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Unified framework of the microscopic Landau-Lifshitz-Gilbert equation
and its application to skyrmion dynamics
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The Landau-Lifshitz-Gilbert (LLG) equation is widely used to describe magnetization dynamics. We develop
a unified framework of the microscopic LLG equation based on the nonequilibrium Green’s function formalism.
We present a unified treatment for expressing the microscopic LLG equation in several limiting cases, including
the adiabatic, inertial, and nonadiabatic limits with respect to the precession frequency for a magnetization
with fixed magnitude, as well as the spatial adiabatic limit for the magnetization with slow variation in both
its magnitude and direction. The coefficients of those terms in the microscopic LLG equation are explicitly
expressed in terms of nonequilibrium Green’s functions. As a concrete example, this microscopic theory is
applied to simulate the dynamics of a magnetic skyrmion driven by quantum parametric pumping. Our work
provides a practical formalism of the microscopic LLG equation for exploring magnetization dynamics.
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I. INTRODUCTION

Single-molecule magnets (SMMs) are mesoscopic mag-
nets with permanent magnetization, which show both classical
properties and quantum properties [1–7]. SMMs are ap-
pealing due to their potential applications as memory cells
and precessing units in spintronic devices [8,9]. Transport
of SMMs coupled with leads has been investigated both
experimentally [10–13] and theoretically [7,14–20]. Trans-
port measurements on magnetic molecules such as Mn12

[10] and Fe8 [11] revealed interesting phenomena, including
peaks in the differential conductance and Coulomb block-
ades. Dc- and ac-driven magnetization switching and noise
as well as the influence on I-V characteristics were dis-
cussed in a normal metal–ferromagnet–normal metal structure
[15]. Current-induced switching of a SMM junction was
theoretically studied in the adiabatic regime within the Born-
Oppenheimer approximation [16]. It was found that magnetic
exchange interactions between molecular magnets can be
tuned by electric voltage or temperature bias [17]. Transient
spin dynamics in a SMM was investigated with generalized
spin equation of motion [21]. A microscopic formalism was
recently proposed for consistent modeling of coupled atomic
magnetization and lattice dynamics [22].

For a SMM with magnetization M, its magnetiza-
tion dynamics can be semiclassically described by the
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Landau-Lifshitz-Gilbert (LLG) equation of motion [23–29]

dm
dt

= −γ m × Heff + m ×
(

α
dm
dt

)
+ τSTT, (1)

where m = M/M is the unit magnetization vector, γ is the
gyromagnetic ratio, and Heff is the effective magnetic field
around which the magnet precesses. α is the Gilbert damping
tensor describing the dissipation of the precession, and τSTT is
the spin-transfer torque due to the misalignment between the
magnetization and the transport electron spin [30–33].

The LLG equation is widely adopted to describe magne-
tization dynamics in the adiabatic limit, where the magne-
tization precesses slowly and the typical timescale is in the
order of ns. The Gilbert damping term is in general a 3 × 3
tensor [32], which can be deduced from experimental data,
scattering matrix theory [28,29], or first-principles calcula-
tion [34–36]. Later, the LLG equation was generalized to
study ultrafast dynamics induced by ps electrical pulse [37,38]
or fs laser pulse [39–42], which extends the magnetization
switching time down to ps or even sub-ps. This is referred
as the inertial regime [43], where the timescale involved is
much shorter than that of the adiabatic limit. In the inertial
limit, a nonlinear inertial term was introduced into the LLG
equation [44–48], which was applied to simulate ultrafast
spin dynamics [21,49,50]. Direct observation of inertial spin
dynamics was experimentally realized in ferromagnetic thin
films in the form of magnetization nutation at a frequency
of 0.5 THz [51]. When the magnetization varies in both tem-
poral and spatial domains, two adiabatic spin torques were
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incorporated into the LLG equation [52], which can describe
the dynamics of magnetic textures such as skymions [53].

Magnetic skyrmions (Sk) stabilized by the Dzyaloshinskii-
Moriya interaction (DMI) or competing interaction between
frustrated magnets are topologically nontrivial spin textures
showing chiral particlelike nature. When an electron traverses
the Sk, it acquires a Berry phase and experiences a Lorentz-
type force, leading to the topological Hall effect [54]. At the
same time, the Magnus force due to the backaction on Sk
gives rise to skyrmion Hall effect [55,56]. The existence of
Sk has been verified in magnetic materials including MnSi
[57] and PdFe/Ir(111) [58]. The radius of an Sk can be as
small as a few nm [59,60] and is stable even at room temper-
atures [61,62]. Sk can be operated at ultralow current density
[63–65], which makes it promising in spintronic applications
including the magnetic memory and logic gates [66,67]. Var-
ious investigations show that Sk can be manipulated by spin
torque due to the charge- and spin-current injection [63,64],
external electric field [68,69], magnetic field gradient [70],
temperature gradient [71–74], and strain [75], etc. However,
Sk driven by quantum parametric pumping has not been ex-
plored.

Quantum parametric pump refers to such a process: in an
open system without bias voltages, cyclic variation of system
parameters can give rise to a net dc current per cycle [76–84].
In the adiabatic limit, this quantum parametric pump requires
at least two pumping parameters with a phase difference and
the pumped current is proportional to the area enclosed by
the trajectory of pumping parameters in parameter space [76].
It was found that the adiabatic pumped current is related
to Berry phase [85]. Beyond the adiabatic limit, the cyclic
frequency may serve as another dimension in parameter space
and hence a single-parameter quantum pump is possible at
finite frequencies [86,87]. In general, quantum parametric
pump can be formulated in terms of photon-assisted transport
[88,89]. Quantum parametric pump can also generate heat
current [90,91], whose lower bound is Joule heating during
the pumping process. This defines an optimal quantum pump
[92,93] that is noiseless and pumps out quantized charge per
cycle [94–96]. Quantum parametric pumping theory has been
extended to account for Andreev reflection in the presence of
superconducting lead [97], correlated charge pump [98,99],
and parametric spin pump [100,101], providing more physical
insights. It is interesting to generalize quantum parametric
pump to skyrmion transport, which may offer new operating
paradigms for spintronic devices.

In this work, we investigate the microscopic origin of the
LLG equation and the Gilbert damping. We focus on sev-
eral limiting cases of the LLG equation. For a magnetization
with fixed magnitude, the adiabatic, inertial, and nonadiabatic
limits with respect to its precession frequency are discussed.
When both the magnitude and direction of a magnetization
vary slowly in space, which is referred as the adiabatic limit
in spatial domain, our formalism can also be extended to cover
this limit. We will provide a unified treatment of all these
cases and explicitly express each term in the microscopic LLG
equation in the language of nonequilibrium Green’s functions.
As an example, we apply the microscopic LLG equation to
simulate the dynamics of a skyrmion driven by quantum para-
metric pumping in a two-dimensional (2D) system.

FIG. 1. Sketch of the model system. A single-molecule magnet
(SMM) represented by the quantum dot (QD) is connected to the left
and right leads. A uniform magnetic field is applied in the central
region, around which the SMM magnetization precesses.

This paper is organized as follows. In Sec. II, a single-
molecule magnet (SMM) transport setup and corresponding
Hamiltonians are introduced. In Sec. III, a stochastic Langevin
equation for magnetization dynamics is derived from the
equation of motion by separating fast (electron) and slow
(magnetization) degrees of freedom, forming a microscopic
version of the LLG equation. In Sec. IV, four limiting cases
of the microscopic LLG equation are discussed. In Sec. V, we
numerically study Sk transport driven by quantum parametric
pumping. Finally, a brief summary is given in Sec. VI.

II. MODEL

The model system under investigation is shown in Fig. 1,
where a noninteracting quantum dot (QD) representing a
single-molecule magnet (SMM) with magnetization M is con-
nected to two leads. A uniform magnetic field B = Bêz is
applied in the central region. In addition, we assume that
there is a dc bias or spin bias across the system providing a
spin-transfer torque or spin-orbit torque.

The Hamiltonian of this system is given by (h̄ = 1)

Ĥtotal = ĤL + ĤR + ĤD + ĤT ,

with the lead Hamiltonian (α = L, R),

Ĥα =
∑
kσ

εkασ ĉ†
kασ

ĉkασ , (2)

and the Hamiltonian of the central region

ĤD = Ĥ0 + Ĥ ′ + γ M̂ · B. (3)

Here Ĥ0 is the Hamiltonian of the QD with spin-orbit interac-
tion (SOI) [102]

Ĥ0 =
∑
nσ

εnσ d̂†
nσ d̂nσ +

∑
mn

(
tSO
nm d†

m↑dn↓ + H.c.
)
, (4)

with tSO
nm = −tSO

mn . Ĥ ′ is the interaction between the electron
spin and the magnetization as well as the magnetic field,

Ĥ ′ = J
∑

n

ŝn · M̂ + γe

∑
n

ŝn · B.

We can also add uniaxial anisotropy field to Ĥ ′. The coupling
Hamiltonian between the QD and the leads is

ĤT =
∑

kαn,σσ ′

[
tσσ ′
kαn ĉ†

kασ
d̂nσ ′ + H.c.

]
. (5)
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In the above equations, d̂†
nσ (ĉ†

kασ
) creates an electron with

energy εnσ (εkασ ) in the QD (lead α). In general, the leads
can be metallic or ferromagnetic. Here ŝn = 1

2ψ†
n σψn is the

electron spin in the central region, with ψ†
n = (d†

n↑, d†
n↓). The

Pauli matrices satisfy [σx, σy] = 2iσz, and the magnetization
M follows the commutation relation [Mx, My] = ih̄Mz. J is
the exchange interaction between the magnetization and the
spin of conducting electrons. γ (γe) is the gyromagnetic ratio
of the magnet (electron).

If we choose the magnetic field in the z direction as the
laboratory frame, and (θ, φ) the polar and azimuthal angles
of the magnetization, the spin-dependent coupling matrix is
given by

tσσ ′
kαn = [R̂tkαn]σσ ′, (6)

with R̂ the rotational operator [103]

R̂ = e−i θ
2 σ̂y e−i φ

2 σ̂z =
(

e−i φ

2 cos
(

θ
2

) −ei φ

2 sin
(

θ
2

)
e−i φ

2 sin
(

θ
2

)
ei φ

2 cos
(

θ
2

)
)

. (7)

III. MAGNETIZATION DYNAMICS

From the Heisenberg equation of motion, the magnetiza-
tion dynamics in the central region is governed by

˙̂M = −γ M̂ × B − JM̂ × ŝD, (8)

where ŝD = ∑
n ŝn is the total electron spin. In deriving the

above equation, the following relation is used:

[σ̂, σ̂ · A] = −2iσ̂ × A. (9)

Now we separate an operator into its quantum average and
its fluctuation, then ŝD = 〈ŝD〉 + δŝD, and M̂ = 〈M̂〉 + δM̂,
where δŝD (δM̂) is the fluctuation of the electron (magnet)
spin. We can transform Eq. (8) into a Langevin equation. For
the expectation value M(t ) = 〈M̂(t )〉 [104],

Ṁ = M × [−γ B − JsD + δB̂] (10)

or

Ṁ = −γ M × [Heff − δB̂′],

where

sD = 〈ŝD〉 = − i

2
Tr[σG<(t, t )]. (11)

Here G<
i jσσ ′ (t ′, t ) = i〈d†

jσ ′ (t ′)diσ (t )〉 is the lesser Green’s
function of electrons, which will be discussed in detail below.
The effective magnetic field Heff is defined as the variation of
the free energy of the system with respect to the magnetization
[32,105,106]

Heff = 1

γ

δHtotal

δM
. (12)

And δB̂ = γ δB̂′ contributes from the fluctuations

M × δB̂ = −δ ˙̂M − γ δM̂ × B − JM × δŝD

−JδM̂ × sD − JδM̂ × δŝD.

These fluctuations can play an important role in determining
the motion of the magnetization, such as reducing or enhanc-
ing the threshold bias of magnetization switching [16].

To transform Eq. (10) into the usual LLG equation, we
further separate sD in Eq. (11) into the time-reversal symmet-
ric and antisymmetric components ss

D and sa
D. Then M × ss

D
and M × sa

D correspond to the dissipative and dissipativeless
terms, respectively. Thus, Eq. (10) is rewritten as

Ṁ = −γ M × B − JM × sa
D − JM × ss

D. (13)

Note that the last term in Eq. (13), M × ss
D, corresponds to the

damping of magnetization. As will be discussed below that in
the adiabatic approximation, it assumes the form M × (αṀ)
where α is the Gilbert damping tensor which is expressed
in terms of nonequilibrium Green’s function [see Eq. (19)].
The second term in Eq. (13), M × sa

D, corresponds to the
spin-transfer torque. In the presence of SOI, M × sa

D is the
spin-orbit torque in collinear ferromagnetic systems, which
has fieldlike and dampinglike components, respectively, along
the directions M × u and M × (M × u) with u · M = 0. Here
u is the unit vector of the spin current [31].

IV. MICROSCOPIC LLG EQUATION
IN DIFFERENT LIMITS

In this section, we will drive the LLG equation and express
the Gilbert damping tensor in terms of the nonequilibrium
Green’s functions. We also discuss the fluctuation in the equa-
tion of motion and the spin continuity equation, showing that
the spin-transfer torque is insufficient to describe magnetiza-
tion dynamics in general conditions.

We focus on several limiting cases of the microscopic
LLG equation [Eq. (13)]. These cases correspond to dif-
ferent limits: (1) adiabatic limit in temporal domain where
the precessing frequency of the magnet is low and sD can
be expanded up to the first order in frequency; (2) inertial
regime where the timescale is much shorter than that of the
adiabatic limit, e.g., magnetization switching in ps or even
sub-ps range [37–42]; (3) nonadiabatic regime where adi-
abatic approximation in temporal domain is removed. We
will work on the linear coupling between the magnetization
and the environment [107] and derive the Gilbert damping
coefficient as a function of the precessing frequency; (4) in
the above situations, we have assumed that the magnetization
has fixed magnitude and only its direction varies in space.
Our theory can be easily extended to address the motion of
domain walls where the magnetization is nonuniform. In the
simplest case, we assume that the magnetization varies slowly
in space so that adiabatic approximation in spatial domain can
be taken. In this spatial adiabatic limit, two additional toques
are incorporated into the LLG equation which are naturally
obtained in our theory.

A. Adiabatic limit

As the magnetization precesses, the electron spin and
hence spin-orbit energy of each state changes [32,106], which
drives the system out of equilibrium. In the language of frozen
Green’s functions [Eqs. (A1) and (A4)], total spin of the
QD [Eqs. (11)] can be expanded in terms of the precession
frequency, which consists of two parts: the quasistatic part s(0)

D ,
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and the adiabatic change s(1)
D to the first order in frequency

sD = s(0)
D + s(1)

D ,

where

s(0)
D = − i

2

∫
dE

2π
Tr[σG<

f ] (14)

and

s(1)
D = −1

4

∫
dE

2π
Tr

[
G<

f σGr
f Gr

f σ − Ga
f Ga

f σG<
f σ

]
ḃ, (15)

with ḃ = JMṁ.
Concerning the magnetization dynamics, the effective field

Heff(t ) [Eq. (12)] can be separated into two contributions: an
anisotropy field and a damping field [106],

Heff(t ) = Hani
eff (t ) + Hdamp

eff (t ), (16)

with

Hani
eff (t ) = B + (J/γ )s(0)

D , Hdamp
eff (t ) = (J/γ )s(1)

D . (17)

Substituting Eqs. (14) and (15) into (13), ignoring the fluctu-
ation, and noting that ḃ = JMṁ, we obtain the deterministic
Landau-Lifshitz-Gilbert equation

dm
dt

= −γ m × Hani
eff − m × (αṁ), (18)

where

m = M/M = (
sin θ cos φ, sin θ sin φ, cos θ

)
is the unit vector in the magnetization direction. α is the 3 × 3
Gilbert damping tensor [28,43], which is defined in terms of
the frozen Green’s functions:

αi j = (JM )2

4

∫
dE

2π
Re{Tr[G<

f σiG
r
f Gr

f σ j]}. (19)

As shown in Appendix D, this damping tensor recovers that
obtained in Ref. [28] via the scattering matrix theory in the
limit of zero temperature and in the absence of external bias.
In general, the Gilbert damping tensor depends on m(t) and
bias voltage through the frozen Green’s functions Gr

f and
G<

f . This agrees with the observation in Ref. [108] using the
effective field theory of breathing Fermi-surface mode.

B. Inertial regime

In this regime, the magnetization has both precessional and
nutational motions. We focus on the linear coupling between
the magnetization and the environment so that an additional
“inertial” term enters the LLG equation, which describes the
nutation of the magnet. In this case, the adiabatic approxima-
tion is not good enough. One has to expand the spin density
sD at least to the second order in frequency. In the inertial
regime, we assume that the magnitude of the magnetization is
fixed while only its direction varies. Iterating Eq. (A4) to the
second order in frequency, we have

Gr = Gr
f − iGr

f Ġr
f + Gr

f

(
Ġr

f

)2 + (
Gr

f

)2
G̈r

f ,

from which we find the contribution s(2)
D in the inertial limit,

s(2)
D = −1

8

∫
dE

2π
Im

{
Tr

[
G<

f σ
(
Gr

f

)3
σ
]} · ∂2

t b

+ 1

16

∫
dE

2π
Im

{
Tr

[
G<

f σ
(
Gr

f

)4
(σ · ∂t b)2

]}
− i

8

∫
dE

2π
Tr

[
σ
(
Gr

f

)2
G<

f

(
Ga

f

)2
(σ · ∂t b)2

]
. (20)

To make comparison with Ref. [43], we keep only the linear
term ∂2

t m and neglect other nonlinear terms such as (∂t m)2.
With this new term, the LLG equation in inertial regime is
written as [43–46,53]

dm
dt

= −γ m × Hani
eff − m ×

[
α

dm
dt

]
− m ×

[
ᾱ

d2m
dt2

]
,

(21)
where the inertial term is a 3 × 3 tensor given by

ᾱi j = (JM )2

2

∫
dE

2π
Im

{
Tr

[
G<

f σi
(
Gr

f

)3
σ j

]}
. (22)

This additional inertial term has been obtained both phe-
nomenologically [44] and semiclassically [43]. Reference
[35] proposed a first-principles method for calculating the
inertia term in the semiclassical limit. Here we derive the
quantum inertial tensor in terms of the frozen Green’s func-
tion.

C. Nonadiabatic regime

Now we consider the magnetization dynamics at finite
precession frequency, whose timescale is still much larger
than that of electrons. Since no analytic solution exists in
general conditions, we only focus on the linear coupling in
the exchange interaction J . In this nonadiabatic regime, we
treat the coupling J as a small perturbation, and rewrite the
equation determining the Green’s function as(

i
∂

∂t
− H̃0 − H ′(t ) − �r

)
Gr (t, t ′) = δ(t − t ′), (23)

where H̃0 = H0 + γesD · B is the unperturbed Hamiltonian,
including the bare Hamiltonian of the QD defined in Eq. (4)
and the Hamiltonian due to the constant external field. H ′(t ) =
Jσ · M(t ) is the perturbative term due to exchange coupling
between the magnetization and the electron spin.

The unperturbed retarded Green’s function satisfies(
i
∂

∂t
− H̃0 − �r

)
Gr

0(t − t ′) = δ(t − t ′). (24)

Since Gr
0(t − t ′) only depends on the time difference, it is

convenient to work in the energy representation

Gr
0(E ) =

[
E − H0 − γe

2
σ · B − �r

]−1

, (25)

where Gr
0(t − t ′) and Gr (t, t ′) are related through the Dyson

equation

Gr (t, t ′) = Gr
0(t − t ′) +

∫
dt1Gr

0(t − t1)H ′(t1)Gr (t1, t ′).
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In the first-order perturbation, we have

Gr = Gr
0 + Gr

0H ′Gr
0

and

G< = G<
0 + Gr

0H ′G<
0 + G<

0 H ′Ga
0.

Using ∫
dt1Gr

0(t − t1)H ′(t1)G<
0 (t1 − t )

=
∫

dE

2π

∫
dω

2π
e−iωt Gr

0(E + ω)H ′(ω)G<
0 (E )

and ∫
dt1G<

0 (t − t1)H ′(t1)Ga
0(t1 − t )

=
∫

dE

2π

∫
dω

2π
e−iωt G<

0 (E + ω)H ′(ω)Ga
0(E ),

where H ′(ω) = J
2 σ · M(ω) with ω the precession frequency,

the spin density sD of the quantum dot can be evaluated:

sD = s(0)
D + s(1)

D . (26)

Here s(0)
D is independent of M and time t :

s(0)
D = − i

2

∫
dE

2π
Tr[σG<

0 (E )].

And s(1)
D depends linearly on M(t ):

s(1)
D = − i

2

∫
dE

2π

∫
dω

2π
e−iωt Tr[σGr

0(E + ω)H ′(ω)G<
0 (E )

+ σG<
0 (E + ω)H ′(ω)Ga

0(E )].

Using the anisotropic field Hani
eff (t ) and the damping field

Hdamp
eff (t ) expressed in Eq. (17) and ignoring the fluctuations,

we can obtain a deterministic dynamic equation from Eq. (13):

dm
dt

= −γ m × Hani
eff − γ m × Hdamp

eff , (27)

where

Hani
eff (t ) = B − iJ

2γ

∫
dE

2π
Tr[σG<

0 (E )] (28)

and

Hdamp
eff (t ) = −

∫
dω

2π
e−iωt m(ω)α̃(ω). (29)

Here α̃(ω) is the frequency-dependent Gilbert damping tensor
defined as

α̃(ω) = i

4
J2M2

∫
dE

2π
Tr

[
G<

0 (E )σGr
0(E + ω)σ

+ Ga
0(E )σG<

0 (E + ω)σ
]
. (30)

It is easy to confirm that when ω goes to zero, we can recover
the results in the adiabatic and inertial limits.

D. Adiabatic limit in spatial domain

When both the magnitude and direction of the magneti-
zation vary slowly in space, we refer to this situation as the
adiabatic limit in spatial domain. In this case, two additional
terms emerge in the LLG equation [52],

dm
dt

= −γ m × Hani
eff − m ×

[
α

dm
dt

]

+ bJ ( je · ∇)m − cJm × ( je · ∇)m, (31)

where bJ and cJ are constants defined in Ref. [52]. Here the
term with coefficient bJ is related to the adiabatic process of
the nonequilibrium conducting electrons [52]. In contrast, the
other term with coefficient cJ corresponds to the nonadiabatic
process which changes sign upon time-reversal operation.

In this limit, the coupling between the magnetization and
the electron spin can be approximated as

Ĥ ′ = J ŝr · M̂(r, t ) + γeŝr · B. (32)

Equations (13), (B1), and (B2) are still valid except that M
and sD are local variables depending on position, where sD(x)
is defined as

sD(x) = − i

2

∫
dE

2π
Trs[σG<]xx, (33)

where the trace is taken only in spin space.
To derive the adiabatic term in Eq. (31), we start from

Eq. (B1) and then use Eq. (B2). From Eq. (B1), we have [109]

dsD

dt
+ ∇ · js = JM × sD, (34)

where js is the spin current density and the term −γesD × B
is neglected. Using the fact that js ≈ −b0 jem (where b0 =
μBP/e and P is the polarization) and neglecting the second-
order terms such as ∂tδsD, we find from Eq. (34) [110]

JM × δsD = −b0( je · ∇)m, (35)

where δsD denotes the contribution due to the spatial varia-
tion of the magnetization ∇m. The nonadiabatic term can be
generated by iterating the following equation:

dm
dt

= −γ m × Hani
eff − m ×

[
α

dm
dt

]
+ bJ ( je · ∇)m, (36)

from which we arrive at [105]

dm
dt

= − γ

1 + α2
m × Hani

eff − γα

1 + α2
m × [

m × Hani
eff

]
+ bJ

1 + α2
( je · ∇)m + bJα

1 + α2
m × ( je · ∇)m, (37)

where we have assumed that the Gilbert damping tensor α is
diagonal, i.e., αi j = αδi j . The nonadiabatic term can also be
derived explicitly, as shown in Appendix E.

V. SKYRMION DYNAMICS DRIVEN BY QUANTUM
PARAMETRIC PUMPING

In this section, we apply our microscopic theory to inves-
tigate skyrmion dynamics in a 2D system driven by quantum
parametric pumping. Initially, an Sk is placed in the central re-
gion of a two-lead system, as shown in Fig. 2. Then, we apply
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FIG. 2. Schematic plot of a central region that hosts a skyrmion
and is connected to two metallic leads. The central region consists
of a square lattice of size 40 × 40. The arrows denote the in-plane
component of the magnetization texture of the skyrmion. Pumping
potentials V1 and V2 are applied on the first and fifth column layers of
the central region, which are labeled by dark gray bars.

two time-dependent voltage gates with a phase difference in
the system to drive a dc electric current. The electron flow, in
turn, interacts with the Sk, which gives rise to quantum para-
metric pumping of the Sk. In the tight-binding representation,
the Sk is described by the Hamiltonian

HSk = − Jex

∑
〈i, j〉

mi · m j +
∑
〈i, j〉

D · (mi × m j )

− K
∑

i

(mi · ẑ)2 − μ
∑

i

mi · B. (38)

Here Jex is the Heisenberg exchange interaction. D = D(ri −
r j )/|ri − r j | is the Dzyaloshinskii-Moriya interaction (DMI).
K is the perpendicular magnetic anisotropy constant, and μ is
the magnitude of the magnetic moment. To facilitate paramet-
ric pumping, we apply gate voltages in two different regions
of the system with the following form:

Vp = V1 cos(ωpt ) + V2 cos(ωpt + φ),

where V1 = V δ(x − l1) and V2 = V δ(x − l2) are potential
landscapes with V the pumping amplitude, ωp is the pumping
frequency, and φ is the phase difference. The central scattering
region is discretized into a 40 × 40 mesh. The positions of
gate voltages are l1 = 1 and l2 = 5, which are displayed in
Fig. 2. In the adiabatic pumping regime (small-ωp limit), the
cyclic variation of two potentials V1 and V2 can pump out a net
current when φ �= nπ [76,82]. Thus, the total Hamiltonian of
the system consists of Hα , H0, HT , H ′ [given by Eqs. (2), (4),
(5), and (32), respectively], HSk, and Vp.

Since the Sk has slow varying spin texture in space, its
dynamics can be approximated by the adiabatic limit in spa-
tial domain. The following LLG equation describing the Sk
dynamics driven by parametric pumping needs to be solved:

dmi

dt
= −γ mi × [Heff − (J/γ )sD] − mi × (αṁi ), (39)

TABLE I. Unit conversion table for Jex = 1 meV and a = 0.5 nm.

Distance x x̂ = a = 0.5 nm

Time t t̂ = h̄/Jex ≈0.66 ps
Current density κ κ̂ = 2eJex/a2 h̄ ≈2 × 1012 A/m2

Velocity v v̂ = Jexa/(h) ≈7.59 × 102 m/s

where the effective field Heff is defined as

Heff = 1

γ

δHSk

δmi
.

Here sD is defined in terms of Green’s functions in Eq. (33).
The Gilbert damping tensor α is assumed to be a diagonal
matrix, αi j = αδi j . It is worth mentioning that Eq. (39) already
includes the ( je · ∇)m and m × ( je · ∇)m terms, which is
discussed in Sec. IV D and Appendix E.

Initial configuration of the Sk is generated by manually cre-
ating a topological unity charge at the center of the system and
then relaxing the spin texture numerically until the magnetic
energy is stable. Note that mz at the Sk center is negative,
while the outside values are positive. In numerical simula-
tion, the central region is a 40a × 40a square lattice with a
the lattice spacing; the relaxed Sk radius is r0 = 10, which
is the minimal distance between the Sk center mz

i (0) = −1
and mz

i (r0) = 1. Parameters are set as D = 0.2Jex [26], K =
0.07Jex [26], J = 2Jex, B = 0, and α = 0.4. The Heisenberg
exchange constant Jex = t = 1 is chosen as the energy unit,
where t is the hopping energy. We set h̄ = γ = a = 1, and
then the coefficients to convert the time t , current density κ ,
and velocity v to SI units are h̄/Jex, 2eJex/(a2h̄), and Jexa/h
[111,112]. Table I shows the expressions and particular values
for Jex = 1 meV and a = 0.5 nm.

Our numerical calculation proceeds as follows. First, with
the initial Sk configuration chosen at t = t0, we calculate the
total Hamiltonian of the system and then the frozen Green’s
function in Eq. (A5) that determines sD in Eq. (33). Second,
the LLG equation in Eq. (39) is solved by using the fourth-
order Runge-Kutta method with a small time step dt . Then
the Sk Hamiltonian in Eq. (38) can be updated. We repeat the
above two-step calculation to simulate the Sk dynamics driven
by quantum parametric pumping, and monitor the pumped
current during the time evolution.

First, we investigate the static transport properties of the
system without pumping. Figure 3 shows the transmission
coefficient and density of states (DOS) as a function of the
electron energy E with and without an Sk locating at the
system center. When there is no Sk, Figs. 3(a) and 3(b) show
spin-degenerate transmission coefficients and DOS, which
are standard transport properties for a metallic square lattice.
However, in the presence of the Sk, spin degeneracy of the
system is lifted. In Fig. 3(d), the whole energy range [0, 8]
can be typically divided into the following three regions, irre-
spective to the exchange strength J [113,114].

(i) 0 < E < |J|. The conduction electrons are fully spin
polarized. Since J = 2 in our calculation, this region corre-
sponds to 0 < E < 2. Only spin-down electrons can transmit
in this energy region, and the largest spin polarization is
reached near E = 2.
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FIG. 3. The transmission coefficient (a) and density of states
(b) as a function of the electron energy in the absence of an Sk. [(c),
(d)] The transmission and density of states for cases with an Sk at the
center. No pumping potential is added in the system (V = 0).

(ii) |J| < E < 8 − |J|. Both spin-up and -down conduc-
tion electrons exist in the system.

(iii) 8 − |J| < E < 8. The conduction electrons are fully
polarized with spin-up component.

Second, we study the parametric pumping effect on the
dynamics of an Sk and the corresponding pumped current.
Physically, the pumped current can drive the motion of Sk,
while the Sk’s motion can affect the pumped current in turn.
The pumped current at time t is defined as [89]

Ip(t ) = Tr

[
�RGr

f

dVp

dt
Ga

f

]
, (40)

where �R = �r
R − �a

R is the linewidth function of the right
metallic lead. �r,a

R are the retarded and advanced self-energies.
The Sk center R = (x, y) is defined as R = ∑

i(m
z
0 −

mz
i )ri/

∑
i(m

z
0 − mz

i ) to characterize its motion, where index
i sums over sites with mz

i < mz
0 = −0.1.

As shown in Fig. 4(a), in the absence of an Sk, the pumped
current is roughly a sine or cosine function in time. When
an Sk is introduced at t = t0, the conduction electrons are
scattered by the moving Sk. This results in the deviation of
the pump current from the smooth curve. Meanwhile, in the
presence of the Sk, the pumped current is fully spin polarized
at the given energy, where only the spin-down component is
nonzero in Fig. 4(b). At the same time, the Sk is driven by the
pumped current. Figure 4(c) displays x and y coordinates of
the Sk center as a function of time. The remarkable charac-
teristic is the quasiperiodic movement of the Sk along both
x̂ and ŷ directions. Moreover, the motion of the Sk center
has the same period as the pumped current, but is delayed by
one quarter cycle in phase. In our system, the pumped current
flows in the ±x direction, and hence the Sk moves faster in
this direction. Besides, the Sk acquires a velocity in the ±ŷ
direction. This indicates that the Sk Hall effect can also be
driven by parametric pumping.

FIG. 4. (a) The pumped current Ip versus time with or without
the Sk. The time is in unit of the pumping period T , with T =
2π/ωp. (b) The pumped spin-dependent current I↑/↓

p with the Sk.
(c) Time evolution of the Sk center position R = (x, y). Parameters:
E = 1.9, J = 2,V = 0.8, ωp = 1, φ = π/2.

We examine the influence of pumping parameters on the
Sk dynamics. The pumping amplitude is first evaluated. Fig-
ure 5 shows the time evolution of the Sk center for different
pumping amplitudes V . We observe that the Sk’s speed along
x direction increases with the pumping amplitudes. For V =
0.4, the Sk oscillates around its initial position and does not
propagate. As the pumping amplitude increases, the Sk moves
faster in +x̂ direction and then saturates when the amplitude
exceeds V = 0.8. The motion along the ŷ direction is always
slower than that in the x̂ direction.

The effect of the pumping frequency is also studied. When
there is no Sk, the pumped current in adiabatic pumping

FIG. 5. [(a), (b)] x and y coordinates of the Sk center R versus
time for different pumping amplitudes V = 0.4, 0.6, 0.8, 1, 1.2. The
pumping frequency is fixed at ωp = 1. Other parameters: J = 2, E =
1.9, l1 = 1, l2 = 5, φ = π/2.
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FIG. 6. (a) The pumped current for different pumping frequen-
cies. The Sk is fixed at its initial configuration during the time
evolution. The pumped current Ip is scaled with ωp. [(b), (c)] x and y
coordinates of the Sk center for ωp = 0.2, 0.5, 1. The pumping am-
plitude is fixed at V = 0.8. Other parameters: J = 2, E = 1.9, l1 =
1, l2 = 5, φ = π/2.

regime is independent of the pumping frequency [76,82]. In
the presence of an Sk, We expect that the pumped current can
be simply scaled by the pumping frequency. We examine the
pumped current for different pumping frequency when the Sk
is fixed at its initial configuration, and numerical results are
presented in Fig. 6(a). Four periods are shown here. It is clear
that the pumped currents collapse precisely onto each other
when scaled by the corresponding pumping frequencies. For a
free Sk, Figs. 6(b) and 6(c) show the x and y coordinates of the
Sk center under the pumping. At small frequencies ωp = 0.2
and 0.5, the Sk is driven along +x̂ direction first, and then
reflected back periodically. Its motion in y direction is similar.
For a larger frequency ωp = 1, there is no such oscillating
behavior even for a timescale of 100 periods (not shown here).
Notice that when the phase difference is reversed, both the
pumped current and the Sk motion change direction.

VI. SUMMARY

In conclusion, we have developed a unified microscopic
theory of the LLG equation in terms of nonequilibrium
Green’s function. Four limiting cases of the microscopic LLG
equation are discussed in detail, including the adiabatic, iner-
tia, and nonadiabatic limits for the magnetization with fixed
magnitude, as well as the adiabatic limit in spatial domain for
the magnetization with slow varying magnitude and direction
in space. As a demonstration, the microscopic LLG equa-
tion is applied to investigate the motion of a skyrmion state
driven by quantum parametric pumping. Our work not only
provides a unified microscopic theory of the LLG equation,
but also offers a practical formalism to explore magnetization
dynamics with nonequilibrium Green’s functions.
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APPENDIX A

In this Appendix, we express the charge and spin current in
terms of the nonequilibirum Green’s functions. In the presence
of time-varying magnetization, the nonequilibrium Green’s
function Gr (t, t ′) depends on two time indices t and t ′. If
the magnetization changes slowly with time, we can treat the
time difference (t − t ′) in energy space [115]. After taking the
Fourier transformation, the Green’s function in energy space
only depends on one time variable t :

Gr (t, E ) =
∫

dτ eiEτ Gr (t, t ′),

where τ = t − t ′. The inverse Fourier transformation gives

Gr (t, t ′) =
∫

dE

2π
e−iEτ Gr (t, E ).

With the above definition, it is easy to show that

G<(t, t ′) =
∫

dE

2π
e−iEτ Gr (t, E )�<(E )Ga(E , t ′). (A1)

In this representation, the particle current matrix is defined
[116]

Iα
op(t ) =

∫
dE

2π
[Gr (t, E )�<

α (E ) + G<(t, E )�a
α (E ) + H.c.].

(A2)

In terms of which, the charge current Icα (t ) and spin current
Isα (t ) are expressed as

Icα (t ) = −qTr
[
Iα
op

]
, Isα (t ) = − 1

2 Tr
[
σIα

op

]
. (A3)

As shown in Appendix C, these time-dependent Green’s
functions, such as Gr (t, E ) (also called Floquet Green’s func-
tion [115]), can be expressed in terms of the instantaneous
frozen Green’s function Gr

f , which satisfies the following
recursive relation:

Gr (t, E ) = Gr
f (t, E ) − iGr

f (t, E )Ġr (t, E ), (A4)

where Ġr is the time derivative of Gr . The frozen Green’s
function contains the effective magnetic field b(t ) and is de-
fined as

Gr
f (t, E ) = [E − H0 − �r − σ · b(t )/2]−1, (A5)

where b(t ) = γeB + JM. The self-energies (for ferromag-
netic leads) are given by

�γ
mn(t ) = R̂†�

γ

0,mnR̂,

with γ = r, a,<. R̂ is defined in Eq. (7). �
γ

0,mn is the self-
energy when the magnetization is along the z axis:

�
γ

0,mn =
∑
kα

t∗
kαmgγ

kα
tkαn =

(
�

γ

mn,↑ 0
0 �

γ

mn,↓

)
,

where gγ

kα
is the surface Green’s function of lead α.
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APPENDIX B

In this Appendix, we express the microscopic LLG equa-
tion (13) in terms of the spin current and spin operators. For
the spin-transfer torque (STT) to occur in magnetic multi-
layers, one requires a pair of FM layers in a noncollinear
configuration. Then a spin-polarized current can be generated
from the reference (fixed) layer, and the transverse spin can be
transferred to the switchable (free) layer. The current-induced
STT can also be obtained from Eq. (13) in such a noncollinear
magnetic system. Denoting H1 = Htotal − H ′ and defining the
spin operators for lead α and the QD:

ŝα = 1

2

∑
kσσ ′

ĉ†
kσα

σσσ ′ ĉkσ ′α, ŝD = 1

2

∑
nσσ ′

d̂†
nσ σσσ ′ d̂nσ ′ ,

we have

d ŝα

dt
= −i[ŝα, H1],

d ŝD

dt
= −i[ŝD, Ĥ1] − i[ŝD, Ĥ ′],

where

−i[ŝD, Ĥ ′] = −γeŝD × B + JM̂ × ŝD.

It can be shown that [117] [
∑

α ŝα + ŝD, H1] = 0, from which
the spin continuity equation of the system is expressed as
[118]

∑
α

d ŝα

dt
+ d ŝD

dt
= −γeŝD × B + JM̂ × ŝD, (B1)

which indicates that the total spin is not conserved due to spin
precession [117]. Substituting Eq. (B1) into Eq. (8) and taking
quantum average, we have

Ṁ = −γ M × B −
∑

α

Isα + A, (B2)

where the correction term A is given by

A = −dsD

dt
− γesD × B, (B3)

and
∑

α Isα = ∑
α dsα/dt is the total spin current. Notice that

Eqs. (13) and (B2) are equivalent. From Eq. (B3), it is found
that when sD is time-reversal symmetric, dsD/dt or A is time-
reversal antisymmetric. If we decompose

∑
α Isα and A into

the time-reversal symmetric (labeled with superscript s) and
antisymmetric (labeled with superscript a) parts, we have

Ṁ = −γ M × B −
∑

α

Is
sα + As − JM × ss

D. (B4)

Here we have used the fact that
∑

α Isα − A = JM × sD.
When the external magnetic field is strong enough, the elec-
tron spin will approximately align with the direction of the
field and we may drop the term −γesa

D × B.
In the adiabatic limit, the term −dsa

D/dt in in As of
Eq. (B4) corresponds to −ds(0)

D /dt . Expanding it to the first

order in frequency, we find

−ds(0)
D

dt
= − iJM

4

∫
dE

2π
Tr

[
G<

f σGr
f σ + Ga

f σG<
f σ

]dm
dt

≡ −η
dm
dt

, (B5)

where η is a second-rank tensor. This term can be absorbed by
introducing an effective gyromagnetic ratio γ ′ = γ (1 + η)−1.
Therefore, the driving force of magnetization precession orig-
inates from the total spin current

∑
α Is

sα , which corresponds
to the current-induced STT discussed in Ref. [119].

APPENDIX C

In this Appendix, we derive the relation between Floquet
Green’s functions and frozen Green’s functions. We start with
the two-time retarded Green’s function defined as [120][

i
∂

∂t1
− H (t1)

]
Gr (t1, t2) +

∫
dt ′�r (t1, t ′)Gr (t ′, t2)

= δ(t1, t2).

To work in the Floquet Green’s function representation, we
make the Fourier transform with respect to the fast timescale
τ = t1 − t2, and obtain[

i
∂

∂t
+ E − H (t )

]
Gr (t, E )

−
∫ t

−∞
dt ′eiE (t−t ′ )�r (t, t ′)Gr (t ′, E ) = I. (C1)

The last term on the left-hand side can be written as∫ t

−∞
dt ′eiE (t−t ′ )�r (t, t ′)Gr (t ′, E )

=
∫

dE ′

2π

∫ t

−∞
dt ′ei(E ′−E )t ′

ei(E−E ′ )t�r (t, E ′)Gr (t ′, E )

≈
∫

dE ′

2π

∫ t

−∞
dt ′ei(E ′−E )t ′

ei(E−E ′ )t�r (t, E ′)Gr (t, E )

=
∫

dE ′

2π
2πδ(E ′ − E ) ei(E−E ′ )t�r (t, E ′)Gr (t, E )

= �r (t, E )Gr (t, E ),

where Gr (t ′, E ) = Gr (t − τ, E ) ≈ Gr (t, E ) is used and the
fast time variable τ = t − t ′ is neglected. Then we can intro-
duce the frozen Green’s function Gr

f (t, E ) satisfying

[E − H (t ) − �r (t, E )]Gr
f (t, E ) = I. (C2)

Substituting Eq. (C2) into (C1), we have

Gr (t, E ) = Gr
f (t, E ) − iGr

f (t, E )Ġr (t, E ). (C3)

Similarly, the advanced Green’s function is

Ga(E , t ) = Ga
f (E , t ) + iĠa(E , t )Ga

f (E , t ). (C4)

Up to the linear order in frequency, we find

Gr (t, E ) = Gr
f (t, E ) − iGr

f (t, E )Ġr
f (t, E ),

Ga(E , t ) = Ga
f (E , t ) + iĠa

f (E , t )Ga
f (E , t ). (C5)
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Notice that the frozen Green’s function is an instantaneous
function, since it depends only on the present time.

APPENDIX D

In this Appendix, we compare the Gilbert damping coef-
ficient derived in Ref. [28] using the scattering matrix theory
with that obtained in this work via nonequilibrium Green’s
functions. According to Ref. [28], in the absence of external
bias, the Gilbert tensor element at zero temperature is ex-
pressed in terms of the scattering matrix at the Fermi energy:

Gi j (m) = γ 2

4π
Re

{
Tr

[
∂S

∂mi

∂S

∂mj

]}
. (D1)

To compare with Eq. (19), we calculate the dimensionless
quantity α′

i j = Gi j/γ
2. The scattering matrix S is connected

to the Green’s function through the Fisher-Lee relation
[121,122]

Sαβσσ ′ = −δαβσσ ′ + i〈Wασ |Gr |Wβσ ′ 〉,
(S†)βασ ′σ = −δαβσσ ′ − i〈Wβσ ′ |Ga|Wασ 〉,

where �αmnσσ ′ = |Wαmσ 〉〈Wαnσ ′ |. |Wαm〉 is proportional to the
eigenvector of �α [122]. From Eq. (A5), we see that

∂Gr,a
f

∂mi
= 1

2
JMGr,a

f σiG
r,a
f .

Then we can express Eq. (D1) with frozen Green’s functions

Tr

[
∂S

∂mi

∂S

∂mj

]
= 1

4
(JM )2Tr

[
Ga

f �Gr
f σiG

r
f �Ga

f σ j
]

= (JM )2Tr
[
Im

(
Gr

f

)
σiIm

(
Gr

f

)
σ j

]
.

Hence, the dimensionless damping tensor element is

α′
i j = 1

16π
(JM )2Re

{
Tr

[
Ga

f �Gr
f σiG

r
f �Ga

f σ j
]}

. (D2)

Now we assume that there is no external bias and the temper-
ature is zero, which are the same conditions used in deriving
Eq. (D1) in Ref. [28]. Note that Eq. (D1) was derived from the
pumped energy current defined as ṁα′ṁ so that the resultant
tensor α′

i j is always symmetric. Hence, we symmetrize the
dimensionless damping tensor in Eq. (19):

α̃i j = 1
2 (αi j + α ji ). (D3)

In the absence of external bias, G<
f = (Ga

f − Gr
f ) f (E ), and

Eq. (D3) becomes

α̃i j = −
∫

dE Tr
[
σiAσ jG

r
f Gr

f − σ jAσiG
a
f Ga

f

+ σ jAσiG
r
f Gr

f − σiAσ jG
a
f Ga

f

]
= −

∫
dE Tr

[
σiAσ j∂E

(
Gr

f − Ga
f

) + σ jAσi∂E
(
Gr

f − Ga
f

)]
= −

∫
dE f Tr∂E

[
σi

(
Gr

f − Ga
f

)
σ j

(
Gr

f − Ga
f

)]
= Tr

[
σi

(
Gr

f − Ga
f

)
σ j

(
Gr

f − Ga
f

)]
, (D4)

with A = (Gr
f − Ga

f ) f . Apart from a constant factor
(JM )2/16π , this expression is exactly the same as α′

i j shown
in Eq. (D2). Therefore, we confirm the equivalence of the
Gilbert damping tensor between our formalism [Eq. (19)] and
that obtained in Ref. [28] in the limiting case.

APPENDIX E

In this Appendix, we derive the nonadiabatic term in
Eq. (31). Expanding m(r, t ) up to the first order in ∂im ≡
∂m/∂xi, we have

m(r, t ) = m + δm = m + xi∂im,

where the Einstein summation convention is implied. The
nonequilibrium Green’s functions have similar expansions

Gr = Gr
0 − (JM/4)Gr

0σxi∂imGr
0,

G< = G<
0 − [(JM/4)Gr

0σxi∂imG<
0 − H.c.].

It is straightforward to find the correction on s(0)
D due to ∂im,

δs(0)
D = JMi

8

∫
dE

2π
Trs[σGrσx jG

<]xx∂ jm + H.c., (E1)

where we have focused on the linear response regime [52,123]
and kept only the linear term in ∂ jm. Here Trs[. . . ]xx denotes
tracing over spin space and then taking diagonal matrix el-
ement in real space and we have dropped the subscript 0 in
the Green’s function. If we further neglect SOI, the Green’s
function is diagonal in spin space in the linear regime, and
Trs[σGrσx jG<]xx = 1Trs[Grx jG<]xx is also diagonal in spin
space. Using the relation

x j = mc0[∇ j, H − E ],

which is valid in the adiabatic approximation in spatial do-
main (c0 is a constant having dimension T −2 with T the
dimension of time), Eq. (E1) becomes

δs(0)
D = JMmc0

8
[w1(x) + w2(x)]∂ jm,

where

w1 j (x) = i
∫

dE

2π
[(G<∇ j )G

a(H − E ) − (H − E )Gr (∇ jG
<)],

w2 j (x) = i
∫

dE

2π
[(Gr∇ j )(H − E )G< − G<(H − E )(∇ jG

a)].

Using 1 + �rGr = (E − H )Gr , we find

w1 j (x) = i
∫

dE

2π
[(∇ jG

<) − (G<∇ j )]

+
∫

dE

2π
[�rGr (∇ jG

<) − (G<∇ j )G
a�a],

where the first term of w1 j (x) is proportional to the current
density je [124]. Focusing on this particular term, we have

δs(0)
D = JMm2c0

4
( je · ∇)m,

which gives rise to the nonadiabatic torque due to the spatial
variation of the magnetization.
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