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Type-II Dirac points and Dirac nodal loops on the magnons of a square-hexagon-octagon lattice
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We study topological magnons on an anisotropic square-hexagon-octagon lattice which has been found by
a two-dimensional biphenylene network. We propose the concept of type-II Dirac magnonic states where new
schemes to achieve topological magnons are unfolded without requiring the Dzyaloshinskii-Moriya interactions
(DMIs). In the ferromagnetic states, the topological distinctions at the type-II Dirac points along with one-
dimensional closed lines of Dirac magnon nodes are characterized by the Berry phase and the Z2 invariant. We
find pair annihilation of the Dirac magnons and use the Wilson loop method to depict the topological protection
of the band degeneracy. The Green’s function approach is used to calculate chiral edge modes and the magnon
density of states. We introduce the DMIs to gap the type-II Dirac magnon points and demonstrate that the
Dirac nodal loops are robust against the DMIs within a certain parameter range. The topological phase diagram
of magnon bands is given via calculating the Berry curvature and Chern number. We find that the anomalous
thermal Hall conductivity gives connection to the magnon edge current. Furthermore, we derive the differential
gyromagnetic ratio to exhibit the Einstein–de Haas effect of magnons with topological features.
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I. INTRODUCTION

Recently, a new network of carbon atoms known as the
biphenylene network (BPN) has been synthesized [1], which
has the point group D2h with 4-, 6-, and 8-membered rings
[2], which can be considered as an effective square-hexagon-
octagon (SHO) lattice where the hexagonal cluster forms the
unit cell and the square-octagon is its connection. It can also
be visualized as an interpolating hexagon lattice between the
honeycomb lattice and the kagome lattice, where the oc-
tagons act as defects in the honeycomb structure. Magnons
are charge-neutral bosonic quasiparticles representing the
collective excitations of the spin waves. The topological
magnetic spin excitations in insulating ordered quantum mag-
nets hold the Dzyaloshinskii-Moriya interactions (DMIs) as
the spin-orbit interactions to break the inversion symmetry
[3,4]. We construct an effective magnonic Hamiltonian of
the SHO lattice in the reciprocal space within the Holstein-
Primakoff (HP) representation and the Fourier transformation.
Our model has six magnon bands which resembles twice
variant bands of the kagome lattice retaining partial features
of the flat band. We propose the concept of the type-II Dirac
crossing points on the stable flat bands in the context of the
SHO lattice. The nontrivial topology is achieved via gen-
erating gaps to split the nonlinear relationship between the
spin magnetization energy and the incident angle. Our results
are expected to be experimentally detected in the magnetic
materials with the SHO lattice by inelastic neutron scattering,
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Raman spectroscopy, resonant inelastic x-ray scattering, etc.
[5].

The Einstein–de Haas (EdH) effect is a phenomenon
involving the transfer of angular momentum between mi-
croscopic magnetic moments and macroscopic mechanical
rotation [6]. It provides a more accurate measurement of
the gyromagnetic ratio than electron-spin resonance or ferro-
magnetic resonance [7,8], which revealed that the origin of
magnetism was the intrinsic angular momentum of electrons
[9,10]. Currently, the EdH effect attracts increasing atten-
tion and has important applications in the fields of ultrafast
magnetism [11,12] and nano-magneto-mechanical systems
[13–16]. Meanwhile, the Berry curvature gives rise to the
anomalous transport phenomenon referring to the generation
of a transverse thermal Hall conductivity [17]. In a system
with nontrivial topology, the temperature gradient applied
along one direction induces a transverse heat current flowing
in a perpendicular direction [18]. This anomalous thermal
Hall effect conductivity κxy is closely connected to the Berry
curvature and the heat currents are carried by charge-neutral
quasiparticles such as magnons [19,20].

In this work, we show that a magnonic SHO lattice anal-
ogous to 2D BPN has type-II Dirac states [21] and Dirac
nodal loops. The type-II Dirac magnonic state can exhibit
novel phenomena such as flat bands and topological insula-
tors, allowing for new potential applications. Our proposed
scheme is based on a SHO lattice model with only nearest-
neighbor exchange couplings, which can realize topologically
nontrivial transition by varying the exchange coupling pa-
rameters. The topological characteristics at the degenerate
band structure are revealed by the Z2 invariant. We use the

2469-9950/2023/108(14)/144407(11) 144407-1 ©2023 American Physical Society

https://orcid.org/0000-0002-7552-5202
https://orcid.org/0000-0003-1097-3802
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.144407&domain=pdf&date_stamp=2023-10-11
https://doi.org/10.1103/PhysRevB.108.144407


MENG-HAN ZHANG AND DAO-XIN YAO PHYSICAL REVIEW B 108, 144407 (2023)

FIG. 1. (a) Schematics of the SHO lattice with shaded region
that represent the unit cell. (b) The anisotropic Brillouin zone of
the SHO lattice with 2/3 in length and 2/(1 + √

3) in width. The
DMIs are allowed at the midpoints of the nearest neighbors and the
next-nearest neighbors indicated by crossed circles which leads to
fictitious magnetic flux in momentum space.

real-space Green’s function approach to calculate of the chiral
edge modes and magnon density of states (DOS). By intro-
ducing the DMIs to gap the energy bands, the magnon Chern
number can be defined which reveals the topological features
of these magnon modes. We analyze the topological phase
diagram of Chern numbers and realize the Dirac nodal loops
(DNLs) which are robust within a certain parameter range of
the DMIs. The topological transport properties are considered
via calculating magnon thermal Hall conductivity, where the
thermal fluctuations are described by the Curie temperature.
We derive the differential gyromagnetic ratio response with
the approximation of anisotropic effective mass to exhibit the
EdH effect of magnons. Further studies are needed to explore
the potential applications of these novel topological features
and gain deeper understandings of the physics behind the EdH
effect.

II. MODEL AND METHODS

A. Spin model

We consider a Heisenberg model on the SHO lattice with
six spins in the unit cell as shown in Fig. 1, where the total
Hamiltonian is given by

H = H0 +HDM +HK +HB. (1)

Our model Hamiltonian contains the nearest-neighbor Heisen-
berg exchange interactions, where theH0 is

H0 = −J1

∑
〈mn〉

Sm · Sn − J2

∑
〈mn〉

Sm · Sn, (2)

and J1, J2 are two types of the nearest-neighbor exchange
couplings within the hexagonal unit cells and between them
as shown in Fig. 1. The HDM terms include two types of
nearest-neighbor DMIs and a next-nearest-neighbor DMI in
the octagon sublattice. Therefore, it can be considered as

HDM =
∑
〈mn〉1

D1 · (Sm × Sn) +
∑
〈mn〉2

D2 · (Sm × Sn)

+
∑

〈〈mn〉〉
D3 · (Sm × Sn). (3)

We also introduce the anisotropic term and the Zeeman
term to keep the magnetic order even at finite temperature

based on the Mermin-Wagner theorem [18,22]. The
anisotropic term is given by

HK = −K
∑
〈m〉

(
Sz

m

)2
, (4)

where K is the anisotropy along the z axis. The external
Zeeman magnetic field term is given by

HB = −h
∑
〈m〉

Sz
m, (5)

where h = gμBB; B is the external magnetic field. The SHO
has a ferromagnetic ground state for J1 > 0 and J2 > 0. We
use the Holstein-Primakoff (HP) representation to study the
magnetic excitations for the ordered states. The original spin
Hamiltonian can be mapped to a bosonic model following the
HP transformation:

S+
m = Sx

m + iSy
m =

√
2S − α

†
mαmαm,

S−
m = Sx

m − iSy
m = α†

m

√
2S − α

†
mαm,

Sz
m = S − α†

mαm, (6)

where α†
m (αm) is the bosonic magnon creation (annihi-

lation) operator at site m. Within the approximation of√
2S − α

†
mαm → √

2S, the Hamiltonian has the form

H = −
[ ∑

〈mn〉1

(J1 + iνmnD1)Sα†
mαn

+
∑
〈mn〉2

(J2 + iνmnD2)Sα†
mαn

+
∑

〈〈mn〉〉
(iνmnD3)Sα†

mαn + H.c.

]

+ (2K + h)
∑
〈m〉

α†
mαm + E0, (7)

where E0 is ground state energy and the νmn = ±1 depends on
the direction of DMIs. Subsequently, we perform the Fourier
transformation using the definition

α
†
k = 1√

N

∑
m

eik·Rmα†
m. (8)

Thus, in the reciprocal space the Hamiltonian is given by

H =
∑

k

ψ
†
k H (k)ψk, (9)

where ψ
†
k = (α†

1,k, α
†
2,k, α

†
3,k, α

†
4,k, α

†
5,k, α

†
6,k ). The spin wave

Hamiltonian matrix is

S

[
Ak Bk

B†
k A†

−k

]
, (10)

where matrix Ak is⎡
⎢⎣ E −γ3eik·(√3a1+3a2 ) −γ3e−ik·(√3a1−3a2 )

−γ3e−ik·(√3a1+3a2 ) E −γ2eik·2a1

−γ3eik·(√3a1−3a2 ) −γ2e−ik·2a1 E

⎤
⎥⎦

(11)
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and matrix Bk is⎡
⎢⎣ −J2e−ik·2a2 −γ1e−ik·(√3a1+a2 ) −γ1eik·(√3a1−a2 )

−γ1e−ik·(√3a1+a2 ) 0 −γ1eik·2a2

−γ1eik·(√3a1−a2 ) −γ1eik·2a2 0

⎤
⎥⎦,

(12)

where E = 2J1 + J2 + 2K + h, γ1 = J1 + iνmnD1, γ2 = J2 +
iνmnD2, and γ3 = iνmnD3. The lattice vectors are given by
a1 = 1

2 (1, 0)a and a2 = 1
2 (0, 1)a with the lattice constant cho-

sen as a = 0.1 nm.

B. Green’s functions and magnon density of states

We rewrite our Hamiltonian in (kx, y) space along the y
direction as shown in Fig. 2(a),

α
†
ky = 1√

Nx

∑
m

eikRm·ex α†
my. (13)

According to the anisotropic edge modes, we also give the
Hamiltonian for (x, ky) space [see Fig. 2(b)],

α
†
kx = 1√

Ny

∑
m

eikRm·eyα†
mx, (14)

where y or x runs from i1 to 6(W − 1) + i1 (i1 = {1, 2, 3, 4,
5, 6,}) and W denotes the number of periodic 1D chains. We
replace kx or ky by k. The formalism for calculating the band
structure of the ribbon geometry is a 6W ×6W matrix-form
Hamiltonian which is given by

H =
∑

k

ϕ
†
k H (k)ϕk, (15)

where ϕ
†
k = (α†

i1,k
, α

†
i1+1,k, . . . , α

†
6(W −1)+i1,k

) in the open

boundary condition α
†
0,k|0〉 = α

†
6W +1,k|0〉 = 0. The Hamilto-

nian matrix can be written as

H (k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

G(k) F (k)† 0 · · · 0

F (k) G(k) F (k)† . . .
...

0 F (k) . . .
. . . 0

...
. . .

. . .
. . . F (k)†

0 · · · 0 F (k) G(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (16)

where G(k) and F (k) are 6×6 matrices with G(k)ii = E
(i = {1, 2, 3, 4, 5, 6}), G(k)i j = G(k)†

ji, G(k)15 = G(k)16 =
G(k)24 = G(k)26 = G(k)34 = G(k)35 = −γ1. As shown in
Fig. 2(a), G(k)23 = −γ2eika3 , G(k)56 = −γ2e−ika3 , F (k)12

= F (k)46 = −γ3e
√

3
2 ika3 , F (k)13 = F (k)45 = −γ3e−

√
3

2 ika3 , F
(k)14 = −J2, G(k)i j = 0 (otherwise), F (k)i j = 0 (otherwise),
a3 = 0.5a. The top and bottom edges are perpendicu-
lar to the y direction. As shown in Fig. 2(b), G(k)12 =
G(k)13 = −γ3e

3
2 ika3 , G(k)14 = −J2eika3 , G(k)45 = G(k)46 =

−γ3e− 3
2 ika3 , F (k)23 = F (k)56 = −γ2, G(k)i j = 0 (otherwise),

F (k)i j = 0 (otherwise), a3 = 0.5a. The top and bottom edges
are perpendicular to the x direction. We choose W = 30 to
ensure that the results are convergent with W .

For the purpose of calculating transport properties of
magnons, we introduce the retarded and advanced Green’s

FIG. 2. The SHO ribbon has W periodic one-dimensional chains.
(a) The numbers nearing sites are y indices with periodic boundary
condition along the x axis and open boundary condition along the
y axis. (b) The numbers nearing sites are x indices with periodic
boundary condition along the y axis and open boundary condition
along the x axis.

functions

GR(r, r′) =
∑
k,n

α
†
k,n(r′)αk,n(r)

ε + iη − H
, GA(r, r′) = [GR(r, r′)]†,

(17)

where η is a positive infinitesimal, ε is the excitation energy,
and r and r′ represent excitation and response, respectively.
The spectral representation of the Green’s function can be
written as [23]

A =
∑
k,n

αk,n(r)α†
k,n(r′)

2η

(ε − H )2 + η2
. (18)
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And the magnon DOS can also be defined as

ρ(ε) =
∑
k,n

αk,nα
†
k,nδ(ε − H ) = h̄Tr(A)

2π
. (19)

C. Wilson loop and Kubo formula

In the type-II Dirac points, the Berry phase can distinguish
between trivial and nontrivial topological phases associated
with the band crossings. We acquire the Berry phase over a
loop by integrating the Berry connection of band structures,

Aλ
n = i〈ψλ|∇kn |ψλ〉, (20)

with |ψλ〉 being the normalized wave function of the λth Bloch
band such that H (k)|ψλ〉 = Eλ(k)|ψλ〉.

Using the Wilson loop method associated with the Berry
connection, the Berry phase is defined for a closed path encir-
cling the type-II Dirac point nodes in the Brillouin zone (BZ)
with γ = π , whereas γ = 0 otherwise,

γ λ
n =

∮
∂BZ

Aλ
n · dk. (21)

By manipulating the parameters of the DMIs, nontrivial
band topology can be characterized by a nonzero Berry curva-
ture and a generally topological invariant like Chern number.
The form of the Berry curvature is given by

�λk = i
∑
n �=λ

[〈 λ|∇kH (k)|n〉 × 〈 n|∇kH (k)|λ〉]z

(Eλ − En)2
. (22)

The associated Chern number assigned to the nth band is
defined by

Cn = 1

2π

∫
BZ

d2k�nk. (23)

The Chern number denotes the topological nature of recip-
rocal space with a gap in the magnon spectrum, which protects
against scattering and other perturbations.

D. Curie temperature and thermal Hall conductivity

The thermal fluctuations can cause the sublattice magne-
tization to deviate from its saturation value, which can be
described by the Curie temperature Tc. Taking into account
the magnetization along the z axis, the deviation of the SHO
lattice is defined as

�m = S − 〈Sz
m〉 = 〈α†

mαm〉 =
∑
n,k

ρ(εnk), (24)

where the Tc is determined by �m (Tc) = S. As the temper-
ature approaches the Tc, thermal energy increases and causes
increased random motion of the magnetic moments for the
SHO lattice. Under the Tc, the intrinsic anomalous thermal
Hall conductivity can be written as κxy with a weighted sum-
mation of the Berry curvature [17,22]

κxy = − k2
BT

4π2h̄a

∑
n,k

c2[ρ(εnk)]�nk, (25)

where kB is the Boltzmann constant, T is the temperature, and
ρ(εnk) = [eεnk/kBT − 1]−1 is the Bose function. We choose the

lattice constant a = 0.1 nm as the typical layer spacing for
practical calculation. The c2(x) is given by

c2 = (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2Li2(−x), (26)

where Li2(x) is the polylogarithmic function.

E. Angular momentum and gyromagnetic ratio

Considering the linear response theory, the transport co-
efficients for magnons consist of the deviations of a particle
density operator and the current operators [24,25],

ledge = 2kB

4π2h̄
2Im

∑
n,k

〈
∂ψn

∂kx

∣∣∣∣T c1(ρ(εnk)) − ρ(εnk)εnk

kB

∣∣∣∣∂ψn

∂ky

〉
,

lself = 2kB

4π2h̄
2Im

∑
n,k

〈
∂ψn

∂kx

∣∣∣∣ρ(εnk)

2kB
(εnk − H )

∣∣∣∣∂ψn

∂ky

〉
, (27)

where c1(x) = (1 + x) ln(1 + x)-x ln x is another weight func-
tion. The orbital motion of a magnon wave packet is defined
as the total angular momentum without a mass term 〈r×v〉
by summing the edge current and the self-rotation. Due to the
lattice anisotropy, we introduce the effective mass tensor m∗
which describes how the mass of quasiparticles depends on
the direction of motion,

1

m∗ = 1

h̄2

[
∂2E
∂k2

x

∂2E
∂kx∂ky

∂2E
∂kx∂ky

∂2E
∂k2

y

]
. (28)

Through the principal-axis transformation, the anisotropic
tensor can be diagonalized to the major mmaj and minor mmin

axes. By analyzing the DOS near the relevant energy, the
rank-2 tensor can be approximated to a scalar effective mass
m∗ which is valid at low temperature due to the Bose-Einstein
distribution,

m∗ = √
mmajmmin. (29)

Therefore, the total angular momentum per unit cell is given
by

Ltot = m∗(ledge + lself ), (30)

where Ltot represents the total angular momentum. Then the
gyromagnetic ratio of magnons can be expressed as

γm = γeLtot

h̄�m
, (31)

where the γe is given by 2me/(ge), g is the Landé factor, and
e and me are the charge and mass of the electron, respectively.
As exotic quasiparticles in Boson systems, the gyromagnetic
ratio response of topological magnons cannot be directly
measured via traditional magnetometry in experiment. Thus,
the differential response to temperature changes γ ∗

m provides
indirect information about their gyromagnetic ratio,

γ ∗
m =

(
∂Ltot/∂T

∂�m/∂T

)
h

. (32)

By calculating the differential gyromagnetic ratio, we exhibit
the EdH effect of topological magnons [26,27].
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FIG. 3. The magnon energy bands of the SHO lattice and the type-II Dirac magnonic points with various J2 interactions. The parameters
of ferromagnetic ground state with D1 = D2 = D3 = K = h = 0 are set as (a) J1 = 1 and J2 = 0.5; (b) J1 = 1 and J2 = 0.6; (c) J1 = J2 = 1;
(d) J1 = 1 and J2 = 2.

III. RESULTS

A. Type-II Dirac magnons

Our study theoretically demonstrates the emergence of
type-II tilted Dirac cones in the SHO lattice with anisotropic
structure as shown in Fig. 3. The dispersion relation of these
cones is tilted at an angle and no longer extends symmetrically
in the momentum space. The type-II Dirac magnonic states
are peculiar collective excitations owning anisotropic magne-
tization frequency branches, which result in the intersecting
or merging of Dirac cones [28]. Comparing with the bands
near the touching points in the type-I states, the connections
between type-II Dirac magnons display linear or curved tra-
jectories in nodal energy states. The arcs are preserved under
small perturbations due to the saddle-shaped branches cross-
ing the stable flat bands. The van Hove singularities (vHSs)
formed by the tilted Dirac cones act as the phase boundary in
Fig. 4. Based on the calculation of the Wilson loop method,
we obtain the topological Berry phase from a closed path
surrounding the type-II Dirac crossing point. These points
come in pairs of opposite chirality which must be brought
together in momentum space and annihilated. Considering the
anisotropy in two-dimensional BZ, the SHO lattice can be
expected to have a variety of unique topological properties,
including anisotropic magnon velocities and large nonrecip-
rocal magnon transport.

In Figs. 5(a) and 5(b), we adjust the exchange couplings
inside and between hexagonal central cells to manipulate the
band structure, which can drive the merging and generation of
the type-II Dirac magnons. When the J2 exchange couplings
are smaller than 0.5 times the J1 exchange couplings, only
the second and third bands (numbered from lower to higher)
accompanied with their symmetrical counterparts are gapless.
Within the range of 0.5 to 1, the increase of the ratio of J2/J1
weakens the potential between the bottom flat band and the
saddle-shaped band, leading to a shift of the Dirac points
to the BZ center. The pair of Dirac cones annihilate at the
saddle point when the ratio approaches 1, which eventually
causes the topological transition and gives the gap opening
at the zone center. A zero Z2 index at the high-symmetry
point maps the disappearance of the nontrivial topology in the
energy band. The sign of the potential changes from positive

to negative indicating the vanishing of topologically protected
edge modes between the type-II Dirac points, while the addi-
tional magnetization may be related to magnetically ordered
states or the magnon DOS. By manipulating the exchange

FIG. 4. Phase diagram of the Chern number for the first, second,
and third band [panels (a), (b), and (c)]. We choose unified nearest-
neighbor DMI as D1 = D2 for x axis and D3 for y axis. The fourth,
fifth, sixth bands are mirror symmetric with the third, second, and
first band along the y axis, respectively.
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FIG. 5. Comparison of the type-II Dirac magnons on the SHO
lattice. (a) Constant-energy cuts through the nodal energy with lines
of bulk states between the nodes for the same parameters as in
Fig. 3(b). (b) Constant-energy cuts with arcs open into bulk pockets
for the bottom band and the second band. Parameter choices are
J1 = 1, J2 = 0.5, D1 = 0.15, and D2 = D3 = 0.26.

couplings between and inside hexagonal central cells, these
magnon modes provide potential means to develop novel and
robust states in magnonics and spintronics [29,30].

B. Topologically nontrivial edge states

We illustrate that the type-II Dirac states in the SHO lattice
are topologically protected by D2h symmetry which induces

chiral magnon edge modes and related nontrivial topological
states. With increased magnetization, the pseudospins origi-
nated from orbital angular momenta of magnon modes exhibit
an anisotropic set of edge states and unique magnon DOS.
Preserving the lattice and the magnetic order, the chiral edge
modes arise due to the breaking of inversion symmetry, which
leads to the emergence of gapless states. We characterize
the presence of edge modes via Z2 invariants resulting from
the presence of inversion symmetry. Considering the inter-
face between regions of topological and trivial domains, the
nonlinear dispersions produce anisotropic magnetization fre-
quency branches near the type-II Dirac points. The quantized
nonzero Berry phases are exchanged at the tilted Dirac cones
disclosing topological boundary states. During the jumping
of Berry phases, the domain boundaries can be considered as
topological defects which disclose the topological transitions
of the energy bands. The spin-momentum locking property
stemming from the coupling between the magnon bands offers
a means of transporting and manipulating spin information
[23,31].

As shown in Figs. 6(a) and 6(b), a new set of magnonic
edge states emerges in lower-energy bands via manoeuvring
the Heisenberg exchange interactions. When the ratio of J2/J1

is smaller than 0.75, the topologically protected edge states
along the kx are localized to the bending of bulk bands near the
boundary. Associated with the sharp peaks and edges of the
localized magnon DOS, the flat-saddle vHS states determine
the local magnon transfer and convert the type-II Dirac states
into topologically trivial states. The gapless states propagate
along the emergence of exotic edge modes in Figs. 6(c) and

FIG. 6. Chiral edge modes with energy set and magnon DOS on the SHO lattic. The parameters for the ribbon without DMIs: (a) The
edge states and corresponding DOS along the kx direction with J1 = 1, J2 = 0.6, and K = h = 0. (b) The edge states and corresponding
DOS along the ky direction with J1 = 1, J2 = 0.6, and K = h = 0. (c) The edge states and corresponding DOS along the kx direction with
J1 = 1, J2 = 2, and K = h = 0. (d) The edge states and corresponding DOS along the ky direction with J1 = 1, J2 = 2, and K = h = 0. The
parameters for the ribbon with D1 = D2 = D3 = 0.1, where the Chern numbers are {−1, −1, 2, 0, −1, 1}: (e) Topological edge modes with
energy set and corresponding DOS along the kx direction with J1 = 1, J2 = 0.5, and K = h = 0. (f) Topological edge modes with energy set
and corresponding DOS along the ky direction with J1 = 1, J2 = 0.5, and K = h = 0.

144407-6



TYPE-II DIRAC POINTS AND DIRAC NODAL LOOPS ON … PHYSICAL REVIEW B 108, 144407 (2023)

6(d), while the J2 reaches twice as much as the J1. These
modes can overlap partially in the gap between adjacent
bands, which further enhances the topological anisotropy.
We correlate them to the topological invariants providing
a deep understanding of the band phase diagram. Due to
the increased robustness against disorders and perturbations,
topologically protected chiral edge modes are immune to
backscattering.

C. Dirac magnon nodal loops

We find the direct magnonic analogs of Dirac nodal-line
semimetals and Dirac triply degenerate points (TPs) in 2D
systems. In stark contrast to 3D systems, these magnonic
analogs of DNLs are topologically protected by the Z2 in-
variant in the absence of any topological gap rather than
transforming into Weyl magnons. With the tendency to mix
and overlap, the topological bands can shape 1D closed lines
of Dirac nodes by applying appropriate DMIs. The TPs are
formed by the crossing of three nondegenerate bands at the
high-symmetry ±M points. They have been proposed by the-
oretical studies on the magnons of composite lattice models
[32,33] even if the DNLs and the TPs are elusive in electronic
systems [34]. We calculate the loop integration of the Berry
phase for a closed path encircling the TPs, which is ±π while
other paths without them are 0. While the existence of large
DMIs leads to symmetry breaking of the hexagonal sublattice,
we have confirmed their topological protection through the
Berry phase. As the magnetic excitations can be measured
by inelastic neutron scattering, we present the constant-energy
cuts of the predicted experimental pattern in Fig. 7. We have
integrated over an energy window of ±0.04J1S.

Moreover, the magnon bands feature a closed line of
Dirac magnon nodes around the ±M points in Fig. 7(a).
We confirm the topological protection from the four time-
reversal-invariant momenta �i = �, X,Y, M in the SHO
lattice. Numerical calculation of the Z2 invariant is given
by (−1)ν = �4

i=1�
N
n=1ξn(�i ) where ν = 1 shows the nonzero

Z2 invariant. The ξn(�i) is the parity eigenvalue of the
magnon bands forming the DNLs which are robust with two
magnon bands overlapping consisting of the linear cross-
ings. The presence of DNLs requires a specific parameter
range of DMIs; otherwise it shrinks to the quadratic point
node in the limit �D2 < 0.05 at D1 = D3 = 0.4. As shown
in Fig. 7(b), the collinear ferromagnet of the SHO lattice
also exhibits magnon TPs at the ±M points, which are typ-
ically isolated points with a conical dispersion relation and
an additional linear term in the energy-momentum relation.
The associated spin-wave velocities for the TPs at the ±M
points along the two directions are vkx = 1

h̄
∂E
∂kx and vky =

1
h̄

∂E
∂ky . For the the first, second, and third band (from lower

to higher) the vkx = 1.372J1, 0.688J1, 1.519J1 and the vky =
2.121J1, 1.235J1, 2.378J1, respectively. This unique disper-
sion exhibits a chirality imbalance. The corresponding gap
states result in chiral magnon edge modes with finite thermal
Hall effect due to broken time-reversal symmetry macroscop-
ically. For comparison, we show the DNLs accompanied with
the TPs for D1 = D2 = D3 = 0.7, where the DNLs are robust
in the moderate DMI regime.

FIG. 7. (a) Magnon band structures of Dirac magnon nodal loops
with J1 = 0.5, J2 = 1, K = 0.2, h = 0.25, D1 = 0.4, and D2 = D3 =
0.9. (b) Magnonic triply degenerate points and the corresponding
DNLs with J1 = 0.5, J2 = 1, K = 0.2, h = 0.25, and D1 = D2 =
D3 = 0.7. (c) The constant-energy cut of the predicted experimental
pattern at E/J1 = 1.59 for the same parameters as Fig. 7(a). (d) The
constant-energy cuts through the corresponding DNLs E/J1 = 2.15
for the inelastic neutron scattering for the same parameters as in
Fig. 7(b).

D. Anomalous thermal Hall effect

We achieve topologically distinct phases by modulating the
nearest-neighbor DMIs and the next-nearest-neighbor DMI.
The gapped magnon bands possess nonzero Berry curvature
acting as an analog of the effective magnetic field in momen-
tum space [35,36], which are convenient to manipulate both
theoretically and experimentally. The rich topological phases
coexist and compete with each other, which gives rise to a
complex phase diagram of the Chern number. A thorough
topological Chern phase diagram calculation is reported in
Fig. 8. According to the bulk-boundary correspondence, there
are loops of edge states in the band gap when the summation
of Chern numbers is nonzero. We show the Berry curvature
of magnon bands in Fig. 9 with J1 = 1, J2 = 0.5, D2 = 0.4,
D1 = D3 = 0.2, and K = h = 0.2. The group velocity of the
edge state shows a chirally moving magnon current local-
ized at the edge, whose direction allows for the efficient
and robust transport of magnons in the SHO lattice. Due to
broken time-reversal symmetry macroscopically, we realize
nontrivial topology by generating nonzero Berry curvature
even when the integral of the Chern number is zero. Ac-
companied with related transport properties, the DMI is key
to investigate the angular momentum for topological edge
current and self-rotation originating from the Berry curvature
in magnon bands.
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FIG. 8. Phase diagram of the SHO lattice. We choose unified octagon DMIs as D2 = D3 for variable x where y variable is D1. The index
of the Chern number is for the first, second, third, fourth, fifth, sixth band (from lower to higher).

As shown in Fig. 10, the topological thermal Hall conduc-
tivity undergoes a platform as a consequence of the type-II
Dirac state, which vanishes at zero temperature. When the

energy gap between the lowest magnon excitation and the
rest of the magnon bands is large enough, the low-energy
excitations can be considered as an independent sector, and

FIG. 9. Berry curvature of magnon bands with J1 = 1, J2 = 0.5, D1 = 0.2, D2 = 0.4, D3 = 0.2, and K = h = 0.2. The (a), (b), (c), (d),
(e), (f) panels correspond to the first, second, third, fourth, fifth, sixth band (from lower to higher), respectively. The Chern numbers are given
by {−1,−1, 2, 0, 0, 0}.
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FIG. 10. Low-temperature thermal Hall conductivity on the
SHO lattice. In ferromagnetic coupling the DMIs, anisotropic
term, and Zeeman term are various with J1 = 1, J2 = 0.5,
and K = h = 0.2. The Chern numbers for D1 = 0.2, D2 =
0.63, D3 = 0.63 are given by {−1, −1, 1, 3, −2, 0}. The Chern
numbers for D1 = 0.12, D2 = 0.46, D3 = 0.46 are given by
{−1, −1, 1, −1, 1, 1}. The Chern numbers for D1 = 0.32, D2 =
0.76, D3 = 0.76 are given by {0,−2, 2, 2, −2, 0}, and the
Chern numbers for D1 = 0.72, D2 = 0.4, D3 = 0.4 are given by
{−1, 1, 0, 0, 0, 0}.

the thermal Hall conductivity is determined solely by the
properties of this sector, such as the Berry curvature. When
the energy gap is small or comparable to the thermal energy,
thermal excitations across the gap become important, and the
thermal Hall effect is dominated by these excitations instead
of the low-energy magnons. Therefore, the observation of a
large thermal Hall effect at low temperatures can be used as
a probe of the magnon band structure and the presence of
a significant energy gap. The strength of the thermal Hall
conductivity is proportional to the Berry curvature and is thus
determined by the topological properties of the system.

E. Einstein–de Haas effect

According to the linear response theory, the magnon
wave packets undergo two types of orbital motions and the
total angular momentum is defined as the summation of
these two types of rotational motions [24,25]. We define
the gyromagnetic ratio as the angular momentum divided by
the magnetic moment of magnons, which is related to the
magnetization change of the system. Each magnon mode
can be excited or annihilated and has its own gyromagnetic
response. Our results indicate that the total gyromagnetic
contribution increases significantly at first and reaches a peak
value at about T = 0.10|J1|. To further analyze the physical
content of the EdH effect, we compare the gyromagnetic ratio
of the SHO lattice system with different DMI parametric
systems. We show the results of our calculation in Fig. 11.
Numerical solutions of the Curie temperatures are given in
Table I to guarantee the validity of the EdH effect in the low

FIG. 11. Comparison of the Einstein de-Haas effect on the SHO
lattice with different parameters. (a) The topological gyromagnetic
ratio with J1 = 1, J2 = 0.5. (b) The differential gyromagnetic ratio
variation with temperature is shown. Parameter choices are the same
as before.

temperature region. The Einstein–de Haas effect is a special
example of the more general phenomenon of angular momen-
tum conservation [37]. In this case, the transfer of angular
momentum can be achieved through a variety of means, in-
cluding magnetization, torque, and rotational motion [38,39].
It has been used to measure the magnetization of materials,
determine spin-decoherence times in ferromagnetic materials,
and study the effects of magnetic fields on superconductors
[40]. Other applications of this effect include the development
of gyroscopes and magnetometers.

The γm/γe shown in Fig. 11(a) represents the temperature
variation of the topological gyromagnetic ratio compared to
the electronic value. As the γ ∗

e is equal to γe for electrons,
the γ ∗

m/γ ∗
e can be simplified as γ ∗

m/γe. Hence, the differential
gyromagnetic ratio is renormalized from the γm response.
Considering the differential gyromagnetic ratio response, the
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TABLE I. The Curie temperature Tc/|J1| for different parameters.

Lattice Parameter field Tc/|J1|
SHO J1 = 1, J2 = 0.5, D1 = 0.12, D2 = 0.46, D3 = 0.46, K = 0.2 0.426
SHO J1 = 1, J2 = 0.5, D1 = 0.2, D2 = 0.63, D3 = 0.63, K = 0.2 0.368
SHO J1 = 1, J2 = 0.5, D1 = 0.32, D2 = 0.76, D3 = 0.76, K = 0.2 0.304
SHO J1 = 1, J2 = 0.5, D1 = 0.72, D2 = 0.4, D3 = 0.4, K = 0.2 0.337

magnon system also has a peak value before descending as
seen in Fig. 11(b). Thus, there is an optimal temperature of the
differential gyromagnetic ratio at which the magnon insulator
will have the strongest response. From an experimental point
of view, there is an optimal temperature zone in which our
theory can be tested well. The values of optimal tempera-
ture for various SHO systems are all from T = 0.05|J1| to
T = 0.20|J1|.

IV. CONCLUSIONS

In summary, we have proposed the concept of the type-
II Dirac magnons along with methods to realize topological
changes of energy bands without requiring the DMIs. Then,
we have revealed unique topological features on the SHO
lattice which resembles a distorted kagome lattice with flat-
saddle bands. The anisotropic magnon band structure has
unique saddle-shaped bands and flat bands preserving the
inversion symmetry and reflection symmetry. The intersec-
tions between the saddle-shaped bands and flat bands display
magnonic arcs tracing the nodal energy of the type-II Dirac
points. With the nonlinear relationship between the spin mag-
netization energy and the incident angle, the type-II Dirac
magnonic states possess mass terms with opposite signs in
the trivial and topological domains. Furthermore, we have
explored moderate nearest-neighbor Heisenberg exchange to
lengthen the magnonic arcs and strengthen the energy dif-
ference, thereby enhancing topologically nontrivial magnon
modes. The near-critical tilted Dirac cones merge together
at the saddle point exhibiting a topological transition, where
the magnon DOS shows a sharp peak. The discrete jump of
the Berry phase describing the topological protection of the
degenerate magnon bands characterizes various low-energy
features including nontrivial topology changes.

Similar to the type-II Dirac fermions, the magnon ex-
citations exhibit magnonic analogs of the zone-center vHS
states [41,42]. By adjusting the J2/J1, the Dirac point and
its time-reversal partner approach each other and eventually
merge together at the � point. This merging of the Dirac
points results in a topological transition, making the system
topologically trivial. The type-II Dirac magnons are gapped
by the DMIs acting as an effective magnetic field to induce
the nonzero Berry curvature. Our findings show that the topo-
logical magnon bands are stable under the DMIs as long as
the ground state symmetry is preserved. As rarely found in
simple 2D systems, the DNL semimetals are currently at-
tracting widespread interest in condensed matter physics [43].
The Dirac magnon nodal-line loops can be controlled while
the frequency of the magnon modes can then be adjusted
accordingly. Our work opens an avenue for another new topo-

logical distinction of magnonic analogs of DNLs semimetals
which are robust for the DMIs within a certain parameter
range. We calculate the expected finite frequency intensity of
the DNLs based on the bulk sensitivity of the inelastic neu-
tron scattering methods [44]. The inelastic neutron scattering
studies can be expected to distinguish the Dirac node-line
semimetals with the inclusion of DMIs in magnonic systems
[45]. We elucidate the topological nature of these new states
and suggest potential applications in spintronic and magnonic
devices [46,47].

Our study provides a experimental realization of the EdH
effect, which is a macroscopic mechanical manifestation
caused by the angular momentum conservation. The Stewart
apparatus is the original device designed to directly measure
the EdH effect, which consists of a metal cylinder suspended
by a wire. By passing an electric current through the coil,
the magnetic field created produces a torque on the cylinder,
causing it to rotate. This angular momentum can then be
measured in terms of the angle of rotation. Recently, an exper-
imental setup has been proposed to detect the EdH effect for
the collective excitation modes of topological magnons [26].
A disk-shaped magnetic sample is connected to a suspen-
sion wire to provide the torque and measure the topological
differential gyromagnetic ratio response. Referring to the un-
usual propagation through the energy bands, the EdH effect
supports the applications of spintronics where the frequency
of the magnon mode can be used to operate the flow of
spin-polarized currents [48,49]. Besides, it is very interesting
to study the topological properties of magnons on the SHO
lattice which can be realized in magnetic materials. These
magnon states may also be observed in quantum circuits
which should be achieved by depositing magnetic atoms on
a metallic substrate using the STM technique. Meanwhile, the
tuning of exchange couplings proposed on the SHO lattice can
be realized by Rydberg atoms trapped in an optical lattice.
Moreover, the EdH effect can produce a mechanical effect
which has potential applications in quantum informatics and
topological magnon spintronics [48].

ACKNOWLEDGMENTS

We would like to thank Jun Li, Xin-Wei Jia, and
Zenan Liu for helpful discussions. This project is sup-
ported by Grants No. NKRDPC-2022YFA1402802, No.
NKRDPC-2018YFA0306001, No. NSFC-92165204, and No.
NSFC-11974432, the Leading Talent Program of Guangdong
Special Projects (Grant No. 201626003), and Shenzhen In-
stitute for Quantum Science and Engineering (Grant No.
SIQSE202102).

144407-10



TYPE-II DIRAC POINTS AND DIRAC NODAL LOOPS ON … PHYSICAL REVIEW B 108, 144407 (2023)

[1] Q. Fan, L. Yan, M. W. Tripp, O. Krejčí, S. Dimosthenous, S. R.
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