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Defect-enhanced diffusion of magnetic skyrmions
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Defects, i.e., inhomogeneities of the underlying lattice, are ubiquitous in magnetic materials and can have a
crucial impact on their applicability in spintronic devices. For magnetic skyrmions, localized and topologically
nontrivial spin textures, they give rise to a spatially inhomogeneous energy landscape and can lead to pinning,
resulting in an exponentially increased dwell time at certain positions and typically a strongly reduced mobility.
Using atomistic spin dynamics simulations, we reveal that under certain conditions, defects can instead enhance
thermal diffusion of ferromagnetic skyrmions. By comparing with results for the diffusion of antiferromagnetic
skyrmions and using a quasiparticle description based on the Thiele equation, we demonstrate that this surprising
finding can be traced back to the partial lifting of the impact of the topological gyrocoupling, which governs the
dynamics of ferromagnetic skyrmions in the absence of defects.
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I. INTRODUCTION

Magnetic skyrmions are topologically protected spin con-
figurations where the directions of the magnetic moments
span the whole unit sphere, forming a nanoscale particle-
like object with finite topological charge Q = 1

4π

∫
n · (∂xn ×

∂yn)d2r, with n being the magnetic order parameter [1–3].
Due to their small size, robustness, controllable creation and
annihilation [4], and high mobility [5,6], skyrmions are suit-
able candidates for information carriers in future nanoscale
magnetic logic and memory devices [7–9]. The observa-
tion of thermally induced Brownian motion [10–12] has also
attracted considerable attention because of its possible appli-
cation for probabilistic computing [10,13,14].

However, designing effective skyrmion devices requires
a thorough understanding of the interactions between
skyrmions and defects, as defects are almost unavoidable in
magnetic materials and can significantly affect the motion of
skyrmions. Previous works have demonstrated that defects,
such as vacancies [15], enhanced exchange strength [16],
single-atom impurities [17,18], and inhomogeneities of the
magnetic anisotropy [19,20], can function as pinning sites,
slowing down or capturing driven skyrmions in ferromagnetic
systems. The same has been shown for current-driven anti-
ferromagnetic skyrmions in a racetrack in the presence of
a hole [21] and local variation of the magnetic anisotropy
[22]. Furthermore, the impact of pinning is not limited to
current-induced skyrmion dynamics, but has also been ob-
served for the Brownian motion of ferromagnetic skyrmions,
only driven by thermal fluctuations [10,23,24]. While pinning
can be detrimental when trying to move them, it can also
be advantageous for precisely positioning a skyrmion in a
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long-term, stable memory device, preventing it from drifting
away due to diffusion.

However, driven ferromagnetic skyrmions display unique
characteristics due to a Magnus-type force, typically referred
to as gyrocoupling, which causes them to move at a certain
angle to the driving force. If driven by electric currents, the
angle between the skyrmion velocity and the current direction
is called the skyrmion Hall angle [3], in analogy to the conven-
tional Hall effect [25]. Particle-based simulations have shown
that the skyrmion Hall angle is not fixed and depends on the
magnitude of the applied driving force in both random [26]
and periodic [27,28] pinning environments, due to the impact
of the gyrocoupling being (partly) lifted.

In contrast, antiferromagnetic skyrmions do not experience
a Hall effect due to being comprised of two interdependent
topological objects with opposite topological charges pertain-
ing to each sublattice. When the skyrmion is propelled, the
opposing Magnus forces nullify each other, as demonstrated
in [29,30]. Several studies have investigated the influence
of the topological properties of skyrmions on their thermal
diffusion, including recent works such as Refs. [31–34]. The
absence of gyroscopic motion in antiferromagnetic skyrmions
is also reflected in their thermally induced motion, which is
generally higher than that of ferromagnetic ones [35], which
experience diffusion suppression due to their gyrocoupling
[29,36].

Moreover, suppression of the gyroscopic motion of ferro-
magnetic skyrmions has also been observed experimentally
and in theoretical calculations [37,38], where ferromagnetic
skyrmions in one-dimensional channels were found to display
enhanced diffusion as compared to free diffusion. A similar
behavior was reported by Ref. [23] in micromagnetic simu-
lations of ferromagnetic skyrmion diffusion in granular films.
However, in this study, the skyrmions were much smaller than
the grain size, i.e., their energy landscape was homogeneous,

2469-9950/2023/108(14)/144417(7) 144417-1 ©2023 American Physical Society

https://orcid.org/0009-0003-5976-2659
https://orcid.org/0000-0002-3283-2560
https://orcid.org/0000-0003-2925-6774
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.144417&domain=pdf&date_stamp=2023-10-17
https://doi.org/10.1103/PhysRevB.108.144417


RIEGER, WEIßENHOFER, AND NOWAK PHYSICAL REVIEW B 108, 144417 (2023)

as long as they were within a grain. In contrast, our study
undertakes a detailed investigation of the diffusive behavior
of both anti- and ferromagnetic skyrmions that are larger than
the distance between two pinning sites. This approach mirrors
typical experimental situations, such as those presented in
[10], where skyrmions are much larger and, as such, always
contain multiple pinning sites.

Here we investigate the impact of pinning on the thermally
activated motion of ferromagnetic and antiferromagnetic
skyrmions. For this purpose, we consider an anti- and fer-
romagnetically coupled bilayer with defects arising from a
local variation of the perpendicular magnetic anisotropy, and
we discuss the diffusive behavior in the pinning environment
created by the defects. Our investigation is conducted through
atomistic spin dynamics simulations based on the stochastic
Landau-Lifshitz-Gilbert (LLG) equation. We study the im-
pact of both periodic and random arrangements of defects,
and we reveal that ferromagnetic skyrmions experience en-
hanced diffusion for low Gilbert damping and temperatures
and defect strengths near the depinning threshold. Conversely,
antiferromagnetic skyrmions generally shows a reduction of
thermal diffusion due to pinning. Their behavior is success-
fully compared to that of a classical Brownian particle in
a periodic pinning array based on an equation proposed by
Lifson-Jackson [39,40]. The commonalities and differences
between the ferromagnetic and antiferromagnetic skyrmion
diffusion in the pinning environment are linked to their dif-
ferent topological charges, as can be explained within a
rigid-body approach using Thiele’s formalism [41,42].

II. METHODS

The system being modeled is a bilayer in which the interac-
tions between atomistic magnetic moments are described via
an extended Heisenberg Hamiltonian [43],

H = 1

2

∑

i �= j

ST
i Ji jS j −

∑

i

diS
2
i,z. (1)

Here, i and j are indices for nearest-neighbor sites, and Si

denotes a unit vector describing a localized magnetic mo-
ment. The diagonal elements of the exchange coupling tensor
Ji j include Heisenberg exchange via Ji j = 1

3 TrJi j , while the
antisymmetric part models the Dzyaloshinskii-Moriya inter-
action (DMI) Di j · (Si × S j ) = 1

2 Si(Ji j − J T
i j )S j . The DMI

vectors Di j are situated in the plane and undergo a clockwise
rotation around their nearest-neighbor sites while also being
oriented perpendicular to the connection vector of neighbor-
ing lattice sites. The interlayer exchange parameters are fixed
at Ji j = 100 meV, |Di j | = 30 meV. The intralayer exchange
contributes with ±100 meV for ferromagnetic (+) and antifer-
romagnetic (−) coupling. Note that the intralayer DMI is set
to zero. The last term introduces uniaxial anisotropy, which is
oriented perpendicular to the bilayer.

The interplay of these interactions leads to the formation of
metastable Néel-type skyrmions, which possess a topological
charge of Q = 1 for ferromagnetic coupling and Q = 0 for
antiferromagnetic coupling, respectively.

We selected the parameters in our study to understand the
general dynamics of FM and AFM skyrmions in the presence

of defects, rather than to mimic a specific material. Our se-
lection of high interaction values enhances skyrmion thermal
stability, reduces susceptibility to thermal fluctuations, and
enables computationally efficient simulations of skyrmion dif-
fusion over substantial distances.

However, the parameters in the Hamiltonian and the
temperature in our simulations can be scaled by a factor,
maintaining the thermal stability of the skyrmions. While the
overall scale of the Brownian motion changes with the same
factor, its temperature dependence—critical for understanding
skyrmion dynamics—is preserved under this scaling. This
ensures that our results are fundamentally applicable and can
be extrapolated to represent room-temperature scenarios.

To investigate the impact of defects on the behavior of ther-
mally driven skyrmions, a nonhomogeneous energy landscape
is created by introducing a spatial variation in the magnitude
of the anisotropy energy di. This allows for the modeling of
atomic defects in the magnetic material, which affects both
antiferromagnetic and ferromagnetic skyrmions equally. Go-
ing forward, ddefect and d0 = 15 meV refer to the anisotropy
energy at defect and nondefect sites, respectively.

The dynamics of the magnetic moments is calculated
using the stochastic Landau-Lifshitz-Gilbert (sLLG) equa-
tion [44,45]

∂Si

∂t
= − γ

(1 + α2)μs
Si × (H i + α Si × H i ), (2)

with α being the Gilbert damping parameter, μs the atomic
magnetic moment, and γ representing the gyromagnetic ratio.
The local effective field H i = − ∂H

∂Si
+ ζi incorporates the con-

tribution from the Hamiltonian as well as a stochastic field ζi
accounting for thermal fluctuations. ζi has zero mean, and its
autocorrelation is given by

〈
ζ

μ
i (t )ζ ν

j (t ′)
〉 = 2αμskBT δi jδμνδ(t − t ′)/γ ,

where kB is the Boltzmann constant, T is the temperature, and
μ, ν denote Cartesian coordinates [46].

The numerical integration of the sLLG is accomplished via
a GPU-accelerated implementation of Heun’s method with a
fixed time step of 	t = 0.1 fs [43]. The simulation comprises
64 × 64 × 2 magnetic moments with periodic boundary con-
ditions along the x and y axes. Following Refs. [32–34,36,47],
the trajectories of skyrmions are obtained by monitoring the
out-of-plane component of the magnetization. In the sim-
ulation, the diffusion coefficient was calculated through an
ensemble average over 400 independent trajectories. Statis-
tical analysis involved evaluating the standard error to ensure
reliable and reproducible results. Also, trajectories were con-
ducted for a duration of 500 and 2500 ps for periodic and
random defect configurations, respectively.

Mesoscopically, the motion of localized magnetic textures
can be described in terms of a rigid-body approach. The effec-
tive equation of motion for ferromagnetic skyrmions, known
as the Thiele equation [41], can be derived from the LLG
equation reading

G × V + αDV = F. (3)

Here, V is the velocity of the skyrmion, F represents the
force exerted on it, G = −4πQμs/γ a2e⊥ is the gyrocoupling
vector perpendicular to the plane with lattice constant a, and
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αD describes dynamic friction. The first term in Eq. (3) leads
to a motion perpendicular to the direction of force, linking the
nontrivial topology of the skyrmion to its motion. The second
term models the dissipation of energy to the heat bath due to
its proportionality to the damping parameter. The friction co-
efficient depends on the specifics of the spin configuration and
is calculated via D = μs/(2γ a2)

∫
(∂xS · ∂xS + ∂yS · ∂yS)d2r

for skyrmions with rotational symmetry [31,34].
To account for the effect of thermal fluctuations, the

force is supplemented with a stochastic force F th, which
has zero mean and an autocorrelation function given by
〈F th

μ (t )F th
ν (t ′)〉 = 2kBT αDδμνδ(t − t ′), making Eq. (3) a

Langevin-type equation of motion [48,49]. The mean-squared
displacement 〈[R(t ) − R(0)]2〉 = 4Dt , calculated using an
ensemble average over multiple trajectories, allows us to
determine the free diffusion coefficient of ferromagnetic
skyrmions in the absence of external forces [36,48,49]:

DFM
0 = kBT

αD

(αD)2 + G2
. (4)

Due to the presence of the gyrocoupling term, an unusual
relationship between friction and diffusion coefficients is ob-
served. Normally, higher friction leads to decreasing diffusion
coefficients, but here an increasing friction can lead to en-
hanced diffusion. Throughout this study, the free diffusion
coefficient in the absence of any potential is indicated by a
zero in the index.

In the same way, an equation of motion for antiferromag-
netic spin structures can be formulated, reading [42]

MV̇ + αDV = F. (5)

The crucial difference from the ferromagnetic Thiele equa-
tion is the absence of the gyrocoupling term. Additionally,
the antiferromagnetic Thiele equation includes a mass term
with the skyrmion mass M, which gives the skyrmion a
momentum. This momentum results from the fact that the
antiferromagnetic order parameter, the Néel vector, also ex-
periences inertia [50]. Driven ferromagnetic skyrmions also
exhibit inertial properties [48]. However, these inertial effects,
being minuscule for both types of skyrmions, do not influence
the ensuing discussions and analyses in this study. It has
been shown [29,51] that antiferromagnetic skyrmions exhibit
behavior analogous to a classical massive particle in a viscous
medium, as demonstrated by the diffusion coefficient

DAFM
0 = kBT

αD
. (6)

One can see that the antiferromagnetic diffusivity is generally
higher compared to the ferromagnetic skyrmion, since the
gyrocoupling in Eq. (4) suppresses the diffusion coefficient.

In a recent work [32], it was demonstrated that the coupling
of magnetic textures to thermally excited magnons gives rise
to an additional contribution to the damping and the stochastic
force. This contribution can be incorporated in the effective
Eqs. (3) and (5) and, subsequently, in Eqs. (4) and (6). To
achieve this, it is necessary to add a term linear in temper-
ature to the αD term. The impact of this magnon-induced
friction is most pronounced at high temperatures and low
values of the Gilbert damping parameter. Here, however, we
neglect this term in the analytical calculations, since for the
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FIG. 1. Probability density representing the likelihood of find-
ing a skyrmion at a given point (left) and a small section of the
corresponding energy landscape (right) of the periodic defect ar-
rangement. The orange dots indicate defect locations and have a
distance of four lattice constants. Simulations were performed at
α = 0.1 and kBT = 1 meV and a defect anisotropy reduced by a
factor of ddefect/d0 = 0.9 or d0 − ddefect = 1.5 meV.

parameters considered we expect only a minor contribution to
the skyrmion dynamics.

The effective diffusion coefficient Deff in an arbitrary
nonuniform potential cannot be expressed analytically. How-
ever, it can be estimated using the Lifson-Jackson equation for
the case of a periodic energy landscape, which is relevant for
our periodic defect arrangement [39,40]. The Lifson-Jackson
equation yields the effective diffusion coefficient of a classical
particle in a one-dimensional spatially dependent periodic po-
tential U (x), whose dynamics is governed by the overdamped
Langevin equation, and it reads

Deff = D0

〈eU/kBT 〉〈e−U/kBT 〉 . (7)

Here, D0 denotes the free diffusion coefficient in the absence
of any potential, and 〈· · · 〉 = ∫

, . . . , dx represents the average
over one period.

III. RESULTS

Having established the theoretical foundations, we now
turn to the results of our analysis. First, we investigate the
diffusion of single skyrmions in the presence of atomic defects
placed periodically on a grid with a spacing of four lattice con-
stants. To put that into perspective, the diameter of a skyrmion
is roughly 13 lattice constants.

An analysis of the positional occupation statistics of dif-
fusing skyrmions can provide insights into the defect-induced
potential [24]. This is because the population probability
histogram p(x, y)dxdy, which represents the probability of
finding a diffusing skyrmion in a small area around the lo-
cation (x, y), is related to the potential via the Boltzmann
distribution, U (x, y) ∝ −kBT ln p(x, y) [52]. In Fig. 1, a small
section of the computed probability density is displayed on
the left. By comparing the positions of the defects, repre-
sented by orange dots, with the probability density, it can
be seen that a skyrmion tends to congregate around these
defects, which demonstrates their pinning effect. The energy
landscape [with min(U ) = 0] of a section with four defects
is displayed on the right, with a peak height of 2.5 meV right
between next-nearest-neighbor defects. Adjacent pinning sites
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FIG. 2. Anti- and ferromagnetic diffusion coefficients vs defect
strength for various α. Defect strength is expressed by the ratio
between the defect anisotropy energy ddefect and the global anisotropy
energy d0. Symbols represent simulation results at kBT = 1 meV
in a periodic defect configuration with α as labeled. The diffusion
coefficients on the bottom graphs are normalized by the expectation
of free diffusion; see Eqs. (6) and (4). Data are compared to free
diffusion (dotted lines) and the Lifson-Jackson equation (solid lines).

are most easily transitioned along the x or y directions, with
an energy barrier of 1.5 meV. Note that for the parameters
chosen here, the anisotropy energy difference between a de-
fect and a normal site is also 	d = d0 − ddefect = 1.5 meV
or ddefect/d0 = 0.9. If the thermal energy is not significantly
higher than this energy barrier, effectively only four escape
paths remain for the diffusing skyrmion, due to the exponen-
tial behavior of the depinning process.

The presence of the defect potential is also manifested
in the diffusion coefficient of the skyrmions, which deter-
mines their thermal mobility. This is demonstrated in Fig. 2,
where the dependence of the diffusion coefficient on the de-
fect strength is depicted. The defect strength is controlled
by altering the amplitude of the anisotropy energy ddefect at
the defect’s locations, and the horizontal axis is expressed in
terms of the ratio between the defect’s anisotropy energy and
the uniform anisotropy energy d0 of the surrounding atoms.
This means that a lower ratio ddefect/d0 corresponds to a higher
defect strength. It is also important to note that the diffusion
coefficients in the lower plot have been normalized by their
respective free diffusion coefficients according to Eqs. (6) and
(4). Normalizing the data in this way allows for a direct com-
parison of the effective diffusion coefficients in the presence
of defects to those in the absence of defects.

The diffusion coefficients in the absence of defects
(ddefect/d0 = 1) are consistent with the analytical predictions
for free diffusion as given in Eqs. (4) and (6) and represented
by the dotted lines for reference. Apart from that, there is
a significant difference in the diffusion coefficients of ferro-
magnetic (left) and antiferromagnetic (right) skyrmions. The
diffusivity of antiferromagnetic skyrmions decreases contin-
uously as the defect strength increases. Besides, the ratio
of diffusivity to free diffusion seen in the lower right plot

is independent of α. The similarity to a classic Brownian
particle exhibiting decreased mobility due to pinning is evi-
denced by the solid line representing the expectation of the
Lifson-Jackson equation (7). The latter is evaluated from the
one-dimensional escape paths seen in the potential in Fig. 1
and using the proportionality between the defect anisotropy
and energy landscape.

The behavior of ferromagnetic skyrmions in the left part
of Fig. 2 deviates from this trend, displaying peculiar charac-
teristics. Unlike the antiferromagnetic skyrmion, the degree to
which the ferromagnetic diffusivity is affected appears to de-
pend on the damping. When the damping is low (α = 0.1), the
ferromagnetic diffusion coefficient of the skyrmion initially
increases with increasing defect strength before eventually
converging to zero. The observed rise in thermal mobility
above the expectation for free diffusion suggests that the
typical diffusion suppression [36] caused by gyrocoupling in
ferromagnetic skyrmions is partially counteracted in this case.
For high damping (α = 1), the increase in mobility does not
occur. Instead, the diffusivity of the ferromagnetic skyrmion
also decreases continually as the defect strength increases, and
its behavior is well described by the Lifson-Jackson equation.

Local variations in anisotropy due to densely packed de-
fects can modulate the spin configuration of skyrmions, which
subsequently impacts the dissipation tensor. As a result,
skyrmion dynamics are influenced, given that the dynamic
friction encapsulated in Eqs. (3) and (5) undergoes mod-
ulation. To discern whether the defects’ influence on the
diffusion coefficient stems from dissipation tensor modulation
rather than pinning, we analyzed the dissipation tensor for
equilibrium spin configurations of both ferromagnetic and
antiferromagnetic skyrmions at zero temperature, within the
defect configuration scrutinized in this study. The study found
minimal changes in the dissipation tensor as defect anisotropy
varies, indicating that the skyrmion retains its shape to a large
extent for the range of anisotropy strengths considered.

To further confirm this conclusion, we introduced the cal-
culated values of dynamic friction into Eqs. (3) and (5), which
depict free diffusion. By comparison, the diffusion coeffi-
cient in the presence of defects, derived from simulations
with the same parameters, presents a significantly greater
variation when the anisotropy is modified. Therefore, we can
assert with confidence that the dissipation tensor’s modulation
is negligible, and the observed effects are primarily due to
pinning.

Instead of changing the underlying energy landscape by
altering defect strength, we hold defect strength constant but
change thermal energy, which also determines the influence
of the defects on the skyrmion. The dependence of diffu-
sivity on temperature can be seen in Fig. 3 for anti- and
ferromagnetic skyrmions. Again, the effective diffusion co-
efficients in the presence of defects are shown in terms of
the relative deviation from free diffusion. One can see that
the antiferromagnetic skyrmion displays reduced diffusivity
across the board. The agreement between the prediction of
the Lifson-Jackson equation (7) and the simulation results
suggests that—as long as the Gilbert damping parameter is not
too small—antiferromagnetic skyrmions behave like classical
particles in a viscous medium, the dynamics of which are
governed by the overdamped Langevin equation [40].
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FIG. 3. Diffusion coefficients of anti- and ferromagnetic
skyrmions in the periodic defect configuration vs thermal energy for
various α as labeled. The diffusion coefficients are normalized by
their respective free diffusion coefficients according to Eqs. (6) and
(4). The prediction of the Lifson-Jackson equation (7) is represented
by the solid line. Simulations performed with ddefect/d0 = 0.9.

Ferromagnetic skyrmions follow this trend only at high
damping, α = 1. For lower values of α, its diffusion coeffi-
cient exceeds the expected value for free diffusion, rather than
falling below it. One can see that this is more pronounced
as α decreases. Note that the increase in diffusivity is at
its largest around kBT = 1.5 meV, which coincides with the
energy barrier between two neighboring defects (see Fig. 1).
This behavior is similar to what was recently observed for
domain walls in ferromagnets, where the maximum and the
subsequent drop in the diffusion coefficient with rising tem-
perature was interpreted as a Walker breakdown of Brownian
domain-wall dynamics [53]

The dependence on damping is more closely investigated
in Fig. 4, where one can see diffusion coefficients of anti-
and ferromagnetic skyrmions for a range of different damping
parameters in the periodic pinning array. The ferromagnetic
diffusion coefficient remains largely unchanged over three
orders of magnitude of the damping parameter. Contrast-
ing the effective diffusion coefficients in the periodic defect

FIG. 4. Anti- and ferromagnetic diffusion coefficients vs α. Dif-
fusion coefficients obtained from simulations performed at kBT =
1 meV and ddefect/d0 = 0.9. Dotted lines indicate the prediction of
free diffusion according to Eqs. (6) and (4).

array with free diffusion (dotted line), the effect of enhanced
diffusion amplifies as α diminishes. Nevertheless, the sup-
pression of ferromagnetic diffusion is not completely lifted as
its diffusivity stays considerably below the antiferromagnetic
curve, which describes an inverse scaling with α. As of now,
a definitive, quantitative explanation for this unusual damping
dependence in the defect-induced energy landscape is unavail-
able and would necessitate an extension of the Lifson-Jackson
formula to particles with a gyrocoupling term.

An explanation as to why the anti- and ferromagnetic
skyrmions behave either similar or completely opposite de-
pending on damping is provided by Thiele’s equations (3)
and (5). As damping increases, the gyrocoupling term be-
comes less significant, as it is not dependent on α, unlike
the friction term. As a result, the dynamics of both the anti-
and ferromagnetic skyrmions are effectively controlled by the
same equation of motion in the overdamped limit. However,
in the case of low damping, the gyrocoupling term, which is
only present in the ferromagnetic Thiele equation, becomes
more significant and starts to have a greater impact on the
dynamics, leading to a deviation from the antiferromagnetic
skyrmion. The transition region at which this deviation oc-
curs can be approximated by examining the ratio between
D and G, which is roughly 1 for the skyrmions under con-
sideration, and can be roughly seen in Fig. 4. However, our
simulations revealed that this difference is less pronounced
when skyrmions are subject to pinning. An explanation is
given by considering the defect-induced energy landscape in
Fig. 1. Since the jumps between pinning sites preferably occur
where the energy gap between them is smallest, skyrmions
tend to move in one-dimensional channels. As a result, the
gyroscopic motion of ferromagnetic skyrmions cannot fully
develop, and its effects are impeded, meaning that the sup-
pression of the diffusion is partly lifted. The resulting increase
in diffusivity outweighs the usually hindering effect imposed
by the defects as seen in Fig. 2 for certain defect strengths.
The diffusion in one-dimensional channels has been studied
experimentally in Ref. [37], where it was observed that fer-
romagnetic skyrmions exhibit increased diffusion under this
constraint.

This effect is similar to what is observed from a skyrmion
under an applied active drive. In the absence of any obstruc-
tions, the Hall angle of a driven skyrmion remains unchanged,
regardless of the strength of the driving force [3,54]. How-
ever, when the skyrmion encounters single, periodic, or
random defects, its Hall angle becomes more complex.
As reported in Refs. [15,26,55] using both continuum and
particle-based approaches, the Hall angle of the skyrmion is
at its lowest when the driving force reaches the depinning
threshold. Beyond this point, the angle gradually increases
with each increase in driving force before reaching a satura-
tion point at the free pinning angle. This behavior has been
observed in previous experimental studies (Refs. [5,6,56]).
The Magnus force causes a skyrmion to be redirected as
it moves through a pinning site, resulting in a change in
direction towards the driving force. As the applied drive in-
creases, the skyrmion moves more quickly reducing the extent
of the change in direction. This can result in skyrmion motion
that exceeds the velocity attainable from the applied forces
alone [55].
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tation of free diffusion; see Eq. (4).

The change in behavior of thermally driven ferromagnetic
skyrmions in the presence of pinning is in line with previous
observations [23,37,38]. Our results, displayed in Figs. 2 and
3, show a noticeable increase in diffusivity, which suggests
a decrease in the Magnus force. The greatest suppression of
the Magnus force is seen when the thermal energy matches
the depinning threshold at 1.5 meV, as shown by comparing
the temperature dependence of the diffusion coefficient in
Fig. 3 to the energy landscape in Fig. 1.

In contrast to ferromagnetic skyrmions, antiferromagnetic
skyrmions do not exhibit the skyrmion Hall effect [29]. As
demonstrated in Ref. [22], current-driven antiferromagnetic
skyrmions interacting with a vacancy tend to slow down, and
this is also observed for the thermally driven antiferromag-
netic skyrmions investigated here.

Our findings discussed so far demonstrate that ferromag-
netic skyrmions exhibit enhanced diffusion in a periodic
defect environment. However, real magnetic thin films are
unlikely to have a perfectly ordered arrangement of atomic de-
fects. To account for this, we are abandoning the assumption
of periodicity and instead looking at defects that are dis-
tributed randomly throughout the bilayer. We have chosen the
probability that a lattice site is a defect in a way that maintains
the same overall defect density as before in the periodic defect
arrangement. To calculate the diffusion coefficient, we calcu-
late the mean-squared displacement as an ensemble average
of different skyrmion trajectories, as previously mentioned.
However, in this case we utilize different, randomly generated
defect configurations for each trajectory.

Figure 5 depicts the dependence of the ferromagnetic dif-
fusion coefficient on defect strength in a random pinning
environment. All trends coincide with the previous observa-
tion of ferromagnetic skyrmions in a periodic defect array
seen in Fig. 2. Therefore, the phenomenon of enhanced dif-
fusivity is not limited to periodic defect patterns but is present
in general pinning environments.

IV. CONCLUSION

In this study, we investigated the behavior of ferro- and an-
tiferromagnetic skyrmions under periodic and random pinning

conditions. Our results reveal that, in contrast to normal Brow-
nian particles, pinning can enhance the thermal mobility of
ferromagnetic skyrmions at low Gilbert damping. This effect
depends on the strength of the pinning defects and temper-
ature, with the greatest increase in diffusion occurring when
the thermal energy coincides with the energy of transition
between pinning sites. For high damping, the ferromagnetic
skyrmion exhibits reduced diffusion only. In contrast to this,
the Brownian motion of antiferromagnetic skyrmions in a
periodic pinning environment is consistent with the Lifson-
Jackson model, which predicts reduced diffusion independent
of damping. Thiele’s equations of motion can explain the sim-
ilarities and differences in diffusion behavior between anti-
and ferromagnetic skyrmions based on their distinct topo-
logical properties. The reason why damping plays a crucial
role can be traced back to the fact that the gyrocoupling
term, which defines the distinct characteristics of anti- and
ferromagnetic skyrmions, respectively, becomes more promi-
nent with lower damping and less pronounced with higher
damping. These findings align with previous observations of
ferromagnetic skyrmions driven by current rather than temper-
ature [26–28], indicating that under the influence of defects,
the Hall angle or gyroscopic motion is dependent on the active
drive, and the Magnus force can be nearly entirely suppressed
at the depinning threshold.

Our study concludes that the introduction of defects can, in
fact, augment the diffusion relative to a flawless sample. This
reveals potential advantages for applications where diffusion
is desirable, such as in thermal reshuffling devices [10] and
probabilistic computing [13].

In experimental samples where defects are often prevalent,
the dynamics of Brownian skyrmions are largely ruled by a
high pinning regime with diffusion following an Arrhenius
law, as evidenced by previous studies such as Ref. [10]. In
such circumstances, introducing additional defects might ac-
tually enhance pinning instead of decreasing it. Our findings
thereby indicate that in this high-pinning regime, the expected
“diffusion suppression by gyrocoupling” [36] might not be as
impactful as suggested.

That being said, our findings do offer valuable theoret-
ical insights and underscore that as techniques for sample
preparation continue to advance, the strategy of artificially
introducing defects to enhance thermal diffusion could be-
come increasingly relevant. The practical implementation of
our findings will thus hinge on these continued improve-
ments in sample preparation techniques, paving the way for
the creation of sufficiently defect-free materials. With such
advancements, the deliberate induction of defects to boost
thermal diffusion might indeed emerge as a feasible and ben-
eficial strategy.
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