropriate element is doped as a scattering
center [7,8]. The former, i.e., the intrinsic spin Hall effect, is
determined by the electronic structure of the host material [9].
Studies have shown that the intrinsic spin Hall conductivity
of transition metals follows a Hund’s-rule-like scaling and is
proportional to the L · S spin orbit coupling, where S and L
are the total spin and orbital angular momentum of the host
element [10]. Such a trend has been found in experiments
[11,12], suggesting that the intrinsic spin Hall effect is rele-
vant to generating spin current in nondoped transition metals.

Theoretical studies on the intrinsic spin Hall effect have
proposed that the spin current is accompanied by a flow of
orbital angular momentum, referred to as the orbital current,

generated by the orbital Hall effect [10,13,14]. Orbital current
consists of a flow of electrons with opposite orbital angular
momentum moving in opposite directions. In contrast to the
spin Hall conductivity, the orbital Hall conductivity is pre-
dicted to be independent of the size and sign of the spin orbit
coupling (L · S). Using tight binding and/or first-principles
calculations, it has been shown that the 3d transition metals,
particularly V, Ti, and Cr, possess one of the largest orbital
Hall conductivities among the transition metals [10,15,16].

Probing the orbital current remains a significant challenge
in modern spintronics. A large number of studies have used
bilayers that consist of a nonmagnetic metal (NM) and a ferro-
magnetic metal (FM) to assess the presence of orbital current.
In almost all cases, the response of the FM layer magnetiza-
tion to the current passed along the bilayer is used to study the
size and direction of orbital current, if any, generated in the
NM layer [17–21]. There are a few difficulties in evaluating
the orbital current in such systems. First, as many studies use
the change in the magnetization direction with the current to
extract information on the orbital current, it is essential that
the orbital current exerts torque on the magnetization. How-
ever, it remains to be seen if the orbital current that enters the
FM layer can exert torque on the FM layer magnetization in
a way similar to that of spin current (see, e.g., Refs. [22,23]).
Second, it is well known that the electronic and/or structural
properties of the NM/FM interface can significantly influence
the amplitude and the direction of spin current that flows into
the FM layer [24–27]. The same issue also applies to orbital
current. Finally, studies have shown that the presence of the
FM layer can alter the spin transport properties within the
NM layer via a proximity-like effect. For example, the spin
diffusion length of the NM layer has been reported to differ
depending on whether or not a FM layer is placed adjacent to
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the NM layer [28]. Similar effects may also apply to the orbital
current in the NM layer. For these reasons, it is preferable to
probe the orbital current, if any, in a single NM layer.

The first observation of the spin Hall effect used the
magneto-optical Kerr effect in a polar configuration to detect
the amount of out-of-plane spin magnetic moments accumu-
lated at the edges of a semiconductor [29]. The Kerr rotation
angle induced by the spin magnetic moments was a few micro-
radians. Later on, a current-induced spin magnetic moment,
polarized along the film plane and accumulated at the surface
of a NM layer, was probed using the longitudinal Kerr effect
[30–33]. The associated Kerr signal in NMs was of the order
of a nanoradian. The difference in the Kerr signal between the
former (semiconductors) and the latter (metals) is largely due
to the difference in the spin diffusion length: the former has
an orders of magnitude larger spin diffusion length than the
latter. As the effect is not limited to detecting a spin magnetic
moment, one may probe the orbital magnetic moment at the
surface/edges of nonmagnetic materials [34].

Here we use the longitudinal magneto-optical Kerr effect
to study current-induced spin and orbital magnetic moments
in NM single-layer films. We compare the Kerr signal of Pt,
known for its large spin Hall conductivity, and V, which is
predicted to exhibit a large orbital Hall conductivity. A simple
model is developed to analyze the experimental results. We
show that the real and imaginary parts of the Kerr signal can
be used to determine the spin and orbital Hall effects of the
host material. From the analyses, we determine the spin and
orbital diffusion length of Pt and V.

II. EXPERIMENTAL RESULTS

Films are deposited at ambient temperature using RF mag-
netron sputtering on thermally oxidized silicon substrates; the
SiO2 thickness is ∼100 nm. The film structure is sub./t NM/2
MgO/1 Ta (thickness in units of nanometer), where NM = Pt,
V. Optical lithography and Ar ion milling are used to pattern
the films into a wire. The width and length of the wire are 0.4
and 1.2 mm, respectively. Electrodes made of 5 Ta/60 Cu/3
Pt are formed using conventional liftoff techniques. X-ray
diffraction is used to study the film structure. For V, we find
the bcc (110) peak in the 20-nm-thick V thin film, suggesting
that the film is composed of bcc-V.

Schematic illustration of the experimental setup is shown
in Fig. 1. An alternating current is applied to the sample along
the x direction from a function generator (Stanford Research
Systems, DS360). The frequency of the current is fixed to
2030 Hz and the amplitude is varied. The sample is irradiated
with a linearly polarized light from an oblique angle, ∼45◦

from the film normal. The light plane of incidence (yz plane)
is orthogonal to the current flow direction (along x). The
reflected light is measured using a balanced photodetector,
where the optical signal is converted to an electrical signal.
The electrical output of the photodetector is fed into a lock-in
amplifier. The frequency and phase of the lock-in amplifier
are locked to those of the alternating current applied to the
sample. A half-wave plate or a quarter-wave plate is inserted
in between the sample and the photodetector. The half-wave
plate and the quarter-wave plate are used to measure the real
(θK, rotation angle) and imaginary (ηK, ellipticity) parts of
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FIG. 1. Schematic illustration of the optical setup and definition
of the coordinate system. The light incidence of plane is the yz plane,
and the light is s-polarized: the polarization points along the x-axis.
BPF: band-pass filter, P: polarizer, L: lens, HWP: half-wave plate,
QWP: quarter-wave plate, PBS: polarized beam splitter, M: mirror,
BPD: balanced photodetector.

the Kerr signal, respectively. θK and ηK are measured as a
function of the current density j applied to the sample. Such
measurement is repeated N times to improve the signal-to-
noise ratio (typically N = 100–1000). The sample stage is
controlled by a stepping motor-controlled system, and we
look for the sample position by scanning the laser across
the sample and measuring the reflectivity. Once the center of
the sample is identified, we fix the sample stage and perform
the measurements. During the measurements, the laser beam
is fixed at the center of the sample. Since the optical setup
needs to be changed to measure θK and ηK, the two are mea-
sured separately. All measurements are carried out at room
temperature.

The j dependence of θK and ηK is shown in Fig. 2 for
20-nm-thick Pt and V films. Positive and negative j cor-
respond to, respectively, in-phase and (180◦) out-of-phase
detection of the optical signal with respect to the current.
We find that both θK and ηK linearly scale with j at small
| j|. Data are fitted with a linear function to obtain the rate
at which the Kerr signal varies with j. Note that a slight
nonlinear j dependence of the Kerr signal is found when
| j| exceeds 1 × 1010 A/m2: see, for example, Fig. 2(a). The
data fitting range is thus limited to below such a value. We
also restricted the measurement range of ηK for Pt [Fig. 2(b)]
to obtain a better linear fitting. The nonlinear j dependence
is likely caused by current-induced heating and temperature-
dependent optical properties [35]. The effect is larger than that
reported in Refs. [33,34], which may be due to the difference
in the size of the wire used: the wire width is larger here by
more than a factor of 10. As the power input to the sample
scales the wire width, larger current-induced heating can take
place in wider wires. The large sample width, however, is
beneficial for the optical measurements as the system is less
susceptible to system vibration and laser spot drifting.

The film thickness dependences of θK/ j and ηK/ j obtained
from the linear fitting of the Kerr signal are presented in
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FIG. 2. (a)–(d) Current density j dependence of the real part θK

(a),(b) and the imaginary part ηK (c),(d) of the Kerr signal. Data are
from 20 nm Pt (a),(c) and 20 nm V (b),(d). The error bars indicate
standard deviation of the N measurements conducted normalized by√

N − 1. Since θK showed a nonlinear dependence on j for Pt, we
limited the measurement range of ηK to a smaller value.

Figs. 3(a)–3(d) with the open symbols. For Pt, we find that
both θK/ j and ηK/ j show a relatively small dependence on
the Pt layer thickness. The value of θK/ j is smaller than that
reported in Refs. [33,34]: the reason behind this is discussed
later in this section. In contrast, θK/ j for V steadily increases
with increasing V layer thickness (ηK/ j shows a rather small
variation). The absolute value of the Kerr signal |θK + iηK|/ j
is plotted in Figs. 3(e) and 3(f). As is evident, the absolute
Kerr signal is significantly larger for V than for Pt in the thick
NM layer limit.

To account for these experimental results, we model the
current-induced magneto-optical Kerr effect assuming that
spin and orbital magnetic moments, induced by spin and or-
bital Hall effects, respectively, accumulate at the surface of the
film. θK and ηK are defined using the reflection coefficients rss

and rps:

θK = Re

[
rps

rss

]
, ηK = Im

[
rps

rss

]
, (1)

where rss (ps) represents the fraction of the s (p) component
of the reflected light when a sample is irradiated with an
s-polarized light. (The same convention applies when the
sample is irradiated with a p-polarized light.) rss (rps) can
be expressed using the diagonal (εxx) and off-diagonal (e.g.,
εzx) components of the permittivity tensor for each layer and
geometrical parameters of the experimental setup (e.g., the
light incident angle). For a sample made of nonmagnetic ma-
terials, the off-diagonal components are generally zero, which
results in rps = 0. Under the influence of spin and orbital Hall
effects, current applied to the sample induces spin and/or
orbital magnetic moments at the top and bottom surfaces of
the film that cause one or more of the off-diagonal components
to be nonzero.

FIG. 3. (a)–(f) The NM layer thickness dependence of the real
part θK (a),(b), the imaginary part ηK (c),(d), and the absolute value
|θK + iηK| (e),(f) of the Kerr signal divided by the current density j.
All units are in 10−10 nrad/(A/m2). The circles show experimental
data from Pt (a),(c),(e) and V (b),(d),(f). The error bars represent the
fitting error of the j dependence of the Kerr signal with a linear func-
tion. Blue, red, and black lines show the calculated Kerr signal with
a contribution from the spin Hall effect, the orbital Hall effect, and
the sum of the two, respectively. Parameters used in the calculations
are summarized in the second and fifth lines of Table II. Calculation
results for the thin NM layer limit are not shown for clarity: see
Appendix 5 for details.

We use the spin diffusion equation [36] to obtain the profile
of the spin/orbital magnetic moment. Following the approach
described in Appendix 1, εzx reads

εzx = εzx,s + εzx,o,

εzx,s(o) = −els(o)ρ
2
xxσs(o)(0)

ε0ω

sinh
(

t−2z
2ls(o)

)
cosh

(
t

2ls(o)

) ∂σs(o)(ω)

∂E
, (2)

where ε0 is the vacuum permittivity, e is the electric charge,
ω is the light angular frequency, and σxx, σs(o)(0), ls(o) are
the conductivity, dc spin (orbital) Hall conductivity, and the
spin (orbital) diffusion length, respectively, of the NM layer.
σs(o)(ω) is the NM layer ac spin (orbital) Hall conductivity
at light angular frequency ω, and ∂σs(o) (ω)

∂E is its energy deriva-
tive taken at the Fermi level. z = 0 and z = t correspond to
bottom (facing the substrate) and top surfaces of the NM layer,
respectively.

The Kerr signal is computed numerically. Since εzx varies
along the film thickness, the NM layer is divided into sub-
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FIG. 4. (a)–(d) The NM layer thickness dependence of the cal-
culated θK (solid line), ηK (dashed line) (a),(b) and the calculated
|θK + iηK|/ j (c),(d). All units are in 10−10 nrad/(A/m2). Blue, red,
and black lines show the contribution from the spin Hall effect, the
orbital Hall effect, and the sum of the two, respectively. Parameters
used in the calculations are ls = 10 nm, lo = 4 nm, ρxx = 20 	 cm,
refractive index n = 2 + 4i, and the rest are shown in Table I.

layers with a thickness of δt and a constant εzx. Here we
set δt = 0.1 nm. We neglect the effect of the capping layer
(2 MgO/1 Ta) as it is transparent to visible light: the top Ta
layer is oxidized due to exposure to air. Following Zak et al.
[37], we compute the 4 × 4 boundary Aj and propagation Dj

matrices for each (sub)layer j. The reflection coefficients can
be expressed as[

rss rsp

rps rpp

]
= JG−1,

[
G H
J K

]
= A−1

a

∏
n

(
AnDnA−1

n

)(
AoDoA−1

o

)
As, (3)

where G, H , J , and K are 2 × 2 matrices. Aa, An (Dn), Ao (Do),
and As are the boundary (propagation) matrices for air, NM
layer, SiO2 layer, and the Si substrate, respectively. Informa-
tion on current-induced spin and orbital magnetic moments is
encoded in An and Dn via εzx of the NM layer. Detailed forms
of the matrices are described in the Appendix 2. Note that the
light penetration depth, estimated from εxx (see Appendix 4),
is of the order of a few tens of nanometers. Thus spin and
orbital magnetic moments that accumulate at the top and
bottom surfaces can contribute to the Kerr signal depending
on the film thickness and the size of the spin and/or orbital
diffusion lengths. Such an effect of the finite light penetration
depth on the Kerr signal [33,34] is taken into account using
this approach (see Appendix 2).

We first show in Fig. 4 representative calculation results
using parameter sets described in Table I and in the cap-
tion to Fig. 4. The parameters are chosen such that only the

TABLE I. Parameters used in the model calculations presented
in Fig. 4. The dc spin (orbital) Hall conductivity σs(o)(0) is in units of
(	 cm)−1, whereas the energy derivative of the ac spin (orbital) Hall
conductivity ∂σs(o) (ω)

∂E is in units of (	 cm eV)−1.

σs(0) ∂σs (ω)
∂E σo(0) ∂σo(ω)

∂E

Fig. 4(a) 1000 1000 + 1000i 2000 −2000 − 2000i
Fig. 4(b) 1000 1000 + 1000i 2000 2000 + 2000i

sign of ∂σo(ω)
∂E is different for the two sets. The values of the

parameters are chosen such that they resemble those of Pt.
To simplify the modeling, we neglect the SiO2 layer of the
substrate, which can influence the Kerr signal due to multiple
reflections within SiO2 when the NM layer is thin [38]. The
blue and red lines in Fig. 4 represent contributions from the
spin and orbital Hall effects to the Kerr signal. The solid and
dashed lines in Figs. 4(a) and 4(b) show θK and ηK, whereas
the solid lines in Figs. 4(c) and 4(d) represent the absolute
value |θK + iηK|. The thick black lines in Figs. 4(c) and 4(d)
show the sum from the two (spin and orbit) contributions.
∂σo(ω)

∂E is positive (negative) in Figs. 4(a) and 4(c) [4(b) and
4(d)].

As is evident, |θK + iηK| in the thick NM limit is signifi-
cantly larger for Fig. 4(d) than Fig. 4(c). Equation (2) shows
that the Kerr signal scales with the sum of contributions from
the spin and orbital Hall effects, each of which is proportional
to the product of the dc spin or orbital Hall conductivity and
the energy derivative of the ac spin or orbital Hall conductiv-
ity, i.e., the Kerr signal ∝ σs(0) ∂σs (ω)

∂E + σo(0) ∂σo(ω)
∂E . If the sign

of the product is the same (opposite) for spin and orbital Hall
effects, both contributions add up (cancel out), which is the
case for Figs. 4(b) and 4(d) [Figs. 4(a) and 4(c)]. As we show
below, contributions from spin and orbital Hall effects cancel
out for Pt whereas they add up for V.

Next, we use the model to account for the experimental
results. Here we include the SiO2 layer in the calculations.
εxx for the NM layer and the substrate is obtained from
standard ellipsometry measurements (see Appendix 4). The
NM layer resistivity is measured with a four-point probe
technique. The dc and ac spin Hall conductivities are cal-
culated using first-principles calculations: see Appendix 3
for details. The obtained values are summarized in the first
and fourth lines of Table II. The spin (ls) and orbital (lo)
diffusion length are used as fitting parameters to account
for the data presented in Fig. 3, open symbols. The param-
eters used in the calculations are summarized in the second
and fifth lines of Table II. For V, we slightly adjust the dc
and ac spin Hall conductivities to fit the data. As the dc and
ac spin Hall conductivity of V are small, we consider that
the accuracy of the calculations is lower than that of Pt and
the orbital Hall conductivity of V. The value of the dc spin
Hall conductivity σs(0) ∼ −154 (	 cm)−1 used in the model
calculations is close to what has been found experimentally
for bcc-V [σs(0) ∼ −200 (	 cm)−1] [39].

The model calculation results are shown by the solid lines
in Fig. 3. The blue and red lines represent contributions from
the spin and orbital Hall effects to the Kerr signal, whereas the
thick black line shows the sum of the two. We find a relatively
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TABLE II. Parameters for Pt and V used in the model calculations. The first and fourth lines show results from first-principles calculations.
The second and fifth (third and sixth) lines present parameters for which the results are presented in Fig. 3 (Fig. 7). The light frequency ω

corresponds to that of λ = 633 nm. n is the refractive index of the film obtained from the ellipsometry measurements (see Appendix 4).

Film σs(0) ls
∂σs (ω)

∂E σo(0) lo
∂σo(ω)

∂E ρxx n
[(	 cm)−1] (nm) [(	 cm eV)−1] (	 cm)−1 (nm) [(	 cm eV)−1] (μ	 cm)

Pt DFT 2078 n/a 314 + 1540i 3240 n/a −1620 − 5670i n/a n/a
Fig. 3 2078 4.0 314 + 1540i 3240 2.0 −1620 − 5670i 17 1.77 + 4.33i
Fig. 7 2078 4.0 1256 + 1540i 3240 2.0 −405 − 5670i 17 1.77 + 4.33i

V DFT −53 n/a −16 − 101i 4180 n/a 1770 + 1280i n/a n/a
Fig. 3 −154 40 160 − 290i 4180 0.7 1770 + 1280i 41 2.91 + 3.26i
Fig. 7 −345 5.0 364 − 657i 196 35 −42 + 180i 41 2.91 + 3.26i

good agreement between the experimental results and the cal-
culations. First-principles calculations suggest that the signs
of σs(0) ∂σs (ω)

∂E and σo(0) ∂σo(ω)
∂E are opposite for Pt while they

are the same for V (see Table II). From the model calculations,
this suggests that the spin and orbital Hall contributions cancel
out for Pt whereas they both add up for V. (Strictly speaking,
for V, the real part of the Kerr signal does not add up and
causes a slight reduction in the overall signal.) The cancel-
lation explains why the observed Kerr signal is small for Pt
compared to V. This may also account for the difference in
the Kerr signal found here and that reported in Refs. [33,34].
Since the signal depends on a delicate balance between the
spin and orbital Hall contributions, a slight change in either
contribution can change the Kerr signal accordingly. Although
its influence may be minor, the light wavelength used here is
also different from that in Refs. [33,34].

For Pt, the sign of θK/ j estimated from the model calcu-
lations does not agree with the experimental results. Such a
discrepancy can be resolved if the energy derivative of the ac
spin and the orbital Hall conductivities are changed from those
obtained in the first-principles calculations by a factor of 4 and
1/4, respectively. In Figs. 7(b), 7(d) and 7(f), the calculated
Kerr signal is plotted with the adjusted parameters described
in the third line of Table II. As is evident, the experimental
results are well reproduced with the adjusted parameter set.

For V, we find that the orbital diffusion length lo must
be smaller than a nanometer to account for the experimental
results, which is in contrast to a previous study on a different
transition metal (Ti) [34]. The small lo is due to the large
orbital Hall conductivity estimated from the first-principles
calculations. The experiments show that the Kerr signal in-
creases with increasing V thickness and tends to saturate at
d ∼ 100 nm. This suggests that ls and/or lo have a length scale
of the order of a few tens of nm. Note that the spin/orbital
diffusion length also sets the magnitude of the Kerr signal.
Given the large orbital Hall conductivity of V estimated from
first-principles calculations, lo must be smaller than ∼1 nm
in order to describe the Kerr signal found in the experiments.
This in turn requires a large ls (∼40 nm) with relatively small
dc and ac spin Hall conductivities. If we allow changes in
the orbital Hall conductivity, the parameter set that describes
the experimental results will vary. We note that the overall
thickness dependence of the Kerr signal cannot be accounted
for with a single diffusion length: one needs short and long
diffusion lengths to describe the experimental results. Thus
the presence of spin and orbital Hall effects is essential. If we

assume that the characteristics length scale is defined by the
orbital Hall effect and lo is equal to a few tens of nm, σo(0)
needs to be reduced by more than a factor of 10 compared
to what is suggested by the first-principles calculations. The
calculated results using such a parameter set, described in the
sixth line of Table II, are shown in Figs. 7(h), 7(j), and 7(l).
Clearly, the model calculations agree well with the experimen-
tal results. Further study is required to identify the magnitude
of σo(0) and lo in an independent way.

III. CONCLUSION

In summary, we have studied the current-induced magneto-
optical Kerr effect in Pt and V thin films. We find that the
Kerr signal of V is significantly larger than that of Pt when the
film thickness is ∼100 nm. A model, developed to account
for the experimental results, suggests that the Kerr signal is
proportional to the sum of contributions from the spin and
orbital Hall effects, each of which is proportional to the prod-
uct of the dc spin or orbital Hall conductivity and the energy
derivative of the ac spin or orbital Hall conductivity. We find
that contributions from the spin and orbital Hall effects cancel
out for Pt, whereas the two effects mostly add up for V, leading
to a larger signal for the latter. The analyses suggest that the
orbital diffusion length of V must be significantly smaller
than the spin diffusion length, provided that the magnitude of
the orbital Hall conductivity is close to what first-principles
calculations predict. These results thus clarify the mechanism
of the current-induced magneto-optical Kerr effect in metallic
thin films.
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APPENDIX

1. Current-induced magneto-optical Kerr effect

The aim of this section is to derive Eq. (2). In the following,
the superscript σ represents either the spin or orbital magnetic
moment.
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We start from the two-current model to derive the relation
between the off-diagonal conductivity and the spin and orbital
Hall conductivity [Eq. (A7)]. In the two-current model, trans-
port properties are described using two channels: one with
magnetic moment +σ and the other with −σ . The carrier
density and the i j-component of the conductivity tensor for
electrons with magnetic moment σ are defined as nσ and σσ

i j ,
respectively. With such a definition, the i j-component of the
conductivity tensor and the spin (orbital) Hall conductivity are
expressed as

σi j (ω) = σ+σ
i j (ω) + σ−σ

i j (ω),

σs(o)(ω) = σ+σ
i j (ω) − σ−σ

i j (ω). (A1)

Hereafter, we focus on the off-diagonal component of the con-
ductivity, i.e., the transverse conductivity σi j (ω) with i �= j.
For nonmagnetic materials without any external stimuli (e.g.,
electric field), we have σ+σ

i j (ω) = −σ−σ
i j (ω), which yields

σi j (ω) = 0 and σs(o)(ω) = 2σ+σ
i j (ω) = −2σ−σ

i j (ω). Let us as-
sume that a stimuli induces a change in nσ , which in turn
modulates σi j (ω) and σs(o)(ω). Under such a circumstance, the
following relations hold:

δσi j (ω) = ∂σ+σ
i j (ω)

∂n+σ
δn+σ + ∂σ−σ

i j (ω)

∂n−σ
δn−σ ,

δσs(o)(ω) = ∂σ+σ
i j (ω)

∂n+σ
δn+σ − ∂σ−σ

i j (ω)

∂n−σ
δn−σ , (A2)

where δnσ is an infinitesimal change in nσ under the
stimuli, and δσi j (ω), δσs(o)(ω) are the corresponding infinites-
imal change in σi j (ω), σs(o)(ω). Next, we define δnc as an
infinitesimal change in the average carrier density, and δns(o)

as an infinitesimal change in the density of spin (orbital) mag-
netic moment [referred to as spin (orbital) density hereafter]
under the stimuli:

δnc ≡ δn+σ + δn−σ ,

δnσ
s(o) ≡ δn+σ − δn−σ . (A3)

Combining Eqs. (A2) and (A3), we obtain

δσi j (ω) = 1

2

(
∂σ+σ

i j (ω)

∂n+σ
+ ∂σ−σ

i j (ω)

∂n−σ

)
δnc

+ 1

2

(
∂σ+σ

i j (ω)

∂n+σ
− ∂σ−σ

i j (ω)

∂n−σ

)
δnσ

s(o),

δσs(o)(ω) = 1

2

(
∂σ+σ

i j (ω)

∂n+σ
− ∂σ−σ

i j (ω)

∂n−σ

)
δnc

+ 1

2

(
∂σ+σ

i j (ω)

∂n+σ
+ ∂σ−σ

i j (ω)

∂n−σ

)
δnσ

s(o). (A4)

From Eq. (A4), the following relations emerge:

∂σi j (ω)

∂nc
= 1

2

(
∂σ+σ

i j (ω)

∂n+σ
+ ∂σ−σ

i j (ω)

∂n−σ

)
= ∂σs(o)(ω)

∂nσ
s(o)

,

∂σi j (ω)

∂nσ
s(o)

= 1

2

(
∂σ+σ

i j (ω)

∂n+σ
− ∂σ−σ

i j (ω)

∂n−σ

)
= ∂σs(o)(ω)

∂nc
. (A5)

The second relation is particularly important here: It states that
the change in the transverse conductivity δσi j (ω) with the spin
(orbital) density δnσ

s(o) is equivalent to the change in the spin
(orbital) Hall conductivity δσs(o)(ω) with the average carrier
density δnc. By definition, we have

δnc = DFδE , (A6)

where δE is the associated infinitesimal change in energy,
and DF is the density of states at the Fermi level. Thus from
Eqs. (A5) and (A6), we obtain

∂σi j (ω)

∂nσ
s(o)

= 1

DF

∂σs(o)(ω)

∂E
. (A7)

Here we have assumed

D+σ
F = D−σ

F ≡ DF

2
, (A8)

since the system under consideration is a nonmagnetic mate-
rial. Note that the quantity on the right-hand side of Eq. (A7)
can be computed numerically using first-principles calcu-
lations. Later in this section, we substitute Eq. (A7) into
Eq. (A18) and subsequently derive Eq. (2).

Next we use the spin/orbital diffusion equation to derive
the spin and orbital density induced by the spin and orbital
Hall effects. The chemical potential for carriers with magnetic
moment along σ is defined as

μσ (r) = −eφ(r) + nσ (r)

DF/2
, (A9)

where φ(r) is the electric potential. For the time being, we
explicitly show the spacial dependence of relevant quantities.
We define the difference in the chemical potential with oppo-
site magnetic moment as μσ

s(o)(r):

μσ
s(o)(r) ≡ μ+σ (r) − μ−σ (r). (A10)

The spin (orbital) diffusion equation for carriers with mag-
netic moment σ is given by

∇2μσ
s(o)(r) = μσ

s(o)(r)

l2
s(o)

, (A11)

where ls(o) is the spin (orbital) diffusion length. We define the
spin (orbital) current jσs(o) as a vector that represents the flow
of carriers with magnetic moment σ . With spatial variation
of μσ

s(o)(r) and under the influence of the spin (orbital) Hall
effect, jσs(o)(r) is given as

jσs(o)(r) = −σxx

2e
∇μσ (r) + jσSH (OH), (A12)

where jσSH (OH) is the spin (orbital) current induced by the spin
(orbital) Hall effect, and σxx is the conductivity.

The system under consideration is a thin film with the
film normal along the z axis. Current is passed along the film
plane (along x), and the spin (orbital) Hall effect induces spin
(orbital) current that flows perpendicular to the current. Here
we consider spin (orbital) current that flows along the film
normal (along z) since we measure, using the longitudinal
magneto-optical Kerr effect, the spin (orbital) magnetic mo-
ment at the film surface. We define z = 0 and z = t as the
bottom (interfacing the substrate) and top surfaces of the film,
respectively.
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The solution of the spin (orbital) diffusion equation (A11)
takes the form

μσ
s(o)(z) = A cosh

(
z

ls(o)

)
+ B sinh

(
z

ls(o)

)
, (A13)

where A and B are constants. The boundary conditions are
given as

jσs(o),z(z = 0) = jσs(o),z(z = t ) = 0. (A14)

We obtain the following solution that satisfies the boundary
conditions:

μσ
s(o)(z) = −2els(o) jσSH (OH)

σxx

sinh
(

t−2z
2ls(o)

)
cosh

(
t

2ls(o)

) . (A15)

Using the relation nσ
s(o) = n+σ − n−σ and Eqs. (A9) and

(A10), the current-induced spin (orbital) density is given by

nσ
s(o)(z) = DF

2
μσ

s(o)(z). (A16)

Substituting Eq. (A15) into Eq. (A16) and using the rela-
tion jσSH (OH) = σs(o)

σxx
jx = ρxxσs(o) jx, the current-induced spin

(orbital) density reads

nσ
s(o)(z) = −2els(o)σs(o)ρ

2
xx jx

DF

2

sinh
(

t−2z
2ls(o)

)
cosh

(
t

2ls(o)

) . (A17)

We assumed the Stoner enhancement factor [33] equals 1 here.
Hereafter, we do not write the z-dependence of nσ

s(o) explicitly.
In the experiments, we use the longitudinal Kerr effect to

probe the magnetic moments that are parallel to the y-axis.
Thus the Kerr signal reflects current-induced changes of the
zx-component of the conductivity tensor [i.e., σzx(ω)]. Since
σzx(ω) is modulated by current-induced spin (orbital) density
nσ

s(o), the following relation holds:

σzx(ω)

jx
= ∂σzx(ω)

∂nσ
s(o)

nσ
s(o)

jx
. (A18)

Substituting Eqs. (A7) and (A17) into Eq. (A18), we obtain

σzx(ω)

jx
= 1

DF

∂σs(o)(ω)

∂E

nσ
s(o)

jx

= −∂σs(o)(ω)

∂E
els(o)σs(o)ρ

2
xx jx

sinh
(

t−2z
2ls(o)

)
cosh

(
t

2ls(o)
big)

. (A19)

To obtain the relative permittivity tensor, we use the following
relation:

εi j = δi j + i

ε0ω
σi j . (A20)

The change in the zx-component of the permittivity tensor
(εzx) with current reads

εzx = i

ε0ω
σzx. (A21)

We substitute σzx from Eq. (A19) into Eq. (A21), which gives
the relation shown in Eq. (2).

2. Longitudinal Kerr effect in multilayers

Given that the light penetration depth is finite (of the order
of a few tens of nanometers) for the NM films and the spin and
orbital density along the film normal (along z) is not constant,
the contribution on the Kerr signal from the layer at a given
z is different for different z. In addition, multiple reflections
at the interfaces (air/film, film/SiO2, SiO2/Si substrate) can
influence the Kerr signal [38]. These effects need to be taken
into account to provide an accurate estimation of the Kerr
signal. We thus follow the approach established by Zak et al.
[37]. The boundary matrix of layer j is given by

Aj =

⎡
⎢⎢⎢⎣

1 0 1 0
− i

2
sin θ j

cos θ j

(
1 + cos2 θ j

)
Qj cos θ jQ j

i
2

sin θ j

cos θ j

(
1 + cos2 θ j

)
Qj − cos θ j

i
2 sin θ jQ jn j −n j

i
2 sin θ jQ jn j −n j

cos θ jn j
i
2

sin θ j

cos θ j
Q jn j − cos θ jn j − i

2
sin θ j

cos θ j
Q jn j

⎤
⎥⎥⎥⎦, (A22)

where n j and Qj = i εzx

εxx
are the refractive index and the nor-

malized off-diagonal component of the permittivity tensor
of layer j, respectively. The angle θ j satisfies Snell’s law:
ni sin θi = n j sin θ j (layer i supersedes layer j when the light
enters the multilayer). The propagation matrix for layer j
reads

Dj =

⎡
⎢⎢⎣

Uj cos β j Uj sin β j 0 0
−Uj sin β j Uj cos β j 0 0

0 0 U −1
j cos β j −U −1

j sin β j

0 0 U −1
j sin β j U −1

j cos β j

⎤
⎥⎥⎦,

(A23)

where Uj = exp(−i 2π
λ

n j cos θ jt j ), β j = π sin θ j

λ cos θ j
n jQ jt j , and t j

is the thickness of layer j. Boundary matrices Aj and Dj are

computed and substituted into Eq. (3). The matrix product is
computed numerically to obtain the reflection coefficients rss

and rps.

3. First-principles calculations

First-principles calculations were performed using the
all-electron full-potential linearized augmented plane wave
(FLAPW) method [40] with the generalized gradient approxi-
mation. The intrinsic dc spin (orbital) Hall conductivity σ s

xy(0)
[σ o

xy(0)] and the ac spin (orbital) Hall conductivity σ s
xy(ω)

[σ o
xy(ω)] [9,41,42] are calculated using the linear-response

Kubo formula [9,43]. For the latter, conductivities are calcu-
lated assuming that the system is under irradiation of light
with energy of h̄ω = 1.96 eV (λ = 633 nm), whereas the
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FIG. 5. (a)–(d) First-principles calculations of the dc (a),(b) and
ac (c),(d) spin Hall conductivities for Pt (a),(c) and V (b),(d). (e)–(h)
First-principles calculations of the dc (e),(f) and ac (g),(h) orbital
Hall conductivities for Pt (e),(g) and V (f),(h). The ac spin and orbital
Hall conductivities are calculated using a light energy of 1.96 eV (the
corresponding wavelength λ is 633 nm). The blue and orange lines
in (c),(d),(g),(h) represent the real and imaginary parts, respectively,
of the ac spin/orbital Hall conductivity.

former corresponds to the static limit at ω = 0. The spin
(orbital) current operator is defined as j

σ j

s,i = 1
2 {s j, vi} ( j

σ j

o,i =
1
2 {l j, vi}), where s j (l j) is the j-component of the spin (orbital)
angular momentum operator, and vi is the i-component of
the velocity operator. The curly brackets indicate anticom-
mutation: {A, B} = AB + BA. The relaxation time parameter
(1/τ ) for the interband transition was set to 0.3 eV [16]. The
crystal structure is fcc for Pt and bcc for V (lattice constant,
Pt: 0.392 nm, V: 0.303 nm). The Brillouin zone (BZ) integra-
tion was sampled by a special k-point mesh of 15 × 15 × 15
for the self-consistent field and 51 × 51 × 51 for the con-
ductivities. The calculated dc and ac spin and orbital Hall
conductivities for Pt and V are shown in Fig. 5.

FIG. 6. The light wavelength dependence of the relative permit-
tivity εxx of the NM layer. Data from Pt (a) and V (b) thin films.

4. Determination of relative permittivity

Standard ellipsometry is used to determine the diago-
nal component of the permittivity tensor, i.e., the relative
permittivity εxx of the materials under study. Here we use
sub./80 Pt and sub./120 V/2 MgO/1 Ta to obtain εxx of
the NM layer. The measured εxx of the films are shown
in Fig. 6. At the light wavelength used in the experiments
(λ = 633 nm), the light penetration depth [1/(2πλ Im[n])]
of the films is estimated to be 23 nm for Pt and 31 nm for
V. The refractive index of the Si substrate is measured using
the same technique, from which we obtain 3.7 + 0.12i at the
light wavelength used in the experiments (λ = 633 nm). The
refractive index (n) of SiO2 and air are set to 1.5 and 1.0,
respectively.

5. Model calculations

a. Effect of multiple reflections

In the experiments, we used Si substrates coated with a
100-nm-thick SiO2 layer to avoid current shunting into the
substrate. Multiple reflections within the SiO2 layer can occur,
which may influence the Kerr signal [38]. The effect of mul-
tiple reflections within the SiO2 layer is larger when the NM
layer thickness is smaller. To study such an effect, the Kerr
signal is calculated with and without the SiO2 layer. The re-
sults are presented in Figs. 7(a)–7(f) for Pt and Figs. 7(g)–7(l)
for V. The solid and dashed lines show calculation results with
and without the SiO2 layer. As is evident, a clear difference is
found when the NM layer thickness is smaller than 30–40 nm,
which corresponds to the light penetration depth.

b. Fitting parameters: Pt

With the parameter set described in the second line of
Table II, we cannot account for the sign of θK/ j found
in the experiments using the model calculations. This is
because the dc and ac spin/orbital Hall conductivities are
fixed to the values obtained from the first-principles calcula-
tions. If this restriction is lifted, one can reproduce the experi-
mental results. Figures 7(b), 7(d) and 7(f) show the calculated
Kerr signal when the energy derivative of the real compo-
nent of the ac spin and the orbital Hall conductivities are
changed. The other parameters are not changed: see the
third line of Table II. The calculated results show good
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FIG. 7. The NM layer thickness dependence of the real part θK (a),(b),(g),(h), the imaginary part ηK (c),(d),(i),(j), and the absolute value
|θK + iηK| (e),(f),(k),(l) of the Kerr signal divided by the current density j. All units are in 10−10 nrad/(A/m2). Blue, red, and black lines
show calculated Kerr signal with a contribution from the spin Hall effect, the orbital Hall effect, and the sum of the two, respectively. The
solid lines show calculation results when a 100-nm-thick SiO2 layer is placed in between the Si substrate and the NM layer. The dashed lines
display results without the SiO2 layer. Parameters used in the calculations are summarized in the second line (a), (c), (e); third line (b), (d), (f);
fifth line (g),(i),(k); and sixth line (h),(j),(l) of Table II. Note that the model calculations presented here do not necessarily show the best fit to
experimental results; they are used to show how the Kerr signal changes as we vary the parameters.

agreement with the experimental results. These results show
the importance of determining the ac spin and orbital Hall
conductivities in an accurate way.

c. Fitting parameters: V

For V, we find that the orbital diffusion length lo must be
smaller than a nanometer if we use the values of dc and ac
orbital Hall conductivities obtained from the first-principles
calculations. Such small lo is in contrast to what has been
found in Ti [34]. Here we examine to what extent the dc and
ac orbital Hall conductivities need to be varied to describe
the experimental results under the constraint of a large orbital

diffusion length reported in previous studies [18,34]. For this
purpose, we fix lo = 35 nm. Values of the dc and ac orbital
Hall conductivities are then defined by the maximum Kerr
signal of the thickest V film. We multiply a common factor
to σo(0) and σo(ω) obtained from the first-principles calcula-
tions. Parameters related to the spin Hall effect are set such
that the Kerr signal of the thinner films can be accounted for.
The calculation results are shown in Figs. 7(h), 7(j) and 7(l)
and the parameters used are summarized in the sixth line of
Table II. As is evident, the calculation results agree well with
the experimental results. Here, σo(0) and σo(ω) are roughly
20 times smaller than those estimated from the first-principles
calculations.
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