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Nonperturbative indirect exchange in spin valley coupled two-dimensional crystals
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We study indirect exchange interactions between localized spins of magnetic impurities in spin valley coupled
systems described with the Kane-Mele model. Our model captures the main ingredients of the energy bands
of the 1H transition metal dichalcogenide (TMD) monolayers, such as 1H -MoS2 and 1H -NbSe2. To obtain
the effective interactions, we use the exact diagonalization of the Hamiltonian, avoiding momentum cutoffs.
We start by comparing the standard perturbation expansion in terms of the Kondo exchange with the exact
calculation of the interaction, treating the local spins classically. We find that perturbation theory works well
even beyond the regime where the relevant figure of merit, the ratio between the exchange J and the hopping t ,
is small. We verify that the effective indirect exchange Hamiltonian derived from perturbation theory also works
in the nonperturbative regime. Additionally, we analyze the interplay between the symmetry of the different
terms of the interaction (Heisenberg, Ising, and Dzyaloshinskii-Moriya), the Fermi-surface topology, and the
crystallographic direction in which the impurities are placed. We show that the indirect exchange along the
armchair direction is actually Heisenberg-like, due to the reflection symmetry of the crystal structure around
this direction. Finally, we explore the exploitation of indirect exchange, combined with atomic manipulation, to
engineer the Majumdar-Ghosh model. Our results show that TMDs provide an extremely versatile platform to
engineer indirect exchange interactions.
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I. INTRODUCTION

The effective coupling that arises when two otherwise de-
coupled local spins interact with the same electron gas is
known as indirect exchange interaction. Indirect interaction
was studied for the first time by Ruderman and Kittel [1] for
the case of nuclei. Then, Kasuya and Yosida [2,3] realized that
the same kind of physics applies to magnetic impurities, and
this is the application that has turned out to be more relevant
over the years. The Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction is mediated by the conduction electrons, and, as
such, it is determined by the spin susceptibility of the host
material. Indirect exchange interaction was first considered
in the case of metals, where the RKKY interaction decays
and oscillates with the distance between the impurities. Its
strength depends on the dimension of the host material and
on the actual magnetic species, whereas the oscillation period
is determined by the Fermi surface. Thus, peculiar Fermi

*On leave.

surfaces are expected to give rise to nonconventional indirect
exchange interactions [4–6].

This brings us to consider one of the most intriguing mate-
rials of the past few years: graphene [7,8]. RKKY interaction
in graphene has been thoroughly studied [9–15] and, not
surprisingly, it is predicted to have properties significantly
different from the typical behavior in metals. First, the decay
of the interaction with the separation between impurities is
cubic (R−3), different from the R−2 found in 2D metals [16].
On the other hand, due to the bipartite nature of the graphene
honeycomb lattice, the preferred alignment of the spin of the
impurities depends on whether both impurities are placed on
the same sublattice or not [10].

A related class of 2D materials that can have peculiar
Fermi surfaces is transition metal dichalcogenides (TMDs),
such as MoS2 and NbSe2. In these materials, the combina-
tion of strong spin-orbit coupling and the lack of inversion
symmetry gives rise to a spin splitting in the energy bands,
with a maximum of the splitting placed at the Dirac points,
which leads to a spin valley coupled band structure [17,18].
The peculiar Fermi surface of these materials affects directly
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the indirect exchange interaction [19–21]. In contrast to the
case of graphene, indirect exchange in TMDs is no longer of
Heisenberg type but consists of three different coupling terms:
Heisenberg, Dzyaloshinskii-Moriya (DM), and Ising [20], on
account of the spin-orbit coupling (SOC) and lack of inversion
symmetry.

In the context of TMDs, indirect exchange can be relevant
in at least three different scenarios: first, magnetic dopants
that substitute either the transition metal or the chalcogen
atom [22–27], forming a diluted magnetic semiconductor;
second, compounds such as Cr1/3NbS2, where Cr atoms are
intercalated in between the TMDs planes [28] and helical
magnetic order has been reported [29–32]; and third, in those
TMD-based van der Waals heterostructures where a conduct-
ing layer is adjacent to an insulating layer that hosts spins,
such as 1T/1H TaS2 [33,34]. In this paper, we will address the
first scenario.

Previous work on RKKY interactions in TMDs [19–21] is
based on the k · p model [17] and treats the exchange between
itinerant electrons and the local spins perturbatively. This k · p
approach requires the introduction of a momentum cutoff that
translates into low resolution in the indirect exchange interac-
tion in real space and gives rise to some discrepancies between
the different studies [15]. Additionally, in some cases [19],
intervalley scattering is neglected, resulting in a vanishing
Dzyaloshinskii-Moriya interaction.

In this work, to overcome these drawbacks, we compute
the effective coupling through the exact diagonalization of a
lattice Hamiltonian in a large simulation cell with periodic
boundary conditions. Therefore, we do not need to rely on
the k · p approach and our calculation is not perturbative. This
approach also allows us to validate the results obtained from
second-order perturbation theory. Furthermore, we show that
the effective Hamiltonian derived from perturbation theory
describes the indirect exchange in the nonperturbative range.

In order to provide meaningful results for realistic systems,
the parameters of our Hamiltonian have been set to capture
the characteristics of 1H TMDs. We have thus computed
the RKKY interaction along the high-symmetry directions
of those materials: armchair and zigzag. We focus on the
hole-doped case, which is expected to be relevant because of
the larger spin splitting of the valence bands in TMDs. By
performing the Fourier transform of the effective coupling, we
can identify the different scattering processes that contribute
to the interaction. Finally, we show how to take advantage of
the richness of the interplay of physical phenomena in this
system to construct the Majumdar-Ghosh state [35].

II. METHOD AND THEORY

A. Kane-Mele model

As our formal basis for the description of spin valley cou-
pled systems, we adopt the Kane-Mele model [36], which
describes spinful fermions in a graphene-like lattice model
[Fig. 1(a)]. In this model, the Hamiltonian reads as

H0 = t
∑
〈i j〉,σ

c†
iσ c jσ +

∑
i,σ

εic
†
iσ ciσ + itKM

∑
〈〈i j〉〉,σ

νi jc
†
iσ szc jσ ,

(1)

FIG. 1. (a) Honeycomb lattice. Red circles indicate sublattice
A while blue circles correspond to sublattice B. Green circles rep-
resent the magnetic impurities positioned on sublattice A. When
considering TMDs, the red sublattice indicates the transition metal
elements, and the blue circles mark the position of the dichalco-
genides. (b) Schematic low-energy band structure at K and K ′

valleys. The blue curves correspond to spin-up eigenstates and the
red ones to spin-down. (c) First Brillouin zone. The red and blue
circles correspond to the different Fermi surfaces. The right (left)
picture shows the Fermi surface when the Fermi level is set to
εF1 (εF2).

where c†
iσ and ciσ are the creation and annihilation fermionic

operators at site i with spin σ = {↑,↓}. The first term de-
scribes the nearest-neighbor hopping with amplitude t . For the
on-site term, we take εi = ±�

2 , with positive (negative) sign
for the A (B) sublattice. The third term describes the spin-orbit
coupling, which involves a spin-dependent second-neighbor
complex hopping with amplitude tKM , proposed by Kane and
Mele [36]. Here, νi j = ±1 depends on the orientation between
the bonds that connect the second-neighbor sites.

When εi = tKM = 0, the Hamiltonian of Eq. (1) becomes
the conventional one-orbital first-neighbor tight-binding
model for graphene [8], which gives rise to the zero-gap semi-
conductor band structure with Dirac cones. The on-site energy
term breaks the inversion symmetry, and, as a result, a trivial
gap opens at the corners K and K ′ of the first Brillouin zone.
Because of that, the valence and conduction band states in
the neighborhood of the K and K ′ points are mostly localized
in the A and B sublattices, respectively. Now, if we add the
SOC term, the otherwise spin-degenerate bands split into two
spin-polarized bands [37]. Due to time-reversal symmetry,
Krammer’s doublets have opposite spin and momentum. As a
result, the spin splitting of the bands is opposite in each valley.
This kind of band structure [Fig. 1(b)] leads to the so-called
spin valley coupled systems [17]. In the case of TMDs, the
strong SOC comes from the orbital of the transition metal. In
the tight-binding model, we describe it by considering differ-
ent tKM for each sublattice. As a result, the spin split of the
valence band is much larger than the split of the conduction
band.

We note that, unlike the bands in TMDs, the bands at the
� point in the Kane-Mele model are far away in energy from
those at the K , and K ′ points. Therefore, our calculations do
not capture effects associated with the � pockets [21].
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B. Exchange interaction between local spins
and itinerant electrons

Now we consider the interaction between the magnetic
impurities and the conduction electrons of the host material.
This kind of interaction is usually described through a contact
Hamiltonian of the form

Vint =
∑

i

Ji�ni · �s(�ri), (2)

where Ji is the coupling constant between conduction
electrons and impurities, �ni is the magnetic moment of
the impurities, considered as a classical vector, and �s(�ri) is the
spin density operator at site �ri. We shall refer to Eq. (2) as the
Kondo interaction, although we must note that we are treating
local spins classically and therefore we cannot describe the
Kondo effect.

C. Indirect exchange interaction

These local Kondo interactions lead to nonlocal effective
or indirect coupling between distant local spins. The most
accurate effective spin-spin interaction is obtained from di-
rectly calculating the energy difference between the parallel
and antiparallel configurations. Because of the anisotropy, this
procedure is implemented along the three Cartesian indexes.
As a result, the effective interaction depends on the orientation
of the classical magnetization of the impurities:

Jeff = E (�n1, �n2) − E (�n1,−�n2)

2
, (3)

where E (�n1, �n2) is the total energy of the systems computed
by numerical diagonalization of H0 + Vint in a large simula-
tion cell with two magnetic impurities. We verified that our
simulation cells are large enough so that our results do not
depend on their size.

D. Perturbative indirect exchange

A good starting point for the perturbative approach is to
define the nonlocal spin susceptibility of the electrons. It av-
erages spin density in position �r2 due to the presence of one
impurity placed at �r1:

〈Sα (�r2)〉 = J
∑

β

χαβ (�r1 − �r2)nβ (�r1), (4)

where α, β = x, y, z. Using linear response theory, the non-
local spin susceptibility can be expressed (see Appendix) in
terms of the eigenstates and eigenvalues of the single-impurity
Hamiltonian H0. Here, we take a different approach and we
determine it numerically, by directly computing the change of
the spin density, solving

H1|ψn〉 = εn|ψn〉, (5)

where H1 = H0 + Vint is the Hamiltonian for the system with
one impurity at �r1. Then we compute

〈Sα (�r2)〉 =
∑

n

fn〈ψn|Sα (�r2)|ψn〉, (6)

where fn = f (εn) is the Fermi-Dirac function at T = 0. Since
we use a simulation cell with periodic boundary conditions,

the resulting susceptibility depends on the relative position
�r2 − �r1 and we can take the impurity at the origin without
loss of generality. We can then verify, numerically, that the
expectation value of the spin density scales linearly with J ,
and pull out the susceptibility matrix from Eq. (4).

We note that, for a given pair of sites, �r1, �r2, the nonlocal
susceptibility is a three-by-three matrix, on account of the
spin components α, β. As we are dealing with a system that
presents broken inversion symmetry and strong SOC, our sus-
ceptibility matrix is no longer diagonal but has the following
structure: ⎛

⎝ χxx χxy 0
−χxy χxx 0

0 0 χzz

⎞
⎠. (7)

Once the nonlocal susceptibility is obtained, the indirect
exchange Hamiltonian can be obtained assuming that the sec-
ond classical impurity at site �r2 interacts with the spin density
induced by the first impurity placed at �r1 via Eq. (2). This
leads to

HRKKY = J2
∑

α,β=x,y,z

n1
αχαβ (�r1 − �r2)n2

β. (8)

This equation can also be obtained from treating Eq. (2) to
second order in perturbation theory. Equation (8) naturally
leads to the definition of three important energy scales:

Jxx = J2χxx,

Jxy = J2χxy, (9)

Jzz = J2χzz,

and to an effective Hamiltonian with three types of coupling,
Heisenberg, Ising, and DM:

H = JH �n1 · �n2 + JI n
z
1nz

2 + JDM (�n1 × �n2) · ẑ, (10)

where JH = Jxx and JI = (Jzz − Jxx ), JDM = Jxy. Thus, the
RKKY interaction in spin valley coupled system has two
in-plane components, Jxx and Jxy, and one out-of-plane com-
ponent Jzz. While Jxx and Jzz favor a collinear alignment of the
spins, the DM coupling favors a perpendicular alignment, and
their competition leads to spin canting.

III. VALIDITY OF PERTURBATIVE THEORY

In this section, we use the nonperturbative approach to
test the validity range of perturbation theory. We also verify
that the effective Hamiltonian of Eq. (8), derived from the
perturbation theory, can also describe the indirect exchange
between two spins in the nonperturbative range.

First, we compare the results of perturbation theory with
the exact calculation. The figure of merit of the perturba-
tion theory is the ratio λ = J/t . Hence, we plot the effective
coupling obtained from both methods versus λ to determine
the range of validity of the perturbative results. We take two
first-neighbor impurities such that the distance between them
is equal to the lattice constant a, and both belong to the same
sublattice. For simplicity, we ignore the SOC term as well as
the sublattice symmetry-breaking term, �, in the Hamiltonian
of Eq. (1). Thus, the resulting interaction takes the Heisen-
berg form, JH �n1 · �n2. To compute the exact effective coupling,
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FIG. 2. Indirect exchange interaction for two first-neighbor im-
purities along the zigzag direction as a function of λ = J/t . The red
curve corresponds to the exact calculation computed using Eq. (3).
The black curve indicates the results obtained from second-order
perturbation theory. The parameters of the Hamiltonian [Eq. (1)] are
set to t = 1.1 eV, � = tKM = 0, and the Fermi energy is equal to
−1 eV.

we calculate the energy difference between the parallel and
antiparallel configurations [see Eq. (3)]. In the perturbative
case, we calculate the spin susceptibility via the computation
of the spin density using Eq. (6), and then we obtain the
effective interaction by multiplying it by the Kondo coupling
squared J2. The resulting curves are plotted in Fig. 2. As
we can see, for λ < 0.5 both methods give similar results.
Above this value, the contribution of higher order terms in
λ becomes significant, so that the exact calculation of the
effective coupling becomes necessary. While the agreement
between perturbation theory and the exact calculation is only
granted when λ2 is small, perturbation theory might as well
work beyond that range. This is the case of our system, for
reasons that are beyond the scope of this work.

Now that we have determined the range of validity of the
perturbation theory, we discuss how the Kondo coupling can
be obtained. An educated guess of the value of J can be
determined by comparing experimental measurements of the
Yu-Shiba-Rusinov (YSR) states with the ones obtained from
the formula that relates them to JSρ, where S is the spin of the
magnetic impurity and ρ is the density of states at the Fermi
energy. Using this approach, estimates of JS = 240 meV have
been obtained for magnetic impurities, presumably Fe, in
NbSe2 [23]. On the other hand, the agreement between the
energy bands obtained from Eq. (1) and those obtained using
density functional theory (DFT) is achieved for t � 1 eV.
Therefore, in this case, the use of second-order perturbation
theory is allowed.

We can use a second approach to have a rough estimate
of J: Intra-atomic exchange energies are in the range of 1–
2 eV. Hence, if we assume Kondo exchange is inter-atomic,
J should be significantly smaller, in line with the estimate
from YSR. As discussed above, for those values, perturbation
theory works well. However, it could happen that the relevant
Kondo exchange is intra-atomic, in which case J/t would
not be small, and exact calculations would become manda-
tory. The nonperturbative regime could also be reached for
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FIG. 3. Change of the total energy due to the variation of (a) the
polar angle θ , and (b) the azimuthal angle ϕ between the two first-
neighbor spins �n1 and �n2. Black circles correspond to the results
obtained from Eq. (10) and the red line to the ones obtained from
the exact diagonalization of the Hamiltonian with two impurities.
The Kondo coupling is set to J = t , and we take t = 1.1 eV, � =
1.66 eV, tKM = 0.014 eV in the Hamiltonian [Eq. (1)], to mimic the
band structure of MoS2.

inter-atomic exchange in spin valley coupled materials with
narrow bands, such as 1T-TaS2 [38].

We have also verified that the effective Hamiltonian
[Eq. (10)] derived from the perturbation theory works in the
nonperturbative range. To do that, we compare results from
the equation with those obtained from the diagonalization of
the Hamiltonian with two impurities. The classical impurity
spin is parametrized as �ni = (sin θi cos ϕi, sin θi sin ϕi, cos θi ).
Then, to illustrate the equivalence between both results,
we study the difference of energy caused by the variation
of the angles between the spins, �ϕ and �θ . First, we
derive the values of Jxx, Jxy, Jzz using Eq. (3) along the high-
symmetry directions (x̂, x̂), (x̂, ŷ), (ẑ, ẑ). Then, using these
parameters, we can calculate the total energies for arbitrary
directions of the spins. For the exact results, we diagonalize
the Hamiltonian with two impurities changing the orientation.
We show the results in Fig. 3, for J = t and εF = −1 eV.
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The agreement is very good, with the absolute error below
0.2 meV and the relative error always below 14 percent.
Hence, we have confirmed that the effective Hamiltonian from
Eq. (10) is a good approximation even out of the perturbative
regime.

IV. RKKY IN SPIN VALLEY COUPLED SYSTEMS

We now undertake a detailed study of the RKKY coupling
for a pair of impurities embedded in a 2D spin valley coupled
crystal. To illustrate the physics of these kinds of systems,
we choose the parameters of our model adequate to describe
MoS2. Specifically, we take t = 1.1 eV, � = 1.66 eV, and
tKM = 0.014 eV. These parameters are chosen to obtain bands
similar to those given by first-principles band structure cal-
culations [17]. We consider substitutional impurities in the
transition metal sublattice. As a result, in the Kane-Mele
model impurities are always in the same sublattice. We study
how indirect exchange coupling behaves for different values
of the Fermi energy and for different crystallographic orienta-
tions.

The isotropic or anisotropic character of the RKKY inter-
action in spin valley coupled systems depends on the direction
in which impurities are placed. When impurities are placed
along the armchair direction, the exchange interaction is
isotropic, whereas for the zigzag direction the interaction is
anisotropic. In Fig. 4, we show the three different couplings
of the RKKY interaction for the armchair direction for two
different Fermi levels, while in Fig. 5 we repeat the same plots
for the zigzag direction. In the armchair direction, XX and ZZ
couplings are equal and the DM vanishes. Thus, the RKYY
interaction along the armchair direction is Heisenberg-like, as
if the effect of spin-orbit coupling was missing. As we show
in the Appendix, the origin of this unexpected spin-rotational
symmetry lies in the reflection symmetry of the crystal struc-
ture around the armchair direction. It is important to notice
that this result does not depend on the Fermi level, and thus
it is completely determined solely by the symmetry of the
interaction and the lattice of the system. In contrast, when the
impurities are placed in the zigzag direction, the three types of
the interaction are finite, including the anisotropic Ising and
DM terms.

We now study to what extent the behavior of the couplings
is affected by the position of the Fermi energy. To do that, we
consider two different topologies of the Fermi surface, which
are plotted in Fig. 1(c), for each crystallographic orientation.
We found that the position of the Fermi energy is related to
the magnitude of the indirect exchange and the period of the
oscillation of each term of the interaction.

The maximal value of the interaction for the chosen value
of J = 0.1t eV is 0.1 meV for first-neighbor impurities. As
we can see in the insets of Figs. 4(b) and 5(b), the interaction
is stronger for deeper Fermi energy. We attribute this behavior
to the increase of the effective density of carriers that can me-
diate the coupling. We must note though that our single-band
prediction may underestimate RKKY compared to multiband
calculations.

We now analyze the period of oscillation of the differ-
ent terms of the RKKY interaction. We find three different
behaviors of oscillation, which we attribute to the scattering
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FIG. 4. Coupling terms of the RKKY interaction, J2χαβ , for
J = 0.1t , as a function of impurity separation along the armchair
direction. Here, α, β = {XX, XY, ZZ} for the different levels of dop-
ing (a) εF1 = −0.76 eV and (b) εF2 = −1 eV, which are shown in
Fig. 1(b). The inset displays a zoom of the shorter distances to show
the value of the strongest interaction (∼0.1 meV).

processes that contribute to each term of the interaction. The
longer period of oscillation is associated with intravalley scat-
tering processes, whereas a shorter period is due to intervalley
scattering processes. Thus, we can have oscillations that come
from intravalley or intervalley processes but also from a super-
position of both of them. We also notice that the intervalley or
intravalley nature of the scattering is related to whether the
process conserves or flips the spin.

From the previous considerations, we can explain the be-
havior of each term of the interaction for the different Fermi
levels. Let us first consider the armchair direction. As it can
be seen in Fig. 4(a), the oscillation period of the indirect
exchange is larger for εF1, which has a smaller Fermi wave
vector kF , in line with conventional RKKY theory [1]. Thus,
the processes that contribute to the Heisenberg term are in-
travalley and conserve the spin. We notice that in the zigzag
direction [Fig. 5(a)] the ZZ component has a similar period
to the one obtained for the armchair direction, while the XX
component has now a shorter period of 3a, which corresponds
to intervalley contributions. Hence, in this case, the XX term
is due to spin-flip processes. We notice that the XY component
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FIG. 5. Coupling terms of the RKKY interaction, J2χαβ , as a
function of impurity separation along the zigzag direction, for J =
0.1t . Here, α, β = {XX, XY, ZZ} for the different levels of dop-
ing (a) εF1 = −0.76 eV and (b) εF2 = −1 eV, which are shown in
Fig. 1(b). The inset displays a zoom of the shorter distances to show
the value of the strongest interaction (∼0.1 meV).

has the same period but it displays an additional phase shift.
On the other hand, for εF2 [Fig. 5(b)], we observe a complex
oscillatory pattern caused by the superposition of oscillations
with different wave vectors that come from both interval-
ley and intravalley scattering processes. We also analyze the
Fourier transform of the susceptibility matrix elements χ (q).
Figures 6(a)–6(c) show the resulting Fourier transforms for
the case in which the Fermi level is set to εF1 = −0.76 eV.
We see that, while the ZZ term only displays intravalley con-
tributions [Fig. 6(c)], XY only presents intervalley spin-flip
contributions [Fig. 6(b)]. On the other hand, we notice that the
main contribution for the XX term is intervalley. However, it
also presents a peak in the � point, which is caused by the
isotropic case in which ZZ and XX terms are equal. In the
other case, when we set the Fermi level to εF2, spin-flip and
spin-conserving processes can arise from intravalley as well
as from intervalley transitions. Thus, the Fourier transforms
in this case present both types of contributions, as shown in
Figs. 6(d)–6(f). However, while intravalley processes highly
contribute to XX and ZZ terms, preferred intervalley pro-

cesses appear in the DM term. Hence, if we can somehow
control the system to perform intervalley processes we can
thus select DM as the dominant contribution to the indirect
exchange.

V. ENGINEERING MAGNETIC STATES:
MAJUMDAR-GHOSH MODEL

The results of the previous section show that symmetry,
magnitude, and signs of the indirect exchange interactions
can be very different depending on the Fermi level, the crys-
tallographic orientation, and the distance between impurities.
In this section, we study how to leverage this tunability to
engineer the Majumdar-Ghosh model.

The Majumdar-Ghosh model is an extended Heisenberg
model [35] that includes both a first and second neighbor
antiferromagnetic exchange:

H = J1

N∑
j=1

�n j · �n j+1 + J2

N∑
j=1

�n j · �n j+2, (11)

where J1 and J2 stand for nearest neighbor and next-nearest
neighbor. For J2 = J1

2 the ground state of the model can be
obtained analytically, and it represents a product state of sin-
glets formed by adjacent spins. As there are two ways to
cover the 1D lattice with first-neighbor singlets, the ground
state has a twofold degeneracy. The dimerized state can be
reached not only at J2/J1 = 1/2, but in a finite interval of
J2/J1 [39] from a critical value equal to (J2/J1)cr ≈ 0.24 [40].
In the range of interest, it can be distinguished between two
phases: the homogeneous spin liquid J2/J1 < (J2/J1)cr , and
the dimerized gapful phase at J2/J1 > (J2/J1)cr , as shown in
the phase diagram of Fig. 7.

Now, we explore how to realize the dimerized phase of the
Majumdar-Ghosh model using magnetic dopants in transition
metal dichalcogenides. Since the model has only Heisenberg
interactions, our first choice is to consider spin chains along
the armchair direction, where anisotropic and DM exchanges
vanish. Then, we should look for cases in which J1 and J2

Heisenberg exchange couplings are both antiferromagnetic
and the third-neighbor coupling is negligible. In order to
achieve these conditions, we play with two degrees of free-
dom: the lattice constant of the spin chain and the Fermi level.
In Table I we show several instances in which the conditions

TABLE I. The ratio between the nearest and next-nearest neigh-
bor couplings, J2 and J1, for the different spin-lattice constants along
the armchair direction and Fermi levels for which the Majumdar-
Ghosh model is realizable. For values of J2/J1 above the critical value
0.24 we get the dimerized ground state, and, for lower values, the
ground state corresponds to the spin liquid phase.

Lattice constant (a) εF (eV) J2/J1

√
3 −1.45 0.04

2
√

3 −1.37 0.47
3
√

3 −1.42 0.88
4
√

3 −1.43 0.75
−1.39 0.70

5
√

3 −1.49 0.29
−1.47 0.09
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FIG. 6. Amplitude of the Fourier transform of the elements of the spin susceptibility matrix: χxx , χxy, and χzz: (a)–(c) corresponds to
εF1 = −0.76 eV; (d)–(f) corresponds to εF2 = −1 eV. The solid black line represents the first Brillouin zone. The Dirac points K and K ′ are
located at the corners of the hexagon and the � point is at the center. The maximum amplitude of the Fourier transforms located at the � point
represents the intravalley contributions, while the ones located at K and K ′ correspond to intervalley scattering processes.

are fulfilled. In most of them, the ratio J2/J1 is larger than
0.24, so the dimerized phase would be realized, and in one
case the ratio is very close to the value in which the exact
analytical solution of the Majumdar-Ghosh model is valid.

A way to test our predictions would be to carry out
inelastic electron tunnel spectroscopy with STM, infer the
spin-excitations, and compare with those of the Majumdar-
Ghosh spin model. This approach has been successfully used
to determine the spin couplings of other artificial spin chains
[41,42].

VI. CONCLUSIONS

We studied indirect exchange interactions in spin valley
coupled systems. We go beyond previous work [19–21] in two
aspects: we use a Kane-Mele Hamiltonian without cutoffs in

FIG. 7. Schematic phase diagram of the Majumdar-Ghosh
model. The control parameter is the ratio between J2 and J1.

momentum space, and we treat the exchange between itinerant
electrons and local classical moments exactly, by means of
exact diagonalization. Our main findings are as follows:

(1) In the range where perturbation theory is expected to
work the indirect exchange is very small, in the range of
0.1 meV, on account of the small value of J/t . The fact that
indirect exchange obtained in DFT calculations [43] is in the
range of tens of meV for first-neighbor impurities indicates
that either the Kondo exchange in these systems is large so
that perturbation theory should be used carefully or not at all,
or that electron-electron interactions and/or multiband effects,
ignored so far, play an important role enhancing the magni-
tude of the indirect exchange. This issue will be the subject of
future work.

(2) The difference between perturbation theory and exact
results is small for values of J/t < 0.5.

(3) The effective Heisenberg-Ising-DM Hamiltonian of
Eq. (8) works to a very good approximation in the nonper-
turbative regime.

(4) The symmetry of indirect exchange is radically differ-
ent depending on the relative orientation between the crystal
and the line that joins the local moments. In particular, inter-
actions along the armchair direction are strictly spin-rotational
invariant, with no Ising or DM coupling, due to the reflection
symmetry across the armchair direction.
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(5) The period of oscillations is determined by the wave
vector related to the contributing scattering processes that
can be either intervalley or intravalley. These contributions
depend on whether the spin of the mediating quasiparticles
is conserved or flipped.

Thus, it is apparent that TMDs provide an extremely ver-
satile platform to engineer indirect exchange interactions of
different symmetry and strength, provided that the electronic
density and the position of the magnetic impurities can be
controlled.
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APPENDIX A: ORIGIN OF SPIN ISOTROPY OF INDIRECT
EXCHANGE ALONG THE ARMCHAIR DIRECTION

1. Reflection symmetry

We first demonstrate that the eigenvalues and eigenvectors
of the Bloch Hamiltonian of Eq. (1),

H0(�k)|φμ(�k)〉 = Eμ(�k)|φμ(�k)〉, (A1)

satisfy

Eσ
μ (kx, ky) = E σ̄

μ (kx,−ky ),

φσ
μ (kx, ky ) = φσ̄

μ (kx,−ky), (A2)

on account of the reflection symmetry of the honeycomb
lattice across the armchair direction [see Fig. 1(a)]. For that
matter, we write the Bloch Hamiltonian matrix as

H0(φ1, φ2) =
(

�
2 + σg(φ1, φ2) f (φ1, φ2)

f ∗(φ1, φ2) −�
2 − σg(φ1, φ2)

)
,

(A3)

where φi = �k · �ai, with i = 1, 2, �a1 = a
2 (

√
3,+1), �a2 =

a
2 (

√
3,−1), f (φ1, φ2) = t (1 + eiφ1 + eiφ2 ), and g(φ1, φ2) =

2tKM[sin φ2 − sin φ1 + 2 sin(φ1 − φ2)]. The eigenvalues are
given by

E±(φ1, φ2) = ±
√(

�

2
+ σg(φ1, φ2)

)2

+ | f (φ1, φ2)|2.
(A4)

Now, the transformation(
k′

x
k′

y

)
=

(
kx

−ky

)
(A5)

leads to (
φ′

1
φ′

2

)
=

(
φ2

φ1

)
. (A6)

The functions f and g transform as f ′ = f and g′ = −g.
Therefore, if upon the reflection and spin reversal, σ ′ = −σ ,
the Hamiltonian matrix remains the same, and as a result, both
the eigenvalues and eigenfunctions are also invariant, leading
to Eq. (A2).

2. Effective interaction along the armchair direction

The RKKY interaction tensor has been defined in Eq. (8),
in terms of the spin susceptibility in real space. To calculate
the RKKY interaction tensor along the armchair direction, we
first write it in terms of the spin susceptibility in reciprocal
space,

Jαβ ( �R) = 1

N

∑
�k

ei�k· �Rχαβ (�k), (A7)

where both Jαβ and χαβ are matrices in lattice coordinates
indices. We now notice that the armchair direction coin-
cides with the x direction in the coordinates system we have
adopted. Thus,

Jαβ (x) = 1

N

∑
kx,ky

eikxxχαβ (kx, ky ) = 1

N

∑
kx

eikxxχαβ (kx ).

(A8)
Here α, β can take values x, y, z and

χαβ (kx ) ≡
⎡
⎣∑

ky

χαβ (kx, ky)

⎤
⎦ (A9)

is the key quantity that determines indirect exchange along the
x direction in real space.

We then write the general formula for the spin susceptibil-
ity:

χαβ (�k) =
∑

σ1,σ2,ξ1,ξ2

σα
σ1,σ2

σ
β

ξ1,ξ2
χσ1σ2ξ1ξ2 (�k,� = 0), (A10)

where the matrix elements of χσ1σ2ξ1ξ2 are given by

χ
σ1σ2ξ1ξ2
ll ′ (�k,�) = 1

N

∑
�q

2N∑
μ,ν=1

φ
μ

l ′ξ2
(�q)φμ∗

lσ1
(�q)φν

lσ2
(�k + �q)φν∗

l ′ξ1

× (�k + �q)
f [Eμ(�q)] − f [Eν (�q + �k)]

� + Eμ(�q) − Eν (�q + �k) + i0+ ,

(A11)

with l, l ′ labeling the two sites within the honeycomb unit
cell. For each wave vector �q in the Brillouin zone, there are
4 solutions corresponding to different combinations of the
eigenstates of Ŝz, | ↑〉 and | ↓〉 and the atomic orbitals located
on the different sites in the unit cell. The functions φ

μ

lσ (�q) are
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the projections of the eigenvectors of Eq. (A1) to site l and
spin σ :

|φμ(�q)〉 =
∑

l=A,B

φ
μ

l↑(�q)| �q〉 ⊗ | ↑〉 + φ
μ

l↓(�q)| �q〉 ⊗ | ↓〉,

μ = 1, . . . , 4. (A12)

In the presence of Kane-Mele effective SOC, the eigenstates
of the Hamiltonian are also eigenstates of Ŝz,

φ
μ

l ′ξ2
(�q)φμ∗

lσ1
(�q) = φ

μ

l ′σ1
(�q)φμ∗

lσ1
(�q)δξ2σ1 . (A13)

Thus, for a given wave vector, there are two valence bands
and two conduction bands, each with a well-defined value of
Ŝz, such that we can label the bands by η, η′ = {c, v}, and
σ = {↑,↓}. We now define the form factor:

�
σ1,σ2
η,η′;l ′l (�q, �k) ≡ φ

η

l ′σ1
(�q)φη∗

lσ1
(�q)φη′

lσ2
(�k + �q)φη′∗

l ′σ2
(�k + �q).

(A14)
The matrix elements defined in Eq. (A11) become

χ
σ1σ2σ2σ1
ll ′ (�k,�) = 1

N

∑
�q

∑
η,η′=c,v

�
σ1,σ2
η,η′;l ′l (�q, �k)

× f [Eη,σ1 (�q)] − f [Eη′,σ2 (�q + �k)]

� + Eη,σ1 (�q) − Eη′,σ2 (�q + �k) + i0+ .

(A15)

χ
σ1σ2σ2σ1
ll ′ (�k,�) = 1

N

∑
�q

∑
η,η′=c,v

�
σ1,σ2
η,η′;l ′l (�q, �k)

× f [Eη,σ1 (�q)] − f [Eη′,σ2 (�q + �k)]

� + Eη,σ1 (�q) − Eη′,σ2 (�q + �k) + i0+ .

(A16)

Having in mind that

χxx = 1
4 (χ+− + χ−+) (A17)

and

χzz = 1
4 (χ++ + χ−−), (A18)

to understand the behavior of Jxx and Jzz we need to analyze
the following coefficients,

χ+−
ll ′ (�k) = χ

↑↓↓↑
ll ′ (�k, 0), (A19)

χ−+
ll ′ (�k) = χ

↓↑↑↓
ll ′ (�k, 0), (A20)

χσσ
ll ′ (�k) = χσσσσ

ll ′ (�k, 0). (A21)

In what follows, we will show that the mirror symmetry of
the KM model with respect to the armchair direction implies
the following:

(i) χxx(kx ) = χzz(kx ), implying that symmetric exchange
is isotropic.

(ii) χxy(kx ) = 0, leading to a vanishing DM exchange.
As a result, indirect exchange along the armchair direction

is described by a Heisenberg model, even in the presence of
spin-orbit interaction.

As shown in Eq. (A8), the Fourier components of the
indirect exchange tensor between two spins placed along the
armchair direction can be written as sums over the wave vector
component perpendicular to that direction. For instance, in the
calculation of Jxx we find the sum

χ+−
ll ′ (kx, ky) = 1

N

∑
ky

∑
qx,qy

∑
η,η′=c,v

�
↑↓
ηη′:l ′l (kx, ky; qx, qy)

× f [Eη↑(qx, qy)] − f [Eη′↓(qx + kx, qy + ky)]

Eη↑(qx, qy) − Eη′↓(qx + kx, qy + ky) + i0+ .

(A22)

We can make the change of variables qy → −qy and use the
symmetry expressed in Eq. (A2) to obtain

χ+−
ll ′ (kx, ky) = 1

N

∑
ky

∑
qx,qy

∑
η,η′=c,v

φ
η

l ′↓(qx, qy)φη∗
l↓ (qx, qy)φη′

l↓(qx + kx,−qy + ky)φη′∗
l ′↓ (qx + kx,−qy + ky)

× f [Eη↓(qx, qy)] − f [Eη′↓(qx + kx,−qy + ky)]

Eη↓(qx, qy) − Eη′↓(qx + kx,−qy + ky) + i0+ . (A23)

A subsequent change of variables in the summation over ky, ky − qy → ky leads to

χ+−
ll ′ (kx, ky) = 1

N

∑
ky

∑
qx,qy

∑
η,η′=c,v

φ
η

l ′↓(qx, qy)φη∗
l↓ (qx, qy)φη′

l↓(qx + kx, ky)φη′∗
l ′↓ (qx + kx, ky)

× f [Eη↓(qx, qy)] − f [Eη′↓(qx + kx, ky)]

Eη↓(qx, qy) − Eη′↓(qx + kx, ky) + i0+ . (A24)

The same steps can be applied to χ−+ to give

χ−+
ll ′ (kx, ky) = 1

N

∑
ky

∑
qx,qy

∑
η,η′=c,v

φ
η

l ′↑(qx, qy)φη∗
l↑ (qx, qy)φη′

l↑(qx + kx, ky)φη′∗
l ′↑ (qx + kx, ky)

× f [Eη↑(qx, qy)] − f [Eη′↑(qx + kx, ky)]

Eη↑(qx, qy) − Eη′↑(qx + kx, ky) + i0+ . (A25)
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Now consider

χ zz
ll ′ (kx, ky) = 1

N

∑
ky

∑
qx,qy

∑
σ

∑
η,η′=c,v

φ
η

l ′σ (qx, qy)φη∗
lσ (qx, qy)φη′

lσ (kx + qx, ky + qy)φη′∗
l ′σ (kx + qx, ky + qy)

× f [Eη,σ (qx, qy )] − f [Eη′,σ (kx + qx, ky + qy)]

Eη,σ (qx, qy) − Eη′,σ (kx + qx, qy + ky) + i0+ , (A26)

which appears in the calculation of Jzz along the armchair direction. If we apply the change of variables qy + ky → ky to the
sum over ky and compare the result to Eq. (A24) and Eq. (A25) we see that

χ xx(kx, ky) = χ zz(kx, ky), (A27)

thus confirming that Jzz = Jxx along the armchair direction. Following the same line of reasoning, we now show that
χ

xy
ll ′ (kx, ky) = 0, which implies the DM interaction cancels along the armchair direction. We start by noting that

χ xy = i

4
(χ+− − χ−+). (A28)

Applying the simultaneous transformations qy → −qy, ky → −ky to χ+−
ll ′ (kx, ky), defined in Eq. (A22), gives∑

ky

χ+−
ll ′ (kx, ky) = 1

N

∑
ky

∑
qx,qy

∑
η,η′=c,v

φ
η

l ′↓(qx, qy)φη∗
l↓ (qx, qy)φη′

l↑(qx + kx, ky + qy)φη′∗
l ′↑ (qx + kx, qy + ky)

× f [Eη↓(qx, qy)] − f [Eη′↑(qx + kx, qy + ky)]

Eη↓(qx, qy) − Eη′↑(qx + kx, qy + ky) + i0+ = χ−+
ll ′ (kx, ky ) �⇒ χ xy(kx, ky) = 0. (A29)

We finally note that the Jαβ ( �R = 0) is also proportional to the unit matrix. Therefore, the exchange-induced single-ion anisotropy
vanishes in this system.
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