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Nonlinear dynamics of skyrmion strings
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The skyrmion core, percolating the volume of the magnet, forms a skyrmion string—a topological Dirac-
string-like object. Here we analyze the nonlinear dynamics of a skyrmion string in a low-energy regime by means
of the collective variables approach, which we generalized for the case of strings. Using the perturbative method
of multiple scales (both in space and time), we show that the weakly nonlinear dynamics of the translational mode
propagating along the string is captured by the focusing-type nonlinear Schrödinger equation. As a result, the
basic “planar-wave” solution, which has the form of a helix-shaped wave, experiences modulational instability.
The latter leads to the formation of cnoidal waves. Both types of cnoidal waves, dn- and cn-waves, as well as
the separatrix soliton solution, are confirmed by micromagnetic simulations. Beyond the class of traveling-wave
solutions, we found Ma-breather propagating along the string. Finally, we proposed a generalized approach that
enables one to describe the nonlinear dynamics of the modes of different symmetries, e.g., radially symmetrical
or elliptical.
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I. INTRODUCTION

Magnetic skyrmions [1–7] have traditionally been con-
sidered as two-dimensional topological solitons existing
in magnetic films with Dzyaloshinskii-Moriya interaction
(DMI). During the past decade there has been an explosive
development in skyrmionics, which is due in part to the num-
ber of skyrmion properties that may be useful for application
in spintronic devices, namely topological protection and con-
trollability by electrical currents [8–10]. Although the first
experimental observation of skyrmion lattices [11] implied
the existence of skyrmion strings aligned along the applied
magnetic field, the three-dimensional structure of skyrmions
was not considered in most studies. However, recent advances
in experimental techniques have enabled the real-space imag-
ing of skyrmion strings in noncentrosymmetric bulk magnets
[12–14]. A skyrmion string (tube) is a skyrmion core perco-
lating the volume of the magnet; see Fig. 1(a). It is analogous
to vortex filaments in superfluids [15,16], superconductors
[17], and Bose-Einstein condensates [18]. Skyrmion strings
carry an emergent magnetic field [19] that is the source of
the topological Hall effect [20] experienced by the conducting
electron; see Fig. 1(b). The skyrmion string-based realiza-
tion of Dirac strings in condensed matter was discussed in
Ref. [21]. Note that termination of the skyrmion string results
in the creation of a Dirac monopole and antimonopole pair
known as Bloch points [21–24].

A number of physical effects have already been estab-
lished for skyrmion strings. It was shown that spin excitations
can propagate along the string for a distance of tens of
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micrometers [25]. Thus, the strings can be considered as
magnonic waveguides for information transfer [26]. The
nucleation and annihilation of skyrmion strings can be effec-
tively controlled by an external magnetic field [27], as well
as by electrical current [28]. Skyrmion strings can be moved
by the spin-polarized current applied perpendicularly to the
string [29–32]. This current-induced dynamics has a threshold
character caused by the effects of pinning on the impurities.
The longitudinal current, however, leads to string instability
[33]. Skyrmion strings can merge or unwind by means of
Bloch points [23,34–36]. The position of the Bloch point
along the string can be controlled by the current pulses, open-
ing up a range of design concepts for future three-dimensional
(3D) spintronic devices [28]. A bunch of skyrmion strings
immersed into the conical phase can twist and create a braid
superstructure [37]. It is worth mentioning that in addition
to skyrmion strings, there are a number of other stringlike
topological objects in magnets that are of interest from both
fundamental and applied points of view, e.g., vortex strings
[38–42] and screw dislocations [43].

The linear spin excitations propagating along skyrmion
strings are well studied both theoretically [25,44,45] and ex-
perimentally [25]. Previously we also reported on finding
a nonlinear solution in form of a solitary-wave propagating
along askyrmion string [45]. Here we report on a systematic
study of the possible nonlinear low-energy string dynamics.
To this end, we generalize the collective variables approach
and obtain a Thiele-like equation for the string. Next, using
the perturbative method of multiple scales [46,47], we demon-
strate that for the case of low-amplitude dynamics, the string
equation of motion is reduced to the focusing-type nonlinear
Schrödinger equation (NLSE). Next, by means of full-scale
micromagnetic simulations we found a number of well-known
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(a) (b)

FIG. 1. Representation of a skyrmion string in terms of mag-
netization and the emergent magnetic field Be [19] are shown in
(a) and (b), respectively. In (a), arrows show the distribution of
the magnetization m, and color corresponds to the component mz.
In (b), arrows show the distribution of Be ∝ g with |Be| reflected
by the color intensity; see Eq. (2). The central red line shows the
position of the string center defined in (1). The data are obtained by
means of micromagnetic simulations for FeGe in an external field,
μ0Hext = 0.8 T.

solutions of the NLSE, namely nonlinear cnoidal waves, soli-
tons, and breathers. These numerically found solutions agree
very well with the predictions of our model. Finally, we sug-
gest a generalization of the collective variables approach used
for stringlike collective variables.

II. DEFINITION OF A SKYRMION STRING
AND ITS EQUATION OF MOTION

We consider a cubic chiral ferromagnet saturated by an
external magnetic field along the z-axis. Such a magnet can
host a magnetic skyrmion as an excitation of the uniform
ground state m(r) = ẑ [48,49]. Here and below, the unit vec-
tor m denotes dimensionless magnetization. In the case of a
bulk sample, the skyrmion core penetrates the magnet vol-
ume forming a stringlike object. In equilibrium, the string
is oriented along ẑ. Deviation of the string shape from the
equilibrium straight line results in the string dynamics. Our
aim here is to describe this dynamics in the low-amplitude
limit.

We define the skyrmion string as a time-dependent 3D
curve γ (z, t ) = x̂X1(z, t ) + ŷX2(z, t ) + zẑ, where

Xi(z, t ) = 1

Ntop

∫∫
xigz(r, t )dxdy (1)

are the first moments of the topological charge density gz =
1

4π
m · [∂xm × ∂ym]. Here x1 = x and x2 = y. The total topo-

logical charge Ntop = ∫∫
gzdxdy is a constant integer number.

Since the magnetization evolution is assumed to be continuous
in space and time, and the boundary conditions m = ẑ are
fixed for � =

√
x2 + y2 → ∞, the topological charge Ntop

does not depend either on time or on the z coordinate. Note
that gz is a vertical (along the ground state) component of the
gyrovector density

g = eiεi jk

8π
m · [∂ jm × ∂km] (2)

which determines the emergent magnetic field Be ∝ g
[19].

We base our study on the Landau-Lifshitz equation ∂t m =
γ0

Ms
[m × δH

δm ], which equivalently can be written in the Hamil-
tonian form ∂t m = {m, H} Supplemented with the Poisson
brackets for the magnetization components

{mi(r), mj (r′)} = − γ0

Ms
εi jkmk (r)δ(r − r′). (3)

Here H is the Hamiltonian, γ0 is the gyromagnetic ratio, and
Ms is the saturation magnetization. Using (3) and definition
(1), we obtain

{Xi(z), Xj (z
′)} = −εi j

γ0

Ms

δ(z − z′)
4πNtop

; (4)

for details, see Appendix A. This is a generalization of the
previously obtained Poisson brackets for coordinates of 2D
topological solitons [50]. In the following, we restrict our-
selves by the low-energy limit and therefore we take into
account only the collective variables X1 and X2, which are
associated with the low-energy translation mode. In this
case, the string equations of motion are ∂t Xi = {Xi, H}. By
means of (4) we obtain the following explicit form for the
equations of motion: ∂t Xi = −εi jG−1δH/δXj , where G =
4πNtopMs/γ0 and H = ∫

H(∂zXi, ∂
2
z Xi, . . . )dz. Note that due

to the transnational invariance, the longitudinal Hamilto-
nian density H does not depend on Xi but only on its
derivatives. For a number of problems, it can be convenient
to introduce the vector X = X1x̂ + X2ŷ. The corresponding
equations of motion have the Thiele-like form [39,40,45]
[∂t X × G] = δH/δX , where G = Gẑ is the string gyrovector.
In contrast to the conventional Thiele equation [51], (i) the
skyrmion position X (z, t ) depends not only on time but also
on the coordinate z, and (ii) the right-hand side of the equa-
tion of motion contains a functional derivative instead of the
partial one.

In what follows, however, we use the alternative rep-
resentation by means of the complex-valued function � =
X1 + iX2. The corresponding equation of motion is of the
Schrödinger-like form

i∂t� = − 2

G

δH

δ�∗ . (5)

Although the general form of the equation of motion (5)
enables one to make a conclusion about some integrals of
motion, e.g., total energy E = H or linear momentum P =
G i

4

∫
(�∂z�

∗ − �∗∂z�)dz, in order to obtain a concrete solu-
tion one needs to know the structure of the Hamiltonian H =∫
Hdz. The concrete dependence of the effective Hamiltonian

density H(∂z�, ∂z�
∗, ∂2

z �, . . . ) on the collective string-
variable � is determined by the magnetic interactions present
in the system. In the following, we consider the case of a cubic
chiral ferromagnet (e.g., FeGe, MnSi, Cu2OSeO3) immersed
in an external magnetic field Hext = Hextẑ. The corresponding
Hamiltonian

H =
∫

(AHex + DHDMI + μ0HextMsHz)dr (6)

collects three contributions, namely the exchange
energy with Hex = ∂im · ∂im, where i = x, y, z, the
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Dzyaloshinskii-Moriya energy with HDMI = m · [∇ × m],
and the Zeeman energy with Hz = 1 − mz.

Typical length- and timescales of the system (6) are de-
termined by the wave vector Q = D/(2A) and frequency
ωc2 = γ0D2/(2AMs), respectively. In terms of the dimen-
sionless units r̃ = rQ and t̃ = tωc2, system (6) is controlled
by a single parameter, which is the dimensionless mag-
netic field h = Hext/Hc2, where μ0Hc2 = ωc2/γ0. In the
following, we consider the regime Hext > Hc2 in which
the ground state is uniformly polarized along the field.
Such a polarized magnet can host isolated skyrmion strings
as topologically protected excitations [45]. In the follow-
ing, we proceed to the dimensionless order parameter
ψ = �Q.

Here we discuss two ways to derive the structure of the
string Hamiltonian. The simplest way is based on the gra-
dient expansion of the Hamiltonian density with respect to
ψ , ψ∗ and their derivatives. In the expansion, we keep only
real-valued terms, which are not total derivatives with respect
to z and which do not violate the translational and U (1)
symmetries. Due to the translational symmetry, the expansion
terms can depend only on derivatives ψ (n) and ψ∗(m), with
n, m = 1, 2, . . . . The U (1) symmetry is a consequence of the
isotropy of the model (6) within the xy-plane. As a result,
the string Hamiltonian must be invariant with respect to the
arbitrary rotations within the xy-plane, i.e., with respect to
the replacement ψ → eiαψ . The latter implies that the only
quadratic blocks ψ (n)ψ∗(m) are allowed in the string Hamilto-
nian expansion. This means that only even terms are allowed
in the expansion, i.e., the leading nonlinear terms are of the
fourth order. Finally, we present the string Hamiltonian as
follows:

H̃ =
∫

dz̃[H (0) + H (2) + H (4) + · · · ], (7)

where H̃ = H/(8πAQ−1) and z̃ = zQ. Here H (0) is the lon-
gitudinal energy density of the vertical unperturbed string;
it does not depend on the collective string variable ψ . The
harmonic and the leading nonlinear terms are as follows:

H (2) = a1

2
|ψ ′|2 + iσ

a2

4
(ψ ′ψ∗′′ − ψ∗′

ψ ′′) + a3

2
|ψ ′′|2

+ · · · ,

H (4) = − b1

4
|ψ ′|4 − iσ

b2

8
|ψ ′|2(ψ ′ψ∗′′ − ψ∗′

ψ ′′) + · · · ,

(8)

where a prime denotes the derivative with respect to z̃. The
terms proportional to (ψ ′ψ∗′′ − ψ∗′ψ ′′) are responsible for
the nonreciprocal effects since they are not invariant with re-
spect to the transformation z̃ → −z̃. Since the presence of the
derivatives ∂z̃ in DMI is the only source of nonreciprocity in
the initial model (6), the nonreciprocal terms in (8) are propor-
tional to σ = sgn(D) = ±1. Note, however, that DMI is not
the only contributor to the nonreciprocity coefficients a2 and
b2. As will be shown latter (see Appendix D), the exchange
and Zeeman interactions also contribute due to the helicity
ϕ0 = ±π/2 of the Bloch skyrmion, such that σ = sin ϕ0.
Indeed, due to the particular circulation of magnetization of
the Bloch skyrmion string (clockwise or counterclockwise),

(a) (b) Ansatz 
Ansatz 

FIG. 2. Two-step formation of the skyrmion string ansatz. Mod-
els (C1) and (C2) are shown in (a) and (b), respectively. For ansatz
m̃A, magnetization within a perpendicular cross section (shown by
cones) coincides with the equilibrium 2D skyrmion solution. In
ansatz mA, the magnetization within each cross section is inhomo-
geneously rotated such that mA meets the ground state at a distance
from the string; see Appendix C for details.

the directions ±ẑ arenot equivalent. For a Néel skyrmion
string, the nonreciprocal terms are absent in the string
Hamiltonian.

The second way to derive the structure of the string
Hamiltonian is based on the skyrmion string ansatz, which is
explained in detail in Appendix C. The string ansatz is built as
a two-step deformation of the magnetization field m0(x, y) of
the unperturbed vertical string in equilibrium. In the first step,
we consider a model m̃A(r), such that the magnetization within
each cross section perpendicular to the string coincides with
m0 (in the reference frame, defined on the section plane); see
Fig. 2(a). Although the model m̃A is intuitively clear, it cannot
be used because m̃A is not uniquely defined if the distance to
the string is larger than the curvature radius, and also m̃A does
not meet the ground state at large distances. For these reasons,
in the second step, we apply a spatially dependent rotational
transformation mA = Ru(α f )m̃A within each perpendicular
cross section. The rotation is performed around the unit vector
u = eT × ẑ/|eT × ẑ|, where eT is the unit vector, tangential to
the string. The rotation magnitude α f depends on the distance
ρ to the string center (within each cross section), and it is
such that α f → ∠(eT, ẑ) everywhere except the small region
ρ < ρ∗ around the string. Here ρ∗κ � 1, with κ being the
string curvature. It is assumed that the angle α f depends only
on ρ. This dependence is captured by some unknown function
0 < f (ρ) < 1 such that α f =0 = 0 and α f =1 = ∠(eT, ẑ); for
details, see Appendix C. The resulting magnetization is shown
in Fig. 2(b).

The localization area of function f (ρ) determines the
string vicinity whose magnetization is disturbed by the string
deformation. Numerical computation of f (ρ) shows that this
area can exceed several times the skyrmion core radius; see
Fig. 13 and the corresponding discussion in Appendix D.
Another interesting observation is that 0 < f (0) < 1, mean-
ing that the magnetization on the string’s central line γ is
neither tangential to γ nor collinear to the applied magnetic
field. However, f (0) → 1 in the limit of large fields, i.e., the
magnetization of the string line tends to be antiparallel to the
field in this limit; see Appendix D.
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The substitution of the string ansatz mA into the Hamilto-
nian (6) and the integration over the coordinates perpendicular
to the string enable us to write the string Hamiltonian in the
form (7) and (8); for details, see Appendix D. The coefficients
an and bn are functionals of the skyrmion profile θ0(ρ) and
function f (ρ). A rough estimation for the function f (ρ) is
discussed in Appendix D and is shown in Fig. 13. For details
and the explicit form of the coefficients an and bn, see Ap-
pendix D. Remarkably, the Hamiltonian obtained by means
of the ansatz completely satisfies the symmetry requirements
discussed above. Although the proposed model enables one
to estimate coefficients an and bn in a self-consistent manner,
the numerical values of these coefficients can be obtained
more accurately by means of micromagnetic simulations, as
explained in Sec. III and Appendix F. The main simplification
of the ansatz mA is that the function f (ρ) is assumed to be
radially symmetric, i.e., it depends only on the radial distance
(within a cross section) and not on the azimuth direction.
As a result, the theoretically predicted values of an and bn

are somewhat larger than the numerically obtained ones; see
Fig. 14 and the corresponding discussion in Appendix D.

In the limit of large magnetic fields (infinitely thin
strings), one has H (2) ≈ 1

2 |ψ ′|2 and H (4) ≈ − 1
8 |ψ ′|4; see

Appendix D. This reflects the increase of the string energy
due to the increase of the total string length

∫ √
1 + |ψ ′|2dz̃,

since
√

1 + |ψ ′|2 ≈ 1 + 1
2 |ψ ′|2 − 1

8 |ψ ′|4. In this limit, the ex-
change contribution to the string energy dominates.

In dimensionless units, the equation of motion (5) reads
i
2 ψ̇ = δH̃

δψ∗ , where the overdot indicates the derivative with
respect to dimensionless time t̃ , and we took into account that
Ntop = −1. With (7) and (8), we write this equation of motion
in the following explicit form:

−iψ̇ = a1ψ
′′ − ia2σψ ′′′ − a3ψ

(IV) + · · ·
− b1(ψ ′2ψ∗′)′ + ib2σ (ψ ′ψ ′′ψ∗′)′ + · · · . (9)

The limit case of Eq. (9) with an>1 = 0 and bn>1 = 0 was
previously obtained and discussed in Ref. [45].

III. HELICAL WAVE

In spite of a complicated general form, Eq. (9) has a simple
exact solution in the form of a nonlinear helical wave,

ψ = Rei(kz̃−ωt̃ ), (10)

where the real constant R plays the role of the helix radius.
The helical wave (10) has the following dispersion relation:

ω = ω0(k) − R2k2ω1(k) + · · · , (11a)

ω0(k) = a1k2 + a2σk3 + a3k4 + · · · , (11b)

ω1(k) = b1k2 + b2σk3 + · · · . (11c)

In the limit R → 0, the helical wave is transformed into the
translational magnon mode with the dispersion ω0(k) shown
in Fig. 3(a). For finite R, the leading nonlinear term in the
dispersion is represented by ω1(k). The known forms of dis-
persions ω0(k) and ω1(k) enable one to determine coefficients
an and bn by means of numerical simulations of the helical
wave dynamics for various R and k; for details, see Ap-
pendix F. The dependencies of several first coefficients an and
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FIG. 3. (a) Dispersion relation for the translational and breath-
ing linear modes propagating along the string in the field h = 2.16
(μ0Hext = 0.8 T) and for the case σ > 0. The data are obtained by
means of diagonalization of the spin-wave Hamiltonian as explained
in Ref. [45]. For k < kc, the localized translational mode does not
exist. The dependence of the critical wave vector kc on the applied
magnetic field is shown in (b). Helical waves (10) exist for k > kc

only.

bn on the applied magnetic field are shown in Fig. 4. Note
that the normalized magnetic field h is the only parameter that
controls system (6). We should emphasize that the numerical
values of the coefficients an and bn presented in Fig. 4 are
universal and valid for all cubic chiral magnets.

The wave vector k of the helical wave (10) cannot be arbi-
trary. It is limited by the domain of existence of the localized
translational magnon mode propagating along the string, i.e.,
k > kc(h); see Fig. 3. For the case k < kc, the stationary he-
lical wave (10) does not exist. In this regime, the helix radius
R decays rapidly. This process is accompanied by the magnon
emission. The regime of the magnon decay of the helical wave
is shown in Fig. 3(b) by the red shading.

The restriction to the low-energy segment of the spectrum
is supported by the gapless nature of the translational mode;
see Fig. 3(a). In other words, in the long-wave regime, the
translational mode is guaranteed to be energetically distant
from the other modes which are gapped. However, this simpli-
fication can be violated in the close vicinity of the saturation
field (h = 1), where the elliptic mode becomes also gapless

(a)
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FIG. 4. The field dependence of the linear an and nonlinear bn co-
efficients in the dispersion relation (11). Markers show the coefficient
values obtained by means of numerical simulations; for details, see
Appendix F. Solid lines show the dependencies of a1(h) and a2(h)
previously extracted from the dispersion of the translational magnon
mode; see Fig. 3(a) and Ref. [45] for details.
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(b)

(c)

(a)

FIG. 5. (a) A snapshot of a helical wave propagating along a
skyrmion string is shown in terms of the emergent field Be. Nota-
tions are the same as in Fig. 1(b). The helix radius and pitch are
8 and 120 nm (k > 0), respectively. Data are obtained from the
micromagnetic simulations for FeGe (see Appendix E for details) in
field μ0Hext = 0.7 T. (b) Magnetization isolines within the horizontal
cross section by the plane p. Dots represent the cross sections with
the string central lines defined in a different manner (explained in
the text). The time evolution of these markers is shown in (c). The
black dashed line shows the geometrical circle of radius 8 nm. The
clockwise direction of motion along the trajectories takes place also
for k < 0. The helical wave dynamics for both signs of k is illustrated
by Supplemental movies 1 and 2 [57].

[52,53] and may influence the dynamics of the translational
mode considered here.

Based on dispersions (11b) and (11c), and on the numer-
ically obtained dependencies an(h) and bn(h), we found that
the Lighthill criterion [54,55]

ω′′
0 (k)ω1(k) > 0 (12)

is satisfied for k > kc [56], meaning the modulational insta-
bility of the nonlinear helical wave (10). This effect and its
consequences are discussed in the next section.

An example of the skyrmion filament with the propagating
helical wave is shown in Fig. 5(a) in terms of the emergent
magnetic field. A specificity of the preparation of the initial
magnetization distribution used for the simulations (see Ap-
pendix F) is such that we can control the helix shape (10) of
the central line defined in (1), however the overall magnetiza-
tion structure m(r) can deviate slightly from the real solution
determined by the Landau-Lifshitz equation. As a result, a
number of higher skyrmion modes, e.g., a breathing or CCW
mode, are excited together with the helical wave. These modes

are very well recognizable in the Supplemental movies 1
and 2 [57]. We use the presence of the additional magnon
excitations in order to compare different definitions of the
string central line alternative to (1). We consider two alterna-
tive definitions of the skyrmion guiding center which are the
most common in the literature, namely the first moment of mz

component,

X̄i(z, t ) =
∫∫

xi[1 − mz(x, y, z, t )]dxdy∫∫
[1 − mz(x, y, z, t )]dxdy

, (13)

and X̃i: mz(X̃1, X̃2) = −1. A comparison of different types of
dynamics of the skyrmion guide-centers defined as (1) and
(13) is discussed in a number of previous works [58–60], in
which it was shown that the guiding center (1) demonstrates
the massless Thiele dynamics, while the guiding center de-
fined in (13) shows the additional oscillations typical for a
massive particle. The definition X̃i was widely used to study
the dynamics of merons [61–63], and it was shown that the
guiding center X̃ also demonstrates a complicated dynamics
with several additional high-frequency oscillations such that
the massive and the higher-order terms are required in the
corresponding equation of motion for X̃ (t ) [61,64]. Here,
using the helical wave as an example, we demonstrate that
the string definitions X (z, t ), X̄ (z, t ), and X̃ (z, t ) are different;
see Figs. 5(b) and 5(c). It is important that within an arbitrary
horizontal cross section z = z0, the trajectory X (z0, t ) is a cir-
cle, while trajectories X̄ (z0, t ) and X̃ (z0, t ) exhibit additional
cycloidal oscillations; see Fig. 5(c). This is in agreement with
the results discussed above for two-dimensional topological
solitons. The circular trajectory for X (z0, t ) is consistent with
the helix solution (10), and this justifies a posteriori the initial
massless equation (5), in which we implicitly assumed van-
ishing of the Poisson brackets of Xi with the amplitudes of
higher magnon modes. However, as follows from Fig. 5(c),
this assumption cannot be applied for strings X̄ (z, t ) and
X̃ (z, t ). From Fig. 5(c) one can conclude that the nonlinear
interaction between the translational mode defined via X (z, t )
and the higher modes is vanishingly small. This observation
should be a subject of future rigorous studies.

IV. WEAKLY NONLINEAR DYNAMICS OF THE STRING

Here we consider solutions of the equation of motion
(9) in the form ψ = A(z̃, t̃ )ei(k0 z̃−ω0 t̃ ) with A ∈ C in the so
called adiabatic approximation, which implies |Ȧ| � |ω0A|,
|A′| � |k0A| � 1. That is, we consider a modulated wave
with a slowly varied (in space and time) envelope profile.
It is known that for the case of nonlinear dispersion (11a),
in the low-amplitude limit, the envelope wave is governed
by the cubic nonlinear Schrödinger equation. The latter re-
sult can be obtained from the general Whitham approach in
the low-amplitude limit [55,65,66], or within the formalism
of nonlinear geometrical optics [67,68], or by means of the
multiple-scales method [46,47]. Application of the method
of multiple scales to (9) results in the following nonlinear
Schrödinger equation (NLSE):

i[Ȧ + vg(k0)A′] + μ(k0)

2
A′′ + ν(k0)A|A|2 = 0. (14)
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FIG. 6. Instability development of helical wave (10) obtained by means of micromagnetic simulations for FeGe (see Appendix E for
details) in field h = 2.16 (0.8 T). The helix radius and wave vector are R0 = 0.27 (3 nm) and k = k0 = 1.75 (2π/40 mn−1), respectively. For
the considered parameters, q∗ ≈ R0k2

0

√
b1/a1 ≈ 0.59. The dependencies X1(z) shown in the bottom (red line) are extracted from the simulation

data with the use of Eq. (1). The envelope R(z) = √
X 2

1 + X 2
2 is shown by the gray line.

Here the group velocity vg(k) = ∂kω0 as well as coefficients
μ(k) = ∂2

k ω0 and ν(k) = k2ω1(k) are completely determined
by the nonlinear dispersion (10). For details, see Appendix G.
In the reference frame z̃′ = z̃ − vg(k0)t̃ which moves with the
group velocity, the equation for amplitude A has the form of
a classical NLSE,

iȦ + μ(k0)

2
A′′ + ν(k0)A|A|2 = 0. (15)

Based on (11b) and (11c), and on the numerically obtained
dependencies an(h) and bn(h), we verified that μ(k0) > 0
and ν(k0) > 0 for k0 > kc, meaning that NLSE (15) is of a
focusing type. The latter agrees with the Lighthill criterion
(12).

Solutions of NLSE (15) are well studied and classified
[69–71]. In the rest of this section, we use micromagnetic
simulations in order to confirm the existence and verify the
main properties of the string excitations in the form of the
solutions predicted by NLSE (15).

A. Instability of the nonlinear helical wave

In the following, it is convenient to present the wave
envelope in the form A = R(z̃′, t̃ )eiφ(z̃′,t̃ ), where R, φ ∈ R.
Equation (15) has a spatially uniform solution that corre-
sponds to the helical wave considered in Sec. III. In this
case, R = R0 = const and φ = �t̃ , where � = R2

0ν(k0) =
R2

0k2
0ω1(k0) is a nonlinear shift of frequency of the helical

wave. Introducing small deviations R̃ and φ̃ such that R =
R0 + R̃ and φ = �t̃ + φ̃, we obtain from (15) the correspond-
ing linearized equations for the deviations, whose solutions
R̃, φ̃ ∝ ei(qz̃−ω̃t̃ ) are characterized by the dispersion relation

ω̃ = |q|
√

q2μ2(k0)/4 − μ(k0)ν(k0)R2
0. (16)

Thus, if the condition (12) holds, the helical wave is unstable
for |q| < q0 = 2R0

√
ν(k0)/μ(k0) = 2R0|k0|

√
ω1(k0)/ω′′

0 (k0)
and the maximum of the instability increment κmax =
R2

0ν(k0) corresponds to q∗ = q0/
√

2.
We verified these predictions on the helical wave instability

by means of micromagnetic simulations [72]. The initial mag-
netization state in the form of the helical wave was prepared
as explained in Appendix F. Using (1), we extract the central
string line X (z, t ) from the simulation data of the magneti-
zation dynamics. The time development of the modulational
instability of the helical wave is shown in Fig. 6 in terms
of X (z, t ) and in terms of the corresponding ψ (z̃, t̃ ). Apply-
ing the Fourier transform ψ̂k (t̃ ) = L−1

z

∫ Lz

0 ψ (z̃, t̃ )e−ikz̃d z̃, we
observe the development of the cascade of satellites at k =
k0 ± nq∗, which is a signature of the modulation instability
[55]. Note the good agreement of the satellites positions with
the predictions (vertical dashed lines).

Note that the typical time of the instability development
τ ∗ = 1/κmax ∝ k−4

0 rapidly increases with the decrease of
the wave vector. This feature was utilized for numerical de-
termination of the coefficients an and bn by means of the
micromagnetic simulations. The values of k0 used in these
simulations were two to four times smaller than k0 in Fig. 6;
see Appendix F. Thus, the instability effects were negligible
during the simulation time. Another way to avoid the helical
wave instability is to simulate a short sample with the length
Lz = 2π/|k0| < 2π/q0 and the periodic boundary conditions
applied along z. In this case, the wave vectors |q| < q0 of the
unstable excitations do not exist in the system.

B. Cnoidal waves and solitons

As a generalization of the helical wave solution A =
R0ei�t̃ with constant radius, NLSE (15) has a class of
traveling-wave solutions with coordinate-dependent and static
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dn-wave cn-wave
(a) (b)

FIG. 7. Nonlinear waves of a skyrmion string in FeGe obtained by means of micromagnetic simulations (see Appendix E for details) for
a magnetic field μ0Hext = 0.8 T. Red and gray lines in the plots have the same meaning as in Fig. 6. The upper plots (t = 0) in insets (a) and
(b) show the initial perturbation of the skyrmion string. The perturbations are close to solutions (17) and (19), respectively. The lower plots
demonstrate the snapshots taken at time moments t = 10T and 15T , with T = L/vg being the time it takes for a wave to cover a distance equal
to its period L. The wavelength of the carrying wave is 80 nm (k0 = 0.875). For both panels, the vertical insets show the 3D string shape at
t = 15T . Note that the horizontal sizes are magnified 30 times. The dynamics of the dn- and cn-waves is demonstrated in the Supplemental
movies 3 and 4, respectively [57].

(in the moving reference frame) profiles A = R(z̃′)ei�t̃ . Here
the frequency � = νR2

0 is the same as for the helical wave.
The first integral of the corresponding equation for R(z̃′)
is R′2 + W (R) = E0, where W (R) = ν

μ
R2(R2 − 2R2

0). For

NLSE (15) of a focusing type, constant E0 > − ν
μ
R4

0 can be
interpreted as the energy of an oscillator with potential well
W (R). Solutions for R(z̃′) depend on two parameters R0 and
E0, and they are divided into two classes depending on the
sign of E0. The “negative energy” solutions have the profile

RDN = Rmaxdn(z̃′/�DN, sDN), (17)

where dn(x, s) is a Jacobian elliptic function [73] with modu-
lus sDN =

√
1 − R2

min/R
2
max, and �DN = R−1

max

√
μ/ν. Here, as

an alternative to parameters R0 and E0, we use parameters
Rmax and Rmin, such that R2

0 = (R2
max + R2

min)/2 and E0 =
− ν

μ
R2

maxR
2
min. Parameters Rmax and Rmin denote maximal and

minimal amplitudes of the dn-wave; see Fig. 7(a). The wave
period is LDN = 2�DNK(sDN), with K(x) being the complete el-
liptic integral of the first kind. In the limit case Rmin → Rmax,
the cnoidal wave (17) transforms to the helical wave with an
excitation of vanishing amplitude R̃ = (Rmax − Rmin)/2 and
wave vector q = q0 corresponding to the edge of the helical
wave instability. For the case Rmin � Rmax, the solution (17)
has the form of a train of solitary waves separated by the dis-
tance LDN ≈ 2�DN ln(2Rmax/Rmin). In the limit case Rmin = 0,
the cnoidal wave (17) transforms to a soliton,

Rsol = Rmax

cosh(z̃′/�DN)
, (18)

with energy E0 = 0. So, soliton (18) is the separatrix solution
between two classes of nonlinear waves with E0 < 0 and E0 >

0. In the latter case, the envelope profile is

RCN = Rmaxcn(z̃′/�CN, sCN), (19)

where �CN = (R2
max + R2

min)−1/2√μ/ν and sCN =
1/

√
1 + R2

min/R
2
max. Here the parameters Rmax and

Rmin are chosen such that R2
0 = (R2

max − R2
min)/2 and

E0 = ν
μ
R2

maxR
2
min. In contrast to dn-waves (17), the profile of

cn-wave (19) has nodes where RCN = 0. The distance between
nodes is LCN/2 = 2�CNK(sCN). In the limit case Rmin = 0,
cn-wave (19) is transformed into soliton (18). In the literature,
the nonlinear waves (17) and (19) described by the elliptical
functions are known as “cnoidal waves.” They are common
for different physical media, with the widely known examples
being shallow water [46,66] and atmosphere [74].

Solutions (17), (19), and (18) represent a partial case
of traveling waves moving exactly with the group velocity
vg(k0). The generalization for the case of arbitrary velocity
is realized by means of the replacement z̃′ → z̃′ − V t̃ . In this
case, φ = �t̃ + V

μ
(z̃′ − V

2 t̃ ). Note that V is the envelope ve-
locity in the moving reference frame z̃′ = z̃ − vg(k0)t̃ . Three
parameters Rmax, Rmin, and V are stabilized by three inte-
grals of motion, the number of excitations N = ∫ Lz

0 R2dz̃′,
momentum P = −V

μ
N , and energy E = V 2

2μ
N + 1

2

∫ Lz

0 (μR′2 −
νR4)dz̃′.

To verify the predictions of the NLSE (15) considered
above, we performed a number of micromagnetic simula-
tions [75]. The initial state was created programmatically
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(a) (b)

(c)

FIG. 8. Soliton solution (18) obtained by means of micromag-
netic simulations of a skyrmion string in FeGe (see Appendix E
for details) in a magnetic field μ0H = 0.8 T. The dashed blue line
shows the initial soliton profile; the other notations are the same as
in Fig. 7. Insets (a) and (b) shows the snapshots taken in different
moments of time starting from the beginning of the simulations.
Panel (c) is the 3D version of the inset (a). The wave vector of
the carrying wave k0 = 1.17 (wavelength 60 nm) corresponds to the
group velocity vg = 2.2 (1.64 × 103 m/s). The latter is close to the
soliton velocity vs = 2.1 (1.52 × 103 m/s) found in the simulations.
The soliton dynamics is shown in movie 5 [57].

in the form of a skyrmion string, whose shape corresponds
approximately to the theoretically predicted solution for a dn-
or cn-wave with the profiles determined by (17) or (19), re-
spectively. Then for a short time (≈10 ps), the micromagnetic
dynamics was relaxed, i.e., run with high Gilbert damping
(αG = 0.5). In the next step, the damping was switched off and
the micromagnetic dynamics was simulated for a long time
(10 ns). The technical details of the simulations can be found
in Appendix E. We observe the propagation of the created
nonlinear wave with an almost unchanged envelope profile;
see Fig. 7. The latter says that the initially created wave is a
solution of the equations of string dynamics. The slight profile
deformation during dynamics takes place because of deviation
of the initial states from the exact solutions. This deviation
is approximately 10%, and it appears unavoidably due to the
relaxation procedure applied on the second step. The dynam-
ics of the cnoidal waves extracted from the simulations are
demonstrated in the Supplemental movies 3 and 4 [57].

The propagation of solitons along the skyrmion string was
considered in detail in our previous work [45]; see also the
Supplemental movies in Ref. [45]. However, for the sake
of completeness, we present here an example of the soliton
dynamics obtained by means of micromagnetic simulations;
see Fig. 8. The initial state was close to solution (18) with
Rmax = 0.27 (3 nm) and �DN = 5.17 (57.6 nm). These pa-
rameters are consistent with the wave vector k0 = 1.17 ( 2π

60 nm )
of the carrying wave. Note that the soliton keeps its shape
close to the initial profile (blue dashed line). Due to the im-
perfectness of the initial state and the discreteness effects, the
low-amplitude magnons are generated on background. The
corresponding energy loss leads to an insignificant reduction
of the soliton amplitude; see panels (a) and (b) in Fig. 8. The
complete time evolution of the soliton propagation is shown
in Supplemental movie 5 [57].

C. A breather solution

The solutions of the NLSE (15) considered above have the
form of traveling waves, i.e., there is a frame of reference
in which the envelope wave |A| is static. Here we consider
breathers—the family of solutions beyond the class of travel-
ing waves. There are several kinds of breathers of the NLSE:
localized in space and periodic in time Ma breathers [76], a
localized in time and periodic in space Akhmediev breather
[70], and a Peregrine solution that is localized in both space
and time [77]. In the following, we focus on the Ma breather,
which is a spatially localized periodically pulsating perturba-
tion of a helical wave in the form [76] AMA = R0�(z̃′, t̃ )ei�t̃ ,
where � = ν(k0)R2

0 is the same as for the helical wave, and

�(z̃′, t̃ ) = cos(�MAt̃ − 2iϕ) + cosh(z̃′/�MA) cosh ϕ

cos(�MAt̃ ) + cosh(z̃′/�MA) cosh ϕ
. (20)

In addition to the characteristics of the carrying wave R0

and k0, the breather solution is controlled also by the real-
valued parameter ϕ. These parameters determine the pulsation
frequency �MA = � sinh(2ϕ) and the breather width �MA =
�DN/(2 sinh ϕ). The breather amplitude A0

MA = |AMA(z̃′ = 0)|
varies in the range R0(2 cosh ϕ − 1) � A0

MA � R0(2 cosh ϕ +
1) during the pulsations. The considered breather moves with
the group velocity. The generalization for the case of arbitrary
velocity V is the same as for the traveling-wave solutions.

Using micromagnetic simulations, we found the Ma
breather for a skyrmion string in FeGe; see Fig. 9. A very good
agreement between the simulated and theoretical breather
profiles [Figs. 9(a)–9(d)] as well as the observed periodic
breathing behavior prove that the Ma breather is indeed a
solution of the skyrmion string dynamics. Nevertheless, one
has to note that in simulations the breather develops insta-
bility after the first three breathing periods. This instability
has several sources. In contrast to solitons, the breather is
the excitation of the helical wave of a finite amplitude. As
was shown above, such waves demonstrate modulational in-
stability. Also, for technical reasons related to the limited
computational resources, we were able to simulate a breather
for the relatively large wave vector of the carrying wave, k0 =
1.75. Since k0A

0
MA ≈ 0.71, we are at the edge of applicability

of the developed theory, which implies |k0A| � 1. Due to the
large value of k0, one can only approximately estimate linear
ω0(k0) and nonlinear ω1(k0) parts of the dispersion if only
the few first terms in (11) are taken into account. This is the
reason why the theoretically expected period of the breathing
2π/�MA ≈ 0.49 ns differs from the period TMA ≈ 0.76 ns
obtained in the simulations.

V. COLLECTIVE DYNAMICS OF GENERALIZED
STRINGS

Previously we considered the case when the collective
variables Xi(z, t ) have a sense of the string displacement in
the xy-plane. Let us now consider a generalized ansatz

m(r, t ) = m0(x, y, Xi(z, t ), X ′
i (z, t )), (21)

where m0 is a known function, and the string collective
variables Xi can have an arbitrary sense. In this section,
we use a prime and an overdot for the derivatives with re-
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(a) (b) (c) (d)

(e) (f)
(g)

FIG. 9. (a)–(d) Micromagnetic simulations (see Appendix E for details) of the time evolution of Ma breather along the skyrmion string
in FeGe for μ0Hext = 0.8 T. The carrying helical wave has amplitude R0 = 1 nm (R0 = 0.01) and pitch 40 nm (k0 = 1.75). We consider the
case ϕ = 1.1. The dashed blue line shows the theoretically predicted profile R = |AMA|/Q determined by (20) for given parameters, while
the solid red and gray lines represent the simulation data; they have the same meaning as in Figs. 6 and 7. Insets (e) and (f) show the 3D
structure of the breather for the time moments corresponding to the maximal and minimal amplitude. Note the 30× magnification in the
directions perpendicular to the magnetic field. Breathers move with the group velocity vg(k0 ); however, in each snapshot the breather is shown
in the center of the sample for better visual perception. Inset (g) shows the time evolution of the breather amplitude Rmax = A0

MA/Q. Dashed
horizontal lines indicates the theoretically predicted boundaries for the breather amplitude; see the discussion in the text. The period of the
simulated breather is TMA = 0.76 ns. The breather dynamics is shown in Supplemental movie 6 [57].

spect to z and t , respectively. The equation of motion for
Xi can be formulated in the general form δS/δXi = δF/δẊi,
where S = ∫

dt
∫

dzL is the action with the Lagrangian L =
Ms
γ0

∫∫
[A(m) · ṁ]dxdy − H, and F = ∫

dzF is the dissipation

function with F = α
2

Ms
γ0

∫∫
ṁ2dxdy. Here the vector potential

A is such that m · (∇m × A) = 1, and the system Hamil-
tonian is H = ∫

dzH. For the model (21), the equations of
motion have the following form

[
G(0)

i j +(
G(1)

ji

)′]
Ẋ j +[

G(1)
i j + G(1)

ji −(
G(2)

i j

)′]
Ẋ ′

j − G(2)
i j Ẋ ′′

j

= δH

δXi
+ α

{[
D(0)

i j − (
D(1)

ji

)′]
Ẋ j

+ [
D(1)

i j − D(1)
ji − (

D(2)
i j

)′]
Ẋ ′

j − D(2)
i j Ẋ ′′

j

}
; (22)

for details, see Appendix H. The gyroscopic G(n)
i j and dissipa-

tion D(n)
i j tensors are functionals of Xi and their derivatives, and

they are listed in (H3) in Appendix H. Tensors G(0)
i j = −G(0)

ji

and G(2)
i j = −G(2)

ji are asymmetrical by definition, while ten-

sors D(0)
i j = D(0)

ji and D(2)
i j = D(2)

ji are symmetrical. Note that

(G(n)
i j )′ ∝ X ′

i , X ′′
i and (D(n)

i j )′ ∝ X ′
i , X ′′

i , so these terms in (22)
result in the nonlinear corrections.

A. Radially symmetrical excitation of the skyrmion string

As an example of an application of the generalized
equations (22), we consider the dynamics of the radially sym-
metrical deformation of the string. It can be described by the
following ansatz:

θ = θ0(ρ/s), φ = χ + π

2
+ ϕ, (23)

where θ and φ are the spherical angles of the parametrization
m = sin θ (cos φx̂ + sin φŷ) + cos θ ẑ, and (ρ, χ ) are polar co-
ordinates within the xy-plane. Here, θ0(ρ) is the profile of
the unperturbed skyrmion, and s(z, t ) = X1 and ϕ(z, t ) = X2

are the collective string variables. According to (H3), we
have G(0)

i j = 2πεi j |c|sMs/(γ0Q2) and G(1)
i j = G(2)

i j = 0. Here

c = ∫ ∞
0 ρ̃2 sin θ0θ

′
0(ρ̃)dρ̃ < 0, where ρ̃ = Qρ.

In what follows, we neglect damping for simplicity. In
terms of the dimensionless time t̃ = tωc2 and coordinate z̃ =
zQ, we write the equations of motion (22) in the form

2|c|s∂t̃ϕ = δH̃

δs
, −2|c|s∂t̃ s = δH̃

δϕ
, (24)

where the dimensionless Hamiltonian is

H̃ =
∫ ∞

−∞
dz̃{eex + c1(∂z̃s)2 + c2s2[(∂z̃ϕ)2 − 2∂z̃ϕ]

+ 2edmis cos ϕ + 2ezhs2}. (25)

To obtain the effective Hamiltonian (25) for the collective
string variables s and ϕ, we substitute ansatz (23) into the
main Hamiltonian (6) and perform the integration over the
xy-plane. Finally, we obtain H = 2πAQ−1H̃ . The constants
eex = H (0)

ex /4, edmi = H (0)
DMI /4, and ez = H (0)

z /4 represent
(up to a constant multiplier) the exchange, DMI, and Zeeman
energies of the unperturbed skyrmion string, respectively; see
Appendix D for the definitions of H (0)

• . The other constants
are c1 = ∫ ∞

0 ρ̃3θ ′
0(ρ̃)2dρ̃ and c2 = ∫ ∞

0 ρ̃ sin2 θ0dρ̃.
The explicit form of the equations of motion (24) is

|c|s∂t̃ s = c2s2∂2
z̃ ϕ − 2c2s∂z̃s(1 − ∂z̃ϕ) − |edmi|s sin ϕ,

|c|s∂t̃ϕ = −c1∂
2
z̃ s + c2s[(∂z̃ϕ)2 − 2∂z̃ϕ]

+ |edmi|(s − cos ϕ). (26)
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exact

coll. variables

FIG. 10. The dispersion relation of the breathing mode for h =
2.16 (μ0Hext = 0.8 T) (solid line) is compared to the collective vari-
ables approximation (27) (dashed line) with the following values of
the constants: c ≈ −0.684, c1 ≈ 1.299, c2 ≈ 0.397, edmi ≈ −1.477.
The “exact” solution is the same as in Fig. 3(a).

Writing (26), we exclude ez by means of the virial relation
2hez + edmi = 0 and we use that edmi < 0. The solution s = 1
and ϕ = 0 corresponds to the ground state if h > 1.

Next, we introduce small deviations s = 1 + s̃ and ϕ = ϕ̃

on the top of the ground state. The linearization of (26) with
respect to the deviations results in the planar wave solutions
s̃, ϕ̃ ∝ ei(kz̃−ωt̃ ) with the dispersion relation

|c|ω = 2c2k +
√

(c1k2 + |edmi|)(c2k2 + |edmi|)

≈ |edmi| + 2c2k + c1 + c2

2
k2. (27)

Note that c1 + c2 is the second moment of the exchange en-
ergy density of the unperturbed string. The comparison of the
approximated dispersion (27) with the exact one is shown in
Fig. 10.

Equations of motion (24) are Euler-Lagrange equations of
the Lagrange function

L = |c|
∫ ∞

−∞
s2∂t̃ϕ dz̃ − H̃ . (28)

The invariance of the Lagrange function with respect to trans-
lations along t̃ and z̃ results in two integrals of motion, namely
energy E = H̃ and momentum P = −|c| ∫ ∞

−∞ s2∂z̃ϕdz̃. From
the latter expression, we derive δP = 2|c| ∫ ∞

−∞ s[∂z̃sδϕ −
∂z̃ϕδs]dz̃. On the other hand, we can write δE = ∫ ∞

−∞[ δH̃
δϕ

δϕ +
δH̃
δs δs]dz̃, and with the help of (24) we obtain δE = V δP

for the traveling-wave solutions s = s(z̃ − V t̃ ) and ϕ = ϕ(z̃ −
V t̃ ). Thus, we obtain a Hamiltonian equation V = ∂E/∂P.
Note that the second Hamiltonian equation is ∂t̃ P = 0 due to
the momentum conservation.

For the traveling-wave solutions, functions s(z̃′) and ϕ(z̃′)
are determined by the equations

|c|V ss′ = − c2s2ϕ′′ + 2c2ss′(1 − ϕ′) + |edmi|s sin ϕ,

|c|V sϕ′ = c1s′′ − c2s[ϕ′2 − 2ϕ′] − |edmi|(s − cos ϕ),
(29)

(a) (b)

FIG. 11. Topological solutions of Eqs. (29) in form of a 2π -
domain wall are obtained for different V . We consider the case
with h = 1.05 corresponding to c ≈ −3.34, c1 ≈ 7.4, c2 ≈ 1.67, and
edmi ≈ −3.51.

where a prime denotes the derivative with respect to z̃′ =
z̃ − V t̃ . Note that it is technically easier to find the numerical
solutions s(z̃′) and ϕ(z̃′) as minimizers of the effective energy
Eeff = E − V P.

Equations (29) have solutions in the form of a 2π -domain
wall (DW), which encircles the skyrmion tube; see Fig. 11.
In the center of the DW, φ = π , see Fig. 11(b), meaning that
the skyrmion helicity there is opposite to the equilibrium one.
The latter results in a significant increase of the DMI energy.
As a result, the skyrmion tube shrinks at the DW position
in order to reduce the DMI energy; see Fig. 11(a). On the
other hand, the skyrmion tube shrinking leads to an increase
of the magnetization gradients, and therefore to an increase
of the exchange energy. The competition between exchange
and DMI results in a small but nonvanishing radius of the
skyrmion tube in the domain-wall center. Remarkably, the
DW motion against the applied magnetic field (V < 0) can
significantly increase the skyrmion tube radius in the DW
position; see the case V = −0.5 in Fig. 11(a). The latter effect
is promising for avoiding the skyrmion string breaking in
possible experimental realization of the considered DW.

VI. CONCLUSIONS

We have shown that the low-energy dynamics of a transla-
tional mode propagating along a skyrmion string is captured
by the focusing-type nonlinear Schrödinger equation (NLSE).
As a result, a number of solutions of the NLSE are found and
confirmed by means of micromagnetic simulations, namely
cnoidal waves, solitons, and breathers. Finally, we proposed
a generalized approach that enables one to describe the non-
linear dynamics of the modes of different symmetries, i.e.,
radially symmetric, elliptical, etc.

The approach proposed herein has a wide spectrum of fu-
ture perspectives: (i) it can be applied for antiskyrmion strings
as well as for meron strings, (ii) it can be adapted for anti-
ferromagnetic skyrmion or meron strings, (iii) it can be used
to analyze the weakly nonlinear dynamics of higher modes of
the strings. Although the surface effects were not considered
in this study, the possible interaction of string solitons with
the magnet boundary, e.g., the effect of reflection, can be a
subject of a further study.
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APPENDIX A: POISSON BRACKETS FOR THE STRING
COLLECTIVE VARIABLES

As a direct consequence of (3), one can show that the
Poisson brackets of any two functionals F [m], G[m] are [78]

{F, G} = − γ0

Ms

∫
m ·

[
δF

δm
× δG

δm

]
dr. (A1)

The string coordinates (1) can be considered as functionals of
magnetization:

Xi(z) = 1

Ntop

∫
x′

igz(r′)δ(z − z′)dr′. (A2)

Straightforward calculation of the functional derivative results
in

δXi(z)

δm(z′)
= 1

4πNtop
{3xi[∂xm × ∂ym]

+ εi j[m × ∂x j m]}δ(z − z′). (A3)

The usage of (A3) in (A1) results in (4).

APPENDIX B: DEFINITION AND PROPERTIES
OF THE CURVILINEAR COORDINATES

The aim of this Appendix is to introduce a curvilinear
frame of reference that follows the form of a string. Such
a reference frame is convenient for the formulation of the
skyrmion string ansatz and for calculation of the string energy.

Let us consider a 3D curve γ : R → R3 parametrized by
means of the scalar parameter −∞ < ζ < ∞ in the following
manner: γ (ζ ) = X (ζ ) + ζ ẑ, where X (ζ ) = X1(ζ )x̂ + X2(ζ )ŷ.
The unit vector tangential to the string is

eT(ζ ) = X ′ + ẑ√
1 + |X ′|2

. (B1)

Here and below, a prime denotes derivative with respect to
ζ . Within the plane perpendicular to eT, we introduce two

FIG. 12. Geometrical meaning of the notations used in Ap-
pendixes B and C as well as in the main text.

orthogonal unit vectors e1 and e2 as follows:

e1(ζ ) = x̂ − eT(eT · x̂)√
1 − (eT · x̂)2

, e2(ζ ) = eT × e1. (B2)

That is, vector e1 is the normalized projection of the Cartesian
basis vector x̂ on the plane perpendicular to eT. The Cartesian
and local bases are illustrated in Fig. 12. We parametrize the
space domain, which includes curve γ and its vicinity, as
r(ξ1, ξ2, ζ ) = γ (ζ ) + ξ1e1(ζ ) + ξ2e2(ζ ), where ξ1, ξ2, ζ are
local coordinates of the frame of reference defined on the
string. In other words, (ξ1, ξ2) are coordinates within the plane
�ζ perpendicular to the string that crosses the string in point
r = γ (ζ ).

The explicit form of the relation between coordinates
{x, y, z, t} of the laboratory frame of reference and coordinates
{ξ1, ξ2, ζ , τ } of the string frame of reference is

x = X1(ζ , τ ) + (e1 · x̂)ξ1 + (e2 · x̂)ξ2,

y = X2(ζ , τ ) + (e1 · ŷ)ξ1 + (e2 · ŷ)ξ2,

z = ζ + (e1 · ẑ)ξ1 + (e2 · ẑ)ξ2,

t = τ,

(B3)

where ei = ei(ζ , τ ). So, on the curve γ one has (ξ1, ξ2) =
(0, 0) and ζ = z.

The differentials of the coordinates are related via Jacobian J:⎡
⎢⎢⎢⎣

dx
dy

dz

dt

⎤
⎥⎥⎥⎦ = J

⎡
⎢⎢⎢⎣

dξ1

dξ2

dζ

dτ

⎤
⎥⎥⎥⎦, J =

⎡
⎢⎢⎢⎢⎣

(e1 · x̂) (e2 · x̂) X ′
1 + (e′

1 · x̂)ξ1 + (e′
2 · x̂)ξ2 ∂τ X1 + (∂τ e1 · x̂)ξ1 + (∂τ e2 · x̂)ξ2

(e1 · ŷ) (e2 · ŷ) X ′
2 + (e′

1 · ŷ)ξ1 + (e′
2 · ŷ)ξ2 ∂τ X2 + (∂τ e1 · ŷ)ξ1 + (∂τ e2 · ŷ)ξ2

(e1 · ẑ) (e2 · ẑ) 1 + (e′
1 · ẑ)ξ1 + (e′

2 · ẑ)ξ2 (∂τ e1 · ẑ)ξ1 + (∂τ e2 · ŷ)ξ2

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (B4)

Determinant |J| determines the volume element in the curvilinear frame of reference, namely dx dy dz dt = |J|dξ1 dξ2 dζ dτ .
For small derivatives of Xi we can write |J| = 1 − (ξ1X ′′

1 + ξ2X ′′
2 ) + 1

2 |X ′|2 + · · · . Note that due to the structure of Jacobian
(B4), one has dt = dτ and therefore dx dy dz = |J|dξ1 dξ2 dζ .
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Elements of the inverted Jacobian determine derivatives
with respect to the Cartesian coordinates:

J−1 =

⎡
⎢⎢⎢⎣

∂xξ1 ∂yξ1 ∂zξ1 ∂tξ1

∂xξ2 ∂yξ2 ∂zξ2 ∂tξ2

∂xζ ∂yζ ∂zζ ∂tζ

∂xτ ∂yτ ∂zτ ∂tτ

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1 0 −X ′
1 −∂τ X1

0 1 −X ′
2 −∂τ X2

X ′
1 X ′

2 1 + ξ1X ′′
1 + ξ2X ′′

2 ξ1∂τ X ′
1 + ξ2∂τ X ′

2

0 0 0 1

⎤
⎥⎥⎥⎦

+ o(X ). (B5)

Thus, we find that the spatial derivatives are related as

∂x = ∂ξ1 + X ′
1∂ζ + o(X ),

∂y = ∂ξ2 + X ′
2∂ζ + o(X ),

∂z = − X ′
1∂ξ1 − X ′

2∂ξ2 + (1 + ξ1X ′′
1 + ξ2X ′′

2 )∂ζ + o(X ). (B6)

And the time derivative is

∂t = ∂τ − ∂τ X1∂ξ1 − ∂τ X2∂ξ2 + (ξ1∂τ X ′
1 + ξ2∂τ X ′

2)∂ζ + o(X ).

(B7)

Quadratic and higher-order terms in derivatives of Xi are de-
noted as o(X ).

APPENDIX C: ANSATZ FOR THE SKYRMION STRING

Let us first consider the magnetization distribution in the
form

m̃A(ξ1, ξ2, ζ ) = sin θ0(ρ) cos φ0(ξ1, ξ2) e1(ζ )

+ sin θ0(ρ) sin φ0(ξ1, ξ2) e2(ζ )

+ cos θ0(ρ)eT(ζ ), (C1)

where ξ1, ξ2, ζ are curvilinear coordinates introduced in Ap-
pendix B. Namely, the coordinates (ξ1, ξ2) sweep the plane
of perpendicular cross section �ζ of the string made in point
r = γ (ζ ). Here θ0(ρ) is the profile of the vertical equilibrium
string oriented along the applied magnetic field, and ρ =√

ξ 2
1 + ξ 2

2 . The function θ0(ρ) is assumed to be known, and it
coincides with the skyrmion profile in a 2D magnet. The angu-
lar variable φ0(ξ1, ξ2) = χ + ϕ0 determines the magnetization
orientation within the plane �ζ . Here cos χ = ξ1/

√
ξ 2

1 + ξ 2
2

and sin χ = ξ2/
√

ξ 2
1 + ξ 2

2 . In other words, (ρ, χ ) are polar
coordinates within �ζ in the same manner as for a planar
skyrmion; see Fig. 12. Constants ϕ0 = ±π/2 and ϕ0 = 0, π

for Bloch and Néel skyrmion strings, respectively. An exam-
ple of the magnetization distribution (C1) for a Bloch string is
shown in Fig. 2(a).

So, for a given ζ , model (C1) determines the magnetization
within �ζ . However, (C1) cannot be used as a string ansatz
because it is ambiguous on large distances from the string
where different planes �ζ for different ζ can intersect. In
other words, model (C1) makes sense only for ρκ � 1, where
κ is the string curvature. Moreover, (C1) does not satisfy the
required boundary condition lim�→∞ m = ẑ. For this reason,

FIG. 13. Functions f obtained as solutions of Eq. (D7) for dif-
ferent values of magnetic field h are compared to the corresponding
skyrmion profiles mz.

we consider the modified ansatz

mA(ξ1, ξ2, ζ ) = Ru(α f )m̃A(ξ1, ξ2, ζ ). (C2)

Here Ru(α f ) is Rodrigues’ rotation matrix

Ru(α f ) = cos α f I + sin α f [u]× + (1 − cos α f )(u ⊗ u),
(C3)

which rotates the vector m̃ around the unit vector u by angle
α f . Here I is the identity matrix and [u]× is the cross-product
matrix of u. We choose u = eT × ẑ/|eT × ẑ| and

cos α f =
√

1 + [1 − f 2(ρ)]|X ′|2√
1 + |X ′|2

, sin α f = f (ρ)|X ′|√
1 + |X ′|2

.

(C4)

Here function 0 � f (ρ) � 1 controls the magnitude of rota-
tion: the case f = 0 corresponds to the absence of rotation,
while the case f = 1 corresponds to complete rotation by
angle ϑτ = ∠(eT, ẑ). The unknown function f (ρ) must have
the property limρ→∞ f (ρ) = 1. In the following, we assume
that f ∗ = 1 − f is a localized function whose localization
radius ρ∗ is much smaller than the curvature radius of the
string, i.e., ρ∗κ � 1. A rough estimation of the function f (ρ)
is discussed in Appendix D; see Fig. 13.

For |X ′| � 1, the rotation matrix is approximated as

Ru(α f ) ≈

⎡
⎢⎢⎢⎣

1 − f 2X ′2
1

2 − f 2X ′
1X ′

2
2 − f X ′

1

− f 2X ′
1X ′

2
2 1 − f 2X ′2

2
2 − f X ′

2

f X ′
1 f X ′

2 1 − f 2|X ′|2
2

⎤
⎥⎥⎥⎦. (C5)

An example of model (C2) is shown in Fig. 2(b).

APPENDIX D: MAGNETIC ENERGIES OF THE STRING

In this Appendix, we compute the contribution from each
energy term separately. The exchange interaction is

Hex = A
∫∫∫

dxdydz(∂im · ∂im)

= A
∫

dζ

∫∫
dξ1dξ2|J|(∂imA · ∂imA), (D1)

where i ∈ {x, y, z} are Cartesian coordinates. For mA we use
ansatz (C2) for the case θ0(0) = π and θ0(∞) = 0. The
Jacobian |J| is determined from (B4). For the derivatives
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∂i we use (B6) with a sufficient number of terms. Finally,
straightforward calculation enables us to write (D1) in the
form

Hex = 8πAQ−1
∫

d ζ̃
(
H (0)

ex + H (2)
ex + H (4)

ex + · · · ),
H (0)

ex = c0,

H (2)
ex = c0 + c̃0

2
|X′|2 + c1

2
sin ϕ0[X′ × X′′]z + c2

2
|X′′|2,

H (4)
ex = −

1
2 c0 + c̄0

4
|X′|4 − c3

4
sin ϕ0| X′|2[ X′ × X′′]z.

Here X = QX , ζ̃ = Qζ with Q = D/(2A), and X′ = ∂ζ̃X. The
coefficients are functionals of θ0(ρ̃ ) and f (ρ̃ ):

c0 = 1

4

∫ ∞

0

[
θ ′

0
2 + sin2 θ0

ρ̃2

]
ρ̃ dρ̃,

c̃0 = 1

4

∫ ∞

0
f ′2(1 + cos2 θ0)ρ̃ dρ̃,

c1 = −1

2

∫ ∞

0
ρ̃2θ ′

0 f ′dρ̃,

c2 = 1

4

∞∫
0

ρ̃(1 + cos2 θ0)(1 − f )2dρ̃,

c̄0 = 1

4

∫ ∞

0
ρ̃(1 + cos2 θ0) f ′2(1 − 2 f 2)dρ̃,

c3 = −1

2

∫ ∞

0
ρ̃2θ ′

0 f ′(2 − f 2)dρ̃,

where ρ̃ = Qρ, θ ′
0 = ∂ρ̃θ0 and f ′ = ∂ρ̃ f . Note the absence of

the cubic nonlinear term.
In an analogous manner, we determine the energy of DMI:

HDMI = D
∫

dζ

∫∫
dξ1dξ2|J| mA · [∇ × mA]

= 8πDQ−2
∫

d ζ̃
(
H (0)

DMI + H (2)
DMI + H (4)

DMI + · · · ).
Here H (0)

DMI = 1
4 sin ϕ0

∫ ∞
0 EDMI(ρ̃)ρ̃ dρ̃ = const with EDMI =

θ ′
0 + 1

ρ̃
sin θ0 cos θ0 represents DMI energy density of the ver-

tical equilibrium string. The higher-order terms are as follows:

H (2)
DMI = c6

2
sin ϕ0|X′|2 + c7

2
[X′ × X′′]z,

H (4)
DMI = −c8

4
sin ϕ0|X′|4 − c9

4
|X′|2[X′ × X′′]z.

Note that the cubic terms are absent, similar to the case of the
exchange energy. The coefficients have the following form:

c6 = 1

8
[(2 − f 2)EDMI + f f ′ sin 2θ0]ρ̃dρ̃,

c7 = −1

2

∫ ∞

0
dρ̃ρ̃(1 − f )[1 − f cos2 θ0],

c8 = 1

16

∫ ∞

0
dρ̃ρ̃

[
EDMI

(
1 + (1 − f 2)2

)
+ 2 sin 2θ0 f ′ f (1 − f 2)

]
,

c9 = −1

4

∫ ∞

0
dρ̃ρ̃

[
sin2 θ0

(
1 − f 3 + 1

2
f 4

)
− 2 f (1 − f )(2 − f )

− ρ̃ f ′
(

2 − f 2 + 1

4
f 2 sin2 θ0

)]
.

For Zeeman energy, we obtain the analogous series

Hz = Msμ0Hext

∫
dζ

∫∫
dξ1dξ2|J|(1 − mAz )

= 8πMsμ0HextQ
−3

×
∫

d ζ̃
(
H (0)

z + H (2)
z + H (4)

z + · · · ),
H (0)

z = 1

4

∫ ∞

0
(1 − cos θ0)ρ̃ dρ̃,

H (2)
z = c10

2
|X′|2 + c11

2
sin ϕ0[X′ × X′′]z,

H (4)
z = −c12

4
|X′|4 − c13

4
sin ϕ0|X′|2[X′ × X′′]z,

with the coefficients

c10 = 1

4

∫ ∞

0
dρ̃ρ̃[1 − cos θ0 f (2 − f )],

c11 = 1

4

∫ ∞

0
dρ̃ρ̃2(1 − f ) sin θ0,

c12 = 1

8

∫ ∞

0
d ρ̃ρ̃[1 − cos θ0 f (4 − 4 f + f 3)],

c13 = −1

4

∫ ∞

0
dρ̃ρ̃2 f (1 − f ) sin θ0.

Collecting all energy terms together, we write the harmonic
and nonlinear parts of the total longitudinal energy densities
in the form of (7) with the following harmonic and leading
nonlinear terms:

H (2) = a1

2
|X′|2 + a2

2
σ [X′ × X′′]z + a3

2
|X′′|2 + · · · ,

H (4) = −b1

4
|X′|4 − b2

4
σ |X′|2[X′ × X′′]z + · · · ,

(D5)

where σ = sin ϕ0 = ±1. For the chosen boundary conditions
for θ0, we have σ = sgn(D). Since ζ̃ = z̃ on the string, we
replace ζ̃ → z̃ in the integral (7). In terms of ψ , Eqs. (D5)
have the form of Eqs. (8). The coefficients are as follows:

a1 = c0 + c̃0 + 2c6 + 2hc10, (D6a)

a2 = c1 + 2c7 + 2hc11, a3 = c2,

b1 = c0

2
+ c̄0 + 2c8 + 2hc12,

b2 = c3 + 2c9 + 2hc13. (D6b)

The function f (ρ̃) which determines the coefficients an

and bn is unknown. However, it can be roughly estimated
in the limit of the long-wave approximation, where the term
1
2 a1|X ′|2 gives the main contribution to the energy. This en-
ables us to estimate the function f (ρ̃ ) as a minimizer of
the coefficient a1 which is a functional of f (ρ̃). The equa-

144412-13



VOLODYMYR P. KRAVCHUK PHYSICAL REVIEW B 108, 144412 (2023)

FIG. 14. Field dependence of the first two coefficients of the
linear (a1, a2) and nonlinear (b1, b2) parts of the Hamiltonian of the
Bloch skyrmion string. Solid lines correspond to expressions (D6a)
and (D6b) with the use of function f estimated as a solution of
Eq. (D7). Dashed lines correspond to the exact values of a1 and a2

previously obtained from the linear dispersion of the translational
magnon mode [45]. Dots show the corresponding coefficients deter-
mined numerically from micromagnetic simulations; for detail, see
Appendix F.

tion δa1/δ f = 0 has the following explicit form:

f ′′ +
[

1

ρ̃
− θ ′

0
sin 2θ0

1 + cos2 θ0

]
f ′ + 2b cos θ0

1 + cos2 θ0
(1 − f )

+ 2 f
θ ′

0 cos2 θ0 + 1
ρ̃

sin θ0 cos θ0

1 + cos2 θ0
= 0. (D7)

Equation (D7) is supplemented with the boundary condi-
tions f ′(0) = 0 and f (∞) = 1. Some solutions for different
skyrmion profiles are shown in Fig. 13. An important conse-
quence of the obtained solution is f (0) �= 0. This means that
the magnetization in the string center is not tangential to the
string. In the limit h → ∞, we obtain f (0) → 1. This means
that the magnetization of the string center is antiparallel to
the applied field for the infinitely thin string. From Fig. 13,
one can conclude that function f possesses two lengthscales:
one corresponds to the exponential localization within the
skyrmion core, and the other corresponds to a longer range
decay. The latter indicates that not only are the spins of the
skyrmion core involved in the string deformation, but also
some halo of spins some distance from the core.

In the large-field limit we have f ≈ 1, and from the form
of the coefficients c we conclude that the contributions of
all energies vanish except the exchange energy. In this case,
c0 → 1 and therefore a1 → 1 and b1 → 1/2.

Having function f , we estimate the coefficients ai and bi;
see Fig. 14. A comparison with the corresponding coefficients
obtained by means of micromagnetic simulations shows that
the considered model and the estimation of function f by
means of Eq. (D7) result in qualitative agreement with the real
dependencies an(h) and bn(h). The best agreement is achieved
for the case of large fields which correspond to thin strings.
The quantitative analysis should be based on the values of an

and bn determined by means of micromagnetic simulation; see
Appendix F.

APPENDIX E: DETAILS OF MICROMAGNETIC
SIMULATIONS

Simulation of the dynamics of the magnetization media
is based on the numerical solution of the Landau-Lifshitz
equation,

∂t m = −γ ′
0[m × Beff] − γ ′

0αG[m × (m × Beff )], (E1)

where γ ′
0 = γ0/(1 + α2

G), with αG being the Gilbert damp-
ing, and Beff = − 1

Ms

δH
δm is the effective field. The solution

is performed by means of the mumax3 code [75]. We
consider Hamiltonian (6) with the material parameters of
FeGe, namely A = 8.78 pJ/m, D = 1.58 mJ/m2, Ms = 0.384
MA/m. The scales of the length and time are determined
by the wave vector Q = D/(2A) ≈ 2π/(70 nm) and fre-
quency ωc2 = γ0D2/(2AMs) ≈ 10.4 GHz, respectively. The
corresponding saturation field is B0 = ωc2/γ0 ≈ 0.37 T. The
discretization mesh �x × �y × �z with �x = �y = �z =
1 nm was used in most of the simulations, except for the
case of the breather, where we used �x = �y = 0.5 nm.
The simulated samples have the form of a cuboid with sizes
Lx × Ly × Lz and with periodic boundary conditions applied
in all three directions. The transversal size is in the range
Lx = Ly = 100–140 nm; for smaller fields (thicker strings),
we use samples of larger lateral size. The size Lz along the ap-
plied magnetic field is different for the different simulations,
as is indicated in the corresponding figures.

APPENDIX F: DETERMINATION OF THE COEFFICIENTS
an AND bn BY MEANS OF MICROMAGNETIC

SIMULATIONS

To determine the coefficients an and bn, we simulated a
damping-free dynamics of helical waves for different values
of the helix radius R and wave vector k0. For each simula-
tion, we determine the frequency of the helix rotation ω =
ω(k0,R). Based on the knowledge of the form of nonlinear
dispersion (11), we extract coefficients an and bn as explained
below.

It is important to note that the coefficients an and bn

are defined for the dimensionless dispersion (11), thus they
depend on a single parameter h only. This means that the
dependencies an(h) and bn(h) extracted from simulations are
universal, i.e., they are valid for any cubic chiral magnet, not
only FeGe.

For a given value of k0 we programmatically prepare an
initial state close to a helix solution (10) with radius approx-
imately 10 nm. The sample length Lz = 2π/(|k0|Q) is equal
to the helix period, and the periodic boundary conditions are
applied in all three directions. At the first step, we simulate
the overdamped dynamics (αG = 0.5) until the string reaches
its equilibrium state in the form of a vertical rectilinear line.
During this overdamped dynamics, we save several dozen of
the magnetization snapshots. In this manner, we obtain the
helical waves of different radii in the range 1–8 nm. At the
next step, we use these configurations as the initial states for
the damping-free simulation of the helical wave dynamics.
Using definition (1), we extract the string central line X (z̃, t̃ ).
For a fixed horizontal cross section z̃ = z̃0, the linear time
dependence of the phase arg (X1(z̃0, t̃ ) + iX2(z̃0, t̃ )) = −ωt̃
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(a) (b)

(c)

(d)

(e)

FIG. 15. Determination of the coefficients an and bn for the case h = 1.89 (0.7 T). Panel (a) shows the amplitude dependence of the helical
wave frequency obtained by means of micromagnetic simulations for the wave vector k0 = 0.58 ( 2π

120 nm ). Solid lines correspond to the fitting
ω = ω0 − ω1R

2k2
0 + ω2R

4k4
0 + ω3R

6k6
0 . Next, the fitting coefficients ωn are determined for several additional values of k0, namely k0 = 0.44

( 2π

160 nm ) and k0 = 0.87 ( 2π

80 nm ). The linear extrapolation of the dependence [ω0(k0 ) + ω0(−k0 )]/(2k2
0 ) on k2

0 to the region of vanishing k0 enables
one to determine coefficients a1 and a3; see panel (b) and the corresponding explanations in the text. Similarly, we determine coefficients a2

and a4 using the dependence [ω0(k0 ) − ω0(−k0)]/(2k3
0 ) on k2

0 ; see panel (c). The parabolic extrapolation based on three points (dashed line) is
used for the error bars estimation. Coefficients bn are determined analogously after the replacement ω0 → ω1; see the insets (d) and (e).

enables us to extract the frequency ω. As an example, in
Fig. 15 we demonstrate the values of ω obtained for different
helix radii and two different signs of k0.

Performing the interpolation ω = ω0 − ω1R
2k2

0 +
ω2R

4k4
0 + ω3R

6k6
0 , we determine the coefficients ωn.

Repeating the above-described procedure for various
k0, we determine numerically the dependence ωn(k0).
Since ω0(k0) = a1k2

0 + a2k3
0 + a3k4

0 + · · · , one can write
[ω0(k0) + ω0(−k0)]/(2k2

0 ) = a1 + a3k2
0 + · · · . This enables

us to determine the coefficients a1 and a3 as explained in
Fig. 15(b). Similarly, we determine the coefficients a2 and
a3 using that [ω0(k0) − ω0(−k0)]/(2k3

0 ) = a2 + a4k2
0 + · · · ;

see Fig. 15(c). Coefficients bn are determined analogously,
but the replacement ω0(k0) → ω1(k0); see Figs. 15(d) and
15(e). Coefficients an and bn determined by this method for
various fields are shown in Figs. 4 and 14. Note that the
practically achievable accuracy of simulations does not allow
us to determine the higher nonlinear coefficients bn>2 with
acceptable precision.

APPENDIX G: METHOD OF MULTIPLE SCALES

Here we adapt to our case the derivation presented in
Ref. [46]. We will look for a solution of (9) in the form

ψ =
∞∑

i=1

uiε
i, (G1)

where ε is a small parameter, and ui =
ui(Z0, Z1, . . . , T0, T1, . . . ) are functions of many space

and time variables of different scales, namely Zi = z̃εi and
Ti = t̃εi with i = 0, 1, . . . . Thus Z0 = z̃ and T0 = t̃ .

Now we substitute (G1) into (9) and take into account the
form of the derivatives ∂z̃ = εi∂Zi and ∂t̃ = εi∂Ti where the
summation over i is assumed. Collecting only terms linear in
ε, we obtain

L̂u1 = 0,

L̂ = i∂T0 + a1∂
2
Z0

− ia2∂
3
Z0

− a3∂
4
Z0

+ · · · ,
(G2)

whose solution is u1 = Ã(Z1, Z2, . . . , T1, T2)eiθ , where θ =
k0Z0 − ω0(k0)T0. Here the complex-valued function Ã de-
scribes the slowly varying amplitude of the envelope wave,
and ω0 is the linear part of the dispersion introduced in (11b).

Collecting now terms proportional to ε2, we obtain

L̂u2 = −i[∂T1A + vg(k0)∂Z1A]eiθ , (G3)

where vg = ∂kω0 is the group velocity of the linear wave.
The inhomogeneous equation (G3) has bounded solutions
(without secular terms) for u2 if the right-hand side of
Eq. (G3) is orthogonal to solutions of the corresponding ho-
mogeneous equation. This means that ∂T1Ã + vg(k0)∂Z1Ã =
0. Thus, in the first approximation, the envelope Ã moves
with the group velocity. In other words, Ã = Ã(Z1 −
vg(k0)T1; Z2, . . . , T2, . . . ). In this case, Eq. (G3) obtains the
homogeneous form L̂u2 = 0, which allows the trivial solution
u2 = 0.
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Collecting now terms proportional to ε3, we obtain

L̂u3 = −
{

i[∂T2Ã + vg(k0)∂Z2Ã] + μ(k0)

2
∂2

Z1
Ã

+ ν(k0)Ã|Ã|2
}

eiθ , (G4)

where μ(k0) and ν(k0) are the same as in (14). The condi-
tion of absence of the secular terms in the solution for u3

requires the vanishing curly brackets on the right-hand side
of Eq. (G4). The latter results in NLSE (14), where we made
the substitution Ã = εA.

APPENDIX H: GENERAL EQUATION OF THE
COLLECTIVE STRING DYNAMICS

It is convenient to proceed to the angular parametrization
of the magnetization m = sin θ (cos φx̂ + sin φŷ) + cos θ ẑ. In
this case, the Lagrangian and the density of the dissipative
function are

L = Ms

γ0

∫∫
(1 − cos θ )φ̇ dxdy − H, (H1a)

F = α

2

Ms

γ0

∫∫
(θ̇2 + sin2 θφ̇2)dxdy. (H1b)

Now we assume that θ = θ0(x, y, Xi(z, t ), X ′
i (z, t )) and φ =

φ0(x, y, Xi(z, t ), X ′
i (z, t )), with θ0 and φ0 being the known

functions. Taking into account that

φ̇ =∂φ0

∂Xi
Ẋi + ∂φ0

∂X ′
i

Ẋ ′
i , φ′ = ∂φ0

∂Xi
X ′

i + ∂φ0

∂X ′
i

X ′′
i ,

θ̇ =∂θ0

∂Xi
Ẋi + ∂θ0

∂X ′
i

Ẋ ′
i , θ ′ = ∂θ0

∂Xi
X ′

i + ∂θ0

∂X ′
i

X ′′
i ,

(H2)

we write the general equations of motion δS/δXi = δF/δẊi

in the form (22), where

G(0)
i j = Ms

γ0

∫∫
sin θ0

[
∂θ0

∂Xi

∂φ0

∂Xj
− ∂θ0

∂Xj

∂φ0

∂Xi

]
dxdy,

G(1)
i j = Ms

γ0

∫∫
sin θ0

[
∂θ0

∂Xi

∂φ0

∂X ′
j

− ∂θ0

∂X ′
j

∂φ0

∂Xi

]
dxdy,

G(2)
i j = Ms

γ0

∫∫
sin θ0

[
∂θ0

∂X ′
i

∂φ0

∂X ′
j

− ∂θ0

∂X ′
j

∂φ0

∂X ′
i

]
dxdy (H3)

are the gyrotensors, and

D(0)
i j = Ms

γ0

∫∫ [
∂θ0

∂Xi

∂θ0

∂Xj
+ sin2 θ0

∂φ0

∂Xi

∂φ0

∂Xj

]
dxdy,

D(1)
i j = Ms

γ0

∫∫ [
∂θ0

∂Xi

∂θ0

∂X ′
j

+ sin2 θ0
∂φ0

∂Xi

∂φ0

∂X ′
j

]
dxdy,

D(2)
i j = Ms

γ0

∫∫ [
∂θ0

∂X ′
i

∂θ0

∂X ′
j

+ sin2 θ0
∂φ0

∂X ′
i

∂φ0

∂X ′
j

]
dxdy (H4)

are the damping tensors. Note that due to the presence of terms
with the mixed derivatives Ẋ ′

i in (H2), it is required to work
with the action, not with the Lagrange function.

APPENDIX I: DESCRIPTION OF
THE SUPPLEMENTAL MOVIES

Movies 1 and 2 are the dynamical realization of Fig. 5 for
the cases k > 0 and k < 0, respectively. All parameters and
notations are the same as indicated in the caption of Fig. 5.

Movie 3 demonstrates the dynamics of the dn-cnoidal wave
shown in Fig. 7(a) in the time interval t ∈ [10T − 15T ] =
[5.06 − 7.6] ns.

Movie 4 demonstrates the dynamics of the cn-cnoidal wave
shown in Fig. 7(b) in the time interval t ∈ [10T − 15T ] =
[3.78 − 5.7] ns. The parameters and notations are the same
as in Fig. 7.

Movie 5 shows the propagation of the soliton shown in
Fig. 8 along the string. The parameters and notations are the
same as in Fig. 8.

Movie 6 shows the propagation of Ma-breather shown in
Fig. 9 along the string. The parameters and notations are the
same as in Fig. 9.
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