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This study investigates the predictive capabilities of common density functional theory (DFT) methods (GGA,
GGA+U , and GGA+U+V ) for determining the transition temperature of antiferromagnetic insulators. We
utilize a data set of 29 compounds and derive Heisenberg exchanges based on DFT total energies of different
magnetic configurations. To obtain exchange parameters within a supercell, we have devised an innovative
method that utilizes null-space analysis to identify and address the limitations imposed by the supercell on these
exchange parameters. With obtained exchanges, we construct Heisenberg Hamiltonian to compute transition
temperatures using classical Monte Carlo simulations. To refine the calculations, we apply linear response theory
to compute onsite (U ) and intersite (V ) corrections through a self-consistent process. Our findings reveal that
GGA significantly overestimates the transition temperature (by 113%), while GGA+U underestimates it (by
53%). To improve GGA+U results, we propose adjusting the DFT results with the (S + 1)/S coefficient to
compensate for quantum effects in Monte Carlo simulation, resulting in a reduced error of 44%. Additionally,
we discover a high Pearson correlation coefficient of approximately 0.92 between the transition temperatures
calculated using the GGA+U method and the experimentally determined transition temperatures. Furthermore,
we explore the impact of geometry optimization on a subset of samples. Using consistent structures with
GGA+U and GGA+U+V theories reduced the error.
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I. INTRODUCTION

Magnetic materials find numerous applications, ranging
from energy harvesting to computer memories [1–3]. The
key to utilizing these materials effectively lies in understand-
ing their magnetic order and transition temperature, as these
properties determine their potential applications. Determining
these properties requires expensive experiments like neutron
diffraction [4], which can be impractical for all compounds
created in labs. Therefore, there is a growing need for reliable
and computationally efficient ab initio methods to accurately
predict magnetic order and transition temperature.

Additionally, computational material scientists have gained
the ability to simulate numerous nonexistent materials using a
combination of ab initio methods, like density functional the-
ory (DFT), and advanced techniques such as machine learning
and evolutionary algorithms [5]. The accurate prediction of
magnetic properties for these materials is essential to discover
new magnetic substances with desirable characteristics [6].
This significance is particularly pronounced for magnetic ma-
terials, as there is a pressing need for expanded databases to
explore and identify novel materials using machine-learning
approaches effectively.

Theoretical predictions of material properties, including
thermodynamics, can be obtained from quantum ab initio
calculations. However, these calculations are computationally
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expensive, making them feasible primarily at zero temper-
ature. To address this issue, various strategies have been
developed. One practical approach involves mapping essen-
tial material features onto a simpler physical model. In the
context of magnetic materials and magnetic energy models, a
key feature is the magnetic interactions between atomic mag-
netic moments such as Heisenberg exchanges. The strength
of these interactions can be determined through ab initio
calculations using different strategies. Subsequently, these in-
teractions are used to construct a magnetic model. To obtain
macroscopic properties, such as thermodynamic properties
like phase transition temperature and Curie-Weiss temper-
ature of the magnetic material, classical spin Monte Carlo
(MC) simulations are employed for the magnetic model.

Most magnetic materials contain atoms with d or f orbitals
in their valence states, resulting in strong electron-electron
correlations that pose challenges for most ab initio methods.
Some sophisticated techniques, such as dynamical mean-field
theory (DMFT) [7] and continuum quantum Monte Carlo
[8,9], can address these challenges with a high level of accu-
racy. However, these methods are computationally expensive
and practical only in specific cases. A more practical and cost-
effective solution to improve electron-electron interactions
in DFT is to incorporate the Hubbard correction, known as
DFT+U [10–12]. The Hubbard U parameter serves as a reg-
ulatory factor and can be estimated using various approaches,
such as linear response theory.

This paper presents a systematic study focused on assess-
ing the effectiveness of linear response theory in predicting
appropriate U parameters for accurately calculating magnetic
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interactions in insulating antiferromagnetic materials. To do
this, we specifically select magnetic materials for which ex-
perimental data, such as phase transition temperature, are
available. Additionally, we explore the effects of geometrical
optimization and the calculation of U through a self-consistent
process. To derive thermodynamic properties, we employ
Monte Carlo simulations (MC) based on magnetic interac-
tions obtained from DFT+U calculations. Finally, we assess
the accuracy of the U parameters by comparing transition
temperatures obtained through MC simulations with experi-
mental data. Along with the DFT+U benchmark, we provide
a benchmark for generalized gradient approximation (GGA)
of exchange-correlation functional in DFT in predicting tran-
sition temperature.

II. MATERIALS AND COMPUTATIONAL METHODS

A. Materials

In this study, we choose 29 different antiferromagnetic
crystals, from well-known transition monoxides such as MnO
and NiO to complicated compounds such as LiMnPO4. We try
to have a variety of crystal symmetries in our choice. We
restrict our selections among materials with 3d valence mag-
netic atoms to avoid spin-orbit effects. Because DFT, i.e.,
GGA and local density approximation (LDA), underestimates
the magnetic moment of some itinerant magnetic materials
[13], we limit the candidate to only insulator antiferromag-
netic systems. The chemical formulas of our compounds are
as follows: BiFeO3 [14], CoWO4 [15], Cr2O3 [16], Cr2TeO6

[17], Cr2WO6 [17], CrCl2 [18], Fe2O3 [19], Fe2TeO6 [17],
KMnSb [20], KNiPO4 [21], La2NiO4 [22], LaFeO3 [23],
Li2MnO3 [24], LiCoPO4 [25], LiMnO2 [26], LiMnPO4 [27],
LiNiPO4 [28], MnF2 [29], MnO [30], MnS [31], MnSe [32],
MnTe [33], MnWO4 [34], NiBr2 [35], NiF2 [36], NiO [30],
NiWO4 [37],YFeO3 [38], and YVO3 [39].

B. Computational methods

1. Ab initio computational details

The total energy calculations are performed using den-
sity functional theory in two different codes: the plane-wave
pseudopotential QUANTUM ESPRESSO (QE) package [40] and
the full-potential local-orbital (FPLO) code [41]. In QE, we
utilize GBRV ultrasoft pseudopotentials [42]. We use the ex-
perimental crystal structure parameters for all cases. We adopt
the generalized gradient approximation (GGA) in the Perdew-
Burke-Ernzerhoff form (PBE) for the exchange-correlation
potential. To expand the wave function and charge density in
the plane wave, we set 40 and 400 Ry cutoffs for all com-
pounds, respectively. To sample the Brillouin zone (BZ), we
employ the Monkhorst-Pack scheme [43] with a mesh spacing
of 0.2 1

A◦ .
Due to the known underestimation of electron-electron

Coulomb interactions in GGA, we apply the Hubbard U cor-
rection method, commonly called GGA+U (or LDA+U ).
We estimate the self-consistent Hubbard U parameter with
a precision of about 0.01 eV using linear response theory
[44] through density functional perturbation theory (DFPT)
[45,46].

We employ the Bader charge analysis code [47–50] for
charge distribution, magnetic moment analysis, and determin-
ing the percentage of atoms ionizations in each compound.

2. Deriving Heisenberg exchange parameters

To obtain Heisenberg exchange interactions, we map the
spin-polarized DFT total energy of different magnetic config-
urations into the following Heisenberg Hamiltonian:

H = −1

2

∑
i, j

Ji j Ŝi · Ŝ j, (1)

where Ji j indicates the strength of Heisenberg exchange in-
teraction (Heisenberg exchange parameters) between ith and
jth sites, and Ŝi denotes the unit vector of magnetic mo-
ment direction on the lattice site i. We need only consider
the collinear spin configurations to derive the Heisenberg
exchange. So instead of assigning the direction of the mag-
netic moment by vectors, we only need to assign them by ±1
(i.e., Ŝi = ±1).

To calculate the exchange parameters up to the nth nearest
neighbor, the distance of the nth nearest neighbor should fit
within the crystal cell. Therefore, we extend the primitive
cell to an appropriate supercell for this purpose. However,
determining the farthest neighbor for which we can calculate
the exchange parameter should not solely rely on comparing
the distance of neighbors and the size of the supercell. An
additional criterion must be considered due to the periodic
boundary conditions. Below, we elaborate on this crucial cri-
terion.

Given a magnetic configuration, for instance, the kth
configuration, where the magnetic moment directions are
specified with specific values (e.g., Ŝ1 = 1, Ŝ2 = −1,
Ŝ3 = −1, and so on), the Heisenberg Hamiltonian for this
configuration can be expressed as follows:

Ek =
m∑
i

αkiJi + c. (2)

In this equation, Ek represents the total energy of the kth
magnetic configuration obtained from DFT, Ji denotes the
Heisenberg exchange parameter for the ith nearest neighbor,
c is a constant, and αki indicates the coefficient corresponding
to the ith nearest neighbor for this particular configuration.
The values of αki are determined by the specific magnetic
moment directions (e.g., Ŝ1, Ŝ2, Ŝ3, and so on) for the kth
configuration. Each magnetic configuration (e.g., k) will have
its set of coefficients αki corresponding to the different nearest
neighbors, leading to a matrix of coefficients. Analyzing the
null space [51] of this coefficient matrix can provide insights
into the dependencies between the coefficients for different
nearest neighbors, allowing us to determine the farthest neigh-
bor for which we are permitted to calculate the Heisenberg
exchange parameters. We explain this analysis in more detail
in Appendix B.

To obtain the Heisenberg exchanges up to the nth nearest
neighbor, theoretically, we only need a minimum of n + 1
distinct magnetic configurations. However, in practice, addi-
tional complexity arises from the induced magnetic moments
of anions, such as oxygen atoms. Consequently, using more
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magnetic configurations and determining the Heisenberg ex-
changes through the least-squares method is advisable, as rec-
ommended in our previous work [52]. Therefore, to account
for these additional complexities and ensure more accurate
results, we use a number of magnetic configurations around
three times greater than the minimum required number.

3. Monte Carlo simulation

To calculate the antiferromagnetic transition temperature
(i.e., Néel temperature) of all compounds, we perform
classical Monte Carlo (MC) simulations using the replica
exchange method as implemented in the Esfahan spin
simulation package (ESpinS) as an open-source classical spin
MC software package [53]. We choose the supercell for each
compound in a way that the supercell contains around 2000
sites. For each replica, at each temperature, 5 × 105 Monte
Carlo steps (MCs) per spin are considered for the thermal
equilibrium and data collection, respectively. Measurements
are done after skipping every 5 MCs to lower the correlation
between the data.

III. RESULTS AND DISCUSSION

A. Accuracy of GBRV pseudopotentials
for Heisenberg exchanges

One of the critical aspects in ab initio calculations is
the reliability of pseudopotentials, especially when dealing
with 3d transition metals. This is particularly crucial due to
the impact of semicore states and the highly localized na-
ture of 3d electrons [54,55]. While GBRV pseudopotentials
have been thoroughly examined, their accuracy in predicting
Heisenberg exchange interactions lacks a benchmark. To ad-
dress this, we conduct a comparison between full-potential
FPLO results and QE GBRV pseudopotentials within the
GGA exchange-correlation functional. For this comparison,
we use 12 different magnetic configurations for each com-
pound. Figure 1 indicates the strongest antiferromagnetic
exchange values for both FPLO and GBRV. Notably, there is
a high degree of consistency between the all-electron FPLO
and GBRV/QE methods, with an average difference of around
1.4 meV. Further detailed results can be found in Tables S1,
S2, S3, and S4 of the Supplemental Material [56].

B. Transition temperatures

To predict the transition temperatures for all samples, we
employ the Heisenberg exchange parameters obtained from
both GGA and GGA+U calculations. We use these param-
eters in Monte Carlo (MC) simulations, which allow us to
determine the transition temperatures based on the peak of
the magnetic-specific heat. In the Supplemental Material [56],
we provide comprehensive details of the Heisenberg exchange
parameters and transition temperatures in Tables S5, S6, S7,
and S8 for all compounds using both GGA and GGA+U
methods. Figure 2 presents a comparison between the ex-
perimental transition temperatures T Expt.

C (depicted by the
solid line) and the results obtained from GGA and GGA+U
calculations, indicating with T MC

C axis. The GGA method
significantly overestimates the transition temperatures, with a
mean absolute percentage error (MAPE) of 113%. However,

FIG. 1. Comparison between full-potential method using FPLO
code and GBRV pseudopotentials using QE code. We plot strongest
antiferromagnetic exchange for FPLO and GBRV. The line and cir-
cles indicate FPLO and QE results, respectively. In the plot, the
results of La2NiO4, LiCoPO4, and CoWO4 are absent since FPLO
calculations for some of the magnetic configurations of these com-
pounds do not converge.

in three cases (La2NiO4, LaFeO3, and YFeO3), GGA under-
estimates the transition temperature. On the other hand, the
GGA+U approach generally underestimates transition tem-
peratures, except for three compounds (Fe2TeO6, Li2MnO3,

FIG. 2. The plot compares the experimental transition tempera-
ture of 29 compounds with GGA and GGA+U . We compute the
transition temperatures for GGA and GGA+U using Monte Carlo
simulation. The [GGA+U ]* data show implementing (S + 1)/S cor-
rection to GGA+U .
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TABLE I. The table shows transition temperatures for a subset of samples, with and without geometry optimization. TU and TUV represent
the transition temperatures (Néel temperatures) obtained using the GGA+U and GGA+U+V calculations without geometry optimization,
respectively. The Hubbard parameters U and V (onsite U and intersite V ) are obtained from self-consistent linear response theory calculations.
On the other hand, T opt

U and T opt
UV indicate Néel temperatures obtained from GGA+U and GGA+U+V calculations through geometry

optimization along with self-consistent linear response theory calculations for computing U and V . The values inside parentheses indicate
the temperatures after applying the S+1

S correction factor. The last column presents the experimental temperature value documented in the
literature.

Sample S TU (K) TUV (K) T opt
U (K) T opt

UV (K) TExpt. (K )

NiO 1 220 (440) 246 (492) 210 (420) 236 (472) 523 [62]

MnO 5
2 27 (37.8) 43 (60.2) 72 (100.8) 87 (121.8) 117 [63]

MnS 5
2 54 (75.6) 60 (84.0) 58 (81.2) 65 (91.0) 152 [31]

MnSe 5
2 25 (35) 26 (36.4) 37 (51.8) 44 (61.6) 124 [64]

NiF2 1 37 (74) 44 (88) 32 (64) 40.2 (80.4) 68.5 [65]

MnF2
5
2 57 (79.8) 67 (93.8) 44 (61.6) 57 (79.8) 67.3 [66]

MnTe 5
2 189 (264.6) 196 (274.4) 152 (212.8) 156 (218.4) 310 [67]

CrCl2 2 2 (3) 2 (3) 19 (28.5) 16 (24.0) 11.3–16 [68]

MAPE 58% (41%) 52% (41%) 51% (37%) 41% (31%)

and MnWO4) where they are overestimated. The GGA+U
method reduces the MAPE in estimating transition temper-
atures to 53%. Despite these errors, We observe Pearson
correlation coefficients of 0.74 and 0.92 for the transition tem-
peratures of GGA and GGA+U , respectively, when compared
to the experimental values. These findings can be valuable for
future research, especially in the context of machine-learning
applications.

Due to the classical nature of our MC simulations, in our
previous work [52], we introduced a correction factor of (S +
1)/S as follows:

T MC∗
C = S + 1

S
T MC

C . (3)

Here, S represents the nominal spin magnetic moment for
the ionic magnetic atom in each compound. We repre-
sent this corrected approach in the figure as [GGA+U ]*.
By applying this correction, the MAPE is further reduced
to 44%, significantly improving the accuracy of our tran-
sition temperature predictions. In [GGA+U ]*, 45% of
compounds have absolute percentage error (APE) less than
20%, 25% of compounds have APE between 20% and 40%,
and 20% compounds have APE between 40% and 80%.
There are three compounds (i.e., Fe2TeO6, Li2MnO3, and
MnWO4) that have APE larger than 100%. The worst case
is Li2MnO3 (with 270 APE), where GGA+U predicts the
compound as ferromagnet while the experiment indicates an
antiferromagnetic ground state for the compound [57]. The
other ab initio calculation based on DFT+U also wrongly
predicts this material as a ferromagnet [58]. This is because
of bad overestimation of Hubbard U for this compound.
Our investigation finds that the U parameter should be less
than 2.01 eV for this compound to have an antiferromag-
netic ground state. In comparison, the self-consistent linear
response method overestimates it as 6.39 eV.

On average, according to our data, self-consistent Hubbard
U is 0.5 eV smaller than the non-self-consistent Hubbard
U . Since larger Hubbard U decreases the antiferromagnetic
interaction, and in GGA+U for most cases, there is an

underestimation of antiferromagnetic interactions, estimation
of Hubbard U through the self-consistent process is vital to
predicting the transition temperature.

Although [GGA+U ]* produces reasonably accurate re-
sults for approximately 50% of cases, it also exhibits
significant errors in some instances. To better understand the
reasons behind these discrepancies, we conducted an analysis
to investigate whether there exists any meaningful correla-
tion between the APE of [GGA+U ]* and various compound
properties, such as the magnetic moment. To do this, we
considered several properties, including the Shannon entropy
of d orbital in density of states (DOS), the distance between
the center of d orbital, and the center of p orbital in DOS, band
gap, magnetic moment, ionic bond percentage, total stress,
and force. Detailed information on these properties for each
compound can be found in Tables II and III in Appendix A.
The results of our analysis indicate that there is no meaning-
ful correlation between these properties and the APE of the
transition temperature derived from [GGA+U ]*.

We also investigate the extended Hubbard model, so-called
GGA+U+V [59–61] containing both onsite (U ) and intersite
electronic interactions (V ), on only 18 compounds. If we still
consider the (S + 1)/S correction for analysis of GGA+U+V
results, there is no critical gain for transition temperature
compared to GGA+U , on average. The results of GGA+U
and GGA+U+V on the prediction of transition temperatures
are collected in Tables IV and V of Appendix C.

Ultimately, we explore the effect of geometry optimiza-
tion of primitive antiferromagnetic cells (atomic positions and
crystal lattice vectors) to determine if the consistent crystal
structures with GGA+U and GGA+U+V lead to more cor-
rected results for transition temperature. For this purpose, we
choose eight compounds with low computational cost, then
optimize their structures and then recalculate U and V param-
eters for the optimized structures. We repeat this procedure
until we reach optimized structures with self-consistent U and
V parameters. We collect the results in Table I with (S + 1)/S
correction inside the parentheses. Without geometry opti-
mization and considering (S + 1)/S correction, GGA+U and
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GGA+U+V have almost similar results. Both GGA+U and
GGA+U+V for these eight compounds (using self-consistent
U and V ) indicate 41% MAPE for predicting transition
temperatures, comparable with MAPE obtained for all 29
compounds. Using optimized structures decrees MAPE to
37% and 31% for GGA+U and GGA+U+V (with (S + 1)/S
correction), respectively. Therefore, consistent structures with
GGA+U and GGA+U+V theories can be beneficial for bet-
ter prediction.

IV. CONCLUSIONS

The study conducted systematic research to benchmark
three different density functional theory (DFT) methods,
GGA, GGA+U , and GGA+U+V , for predicting transition
temperatures in a group of antiferromagnetic insulators. The
results indicate that obtaining Hubbard U parameters through
self-consistent processes using linear response theory is cru-
cial for accurate predictions. Additionally, optimizing the
structures of the materials leads to more consistent outcomes
with experimental data. To enhance the accuracy of GGA+U
results, the study recommends applying a (S + 1)/S correc-
tion to the GGA+U approach. Moreover, the work introduces
a method to determine the appropriate number of nearest

neighbors to calculate exchanges within a supercell. In con-
clusion, this study highlights the performance of various DFT
methods in predicting transition temperatures for antiferro-
magnetic insulators. It also proposes correction strategies to
improve the accuracy of these predictions, providing valuable
insights for future research in this area.
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APPENDIX A: CHARACTERIZATION OF COMPOUNDS

1. Hubbard parameter

The Hubbard U parameters are determined using linear
response density-functional perturbation theory (LR-DFPT).
Typically, the U value is computed with a precision of approx-
imately 0.01 eV, and this calculation is carried out iteratively
until convergence is achieved. The calculated U parameters
for various compounds are summarized in Table II.

TABLE II. Hubbard parameter, magnetic moment, total stress, total force, ionic percentage, and charge distribution for all samples within
GGA+U approximation. The data inside the parentheses represent the calculated magnetic moment and ionic percentage in the GGA approach.

Hubbard parameter Magnetic moment Total stress Total force
Sample (eV) (μB )

( Ry
bohr3

) ( Ry
bohr

)
Ionic percentage Charge distribution

NiO 7.17 1.72(1.33) 104.84 0 63(56) Ni+1.26 O−1.25

MnO 4.81 4.61(4.40) 84.99 0 72.5(69.5) Mn+1.45 O−1.44

MnS 4.39 4.61(4.33) 30.63 0 63(58.5) Mn+1.26 S−1.25

MnSe 4.19 4.62(4.35) 30.31 0 57.5(52.5) Mn+1.15 Se−1.14

Cr2O3 5.93 2.88(2.63) 152.96 0.033 62.3(58) Cr+1.85 O−1.23

Fe2O3 6.18 4.25(3.40) 219.66 0.316 61.6(52.6) Fe+1.86 O−1.24

BiFeO3 6.13 4.25(3.81) 23.05 0.027 62.3(55) Bi+1.86 Fe+1.87O−1.24

NiBr2 6.31 1.66(1.39) 1.34 0.001 46.5(38.5) Ni+0.93 Br−0.46

YVO3 4.74 1.81(1.55) 81.33 0.037 64(60) Y+2.16 V+1.92O−1.36

LiMnPO4 4.20 4.68(4.58) 55.56 0.252 78.5(75.5) Li+0.9 Mn+1.57P+4.88O−1.7

LiNiPO4 7.22 1.80(1.58) 75.45 0.128 69(63) Li+0.9 Ni+1.38P+4.88O−1.83

LiCoPO4 5.91 2.78(2.60) 54.93 0.053 72(67) Li+0.9 Co+1.44P+4.88O−1.84

YFeO3 6.22 4.23(3.79) 76.98 0.028 62(55) Y+2.17 Fe+1.86O−1.34

LaFeO3 6.26 4.22(3.77) 76 0.145 61.6(55) La+2.09 Fe+1.85O−1.31

LiMnO2 5.97 3.92(3.55) 101.46 0.070 56.6(53) Li+0.89 Mn+1.70O−1.31

CrCl2 6.41 3.84(3.69) 41.43 0.018 69.5(63.53) Cr+1.39 Cl−0.70

KNiPO4 7.13 1.81(1.59) 56.18 0.259 67.5(60.5) K+0.87 Ni+1.35P+4.88O−1.79

MnF2 3.84 4.68(4.59) 56.13 0.002 80.5(78.5) Mn+1.60 F−0.80

NiF2 7.14 1.81(1.62) 55.76 0.006 75(69.5) Ni+1.50 F−0.74

Fe2TeO6 6.12 4.31(3.87) 175.19 0.093 65(58.3) Fe+1.95 Te+5.92 O−1.65

La2NiO4 7.58 1.76(0.55) 77.46 0.030 66.5(55.5) La+2.01 Ni+1.33 O−1.34

Cr2TeO6 5.89 2.87(2.64) 223.71 0.234 64(59.6) Cr+1.92 Te+5.9 O−1.64

KMnSb 4.33 4.70(4.20) 29.83 0.032 34(26.5) K+0.72 Mn+0.68 Sb−1.39

Cr2WO6 6.01 2.89(2.66) 114.6 0.042 65.3(61.6) Cr+1.96 W+3.10 O−1.18

NiWO4 7.74 1.84(1.52) 61.22 0.109 72.5(65) Ni+1.45 W+2.99 O−1.15

MnWO4 5.71 4.61(4.36) 92.63 0.217 81(79.5) Mn+1.62 W+2.99 O−1.16

CoWO4 6.53 2.78(2.57) 100.78 0.080 73(69.5) Co+1.46 W+3.02 O−1.16

Li2MnO3 6.39 3.27(2.68) 87.54 0.065 47.5(45.2) Li+0.88 Mn+1.90 O−1.24

MnTe 4.05 4.63(4.28) 26.42 0 47.5(41.5) Mn+0.95 Te−0.96
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2. Ionic percentage and magnetic moment

To describe the covalent and ionic nature of bonds, the
net charges of ions are calculated using Bader charge anal-
ysis [69] using BADER code [70]. The results evident that net
charge on atoms in compounds are less than nominal charges.
For example, in NiO about 1.26 electrons transfer from each
Ni atom to O atoms while nominal charges are +2 for Ni and
−2 for O ions. Therefore, in NiO, the bond between Ni and
O atom shows obvious ionic character and a little covalent
bond (37%). The ionic percentage of different compounds is
shown in Table II. The results reveal that in all compounds,
the bonding behavior consists of a combination of ionic and
covalent bonds. When comparing the results obtained from
GGA and GGA+U calculations, it becomes evident that the
degree of ionic bonding increases across all compounds when
using the GGA+U approach. This increase in ionic character
is a result of correcting the onsite Coulomb interaction, which
aligns with the findings in Ref. [71].

We also determine the magnetic moment through Bader
charge analysis, using two different approximations: GGA
and GGA+U . Notably, the magnetic moment exhibits an
increase when employing the GGA+U approximation, as
depicted in Table II. This phenomenon can be attributed to
the relationship between the magnetic moments of the tran-
sition metal atoms and their localized d electron shells. The
GGA+U approximation increases d electron shells localiza-
tion and eliminates fractional occupation numbers, which is
why we anticipate an increase in the magnetic moment when
utilizing this approach [72].

3. Projected density of states and band gap

We present the project density of states (PDOS) for all
compounds in Figs. S1 and S2 of the Supplemental Material
[56] using GGA+U approximation. To convert PDOS infor-
mation to numbers, we define Shannon entropy to measure
the localization of the d orbital of magnetic atoms in energy
space:

Sd
PDOS = −

∑
E<EFermi

ρd (E ) ln ρd (E ). (A1)

Here, ρd (E ) is the normalized DOS of d orbitals of mag-
netic atoms, and EFermi is Fermi level energy. Additionally,
we calculate the distance between the center of d orbitals of
magnetic moment and the p orbitals of anions in the energy
space (d-p distance) to give a measure of the separation of
these orbitals. This information is gathered in Table III.

We also report the band gap obtained from the GGA+U
calculation in Table III. We add to the table the existing gap
reported in the experiments. The gap error using GGA+U for
these materials, on average, is about 30%. For some materials,
GGA+U overestimates the gap, and for others underestimates
the gap in comparison with the experiment (Fig. 3).

APPENDIX B: NULL-SPACE ANALYSIS

Figure 4 illustrates the calculation of Heisenberg ex-
change parameters using the DFT total energy of different

TABLE III. The Shannon entropy of d orbitals (Sd
PDOS) defined in

Eq. (A1) obtained from PDOS, the distance between p orbital center
and d orbital center (d-p distance), GGA+U band gap EGGA+U

g for
all samples, and the reported experimental value of the band gap
EExpt.

g .

d-p distance EGGA+U
g EExpt.

g

Sample Sd
PDOS (eV) (eV) (eV)

NiO 4.05 0.82 3.2 4.0 [73]
MnO 3.96 0.25 1.9 3.9 [73]
MnS 3.44 1.08“ 2.3 2.7–2.8 [74]
MnSe 3.14 1.39 1.4 2–2.5 [74]
Cr2O3 4.08 0.80 3.9 3.1 [75]
Fe2O3 3.70 3.26 1.9 2.6 [76]
BiFeO3 2.92 3.66 2.7 2.1 [77]
NiBr2 3.39 2.85 2.5
YVO3 4.02 1.05 2.8
LiMnPO4 3.97 0.68 4.1 3.8–4.0 [78]
LiNiPO4 4.05 1.28 4.7
LiCoPO4 4.18 0.38 4.5
YFeO3 3.08 2.96 3.2 2.46 [79]
LaFeO3 3.08 0.36 3.0 2.65 [80]
LiMnO2 4.13 1.42 1.3 0.79 [81]
CrCl2 3.70 0.56 3.8
KNiPO4 3.92 0.14 3.8
MnF2 3.61 1.36 3.6
NiF2 4.01 1.00 5.4 8.07 [82]
Fe2TeO6 3.50 3.32 1.8 1.46 [83]
La2NiO4 4.22 2.06 0.3 1.51 [84]
Cr2TeO6 4.17 0.18 2.5
KMnSb 2.29 3.35 1.2
Cr2WO6 4.21 1.45 2.0
NiWO4 4.13 1.73 2.9 3.4–3.6 [85]
MnWO4 4.17 1.00 2.5 2.7 [86]
CoWO4 4.20 1.34 3.2 2.25 [87]
Li2MnO3 3.33 2.40 2.1 1.76 [88]
MnTe 2.75 1.84 0.7 0.9–1.3 [74]

MAPE 30%

configurations within a supercell. In this method, for each
magnetic configuration, the Heisenberg Hamiltonian converts
to Eq. (2). Using supercells to estimate Heisenberg exchange
parameters has a bottleneck due to periodic boundary condi-
tions. The problem is that when we use a supercell, we can
not calculate the exchange parameter for an aribritry distance.
It is evident that we should restrict exchange parameter es-
timations within the supercell. If di j is the distance between
atom i and atom j, then the supercell method restricts us to
estimate only Ji j exchange parameters that di j < L, where
L is supercell size. In the first-principles ab initio research,
people consider this limitation. However, the problem is more
challenging than it seems. In the following, we will explain it.
According to Eq. (2), for each magnetic configuration, such
as configuration k, we have a set of coefficients represented
as αki. Using these coefficients, we build a coefficient matrix
(Aki = αki) to check the dependency of these matrix columns.
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FIG. 3. Comparison of GGA+U band gap (EGGA+U
g ) with exper-

imental values (EExpt.
g ).

If column i depends on others, we should restrict our method
to calculate the exchange parameter up to (i − 1)th nearest
neighbor. In linear algebra, by considering kernel (or null)
space, the dependency of columns of a matrix releases. The
following equation defines the null space of matrix A:

Ker(A) = {x : Ax = 0} = Null(A). (B1)

The null space contains solutions for equation Ax = 0. For
a matrix with no-zero x solution, it means matrix columns
are not independent. To shed light on the issue, we explain
it using the NiO example. For a 2 × 2 × 2 supercell from NiO
primitive cell (i.e., a trigonal), the matrix of coefficients for 12
(random) different configurations is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

96 48 192 96 192 64 384 48 288

−16 0 0 0 32 0 0 −48 16

−32 48 −64 96 −64 64 −128 48 −96

16 0 48 48 64 0 96 0 80

8 12 −8 48 −32 16 −16 0 −24

0 12 −24 60 −48 16 −48 12 −48

−8 12 −8 48 0 16 −16 0 −8

−8 0 8 24 32 0 16 −24 24

8 24 24 72 32 32 48 24 40

24 36 48 84 48 48 96 36 72

28 24 64 60 72 32 128 12 100

48 36 96 72 96 48 192 24 144

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B2)

The null space of the matrix A is as follows (by using null-
space method in SCIPY.LINALG library of Python):

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

0

−2

0

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−4/3

0

0

0

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−2

0

0

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

−2

0

0

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The first null-space solution, for example, tells us that co-
efficients in column 5 depend on columns 1 and 3 by the
following equation:

2 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

96

−16

−32

16

8

0

−8

−8

8

24

28

48

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 2 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

192

0

−64

48

−8

−24

−8

8

24

48

64

96

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 1 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

192

32

−64

64

−32

−48

0

32

32

48

72

96

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For 2 × 2 × 2 supercell, the supercell size apparently allows
us to calculate Ji until the 12th nearest neighbor (using di j < L
criterion), however, null-space analysis warning us to restrict
the calculation up to the 4th nearest neighbor. We should
increase the supercell size to obtain exchange parameters be-
yond 4th nearest neighbor. For example, if we use 3 × 3 × 3
supercell for NiO, the matrix coefficient for 12 (random)
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FIG. 4. The sketch illustrates the least-squares method to obtain Heisenberg exchanges. For each collinear magnetic configuration, the
total energy of DFT consists of the Heisenberg exchange interactions between magnetic moments plus a constant due to other interactions. So
using different configurations and the least-squares method, we can obtain exchange parameters.

different configurations is as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

96 48 192 96 192 64 384 48 288

−16 0 0 0 32 0 0 −48 16

−32 48 −64 96 −64 64 −128 48 −96

16 0 48 48 64 0 96 0 80

8 12 −8 48 −32 16 −16 0 −24

0 12 −24 60 −48 16 −48 12 −48

−8 12 −8 48 0 16 −16 0 −8

−8 0 8 24 32 0 16 −24 24

8 24 24 72 32 32 48 24 40

24 36 48 84 48 48 96 36 72

28 24 64 60 72 32 128 12 100

48 36 96 72 96 48 192 24 144

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B3)

The null space of the matrix is

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

−1/2

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, we can obtain exchange parameters up to the 8th nearest
neighbor (since column eight depends on column two and
column five).

APPENDIX C: TRANSITION TEMPERATURE

To determine the transition temperature (TC) for all com-
pounds, we employ classical Monte Carlo (MC) simulations.
We provide transition temperatures for all compounds along
with Heisenberg exchange parameters for GGA and GGA+U
approximations in Tables S5, S6, S7, and S8 of the Supple-
mental Material [56].
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TABLE IV. The transition temperature for all samples was ob-
tained using the Heisenberg exchange interactions calculated from
the GGA+U method. TMC was determined through Monte Carlo
(MC) simulations. The transition temperature, denoted as T ∗

MC, was
then obtained by multiplying the Monte Carlo results with the (S+1)

S
factor. Additionally, TExpt. represents the experimentally reported
temperature.

Sample S TMC (K) T ∗
MC (K) TExpt. (K)

NiO 1 220 440 523 [62]
MnO 5

2 26 36.4 117 [63]

MnS 5
2 54 75.6 152 [31]

MnSe 5
2 25 35 124 [64]

Cr2O3
3
2 118 195.8 308 [89]

Fe2O3
5
2 701 981.4 960 [89]

BiFeO3
5
2 466 652.4 650 [90]

NiBr2 1 19 38 52 [35]
YVO3

3
2 49.2 81.6 77 [91]

LiMnPO4
5
2 25 35 34–36 [92]

LiNiPO4 1 11 22 21.8 [93]
LiCoPO4

3
2 14 23.2 22–24 [92]

YFeO3
5
2 469 656.6 644.5 [94]

LaFeO3
5
2 527 737.8 750 [95]

LiMnO2 2 111 166.5 300 [96]
CrCl2 2 2 3 11.3–16 [68]
KNiPO4 1 9 18 25 [21]
MnF2

5
2 57 79.8 67.3 [66]

NiF2 1 37 74 68.5 [65]
Fe2TeO6

5
2 351 491.4 210 [97]

La2NiO4 1 209 418 650 [98]

Cr2TeO6
3
2 17 28.2 93 [99]

KMnSb 5
2 217 303.8 237 [100]

Cr2WO6
3
2 28 46.4 45 [99]

NiWO4 1 21 42 62 [101]
MnWO4

5
2 20 28 8–13.5 [102]

CoWO4
3
2 17 28.2 40 [103]

Li2MnO3
3
2 81 134.4 36.5 [104]

MnTe 5
2 189 264.6 310 [67]

MAPE 53% 44%

TABLE V. The transition temperature for 18 samples was ob-
tained using the Heisenberg exchange interactions calculated from
the GGA+U + V method. TMC was determined through Monte Carlo
(MC) simulations. The transition temperature, denoted as T ∗

MC, was
then obtained by multiplying the Monte Carlo results with the (S+1)

S
factor. Additionally, TExpt. represents the experimentally reported
temperature.

Sample S TMC (K) T ∗
MC (K) TExpt. (K)

NiO 1 246 492 523 [62]
MnO 5

2 43 60.2 117 [63]

MnS 5
2 60 84 152 [31]

MnSe 5
2 26 36.4 124 [64]

Cr2O3
3
2 119 178.5 308 [89]

Fe2O3
5
2 804 1125.6 960 [89]

BiFeO3
5
2 496 694.4 650 [90]

LiMnPO4
5
2 28 39.2 34-36 [92]

YFeO3
5
2 518 725.2 644.5 [94]

LaFeO3
5
2 553 774.2 750 [95]

LiMnO2 2 129 193.5 300 [96]
CrCl2 2 2 3 11.3–16 [68]
MnF2

5
2 72 100.8 67.3 [66]

NiF2 1 47 94 68.5 [65]
NiWO4 1 24 84 62 [101]
MnWO4

5
2 28 39.2 8–13.5 [102]

CoWO4
3
2 20 32 40 [103]

MnTe 5
2 196 274.4 310 [67]

MAPE 50% 43%

In Table IV, you can find the transition temperature es-
timates (T MC

C ) for all 29 compounds obtained through MC
simulations using the GGA+U results. Additionally, we
include the T MC

C correction (T MC∗
C ) by multiplying it by

the factor (S + 1)/S. Furthermore, in Table V, we present
the transition temperatures for 18 compounds using the
GGA+U+V approximation. It is important to note that the
results obtained with the GGA+U+V approach are compa-
rable to those of GGA+U and do not lead to an improved
estimation of the transition temperature.
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