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Angular dependence of spin-orbit torque in monolayer Fe3GeTe2
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In ferromagnetic systems lacking inversion symmetry, an applied electric field can control the ferromagnetic
order parameters through the spin-orbit torque. The prototypical example is a bilayer heterostructure composed
of a ferromagnet and a heavy metal that acts as a spin current source. In addition to such bilayers, spin-orbit
coupling can mediate spin-orbit torques in ferromagnets that lack bulk inversion symmetry. A recently discov-
ered example is the two-dimensional monolayer ferromagnet Fe3GeTe2. In this paper, we use first-principles
calculations to study the spin-orbit torque and ensuing magnetic dynamics in this material. By expanding the
torque versus magnetization direction as a series of vector spherical harmonics, we find that higher order terms
(up to � = 4) are significant and play important roles in the magnetic dynamics. They give rise to deterministic,
magnetic field-free electrical switching of perpendicular magnetization.
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I. INTRODUCTION

The electrical control of magnetization without external
magnetic fields has attracted a lot of interest due to its po-
tential applications in energy-efficient nonvolatile magnetic
random access memory devices and neuromorphic computing
[1–4]. One of the promising mechanisms to realize such func-
tionality is spin-orbit torque [1,3,5–7], which is derived from
spin-orbit coupling and transfers angular momentum from the
crystal lattice to the magnetization [8]. The symmetry of the
system determines the dependence of the spin-orbit torque on
the magnetization direction. This dependence, in turn, deter-
mines the possible functionality of the torque in devices. As
an example, a bilayer heterostructure consisting of a ferro-
magnetic and a heavy metal layer often possesses a symmetry
mirror plane containing the electric field and the interface
normal directions. This symmetry requires that the spin-orbit
torque vanishes when the magnetization is in plane and per-
pendicular to the electric field. This property, in turn, prevents
the spin-orbit torque from affecting deterministic switching
of magnetic devices with perpendicular magnetic anisotropy,
which is desired for applications [3,4,9–11]. Utilizing mate-
rials with reduced crystal symmetry such as two-dimensional
layered materials can overcome this limitation and results in
deterministic perpendicular switching [11–13].

In addition to conventional bilayer heterostructures, fer-
romagnets without inversion symmetry [14] can also exhibit
sizable spin-orbit torques, offering another route to useful
switching dynamics. An example is the recently discovered
2D magnetic material, monolayer Fe3GeTe2. Fe3GeTe2 is
additionally of great interest in ferromagnetic spintronics
applications because it is metallic and has strong perpendic-
ular magnetic anisotropy [15–18]. Johansen et al. recently
predicted that this material’s C3z symmetry leads to unique
bulk spin-orbit torques [19]. For example, the lowest or-
der spin-orbit torque is found to be time-reversal even and

fieldlike, in contrast to the conventional bilayer case that
has a time-reversal odd fieldlike torque and a time-reversal
even dampinglike torque. Interestingly, although the mate-
rial symmetry is compatible with deterministic perpendicular
magnetization switching, the lowest order torques identified
in previous work do not lead to deterministic switching.
Motivated by this, we compute the spin-orbit torques in mono-
layer Fe3GeTe2 in this paper using ab initio calculations.
We generalize the analysis of the symmetry properties of the
material response and show that higher order terms in the spin-
orbit torque enable deterministic switching of perpendicular
magnetization.

This paper is organized as follows: In Sec. II, we de-
scribe how symmetry determines the form of spin-orbit
torques, which we express in vector spherical harmonics.
Using vector spherical harmonics as the expansion basis
enables the convenient analysis of higher-order terms. We
provide symmetry tables for the Fe3GeTe2 structure and
for conventional bilayer systems. Section III presents first-
principles calculations of spin-orbit torques in monolayer
Fe3GeTe2 and analyzes the important higher-order terms in
the results. Section IV presents the resulting dynamics of
the ab initio torques computed with the Landau-Lifshitz-
Gilbert-Slonczewski equation. In Sec. V, we provide a
brief discussion of our main findings and relevance to the
experiments.

II. SYMMETRY ANALYSIS

A. Vector spherical harmonics

Crystal symmetry ultimately determines the dependence
of spin-orbit torque on the electric field and magnetization
directions. Following Belashchenko et al. [20], we expand
the spin-orbit torque in the basis of vector spherical har-
monics. This expansion offers several advantages over other
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TABLE I. Time-reversal symmetry properties of the vector
spherical harmonics Y D,F

lm .

l even l odd

Y D
lm odd even

Y F
lm even odd

approaches [21,22] when describing spin-orbit torques in
systems with more complicated symmetries than the typical
bilayer system. First, the expansion elements are orthogonal
to each other, so adding more terms to the expansion does not
change the fit values for the lower order terms. Second, there
is a straightforward procedure to determine all symmetry al-
lowed elements of the expansion set. This is in contrast to a
polynomial expansion of the torque in Cartesian coordinates,
where the number of tensor elements grows exponentially
with polynomial order. This makes higher order terms dif-
ficult to identify and evaluate. As we show in this paper,
higher order terms (fourth order) can qualitatively impact
the features of the spin-orbit torque-induced magnetization
dynamics, so their identification is important. Third, the terms
in the vector spherical harmonics are automatically partitioned
into dampinglike or fieldlike torque terms [20]. Knowledge
of the fieldlike/dampinglike characteristics of the torque can
provide intuition about the role of each term in magnetic
dynamics. Finally, the expansion allows easy identification of
time-reversal even and odd torques. As we show below, both
fieldlike and dampinglike torques include time-reversal even
and odd components. We discuss these points in more detail
below.

We follow the same convention adopted in Belashchenko
et al. [20] to use two of the three vector spherical harmonics.
For the magnetization direction

m̂ = (sin θ cos φ, sin θ sin φ, cos θ ), (1)

the torque components are defined in terms of scalar spherical
harmonics Ylm[m̂(θ, φ)] as

Y D
lm(m̂) = ∇m̂Ylm(m̂)√

l (l + 1)
, (2)

Y F
lm(m̂) = m̂ × ∇m̂Ylm(m̂)√

l (l + 1)
. (3)

We explicitly label the vector spherical harmonics terms in
Eqs. (2) and (3) based on the fieldlike or dampinglike nature of
the torque. We label Y F

lm as fieldlike because its corresponding
effective field ∇m̂Ylm is a pure gradient and has zero curl.
Fieldlike torques result in precessional motion of the magneti-
zation. We label Y D

lm as dampinglike because it is proportional
to m × Y F

lm and can be generated from the curl of an effective
field. Dampinglike torques direct the magnetization to fixed
points. The time-reversal properties of fieldlike and damp-
inglike torques depend on whether l is even or odd; Table I
summarizes this relationship.

For the most common spin-orbit torques found in bilayers
with a broken mirror plane perpendicular to z, the damping-
like torque m̂ × ((E × ẑ) × m̂) is even under time reversal
and the fieldlike torque m̂ × (E × ẑ) is odd. The terms time-
reversal even torque and dampinglike torque are often used

TABLE II. Symmetry constraints on m for a given l provided
by different mirror planes in magnetic thin films and thin film het-
erostructures. The applied electric field is in Ê direction, the film
normal direction is n̂, and p̂ = n̂ × Ê. If a system has more than one
mirror, the constraints combine. In this table, the vector spherical
harmonics are defined based on a coordinate frame such that x̂ = Ê,
ẑ = n̂, and ŷ = p̂.

Mirror plane ReY D,F
lm ImY D,F

lm

σÊ ,n̂ l even l odd
σ p̂,n̂ l + m odd l + m even
σ p̂,Ê m even m even

interchangeably, as are the terms time-reversal odd torque and
fieldlike torque. However, these equivalences do not hold for
higher order terms in the expansion of the torque.

Since the electric-field-induced spin-orbit torque is always
perpendicular to the magnetization m and the vector spherical
harmonics form a complete set of functions, we can write the
spin-orbit torkance for an electric field in the Ê direction of
magnitude E

T Ê (m̂) = τÊ (m̂)E (4)

in the basis of Y D
lm and Y F

lm

τÊ (m̂) =
∑

lm

[
Y D

lmCD
lm(Ê ) + Y F

lmCF
lm(Ê )

]
, (5)

where the Cs are complex Cartesian coefficients with the real
part being the coefficient of the ReY D,F

lm and the imaginary
parts the negative coefficients of the ImY D,F

lm . The crystal
symmetry determines what combinations of coefficients are
allowed.

When we expand spin-orbit torkance in vector spherical
harmonics, we have 2l + 1 independent choices of vector
spherical harmonics, one for each integer m with −l � m � l
for a given l in the absence of symmetry constraints. As
with spherical harmonics, the vector spherical harmonics with
−m are the complex conjugates of those with m. Since the
torques are real, we use the real and imaginary parts of the
vector spherical harmonics as the expansion functions, e.g.,
ReY D,F

lm and ImY D,F
lm . When we make this choice, we restrict

m to be non-negative so we do not overcount. Note that we
use a different notation for the vector spherical harmonic
torque components than found in Belashchenko et al. [23].
Crystal symmetries constrain the choices of m for a given l .
Table II gives the constraints due to important mirror plane
symmetries of the structure. Rotational crystal symmetries
place additional constraints on m, as described in Appendix A.

Conventionally, for thin film heterostructures composed
of ferromagnets and heavy metals, the structure is assumed
to be disordered, so crystal symmetry does not play a role.
The bilayer structure itself breaks the mirror plane σp̂,Ê , but
the other two structural mirror planes remain. The presumed
continuous rotational symmetry restricts m = 1 [20,21], so for
l odd, only ImY D,F

l1 is allowed and for l even, only ReY D,F
l1 .

The material of interest in this paper, Fe3GeTe2, preserves
the mirror plane perpendicular to the interface normal but
breaks one of the mirror planes that contain the interface
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FIG. 1. Crystal structure and band structure of the monolayer Fe3GeTe2. (a) Top-down view; (b) side view. We can see that the monolayer
Fe3GeTe2 does not have the mirror symmetry with respect to xz plane. (c) Band structure along the high-symmetry direction G(0, 0, 0)-
K( 1

3 , 1
3 , 0)-M( 1

2 , 0, 0)-G(0, 0, 0). Red dots represent bands obtained from symmetrized tight-binding Hamiltonian while black lines represent
the bands obtained from plane-wave basis. The blue horizontal line indicates the Fermi level.

normal. The mirror plane perpendicular to the interface nor-
mal restricts m to be even. When the crystal is oriented such
that the electric field is along the x direction as in Fig. 1(a),
σp̂,n̂ is preserved, so terms containing ReY D,F

lm require l to be
odd and terms containing ImY D,F

lm require l to be even. If the
crystal is oriented so the electric field is along the y direction
as in Fig. 1(a), the allowed l values for the different terms
switches.

Systems like that in Ref. [11] are similar but do not have
the mirror plane perpendicular to the interface, so there is no
restriction that m be even. Depending on the orientation of the
electric field along the crystal, different terms are allowed for
different combinations of l and m.

It can be informative to take a different approach from that
used in Table II, in which the vector spherical harmonics are
defined with respect to the interface normal and the electric
field direction and instead to fix the crystal orientation. Then
the vector spherical harmonics do not change as the electric
field direction is changed and it becomes possible to relate the
coefficients of the different terms for the different electric field
directions. This process is explained in Appendix A, allowing
us to determine the angular dependence of the torque when
the electric field is along y from calculations done for the field
along x.

B. General form of the torkance for monolayer Fe3GeTe2

The vector spherical harmonic expansion of the spin-orbit
torque for Fe3GeTe2 is determined by its crystal structure,
shown in Fig. 1. Monolayer Fe3GeTe2 has the D3h symme-
try of the P63/mmc space group, which means that it has
mirror plane symmetry with respect to the plane of the film
(x-y plane), threefold rotational symmetry around the out-of-
plane axis, and three in-plane mirror planes (y-z plane and
equivalents rotated by 120◦), but mirror-plane symmetry is
broken in the mutually perpendicular planes (x-z plane and
equivalents rotated by 120◦). Its lack of inversion symmetry is
key to allowing current-induced spin-orbit torque.

Following the general procedure outlined in Appendix A,
the symmetry-allowed spin-orbit torkance for an electric field
in the x direction is given by

τeven
x̂ (m̂) =

∑

lm

CF
2l,6m±2 ImY F

2l,6m±2(m̂)

+ CD
2l+1,6m±2 ReY D

2l+1,6m±2(m̂). (6)

We then project the first-principles results of spin-orbit
torkance onto this symmetry-constrained form (up to � = 16)
to obtain the full expansion coefficients. Details about the
important terms in this expansion are given in Sec. III. Some
of the terms are illustrated in Fig. 2. The lowest order time-
reversal even term can be written in Cartesian coordinates as

ImY F
2,2 ∝ − sin θ cos 2φ θ̂ + 1

2 sin 2θ sin 2φ φ̂

= m̂ × (my, mx, 0). (7)

This form, which is shown in Fig. 2(c) and which has been
derived from the Cartesian expansion [19], acts as a fieldlike
torque even though it is the time-reversal even component of
the spin-orbit torque.

The time reversal odd torkance is given by

τodd
x̂ (m̂) =

∑

lm

CD
2l,6m±2ImY D

2l,6m±2

+ CF
2l+1,6m±2ReY F

2l+1,6m±2. (8)

The leading term in this expression is in Fig. 2(d), and in
Cartesian coordinates takes the form

ImY D
2,2 ∝ 1

2 sin 2θ sin 2φ θ̂ + sin θ cos 2φ φ̂

= m × ((my, mx, 0) × m). (9)

This time-reversal odd torque acts as dampinglike and is the
second lowest-order in magnetization m.

Utilizing Eq. (A8), we can write the final symmetry-
constrained form of torkance under the applied E field in the
ŷ direction by keeping the same coefficients and swapping
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FIG. 2. Angular dependence of the exemplary spin-orbit torques for an applied electric field in the x direction. The arrow (color) on the
sphere indicates the direction (relative magnitude) of the torque at the given magnetization. The circles below the spheres show the torque
along the equator correspondingly. (a) and (b) apply to bilayer heterostructures, while (b)–(h) apply to Fe3GeTe2. Deterministic switching of
Fe3GeTe2 requires torque contributions as shown in (f) and (g).

the Re and Im operating on the vector spherical harmonics
(see Appendix A for details). In this material, even though
the coefficients of the torques are the same for fields in the
x̂ and ŷ directions, and the real and imaginary parts of the
vector spherical harmonics are the same but rotated through
π/m, the differences between those rotational angles are suf-
ficient to qualitatively change the torques for fields in the
two directions. For electric fields in the ŷ direction, symme-
try prevents magnetic-field free switching of perpendicular
magnetizations. However, the different relationship between
the electric field and the mirror plane allows for predictable
perpendicular switching for an electric field in the x direction.
In the following, we focus particularly on this case.

It is interesting to compare the spin-orbit torques for this
system with those typically discussed for bilayer systems.
Figures 2(a) and 2(b), respectively, show the typical fieldlike
and dampinglike torques. These systems have a broken mirror
plane perpendicular to the interface normal. When the electric
field is applied in plane, both torques vanish when the mag-
netization points in the in-plane direction perpendicular to the
electric field. The torques are finite when the magnetization
is perpendicular to the interface. Monolayer Fe3GeTe2 does
not break this mirror plane but rather one containing the

interface normal. In this case, the torques are strictly zero
when magnetizations are perpendicular to the layer. The three-
fold rotational symmetry then gives more complicated angular
dependence than that seen in the bilayer systems. We discuss
the consequences of these differences in Sec. IV.

A motivation for symmetry analysis is the technologi-
cal application of current-induced switching of perpendicular
magnets [24,25]. Deterministic spin-orbit torque switching
of perpendicular magnetization requires a nonzero out-of-
plane torque when the magnetization is along the equator.
This form of torque cannot be realized in typical devices
composed of isotropic heavy metal layers and ferromagnetic
layers due to their in-plane mirror symmetries. The use of in-
plane-symmetry-breaking materials such as WTe2 have been
reported previously [11–13,26–28] as a means to accomplish-
ing field-free switching.

Here we describe a different scenario for achieving de-
terministic switching of perpendicular magnetizations in
Fe3GeTe2 in which symmetry-allowed higher-order terms in
the vector spherical harmonics expansion play an essential
role. A first requirement is that when the magnetization is in
plane there be an out-of-plane torque to break the symmetry
between up and down. Only time-reversal even torques [such
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FIG. 3. Torkance and sheet resistance as a function of broadening (a) and chemical potential relative to the Fermi level (b). The applied
electric field is in the x̂ direction and the magnetization is in the ŷ direction. Red and blue lines give the time-reversal even and time-reversal
odd torkances, respectively. The black line gives the two-dimensional sheet resistance. Note that the time-reversal even torkance is only in the
ẑ direction and time-reversal odd torkance is only in the x̂ direction due to symmetry constraints. We use η = 25 meV in (b).

as Figs. 2(c), 2(f), and 2(g)] can provide such functionality
because C2y symmetry enforces the out-of-plane torque to
have the time-reversal even form, τz ∝ cos 2mφ. The second
requirement is that there will be a stable fixed point out of
plane, otherwise, the torque will vanish at an in-plane direc-
tion. Figure 2(f) shows that torque ReY D

3,2 is the lowest order
expansion term to satisfy this requirement. However, a ReY D

3,2
torque alone cannot switch the magnetization from one hemi-
sphere to the other because of symmetry around the equator
for m = 2 terms. The fixed point in one hemisphere is exactly
equivalent to a fixed point at the other hemisphere connected
by (θ, φ) → (π − θ, π/2 − φ). Although the ReY D

3,2 torque
can drive the magnetization away from the north or south
pole when we turn on the field, the new fixed point is still
in the same hemisphere. As we turn off the electric field,
the magnetization will then go back to the same pole, thus
resulting in no switching. The third requirement is breaking
the symmetry-connecting points in the northern and southern
hemispheres, which can happen if the higher-order torques
with m > 2 terms are also present. Figure 2(g) shows one
example of such torque, ImY (F)

4,4. The combination of ImY F
4,4

and ReY D
3,2 can deterministically switch ferromagnets with

perpendicular magnetic anisotropy, as we show in the follow-
ing sections.

III. FIRST-PRINCIPLES CALCULATIONS OF SPIN-ORBIT
TORKANCES IN MONOLAYER Fe3GeTe2

We adopt the experimental unit cell parameters [29] a =
0.3991 nm of monolayer Fe3GeTe2 (space group D3h) for
our first-principles calculations using QUANTUM ESPRESSO
[30]. We then use a Wannier function based approach [31]
to compute the linear responses, described in more detail
in Appendix B. The time-reversal even and odd torkances
computed using Kubo formula with the constant broadening
and relaxation time approximations are given by [28,32,33]

τ even
i j = 2e

∑

k,n,
m �=n

fnk

Im 〈ψnk| ∂Hk
∂ki

|ψmk〉 〈ψmk| T j |ψnk〉
(Em − En)2 + η2

, (10)

τ odd
i j = −e

∑

k,n

1

2η

∂ fnk

∂Enk
〈ψnk| ∂Hk

∂ki
|ψnk〉 〈ψnk| T j |ψnk〉 .

(11)

|ψnk〉 and Enk are the eigenstates and eigenvalues of
Hamiltonian Hk, where k is the Bloch wave vector and n is the
band index. The equilibrium Fermi-Dirac distribution func-
tion is fnk = (e(Enk−μ)/kBT + 1)−1, μ is the Fermi level, η is the
broadening parameter, and e is the electron charge. The torque
operator is T = − i

h̄ [� · Ŝ, Ŝ]. S is the spin operator and �

is the time-reversal odd spin-dependent exchange-correlation
potential.

One important input parameter to the calculation is the
broadening parameter. Figure 3 shows the dependence of
torkance on broadening parameter and chemical potential. In
Fig. 3(a), we find that the time-reversal odd component τxx

is always larger than the even component τxz when m̂ = ŷ at
the Fermi level. Both time-reversal even and odd torkances
increase as the broadening parameter becomes smaller with
the odd component increasing faster. The longitudinal resis-
tance is indicated by black line in Fig. 3(a). In the broadening
parameter regime η ∈ (0.02, 0.04) eV, where the resistance is
about 400 �, the odd torkance is almost one order of magni-
tude larger than the even component. However, the torkance as
a function of chemical potential for a fixed η = 25 meV shown
in Fig. 3(b) shows that this ratio does not always hold. Both
even and odd components are peaked around 0.3 eV above
the Fermi level with a much smaller magnitude difference. In
some regions such as 0.2 eV below the Fermi level, the even
component can be much larger than the odd component.

We choose a constant broadening parameter η = 25 meV
for the results presented below. The corresponding constant
electron momentum relaxation time is τ = h̄/2η = 13 fs. The
computed longitudinal resistance [Fig. 3(a)] using this η =
25 meV at low temperature is around 400 �, which agrees
well with the experiment [16]. Although one experiment [16]
finds the Curie temperature for monolayer Fe3GeTe2 can
reach up to 100 K, we treat the smaller temperature T = 20 K
[15] where the ferromagnetic order is most robust.

Figure 4 gives the first-principles calculations of spin-orbit
torkance in the monolayer Fe3GeTe2 as a function of magne-
tization angle (θ, φ). Comparing Fig. 4(a) with Fig. 2(c) gives
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FIG. 4. Angular dependence of the time-reversal even (a), (c) and time-reversal odd (b), (d) torkance on the magnetization direction (θ, φ)
under an external electric field along the x̂ (a), (b) direction and ŷ (c), (d) direction at the Fermi level. The arrow (color) on the sphere indicates
the direction (magnitude) of the torkance at the given magnetization. We use kT = 2 meV, η = 25 meV.

clear evidence of the existence of higher-order terms. There is
a vanishing torque band in both north and south hemispheres.
We compute the expansion of even and odd torques in vector
spherical harmonics as in Eqs. (6) and (8) up to � = 16, and
find that for � > 7, the coefficients are a factor of 100 smaller
than leading order terms. We find that the following three
terms in the expansion of the even torque are dominant:

τeven
x̂ (m̂) ≈ CF

2,2ImY F
2,2 + CF

4,2ImY F
4,2 + CD

3,2ReY D
3,2. (12)

For the odd torques, the important terms in this expansion are

τodd
x̂ (m̂) ≈ CD

2,2ImY D
2,2 + CD

4,2ImY D
4,2 + CF

3,2ReY F
3,2. (13)

The numerical values of these and a few of the next terms
in the expansion are given in Tables III and IV. Using the
fitted coefficients of these nonzero vector spherical terms, we
can replicate Fig. 4. This allows us to understand specifically
how each term contributes to the magnetization dynamics–the
focus of the next section.

Figures 4(c) and 4(d) show the angular dependence of
spin-orbit torques when the applied electric field is in ŷ di-
rection. Because of the C3z rotation symmetry, these results
are expected to be related with the results of the applied field

TABLE III. Expansion coefficients of the time-reversal even
torques as in Eq. (6). The torques are in units of ea0/h̄, where a0

is the Bohr radius. Other terms with magnitudes less than 0.0005 are
not shown in this table.

CF
2,2 CF

4,2 CF
6,2 CF

4,4 CF
6,4 CD

3,2

−0.0087 0.0096 −0.0015 0.0007 0.0006 −0.0075

in the x̂ direction according to Eq. (A8). We have checked
that the numerical results are indeed consistent with this
relationship. If we look at each individual vector spherical
harmonic term, the difference between the cases for E ‖ ŷ
and E ‖ x̂ is a simple azimuthal rotation by an angle of π

2m
to swap the real and imaginary parts. After summing over
all m, the total torques for the two cases are not related by
a simple rotation. This enables an out-of-equator fixed point
for E ‖ x̂, as we describe next. Figure 5 shows a zoomed-in
contour plot of the magnitude of the total spin-orbit torkance
near the equator. In the case of E ‖ ŷ, the mirror symmetry
σyz enforces a zero torkance fixed point at m = x̂, shown
in Fig. 5(b). Microscopically, all vector spherical harmonic
terms in Eq. (A17) are zero when (θ, φ) = (π/2, 0). In con-
trast, Fig. 5(a) shows one of the four out-of-equator zero
torkance fixed points near (θ, φ) = (π/2, π/4). The fixed
points in (a) and (b) are inequivalent due to the broken σxz mir-
ror symmetry in Fe3GeTe2. The three additional zero-torkance
points include one on the same hemisphere and two on the
opposite hemisphere. For a particular electric field, the two
fixed points on the same hemisphere are stable and the other
two on the opposite hemisphere are unstable. The stability of

TABLE IV. Expansion coefficients of the time-reversal odd
torques as in Eq. (8). The torques are in units of ea0/h̄, where a0

is the Bohr radius. Other terms with magnitudes less than 0.001 are
not shown in this table.

CD
2,2 CD

4,2 CF
3,2 CF

7,2

0.2018 0.0017 0.0153 0.0013
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FIG. 5. Zoomed-in contour plot of torkance magnitude as a function of magnetization direction (θ, φ) under an external electric field along
the x̂ (a) direction and ŷ (b) direction at the Fermi level. Horizontal red dashed line indicates the equator position where θ = π/2. (a) Zero
torkance near φ = π/4; (b) zero torkance at φ = 0.

each points changes with the sign of the electric field, allowing
deterministic switching, discussed in the next section.

Figure 5(a) shows a tiny polar angle difference from π/2
which is unlikely to be thermally stable in realistic applica-
tions. The reason the angle is so small is that CD

3,2 is relatively
small compared to lower order terms such as CD,F

2,2 which all
have the fixed points at equator. The smallness of CD

3,2 is not
always true, as shown in the fitted coefficients as function of
the chemical potential in Fig. 6. The important CD

3,2 term can
be very prominent as we increase chemical potential a few
tens of millielectron volts indicated by the red line. At this
chemical potential range, the out-of-equator fixed point can
be detectable much more easily, as shown in the contour plot
of Fig. 7(a). While the properties we calculate of Fe3GeTe2

are not likely to be suitable for applications, our focus is on
the new physics and its trends dictated by the symmetries

FIG. 6. Fitted parameters Cl,m as a function of chemical po-
tential relative to the Fermi level. The applied electric field is in
x̂ direction. Red dots represent the CD,even

3,2 coefficients which is
crucial in generating out-of-equator fixed points demonstrated in
Fig. 2(f). Blue squares and orange stars represent the lowest order
time-reversal even and time-reversal odd fitted parameters, corre-
sponding to Figs. 2(c) and 2(d), respectively. We use η = 25 meV.

in Fe3GeTe2, rather than specific values. Other materials that
share the same symmetry may have properties that are more
amenable to applications.

IV. DYNAMICS

In this section, we focus on how the spin-orbit torques
computed in the previous section affect the magnetization
dynamics. The spin dynamics of a ferromagnet with per-
pendicular easy-axis anisotropy is governed by the following
Landau-Lifshitz-Gilbert equation with additional current-
induced spin-orbit torque terms [34]

dm̂
dt

− αm̂ × dm̂
dt

= −γμ0HA(m̂ × ẑ)(m̂ · ẑ) + T , (14)

where m̂ is the normalized magnetization, α is the Gilbert
damping parameter, γ is the absolute value of the gyromag-
netic ratio, μ0 is vacuum magnetic permeability, HA is the
magnetic anisotropy field, and T is the current-induced spin-
orbit torque.

We directly compute the spin dynamics with the
ab initio fitted spin-orbit torques as input into the Eq. (14).
We use the full expansion of the torque (up to � = 16) even
though we obtain nearly identical results in test calculations
significantly truncating the expansion. In the simulation, we
choose μ0HA = 20 T by calculating the energy difference for
out-of-plane and in-plane magnetic configuration [35]. For
the Gilbert damping, we choose α = 0.01 [36]. Figure 7(b)
shows a typical zero-temperature magnetic trajectory when
the applied electric field is larger than a critical threshold. The
stable fixed point (θE , φE ) corresponds to the same fixed point
near φ = π/4 determined by the spin-orbit torkance shown
in Fig. 7(a) but shifted by the presence of the anisotropy
torque. There is another electric-field driven stable point near
the symmetry related fixed point (θE , φE + π ) depending on
the initial state of the magnetization. Reversing the sign of
electric field makes the other two fixed points [(π − θE ,−φE )
and (π − θE ,−φE − π )] become stable so it is possible to
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FIG. 7. (a) Zoomed-in contour plot of torkance magnitude as a function of magnetization direction (θ, φ) under an external electric field
along the x̂ direction at μ = 0.1 eV above the Fermi level. Horizontal red dashed line indicates the equator position where θ = π/2. (b) Spin
dynamics in the presence of electric-field-induced (E ‖ x̂) ab initio spin-orbit torkance. Red, blue, and black lines represent the dynamics of
mx, my, mz respectively. We use α = 0.01, μ0HA = 20 T, and μ = 0.1 eV in the Landau-Lifshitz-Gilbert dynamics simulation. The applied
electric field strength 0.4 V/nm gives a current density of 4 × 1014 A/m2, assuming a 2.5 nm sample thickness and a 400 � sheet resistance.

switch the magnetization from the south pole to the north
hemisphere.

The spin-orbit torques in monolayer Fe3GeTe2 lead to dy-
namics that are quite distinct from those of the conventional
cases as analyzed in Ref. [10]. First, the instability condition
of the initial magnetization is very different from the cases
found in bilayers. In the bilayer case, for a perpendicular easy-
axis anisotropy, the spin-orbit torque is finite on the initial
magnetization (±ẑ); see Figs. 2(a) and 2(b). For Fe3GeTe2, on
the other hand, the torque on that initial magnetization is zero
by symmetry as seen in Fig. 4. For this aspect of the reversal,
the initial instability for Fe3GeTe2 has more in common with
the instability for a bilayer system with an in-plane easy-axis
along the ±ŷ, because in that case the torque is also zero.

The instability case for Fe3GeTe2 also differs significantly
from that of the bilayer with in-plane easy-axis anisotropy.
As seen in Fig. 2(b), when the magnetization in the bilayer
system precesses around the easy axis, the dampinglike torque
pushes magnetization toward the easy axis or away from it
depending on the sign of the current but independent of the
phase of the precession. This means that the dampinglike
torque competes with the damping torque, which is a fac-
tor of α smaller than the precession torques. On the other
hand, the torques shown in Figs. 4(a) and 4(b) have no net
push toward the easy axis along the poles (due to the σxy

symmetry making the poles saddle points for the spin-orbit
torques) and so they do not compete with damping torque.
For Fe3GeTe2, when the magnetization is near the poles, the
spin-orbit torques compete with the anisotropy directly. This
competition gives the unfortunate consequence that reversal
instability in Fe3GeTe2 requires larger currents than might be
the case for other symmetries. However, when the magnetiza-
tion is close to the fixed points near the equator, the spin-orbit
torque competes directly with the damping, giving smaller
critical currents for the stability of those fixed points.

Once the critical current is reached and the ẑ direction
becomes unstable for the magnetization, Fe3GeTe2 has the ad-
vantage over the bilayer system with perpendicular anisotropy

that the switching is deterministic without any other symmetry
breaking, like in-plane magnetic fields, applied to the system.
In the bilayer system without symmetry breaking, the mag-
netization goes to ŷ. When the current is turned off, small
fluctuations determine whether the magnetization reverses or
returns to its original state. For Fe3GeTe2 on the other hand,
as shown in Fig. 7, the stable minima near mz = 0 are in one
equator or the other, so when the current is turned off, the
magnetization goes to the pole on that side of the equator.

V. DISCUSSION

Our findings have several experimental implications. The
lowest order ImY F

2,2 has been found to be important in
assisting the conventional dampinglike torque ImY D

1,1 in per-
pendicular switching of bilayer CoPt/CuPt [37,38]. This
combination shares the similar traits as Fe3GeTe2. Reversal
requires mixing vector spherical harmonics with different m
and nonzero out-of-plane torques when the magnetization is
in-plane. Our numerical results also give a large time-reversal
odd dampinglike torque ImY D

2,2 in Fe3GeTe2, which can be
tested in existing second harmonics setups [39].

To quantify all the symmetry-allowed higher order torques,
a complete sweep of magnetization is required. Similar work
has been done in WTe2/Ni8Fe2 bilayer [11]. Instead of ex-
panding the measured torques into trigonometric functions,
we need to expand them into vector spherical harmonics and
obtain the fitting parameters. As we have shown, the coeffi-
cients vary largely as we change the chemical potential. Thus,
adding a bias gate to change the charge density [15] in mono-
layer Fe3GeTe2 might be a way to find useful experimental
conditions.

The critical electric field to switch the perpendicular mag-
netization in Fe3TeGe2 is high because the mirror symmetry
σxy restricts torques to those with even m. This restriction
requires the spin-orbit torques to compete with the anisotropy
torque instead of the damping torque. This mirror symme-
try can be broken in the presence of a substrate or applied
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out-of-plane electric field, similar to the case of bilayer
CoPt/CuPt [37,38].

In summary, we perform first-principles calculations of
spin-orbit torque in monolayer Fe3GeTe2 and discover that
the bulk spin-orbit torque expressed in higher-order vector
spherical harmonics can deterministically switch the perpen-
dicular magnetization. We have provided a symmetry table
for other reduced symmetry systems as well. Utilizing higher-
order spin-orbit torque offers a perspective to realize unique
electrical control of magnetization.
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APPENDIX A: SYMMETRY-CONSTRAINED FORM
OF SPIN-ORBIT TORQUE IN VECTOR SPHERICAL

HARMONICS BASIS

The symmetry-allowed form of the spin-orbit torque
tensor can be obtained by averaging all possible symmetry-
transformed tensors τsym = 1

N

∑
τ ′, where N is the number

of symmetry operations and τ ′ indicates the tensor after the
transformation. If we consider an orthogonal transformation
to a Cartesian tensor, we can usually get the explicit transfor-
mation form under a rotation R:

τ ′
i jk... =

∑

αβγ ...

det(R)RiαRjβRkγ ...ταβγ .... (A1)

In Cartesian form such as Ti = τi jkE jmk to arbitrary order,
the number of nonzero components in the tensor τ becomes
exponentially large as we increase the tensor rank. It becomes
practically intractable to obtain the symmetry-allowed higher-
order terms in m̂ of τ in Cartesian form.

We next describe the transformation of the torkance ten-
sor in the expansion of vector spherical harmonics. For this
purpose, it’s convenient to write the tensor with a slightly
different notation than used in the main text. In what fol-
lows, the tensor τ relates the electric field E to torque
T according to

T = τ · E. (A2)

τ is the outer product of a vector spherical harmonic Y which
specifies the torque direction, and a row vector C that con-
tracts with the electric field:

τ = Y(θ, φ) ⊗ C. (A3)

A coordinate transformation U of the system will act on both
electric field and magnetization directions, and is represented
by UM̂ and UÊ , respectively,

UM̂T = τ · (UÊ E). (A4)

TABLE V. The ratio Clm(ŷ)/Clm(x̂) in C4z systems.

m = 4n Not allowed

m = 4n ± 1 ∓i
m = 4n + 2 −1

For operations which leave the crystal invariant, we require
that the transformed torkance is also invariant, so τ satisfies

τ = U −1
M̂

τUÊ . (A5)

The above equation provides symmetry constraints on τ for a
given symmetry transformation U .

In the following, we apply this procedure for Fe3GeTe2 for
each of the materials symmetry operations. The monolayer
Fe3GeTe2 has point-group symmetry D3h [19], which consists
of one C3 rotation around the z axis, three C2 rotations includ-
ing one around the y axis, and one mirror reflection respect
to the xy plane, as shown in Fig. 1. Since we are interested
in the case where the electric field is applied in plane, it is
convenient to consider the rotation symmetry around the z axis
first. According to Eq. (4), the torkance tensor τ is invariant
under a rotation because both torque T and electric field E
follow the same transformation under a rotation. Since the
vector spherical harmonics absorbs an extra phase under a ro-
tation of angle γ , i.e., Y (ν)

lm (θ, φ − γ ) → Y (ν)
lm (θ, φ)e−imγ , the

transformed vector coefficients C need to have additional
phase factors eimγ to compensate e−imγ to keep the tensor
τ invariant. If the rotation symmetry is continuous, the only
possible way is either m = 0,C ∝ ẑ, or m = ±1,C ∝ x̂ ±
iŷ. We can then get the relation Cl,±1(ŷ) = Cl,±1(x̂)e∓iπ/2 =
∓iCl,±1(x̂).

For the discrete rotation angle γ = 2π/ν (ν = 3 for
Fe3GeTe2), we can consider ν cases depending on the
modulus:

m (mod ν) = 0, 1, ..., ν − 1. (A6)

When we perform a rotation of angle γ from the x axis, the
new electric field becomes E = (cos γ , sin γ , 0)E . Because
the torkance is invariant under this transformation, we can
rewrite the x axis as the new axis and the φ goes to φ − γ .
This leads to the following equation:

Clm(x̂)e−imγ = Clm(x̂) cos γ + Clm(ŷ) sin γ , (A7)

where Clm(x̂, (ŷ)) are scalar coefficients that needed to be
obtained by fitting the numerical results. The full vector form
is Clm = Clm(x̂)x̂ + Clm(ŷ)ŷ, which will contract with the ap-
plied E-field vector E. If m = nν, we see that Eq. (A7) cannot
be satisfied because the left-hand side is always 1. The reason
is that Cνz symmetry only allows out-of-plane field-induced
torque (E ‖ ẑ) in this case. Now let’s consider the case m =
nν ± 1; Eq. (A7) gives

Cl,nν±1(ŷ) = ∓iCl,nν±1(x̂). (A8)

In fact, m = nν ± 1 are the only two possible cases for C3z

rotation symmetry. For C2z symmetry, Eq. (A7) is always sat-
isfied for odd m. For C4z,C6z symmetries, we need to consider
more cases, which is summarized in Tables V and VI.
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TABLE VI. The ratio Clm(ŷ)/Clm(x̂) in C6z systems.

m = 6n Not allowed

m = 6n ± 1 ∓i

m = 6n ± 2 ∓i − 2
√

3
3

m = 6n + 3 −√
3

Now we only need to focus on the applied field in the
x̂ direction to obtain the additional symmetry constraints.
Under the mirror reflection with respect to the xy plane, both
the torque T decomposed in θ̂, φ̂ directions and applied field
are even. Thus, the torkance τ has to be even under the trans-
formation as well:

τ(θ, φ)
σxy−→ τ(θ, φ + π ) = eimπτ(θ, φ). (A9)

This enforces that m must be an even number, i.e., m = 6n ±
2. The remaining crystal symmetry constraint is due to the C2y

rotation symmetry:

τ(θ, φ)
C2y−→ τ(π − θ, π − φ) = τ(π − θ,−φ). (A10)

Because T θ = T · θ̂, Tφ = T · φ̂, and the applied field in
x̂ all flip signs under C2y rotation, the torkance actually has to
be even under the rotation. To further simplify the constraint,
we consider the real and imaginary parts of vector spherical
harmonics separately by observing the following relation:

ReY (D,F)
lm (π − θ,−φ) = (−1)l+m+1ReY (D,F)

lm (θ, φ),

ImY (D,F)
lm (π − θ,−φ) = (−1)l+mImY (D,F)

lm (θ, φ). (A11)

Given that m is always even, we are only allowed to have
an odd/even number l for the real/imaginary part of vector
spherical harmonics. Last but not least, we can always decom-
pose the current-induced torque into time-reversal even and
odd parts. Under the time-reversal symmetry transformation:

τ(θ, φ)
T−→ τ(π − θ, π + φ) = τ(π − θ, φ). (A12)

The real and imaginary parts of vector spherical harmonics
both satisfy

Y D
lm(π − θ, φ) = (−1)l+1Y D

lm(θ, φ),

Y F
lm(π − θ, φ) = (−1)lY F

lm(θ, φ). (A13)

The final symmetry-constrained form of time-reversal even
torkance under the applied E field in the x̂ direction is

τeven(x̂) =
∑

lm

CF
2l,6m±2ImY F

2l,6m±2

+ CD
2l+1,6m±2ReY D

2l+1,6m±2, (A14)

and time-reversal odd torkance is

τodd(x̂) =
∑

lm

CD
2l,6m±2ImY D

2l,6m±2

+ CF
2l+1,6m±2ReY F

2l+1,6m±2. (A15)

By utilizing Eq. (A8), we can write the final symmetry-
constrained form of torkance under the applied E field in the

ŷ direction,

τeven(ŷ) =
∑

lm

±CF
2l,6m±2ReY F

2l,6m±2

∓ CD
2l+1,6m±2ImY D

2l+1,6m±2, (A16)

and time-reversal odd torkance

τodd(ŷ) =
∑

lm

±CD
2l,6m±2ReY D

2l,6m±2

∓ CF
2l+1,6m±2ImY F

2l+1,6m±2. (A17)

Note that scalar coefficients Clm appearing in the equa-
tions above are the same. We only need to calculate the
applied E field in the x̂ case and fit the numerical results with
the vector spherical harmonics form to obtain the coefficients
Clm. Note that for this system, changing the direction of the
electric field swaps Re and Im. The differences in these func-
tions correspond to rotations through the azimuth by π/2.

APPENDIX B: DETAILS OF THE TORQUE CALCULATION

The first step is to obtain the tight-binding Hamiltonian
in a localized atomic orbital basis using a combination of
QUANTUM ESPRESSO [30] and WANNIER90 [31]. In the
QUANTUM ESPRESSO implementation, we use the
pseudopotentials from the PSlibrary [40] generated
with a fully relativistic calculation using projector
augmented-wave method [41] and local density ap-
proximation exchange correlations [42]. We utilize
a 18 × 18 × 1 Monkhorst-Pack mesh [43], 2 nm
vacuum layer, 2720 eV cutoff energy, and 1.36 × 10−3 eV
total energy convergence threshold, and obtain the relaxed
positions with the forces smaller than 0.02 eV/nm. The
second step is to use WANNIER90 [31] to obtain the
Hamiltonian in an atomic basis. We project plane-wave
solutions onto atomic s, p, d orbitals of Fe atoms and
s, p orbitals of Ge and Te atoms without performing
maximal localization. We then symmetrize the tight-binding
Hamiltonian using tight-binding models [44]. The final
symmetrized tight-binding band structures agree very well
with these bands from the plane-wave methods shown in
Fig. 1(c). The band inconsistencies higher above the Fermi
level are expected and do not significantly affect our results
because states near the Fermi level dominate the torkance
calculations through the energy denominator in Eq. (10).

Equipped with the spin-orbit coupled tight-binding
Hamiltonian, we then apply linear response theory to compute
the torkance [28,32,33]. We denote the jth component of the
torkance in response to an electric field along the i direction
with τi j . An applied electric field can modify both the elec-
tron distribution function and the wave function. The linear
response from the change of the distribution function is time-
reversal odd [45] while the linear response from the change
of the wave function is time-reversal even [32]. Using the
standard Kubo formula [28,32], the even and odd components
of the torkance are given by Eqs. (10) and (11), respectively.
The even and odd components are also denoted as Fermi sea
and Fermi surface terms [32]. The torque operator is obtained
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as the change of magnetization with respect to time,

T = d�

dt
= i

h̄
[H,�] = − i

h̄
[� · Ŝ, Ŝ], (B1)

where S is the spin operator and � is the time-reversal odd
spin-dependent exchange-correlation potential. To compute
the angular dependence of the torkance, we manually rotate
the magnetization direction from the ground state θ = 0 to
an arbitrary angle (θ, φ) by performing a rotation on this
time-reversal odd spin-dependent exchange-correlation poten-
tial. We use a 80 × 160 mesh of (θ, φ) to obtain the angular
dependence results shown in Fig. 4.

We use a very dense k mesh of 1200 × 1200 to eval-
uate the torkance Eqs. (10) and (11). Note that we adopt

the tight-binding approximation [46] that Wannier orbitals
are perfectly localized on atomic sites and the spin opera-
tors S are described by the Pauli matrices spanned in the
Wannier orbital basis in the implementation. We also adopt
a constant broadening model to evaluate the longitudinal
conductivity [32]:

σxx = e2

π h̄

∑

knm

η2Re
[ 〈ψnk| ∂H

∂kx
|ψmk〉 〈ψmk| ∂H

∂kx
|ψnk〉

]

[(Em − μ)2 + η2][(En − μ)2 + η2]
. (B2)

Equation (B2) diverges as a function of 1/η at the zero
broadening limit, similar to Eq. (11). The sheet resistance
then is the reciprocal of longitudinal conductivity per unit
cell area.
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