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Schwinger boson mean-field theory is a powerful approach to study frustrated magnetic systems, which allows
to distinguish long-range magnetic orders from quantum spin liquid phases, where quantum fluctuations remain
strong up to zero temperature. In this paper, we use this framework to study the Heisenberg model on the
kagome lattice with up to third-nearest-neighbor interaction and Dzyaloshinskii-Moriya (DM) antisymmetric
exchange. This model has been argued to be relevant for the description of transition metal dichalcogenide
bilayers in certain parameter regimes, where spin liquids could be realized. By means of the projective symmetry
group classification of possible ansätze, we study the effect of the DM interaction at first-nearest neighbor and
then compute the J2-J3 phase diagram at different DM angles. We find a phase displaying chiral spin liquid
characteristics up to spin S = 0.5, indicating an exceptional stability of the state.

DOI: 10.1103/PhysRevB.108.144406

I. INTRODUCTION

The Heisenberg model on the kagome lattice has been
the subject of extensive investigations due to its strong geo-
metric frustration, which makes it a prime candidate for the
realization of a quantum spin-liquid state [1–4]. This inter-
est is not only theoretical in nature, but various materials
are believed to be approximately described by the model
[1,2]. The most intensely studied compound is herbertsmithite
[ZnCu3(OH)6Cl2] [5–9], but alternative material realizations
have been investigated, and found not to exhibit any signs of
ordering much below the temperature scales associated to the
respective spin coupling [10–16].

On the theoretical side, the problem has a long history
and has been approached with every conceivable method
ranging from mean-field theory of partons [17–21], varia-
tional [22–26] and renormalization techniques [27–29] to
numerically exact algorithms [30–43] and tensor networks
[44–47]. It is widely believed that the nearest-neighbor-only
model hosts a spin-liquid ground state, but its nature is un-
der ongoing debate. Early density matrix renormalization
group (DMRG) studies pointed to a gapped (Z2) ground state
[37–39], whereas variational Monte Carlo [23,24,26], more
recent DMRG [40,42], and two-dimensional tensor network
studies [46,47] favor a gapless U (1) Dirac spin liquid instead.
While the nearest-neighbor-only model has always been in
the focus of attention, various perturbations to the system
have been considered as well. Both longer range interactions
[48–54] and SU (2) breaking Dzyaloshinskii-Moriya (DM)
[55–64] terms have been studied. With varying parameters,
it has been shown that other states such as a chiral spin liquid
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(CSL) [65–67] and valence bond orders can be ground states
or closely competing states [21,49,51,52,54,60,68–71].

Recently, we proposed moiré bilayers of transition metal
dichalcogenides (TMDs) [72–75] as a platform for realizing
spin models on the kagome lattice that feature both long-range
and DM interactions [76,77]. Motivated by this proposal, we
study the phase diagram of the antiferromagnetic Heisen-
berg model on the kagome lattice with up to third-nearest
neighbor and additional DM interactions by Schwinger boson
mean-field theory (SBMFT). This approach is particularly
useful in this context as it allows to distinguish gapped spin-
liquid phases from competing magnetic orders. We derive the
projective symmetry group (PSG) classification of both time-
reversal (TR) symmetric and TR symmetry breaking chiral Z2

spin-liquid ansätze on the kagome lattice for the given inter-
actions. When minimizing the parameters of these ansätze,
we find phase diagrams that are mostly consistent with pre-
vious SBMFT [21,60,61] and DMRG studies [51,52,76]. By
varying the spin size, we can strengthen or weaken quantum
fluctuations. Upon revisiting the phase diagram of Ref. [21],
we find an additional chiral spin-liquid phase that exists up
to a spin value of 1/2. A stable spin liquid phase at such high
spin in SBMFT is remarkable and may indicate an exceptional
stability of the CSL for the J1-J2-J3 kagome Hamiltonian.

The outline of the paper is as follows. In Section II, we
describe the model under consideration, review SBMFT, and
provide details about the numerical procedure used to reach
the ground state. We derive the PSG classification of the
model with and without DM interactions and introduce the
classical long-range magnetic orders we expect to appear in
Section III. Readers interested in the results can directly skip
to Section IV, where we report the phase diagrams obtained
by SBMFT for different values of interactions and DM angles,
commenting on the new phases and spin structure factors.
Finally, we discuss our results in Section V.
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FIG. 1. DM directions for first- (red) and third- (green) nearest
neighbor. Blue circles indicate the sign of the DM vector in the bonds
surrounding the triangles. Black arrows indicate the first-, second-,
and third-nearest neighbors’ exchange interaction considered in the
model.

II. MODEL AND METHODS

We consider the XXZ model with Dzyaloshinskii–Moriya
(DM) interactions on the kagome lattice, with up to third-
(across hexagons) nearest-neighbor (n.n.) terms (Fig. 1). The
Hamiltonian can be written as

H =
∑

γ

Jγ

∑
i j∈{γ−nn}

(
Sz

i Sz
j + cos

(
2φ

γ
i j

)(
Sx

i Sx
j + Sy

i Sy
j

)

+ sin(2φ
γ
i j )[ẑ · (�Si × �S j )]

)
, (1)

where γ denotes first, second, and third n.n., and the second
summation runs over all bonds at distance γ . Si are the usual
Pauli spin operators on site i, and φ

γ
i j is the DM phase of

bond {i − j}. The model reduces to the SU (2) symmetric
Heisenberg model if all φ

γ
i j = 0. In general, there would be

three different independent phases for first, second, and third
n.n. bonds, but in this paper instead we consider the following
regime:

φ2 = 0, (2a)

φ3 = 2φ1. (2b)

This choice is inspired by the description of twisted bilayer
TMDs where symmetry arguments lead to such a DM phase
dependence [76,78–82].

From now on let us denote φ1 = φ, which we will later
tune to study the emerging J1-J2-J3 phase diagram. The
Hamiltonian term describing general DM interactions is usu-
ally written as

HDM ∝ �Di j · (�Si × �S j ). (3)

In our case, the DM vector �Di j is pointing uniformly in
the ẑ direction. Its orientation is shown in Fig. 1. The red
arrows indicate the direction over which to take the cross

product of Eq. (3). We will refer to this kind of DM in-
teraction as “uniform” DM interaction since all the DM
vectors point in the same direction [83], as opposed to
the “staggered” case, which has been considered in many
other in the literature [59–61,84]. To study the phase di-
agram, we will use Schwinger boson mean-field theory
(SBMFT), which is well suited to distinguish between
gapped spin liquids (SL) and gapless long-range ordered
states (LRO).

The DM interaction changes the symmetry of the original
Hamiltonian. The SU (2) symmetry of the pure Heisenberg
model is reduced to a U (1) rotation symmetry around ẑ. Nev-
ertheless, our choice of the DM angles in Eq. (2) is such that at
particular angles φ = nπ/3, the SU (2) symmetry is restored.
It has been shown [76] that such DM phases can be eliminated
by a gauge transformation of the spins (a local spin rotation in
the xy plane) following a

√
3 × √

3 type of pattern. For this
reason, we expect to see a periodicity in the phase diagram as
a function of φ with period 2π/3.

A. Schwinger-Boson Mean Field Theory

The main idea of Schwinger boson mean-field theory
is to replace the spin operators S with boson operators
a, b. This allows a mean-field theory treatment of both
symmetric and symmetry broken phases. Concretely, the
spin operators are substituted by Schwinger bosons as
follows:

�Si = 1

2
(â†

i b̂†
i )�σ

(
âi

b̂i

)
, (4)

with the constraint â†â + b̂†b̂ = 2S, in order to remain in the
physical sector after enlarging the Hilbert space.

In this subsection, we review the derivation of the mean-
field Hamiltonian in order to explain our notation and
highlight the key steps of the procedure. For a thorough ex-
planation of the method see Refs. [85,86]. By substituting the
Schwinger bosons into the Hamiltonian we obtain the familiar
form

H =
∑

γ

Jγ

∑
i j∈{γ−nn}

(
: B̂γ †

i j B̂γ

i j : −Âγ †
i j Âγ

i j

)

+
∑

i

λi(â
†
i âi + b̂†

i b̂i − 2S). (5)

The double dots denote normal ordering, λi are the Lagrange
multipliers, and S is the effective value of the spin.

The pairing Âγ

i j and hopping operators B̂γ

i j are defined as

Âγ
i j = 1

2

(
τ

γ ∗
i j âib̂ j − τ

γ
i j â j b̂i

)
, (6a)

B̂γ
i j = 1

2

(
τ

γ
i j â

†
i â j + τ

γ ∗
i j b̂†

i b̂ j
)
, (6b)

where (τ γ
i j )2 = e−i2φ

γ
i j . In this way, we expressed the quartic

Hamiltonian in terms of products of U (1) invariant bond
operators that explicitly preserve the rotational invariance of
the interactions in our Hamiltonian. In the Heisenberg case
without DM interaction, they are SU (2) invariant. The last
term in Eq. (5) enforces the local constraint of having 2S
Schwinger bosons per site.
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In SBMFT, the spin S is a free parameter not necessarily
restricted to 1/2. A lower value produces more quantum fluc-
tuations, while for S → ∞, the classical limit is recovered.
A value frequently used arises from fixing 〈S2〉 = 3S(S +
1)/2 = 3/4, which leads to S = (

√
3 − 1)/2 ≈ 0.366 (see

[59,85,87]). In this paper, we vary S to evoke transitions from
long-range magnetic orders to quantum spin liquids.

Up to this point we merely rewrote the original Hamil-
tonian and if the single occupation constraint is strictly
respected at each site, the two models are equivalent and
will have exactly the same ground state. We note that the
operators appearing in the Hamiltonian have changed from
two-spin operators to four-boson operators. The next step is

to implement a mean-field approximation of the form

Âγ †
i j Âi j � Aγ ∗

i j Âγ
i j + Âγ †

i j Aγ
i j − ∣∣Aγ

i j

∣∣2
, (7)

and same for the hopping operators B̂γ
i j . Then, we perform a

Fourier transformation of the spinon operators

âi = 1√
�

∑
k∈BZ

ei�k·�xi aμi,k, (8)

where we split the site index i into the unit-cell (UC) coordi-
nates �xi and the index within the unit cell μi. We obtain the
mean-field Hamiltonian

HMF

Ns
=

∑
γ

1

2
zγ Jγ

(∣∣Aγ
i j

∣∣2 − ∣∣Bγ
i j

∣∣2
)

+ λ(2S + 1) + λ

�m

∑
k

∑
i∈UC

(â†
μi,k

âμi,k + b̂μi,−kb̂†
μi,−k ) +

∑
γ

Jγ

2�m

∑
k

∑
i∈UC

×
∑

j∈γ−nn(i)

{[
Bγ ∗

i j

(
ei�k·�δτ γ

i j â
†
μi,k

âμ j ,k + e−i�k·�δτ γ ∗
i j b̂†

μi,−kb̂μ j ,−k
) + Bγ

i j

(
e−i�k·�δτ γ ∗

i j âμi,kâ†
μ j ,k

+ ei�k·�δτ γ
i j b̂μi,−kb̂†

μ j ,−k

)

− Aγ ∗
i j

(
e−i�k·�δτ γ ∗

i j âμi,kb̂μ j ,−k − ei�k·�δτ γ

i j b̂μi,−kâμ j ,k
) − Aγ

i j

(
ei�k·�δτ γ

i j â
†
μi,k

b̂†
μ j ,−k − e−i�k·�δτ γ ∗

i j b̂†
μi,−kâ†

μ j ,k

)]}
, (9)

with zγ the coordination number, m the number of sites in the
unit cell, � the number of points in the Brillouin zone (see
Appendix A for the relation with Ns and m), and �δ = �x j − �xi

the distance between unit cells. In Eq. (9) we have summations
over γ , which labels the neighbor distance (from first n.n. to
third), over k, which spans the Brillouin zone, over the sites
of a unit cell i and finally over j, which is the γ th-nearest
neighbor of site i.

In this step, we considered λi = λ in order to have a single
Lagrange multiplier to enforce the occupation constraint. The
constraint is thus only imposed on average. To increase accu-
racy one could consider a different λ for each site in the unit
cell.

The mean-field Hamiltonian can be rewritten in a compact
form by introducing the vectors

ψ̂
†
k = (â†

1,k, â†
2,k, . . . â†

m,k, b̂1,−k, b̂2,−k, . . . b̂m,−k ), (10)

such that Eq. (9) becomes

HMF

Ns
=

∑
γ

1

2
zγ Jγ

(∣∣Aγ

i j

∣∣2 − ∣∣Bγ

i j |2
) + λ(2S + 1)

+ 1

�m

∑
k

ψ̂
†
k Nkψ̂k . (11)

Here Nk is a (2m, 2m) matrix. The elements of Nk are found
in the last summation of (9), which gives this matrix a general
structure

(12)

where the Greek letters from α to θ refer to the terms in (9).
They are upper/lower triangular matrices, which overlap on

the diagonals. For example,

α =
∑

γ

Jγ

2

∑
i∈UC

∑
j∈γ−nn(i)

Bγ ∗
i j ei�k·�δτ γ

i j , (13)

and so forth. Since Nk is Hermitian, these terms are related as
γ = α†, ζ = θ†, ε = η†, and β = δ†.

In order to diagonalize the mean-field Hamiltonian, we
perform a Bogoliubov transformation. The energy per site
then reads

EMF =
∑

γ

1

2
zγ Jγ

(∣∣Aγ
i j

∣∣2 − ∣∣Bγ
i j

∣∣2) + λ(2S + 1)

+ 1

�m

∑
k,μ

εμ(k), (14)

where μ = 1, . . . , m and εμ are the positive eigenvalues. This
transformation for bosons is reviewed in [88] (Appendix A)
and more generally in [17,89]. To be more specific, we need
to find a matrix Mk , which transforms

ψk = Mkψ̃k, (15)

such that two conditions are satisfied: the final matrix has to
be diagonal and the vectors ψ̃k in addition have to satisfy the
canonical commutation relations [ψ̃†

k , ψ̃k] = J , where J is a
diagonal (2m, 2m) matrix with −1 on the first m terms and 1
on the others. These two conditions can be written as

M†
kNkMk = ωk, (16a)

M†
k JMk = J. (16b)

The second condition makes the Bogoliubov transformation
different from the normal diagonalization, where J = 1. In
order to perform this transformation we first have to verify
that Nk is positive definite. In fact, while performing the
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minimization there might be parameter choices that do not
yield positive eigenvalues, which then have to be discarded as
nonphysical. Then, we find an upper-triangular matrix Ck such
that Nk = C†

kCk through a Cholesky decomposition. Finally,
we diagonalize Gk = C†

k JCk . This is a Hermitian matrix whose
first m eigenvalues are positive and the others negative.

Since the kagome lattice has a three-site unit cell, it is not
well suited for an analytic treatment [90] Therefore, we rely
on numerical simulations. The ground state of the model can
be found by extremizing the MF energy with respect to all
the mean-field parameters and the Lagrange multiplier. This
procedure involves a large number of mean-field parameters,
so, in order to be able to find a solution we rely on the
projective symmetry group classification of possible ansätze.
This assumes that some symmetries, such as translational
invariance, will be respected by the solution, thus reducing the
number of free parameters. The classification for our model
will be laid out in the next section.

There are two equivalent ways of finding the ground state.
The first one consists of looking for the the saddle point where
the derivative of the free energy with respect to all the mean-
field parameters is zero. We call this method gradient descent.
An important aspect of this gradient descent minimization is
that we are not minimizing the energy with respect to each
of the parameters. This is due to the fact that the solution lies
actually at a saddle point: it is maximal with respect to the
Lagrange multiplier. In addition to this, there is a fundamental
difference between pairing |Aγ | and hopping |Bγ | mean-field
parameters: the solution will be at the minimum with respect
to |Aγ | and maximum of |Bγ | for positive couplings Jγ . This
can be seen by computing the second derivative of EMF ,

∂2EMF

∂2|Aγ | ∝ Jγ , (17a)

∂2EMF

∂2|Bγ | ∝ −Jγ . (17b)

Hence, while performing the minimization, we also
need to consider the sign of the Hessian for the various
parameters [91].

The gradient descent method requires computation of
derivatives of the free energy with respect to the mean-
field parameters, which when done with a finite-difference
method, can introduce numerical inaccuracies. Furthermore,
the method becomes computationally expensive under a grow-
ing number of minimization parameters. Another way of
reaching the ground state is that of iteratively solving the
self-consistency relations. These are of the form

Aγ
i j = 〈

Âγ
i j

〉
. (18)

In order to do so, we need to write down the hopping
and pairing operators in terms of Bogoliubov bosons using
Eq. (15) and exploit the definition of ground state as the vac-
uum of such excitations. We decompose the transformation
matrix Mk as

Mk =
(

Uk Xk

Vk Yk

)
, (19)

where each component is a m × m matrix, with m the size of
the (ansatz) unit cell. The final form of pairing and hopping
operators then is〈

Âγ
i j

〉 = 1

2�

∑
k

(
τ

γ ∗
i j ei�k·(�xi−�x j )Uμν (k)V ∗

λν (k)

− τ
γ
i j e

−i�k·(�xi−�x j )Y ∗
μν (k)Xλν (k)

)
, (20a)

〈
B̂γ

i j

〉 = 1

2�

∑
k

(
τ

γ
i j e

−i�k·(�xi−�x j )X ∗
μν (k)Xλν (k)

+ τ
γ ∗
i j ei�k·(�xi−�x j )Vμν (k)V ∗

λν (k)
)
, (20b)

where μ, λ are the unit-cell indexes respectively of sites i, j
and summation over repeated indexes is implied. The pro-
cedure of this method of solution is the following: starting
from a set of mean-field parameters {O}, we maximize the
free energy with respect to the Lagrange multiplier λ in or-
der to fulfill the occupation constraint. Then, using λ and
{O} we compute a new set of mean-field parameters using
Eq. (20). We iterate this procedure until convergence to a
stationary point. This procedure is more efficient than the
gradient descent and allows to consider a larger set of mean-
field parameters, thus making it best suited for considering
a large number of different ansätze. In both approaches, one
has to pay attention to the fact that they are quite dependent
on the initial set of parameters. Hence, we need to repeat
the procedure many times with different initial parameters in
order to be sure to find all the saddle points of the free energy.

III. SYMMETRY CLASSIFICATION

A. Derivation of the algebraic projective symmetry group

In this section, we review the derivation of the projective
symmetry group (PSG) classification presented in [88] and
adapt it to our specific model. The mean-field parameters’
manifold grows exponentially in system size. In addition,
the Lagrange multipliers have to be optimized for each free
energy evaluation, making the numerical convergence of the
problem a demanding task. This was done for relatively small
system sizes in [92] and it was shown that in almost all cases
the mean-field solution was highly symmetric. The idea then
is to restrict our search to solutions of the self-consistency
equations that respect some of the symmetries of the model. A
set of mean-field parameters {Ai j, Bi j, λ} is called an ansatz.
We demand that our ansätze respect some symmetries of
the original Hamiltonian. The symmetries of the Heisenberg
interaction on the kagome lattice are: global spin rotation,
time-reversal (TR) symmetry, and lattice symmetries (trans-
lations T1 and T2, rotations R6 and reflections σ for the
kagome lattice, shown in Fig. 2). In our case the ansatz au-
tomatically respects the spin rotation symmetry since we are
considering bond operators of the form (6). Furthermore, we
want to consider ansätze, which respect the lattice symmetries
and, eventually, also time-reversal symmetry. In addition, our
Hamiltonian contains DM interactions, which break some of
these symmetries. The resulting PSG will thus be different
from the one of the pure Heisenberg model.

First of all, let us note that the introduction of bosonic
operators imbues the theory with a G = U (1) gauge freedom.
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FIG. 2. Symmetries of the kagome lattice. The lattice directions
considered in the text coincide with T1 and T2.

A gauge transformation (GT) acts on the Schwinger bosons as

b̂ j,σ = exp (iθ ( j))b̂ j,σ . (21)

The effect on the bond operators (6) is thus

Âi j → ei(θ (i)+θ ( j))Âi j, (22a)

B̂i j → e−i(θ (i)−θ ( j))B̂i j, (22b)

and since it is just a GT, the Hamiltonian described by
{Ai j, Bi j} will remain unaffected by the action of the gauge
transformation. If two mean-field Hamiltonians HMF have the
same physical properties, then their ansätze are related by a
GT. Hence, a GT modifies the ansatz, but not the physical
quantities.

Let us now consider the lattice symmetries. We call χ the
lattice symmetry group, then the spinon (bosonic) operators
will transform under the action of X ∈ χ as

âi → âX (i), (23)

in other words, the site i is transformed to site X (i). The same
happens for b̂i and by extension for the bond operators (6).
If an ansatz respects a symmetry, then the physical quantities
are the same before and after the application of that symmetry
transformation. But we also know that if two systems have
the same physical quantities, then they are related by a GT.
This means that there exists at least one GT ĜX ∈ G such that
ĜX X leaves the ansatz invariant. The set of transformations
G × χ , which do not change the ansatz is called the projective
symmetry group (PSG) of that particular ansatz. This group
only depends on the lattice symmetries χ and on the ansatz,
not on the Hamiltonian. An important subgroup of the PSG
is the so-called invariant gauge group (IGG), which is the
group of gauge transformations related to the identity X = I .
The IGG is the group of gauge transformations that leaves
the ansatz invariant. From the PSG of an ansatz we therefore
know which symmetries it preserves and how these symme-
tries are realized projectively in the gauge group.

For our purpose of restricting the space of relevant ansätze,
we would like to choose a symmetry group χ and find all
the possible ansätze compatible with it. In order to do so we
have to find the so-called algebraic PSG (A-PSG), which are
constructed by constraining the possible gauge group repre-
sentations using the symmetry relations of χ . The idea is that
any symmetry group will have to respect some consistency

relations. These can be written in the form of products of
symmetry operations on the lattice yielding the identity. If
a lattice symmetry can be written in several ways, also the
associated gauge transformations should be compatible, with
the identity in that case being the IGG. For example, if we
have a relation X1X2 = X2X1 for Xi ∈ χ , then we can rewrite
this as X1X2X −1

1 X −1
2 = 1. In terms of the associated GT, this

becomes G1X1G2X2X −1
1 G−1

1 X −1
2 G−1

2 ∈ IGG, and leads to a
constraint on the possible realizations of Gχ .

In the non-TR symmetry breaking classification, we con-
sider χ as the group of all lattice symmetries, and at the end
impose TR symmetry by considering only ansätze, which are
real up to a gauge transformation. This was done before in
[93]. Chiral solutions (that break TRS) have been shown to
be competitive ground states, as shown for example in [21].
To also include chiral ansätze, we will follow the procedure
outlined in [88]. The idea is to consider ansätze that respect
all the lattice symmetries only up to a TR transformation. In
order to do so, we need to distinguish between odd and even
lattice symmetries: they are characterized by having odd or
even parity under TR, respectively. Even symmetries include
for example all squares of the elements of χ . Once we know
χe we can construct the chiral A-PSG of χ as the A-PSG of
χe. Then, we consider the odd symmetries χo, which leads to
two types of constraints: first, same type (pairing or hopping)
mean-field parameters on bonds related by such symmetries
will have the same modulus. Second, fluxes are physical
quantities and thus gauge independent, and are sent to their
opposite by TR. Thus, they are unchanged by even transfor-
mations. The constraints arise from considering all nontrivial
fluxes on the lattice and consider all possible cases of parities
for the transformations of χo.

We start by deriving the A-PSG of a triangular Bravais
lattice, which has χe = {T1, T2, R3}. These are all even sym-
metries for the kagome lattice. Since R6 is also a symmetry
in the kagome lattice, R3 = R2

6 must have even parity. By
considering the lattice relation T2R6 = R6T1T2 we can see that
T1 ∈ χe and in the same way the relation T1R6 = R6T −1

2 yields
T2 ∈ χe. Thus, the odd-symmetry group will be χo = {R6, σ }.
The symmetries are reported in Fig. 2. This A-PSG was com-
puted in [88] and it reads

θT1 (r1, r2) = 0, (24a)

θT2 (r1, r2) = p1π [r1], (24b)

θR3 (r1, r2) = p1π [r1]

(
[r2] − [r1] + 1

2
+ [r∗

2 − r∗
1 ]

)
,

+ gR3 (r∗
1 , r∗

2 ), (24c)

with p1 ∈ {0, 1} labeling the two different ansätze and r1, r2

are coordinates in the two lattice directions, with an integer
[ri] and fractional r∗

i part. One solution is that of taking
gR3 = 0.

With the A-PSG at hand we first of all note that it only
depends on one parameter p1, meaning that there are only
two equivalence classes. In particular, since p1 enters in the
definition of θT2 , we see that the ansatz will have a three-
site unit cell for p1 = 0, while it is doubled for p1 = 1. For
each type of bond, we need to consider a starting point to
cover all the lattice using the symmetries of χe. For first- and
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FIG. 3. Bond relations of hopping and pairing operators on the
kagome lattice. These relations come from the A-PSG derived using
only translations and 2π/3 rotations. For first- and second-neighbor
distances there are two inequivalent bonds, colored in light and dark
green for first n.n. and in light and dark blue for second n.n.. A
double arrow on the bond indicate that the phase of that Ai j/Bi j

has an additional phase p1π . Numbers on the sites indicate the used
convention for ordering the six-sites unit cell.

second-nearest neighbors, there are two inequivalent sets of
bonds not related by any symmetry. Starting from a bond, we
can obtain the values of the others by the procedure

Ai→ j = ei(θχ (i)+θχ ( j))Aχ (i)→χ ( j), (25a)

Bi→ j = ei(θχ (i)−θχ ( j))Bχ (i)→χ ( j). (25b)

This will yield the bond relations in picture Fig. 3 for first-,
second-, and third-nearest neighbors.

Let us now make a counting of the mean-field parameters
we are left with so far. There is a total of 20 mean-field
parameters: 10 moduli A1, A′

1, A2, A′
2, A3, B1, B′

1, B2, B′
2, B3

and the corresponding 10 phases. This is still a large parameter
space in which to look for solutions. Luckily, we can restrict
this number of free parameters by exploiting the remaining
symmetries. First of all, we can fix φA1 = 0. The relevant
additional symmetries not yet considered will be R6 (π/3
rotations) and σ (reflection) for the Heisenberg model, only
R6 in the case of the staggered DM interactions considered in
[59–61,84,94] and finally only σ for the uniform DM inter-
action used in our model [95]. By looking at the interaction
directions in Fig. 1, we can see that reflection symmetry is
respected while π/3 rotations are not. This can be illustrated
by applying a rotation: the link changes direction, but the
DM vector stays the same, therefore the energy changes in
the symmetry transformed bond. When applying a reflection
instead, the link as well as the DM vector stay the same. The
completely opposite scenario happens if we consider instead
a staggered DM vector on all triangles. Then, it is clear that σ

is no longer a symmetry, while R6 is restored. Let us now take
into consideration both R6 and σ , in order to classify all the

FIG. 4. Loops that need to be considered in order to constrain
hopping and pairing mean-field phases. The list of loops in terms of
operators is given in the text.

ansätze of the pure Heisenberg model. The loops that need to
be considered in the lattice are reported in Fig. 4. The loop
operators are

Loop 1: Â†
i j Â jkÂ†

kiÂil Â
†
lmÂmi, (26a)

Loop 2: Â†
i j Â jkB̂ki, (26b)

Loop 3-a: Â†
l j Â jiB̂il , (26c)

Loop 3-b: Â†
jiÂil B̂l j, (26d)

Loop 4-a: Â†
ioÂonB̂n j B̂ ji, (26e)

Loop 4-b: Â†
onÂn j B̂ jiB̂io, (26f)

where each bond has to be taken with the correct sign and
phase, as defined in Fig. 3. In order to implement a symmetry
χ , it needs to equate the phase of a loop to εχ times the phase
of the χ -transformed loop.

If we consider both R6 and σ we obtain the following
constraints:

φ′
A1

= −εR6φ
′
A1

, (27a)

φ′
A1

= −εσφ′
A1

, (27b)

φB1 = εR6φ
′
B1

, (27c)

φB1 = −εσφ′
B1

, (27d)

φ′
A2

= εR6 (φA2 − φ′
A1

), (27e)

φ′
A2

= εσ (φ′
A2

− φ′
A1

), (27f)

φ′
B2

= εR6φB2 , (27g)

φ′
B2

= −εσφ′
B2

, (27h)

φA3 + p1π = εR6φA3 + π + φ′
A1

, (27i)

φA3 + p1π = εσφA3 + π + φ′
A1

, (27j)

φB3 + p1π = −εR6φB3 , (27k)

φB3 + p1π = εσφB3 . (27l)

There is one main difference between Heisenberg and stag-
gered DM, which respect R6, and uniform DM, which does
not.

In fact, when R6 is a symmetry, all bonds of the same
distance have the same amplitude. In the uniform DM case
instead, they can in principle assume different values. But
since σ is a symmetry, the difference arises only at the
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TABLE I. All possible ansätze for the Heisenberg model on the kagome lattice without (1 to 14) and with uniform (15 to 20) DM
interaction. pi = ±1 and an empty spot means that the corresponding bond has to vanish because of symmetry constraints. All amplitudes
at the same distance (first, second, third n.n.) are equal (separately for A and B parameters) without DM. For uniform DM interaction this is not
true for the second nn parameters, i.e., |A2| �= |A′

2| and same for B2. The last column reports the regular orders compatible with each ansatz.
The dot in ansätze 15 to 20 refers to the fact that εR is not needed in these ansätze since R6 symmetry is not considered.

N◦ (εR, εσ ) p1 φ′
A1

φB1 φ′
B1

φA2 φ′
A2

φB2 φ′
B2

φA3 φB3 Compatible order(s)

1 (1,1) 0 0 p2π p2π free φA2 p3π p3π − p4π Q = 0
2 (1,1) 0 π p2π p2π − − p3π p3π free p4π

√
3 × √

3
3 (1,1) 1 0 p2π p2π free φA2 p3π p3π free − ?
4 (1,1) 1 π p2π p2π − − p3π p3π − − ?
5 (1, −1) 0 0 free φB1 p2π p2π free φB2 − p3π Q = 0
6 (1, −1) 0 π free φB1 p2π + π

2 p2π − π

2 free φB2 p3π p4π
√

3 × √
3

7 (1, −1) 1 0 free φB1 p2π p2π free φB2 p3π
π

2 + p4π ?
8 (1, −1) 1 π free φB1 p2π + π

2 p2π − π

2 free φB2 − π

2 + p3π octahedral
9 (−1, 1) 0 0 free −φB1 free -φA2 p2π p2π − free Q = 0
10 (−1, 1) 0 π free −φB1 − − p2π p2π p3π free

√
3 × √

3
11 (−1, 1) 1 0 free −φB1 free -φA2 p2π p2π p3π − cuboc-2
12 (−1, 1) 1 π free −φB1 − − p2π p2π − − ?
13 (−1,−1) 0 φ p2π p2π

φ

2 + p3π
φ

2 + p3π free −φB2
φ+π+2p4π

2 p5π Q = 0,
√

3 × √
3

14 (−1,−1) 1 φ p2π p2π
φ

2 + p3π
φ

2 + p3π free −φB2
φ+2p4π

2 − cuboc-1
15 (·, 1) 0 0 free −φB1 free free p2π p3π − free Q = 0
16 (·, 1) 0 π free −φB1 − − p2π p3π free free

√
3 × √

3
17 (·, 1) 1 0 free −φB1 free free p2π p3π free − cuboc-2
18 (·, 1) 1 π free −φB1 − − p2π p3π − − ?
19 (·,−1) 0 φ free φB1

φ

2 + p2π
φ

2 + p3π free free φ+π+2p4π

2 p5π Q = 0,
√

3 × √
3

20 (·,−1) 1 φ free φB1
φ

2 + p2π
φ

2 + p3π free free φ+2p4π

2 p5π − π

2 cuboc-1,octahedral

second-nearest-neighbor level. We report the full set of
ansätze for the Heisenberg model and the uniform DM in-
teraction in Table I. Parameters pi can take values 0,1 and
differentiate the ansätze. In the table, we numbered the ansätze
for different choices of εχ and p1. Counting all the possible
combinations of pi, there are many more different ansätze
for the pure Heisenberg model than for the model with DM
interactions. This is due to the fact that in the latter case, there
are less symmetry restrictions leading to more free parameters
in general, both phases and amplitudes.

B. Classical orders

Once the ground state of the mean-field Hamiltonian has
been obtained, we determine from the spinon dispersion
whether it features gap or not. SBMFT is particularly well
fitted for distinguishing long-range orders from gapped spin
liquids. When the gap closes, the spinons are allowed to
condense in the ground state. This condensate breaks the
spin rotational invariance and results in a long-range ordered

arrangement of spins on the lattice. In general, the long-range
order to which an ansatz can condense is given by the form of
the condensate. However, there are also examples of ansätze,
which do not allow condensation to any order as we will
see later in the results’ section. The set of classical orders
that can be formed is restricted to states respecting the re-
maining symmetries up to a global spin rotation. These are
the so-called regular orders, which have been classified, also
for chiral orders, in [96]. In this classification, all possible
classical orders on the kagome lattice that are O(3) regular
have been taken into account. These are the orders, which
for any lattice symmetry X allow for a global spin rotation
SX ∈ O(3) such that the state is invariant under SX X . The
group O(3) has been considered since it is the spin symmetry
of the Heisenberg model.

The important quantities that will be useful for our analysis
are the values of the amplitudes and phases of the pair-
ing and hopping parameters in these classical orders, which
then can be used as starting parameters for the minimiza-
tion procedure. These values can be found in Table II for

TABLE II. Pairing and hopping amplitudes and phases for classical O(3) regular orders on the kagome lattice. The value of θ0 is
arctan(

√
2) ≈ 0.95.

Order (εR, εσ ) p1 A1 B1 A2 B2 A3 B3 φ′
A1

φB1 φ′
B1

φA2 φ′
A2

φB2 φ′
B2

φA3 φB3

Q = 0 (±1,±1) 0
√

3/4 1/4
√

3/4 1/4 0 1/2 0 π π π π π π − 0√
3 × √

3 (±1,±1) 0
√

3/4 1/4 0 1/2
√

3/4 1/4 π π π − − 0 0 0 π

cuboc-1 (−1,−1) 1
√

3/4 1/4 1/4
√

3/4 1/2 0 2θ0 π π π + θ0 π + θ0 −θ0 θ0 θ0 −
cuboc-2 (−1, 1) 1 1/4

√
3/4

√
3/4 1/4 1/2 0 0 π + θ0 π − θ0 π − θ0 π + θ0 0 0 0 −

octahedral (1, −1) 1 1/(2
√

2) 1/(2
√

2) 1/(2
√

2) 1/(2
√

2) 0 1/2 π 5π/4 5π/4 3π/2 π/2 π/4 π/4 − 3π/2
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FIG. 5. Classical phase diagram of the Heisenberg model on the kagome lattice with up to third n.n. interactions and DM interactions
as defined in Section II. Choosing the value of the DM (first n.n.) angle to nπ/3, n = 0, 1, 2, yields the same phase diagram with gauged
transformed orders.

√
3 × √

3 comes in two vector chiralities denoted by subscript a, b. Gauged transformed versions of Q = 0, cuboc-1,
cuboc-2, octahedral are also referred to in this way. FM stands for ferromagnetic order.

O(3) regular orders on the kagome lattice with all lattice
symmetries.

All phases and amplitudes have been obtained by consid-
ering the same loops used to evaluate the constraints (27). We
start by taking the product of pairing and hopping operators
along a loop and subsequently expanding them as in (6).
This results in a sum of terms containing an even number of
single-site boson operators. By considering the expression of
the spins in terms of Schwinger bosons (4), we can then derive

â†
i âi = 1

2 + Sz, (28a)

b̂†
i b̂i = 1

2 − Sz, (28b)

â†
i b̂i = Sx + iSy. (28c)

Inserting these relations into the loop expressions and con-
sidering the real space values of the spin directions for the
different orders, we obtain the results in Table II.

IV. NUMERICAL RESULTS

A. Classical phase diagram

It is instructive to first determine the classical ground-state
phase diagram corresponding to our model. As candidate
states, we consider the regular orders defined in [96]. In ad-
dition, we take into account the orders obtained by gauge
transforming the regular orders through our

√
3 × √

3-type
transformation mentioned in the Introduction. A third set of
possible ground states is given by the generalized spiral or-
ders. These are very general orders, which are obtained by
considering only translations as symmetries in the method
of [96]. They are defined by the directions of the spins in a
six-site unit cell [97] and by two angles defining the rotations
of the spins when moving to the neighboring unit cell along
the two inequivalent lattice directions. In addition to the rota-
tion, there can be also an inversion leading to two additional
parameters and a total of 15 parameters. By minimizing the
energy of such spiral states, we find the most probable candi-
date ground state at the classical level. With this most general

choice of parameters, spiral states include all regular orders,
gauged orders and umbrella states. The phase diagrams for
different DM angles at SU (2)-invariant values are shown in
Fig. 5.

We can see that the two
√

3 × √
3 orders with opposite

vector chirality are degenerate at zero DM angle, while at DM
angle φ = nπ/3, n = 1, 2, the degeneracy is lifted and one of
them becomes degenerate with the in-plane ferromagnetic or-
der at each point. This is due to the fact that the ferromagnetic
order is transformed into one of the

√
3 × √

3 orders under
the gauge transformation, which in turn is transformed into
its other vector chirality and finally back to the ferromagnetic
order. As with the

√
3 × √

3/ferromagnetic state, all the or-
ders come in sets of three states that are generated by acting
with the gauge transformation once or twice on the original
order. We denote the once (twice) gauge transformed versions
with the subscript a (b). Since the points with the DM phases
φ = nπ/3, n = 1, 2 are all effectively SU (2) invariant, the
structure of the phase diagram is the same.

Outside of these SU (2) invariant points, the situation
changes. The classical phase diagram for φ = 0.05 is shown
in Fig. 6. We first of all note that a finite value of φ lifts the
degeneracy between the two vector chiralities of the

√
3 × √

3

FIG. 6. Classical phase diagram with DM angle φ = 0.05. On
the left panel a bigger parameter space is shown while in the right
one we zoom in the region close to the J2 = J3 = 0 point.

144406-8



SCHWINGER BOSON STUDY OF THE … PHYSICAL REVIEW B 108, 144406 (2023)

FIG. 7. Phase diagram of first n.n. Heisenberg model on kagome
lattice with the addition of DM interaction as a function of spin S
and DM phase φ. When gapped, solution 16 is a spin liquid (SL)
while solutions 19,20 are chiral spin liquids (CSL). Ordered phases
cuboc-1 and

√
3 × √

3 are gapless solutions of ansätze 20 and 16,
respectively.

order. Also, the origin J2 = J3 = 0 of the phase diagram is no
longer a degenerate point of three orders and it becomes fully√

3 × √
3. By zooming in on the region close to the origin

(right panel of Fig. 6) we illustrate how the degeneracy is
lifted leaving a clear

√
3 × √

3 order at the origin.

B. Phase diagram of J2 = J3 = 0

Turning to the quantum case, let us start by computing the
J2 = J3 = 0 phase diagram in terms of the DM phase φ and
spin S along the same line as [59–61,84], only with a uniform
DM interaction instead. In this first calculation, we used a
self-consistent method for finding the saddle points of the free
energy and considered ansätze 15 to 20 in Table I. The mean-
field parameters thus are: |A1|, |B1|, φB1 , with the addition of
φ′

A1
for ansätze 19 and 20. The resulting phase diagram is

reported in Fig. 7. First of all, we note that the chiral ground
state at 0 DM is rapidly substituted by a

√
3 × √

3 type of
phase as the DM phase increases.

By decreasing the spin value, we see that LRO phases get
substituted by SL ones, as expected since quantum fluctua-
tions become stronger. Three of the six solutions of Table I
appear in the phase diagram: 16, 19, and 20. While 16 and
20 condense to planar

√
3 × √

3 and chiral cuboc-1 orders,
respectively, after gap closing, there is no known order cor-
responding to ansatz 19. From the value of its phases, we
determine that it is chiral, but it only appears as a SL in
the phase diagram. This solution is the analog of the phase
A4(0, 1) found in [60] for uniform DM interactions. It also
has the same circular minima in spinon spectrum, as shown
in Fig. 8. In our simulations, in the entire parameter region in
which it converges as a solution of the self-consistent equa-
tions, it remains gapped.

This phase diagram should coincide with the ones in
[60,61] for DM phase φ = 0. However, we see a slight

FIG. 8. Lowest band spinon dispersion of ansatz 19 for S ∼ 0.11
and φ = 0.

difference at small S (around S � 0.1), where we find
solution 19, while the cuboc-1 was reported up to very small
spin values in [60]. In our simulations, we took a precision
of 10−7 for amplitudes and 10−5 for phases of the mean-field
parameters, normalizing with respect to the spin value in
order to achieve a uniform precision. We also note that the
phase A1(1, 0, 1) found in [60], which would correspond to
our ansatz 17, does not appear in our simulations.

We also computed the spin structure factor

�( �Q) = 1

N
∑
i, j

e−i �Q·(�ri−�r j )〈�Si · �S j〉, (29)

to distinguish the phases. The details of the computation are
given in Appendix B. From the structure factors, we can see
the peaks, which would show up in neutron scattering exper-
iments in long-range orders, while we expect to see broader
features in the spin-liquid phases. In general, we expect DM
interactions to favor in-plane orders due to the out-of-plane
direction of the DM vector (see Fig. 1). Also, as argued in
Section II, the presence of DM interactions reduces the sym-
metry of the model. This in turn reduces the effect of quantum
fluctuations, thus favoring long-range order configurations.
This general tendency can be observed in Fig. 7 by noticing
that the transition line between

√
3 × √

3 LRO to SL (ansatz
16) happens at decreasing spin S values by increasing the DM
strength.

Finally, we emphasize that the part of the phase diagram
with multiple competing phases is restricted to DM angles
φ � 0.12 with our choice of DM interactions. For larger DM
angle, the only solution that remains is 16, gapped (SL) and
gapless (

√
3 × √

3). In contrast, in the case of staggered DM
interactions the phase diagram has multiple phases up to φ ∼
0.3, after which the Q = 0 order dominates.

C. SU (2) invariant points

We now turn to the model with finite J2 and J3 parameters
in the presence of uniform DM interactions of the form given
in Eq. (2). We start with the phase diagrams at the SU (2) in-
variant points, i.e., for DM phase equal to φ = 0, π/3, 2π/3,
in Fig. 9. We use a self-consistent method with precision 10−6
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FIG. 9. Phase diagrams of J1-J2-J3 Heisenberg antiferromagnet at different spin values for DM phase φ = 0. The other SU (2) invariant
points result in equal diagrams. The orders appearing are the same as for the classical phase diagram, namely

√
3 × √

3, Q = 0 and cuboc-1.
We find one additional solution (19) appearing at the border between Q = 0 and cuboc-1, which is chiral and always gapped. We can also
appreciate that already at S = (

√
3 − 1)/2 the ground state of the J2 = J3 = 0 Heisenberg antiferromagnet is in a gapped chiral spin-liquid

phase. By decreasing further the spin value, the whole considered parameter space becomes gapped.

for amplitudes and 10−4 for phases, again normalized by the
spin value in order to get a uniform precision in various plots.
To distinguish between SL and LRO, we performed finite-size
scaling up to lattices of 2401 (ansatz) unit cells and used a
cutoff of 10−2 for the gap value, as discussed in detail in
Appendix A.

The ansätze we considered are 15 to 20 in Table I, since
they are more general and include the solutions 1 to 14, which
are expected to be the ansätze for the SU (2) invariant points.
We computed the J1-J2 − J3 phase diagram for spin values
S = 0.5, (

√
3 − 1)/2, 0.3, 0.2. Four solutions mainly appear

in the phase diagrams: 15, 16, 20, and 19. The first three
condense, after gap closing to Q = 0,

√
3 × √

3 and cuboc-1
orders, respectively. In particular, the solutions appearing in
the diagrams correspond to ansatz 15 with p2 = p3 = 1, 16
with p2 = p3 = 0, 20 with p2 = p3 = 1, p4 = 0, and finally
19 with p2 = p3 = 1, p4 = p5 = 0. For ansatz 20, the value
of p5 is not important since all the found solutions have
B3 ≈ 0.

As expected, the structures of the phase diagrams for
the different SU (2) invariant points are exactly the same.
The only difference lies in the static-spin structure factor
of the LRO phases since the spin orientations are changed
by the gauge transformation. We compute structure factors
using the methods described in Appendix B to compare the
orders at different DM angles and spin values. In Fig. 10,
we report the SSF at φ = 0, 2π/3 for points in the phase
diagram in the regular LRO phases. These patterns coin-
cide with the classical predictions for the respective regular
orders.

Let us now discuss the phase diagrams for φ = 0, Fig. 9.
As expected, quantum effects become more relevant for de-
creasing spin values and from a mostly LRO phase diagram
at S = 0.5 we reach a completely SL one at S = 0.2. The
phase diagrams follow quite closely the classical prediction
for higher spin values while they differ from it at lower S.
As already reported in [21], we also see that the J2 = J3 = 0
point has a chiral solution, which is a cuboc-1 order at high
spin values and turns into a chiral spin liquid for S < 0.4.
More interestingly, for spin value 0.5 we find an additional
solution to the ones reported in [21], which is the further
neighbor version of ansatz 19, realising a chiral spin-liquid

Γ

K

M

(a) Ansatz 15 at
J2 = 0.3, J3 = 0 and

φ = 0.

Γ

K

M

(b) Ansatz 15 at
J2 = 0.3, J3 = 0 and

φ = 2π/3.

Γ

K

M

(c) Ansatz 16 at
J2 = −0.3, J3 = 0 and

φ = 0.

Γ

K

M

(d) Ansatz 16 at
J2 = −0.3, J3 = 0 and

φ = 2π/3.

Γ

K

M

(e) Ansatz 20 at
J2 = 0, J3 = 0 and

φ = 0.

Γ

K

M

(f) Ansatz 20 at
J2 = 0, J3 = 0 and

φ = 2π/3.

FIG. 10. Spin structure factors evaluated using the method de-
tailed in Appendix B 1, for spin S = 0.5. Darker colors indicate a
higher value of the structure factor.
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FIG. 11. Spin structure factor of ansatz 19 evaluated using the
method detailed in Appendix B 2. As in Fig. 10, darker colors refer
to higher values.

phase. It is remarkable that this phase remains gapped even at
spin 0.5, a feature not observed in any SBMFT calculation
on any lattice to the best of our knowledge. The region of
the phase diagram where this solution appears approximately
coincides with the region identified in [52] and [76] as chiral
spin liquid. As mentioned above, a practice commonly used
in SBMFT studies is to assume S = (

√
3 − 1)/2 ≈ 0.366 as

an effective spin value. In this case, the phase diagram is
much richer since it features Q = 0,

√
3 × √

3 and cuboc-1
long-range orders together with three different kinds of spin
liquids. In particular, with solutions 19 and 20 being both chi-
ral since φ′

A1 �= 0, π , we observe two different kinds of phases
in the chiral spin-liquid region identified in [52,76]. The main
difference in the form of the ansätze is p1, thus, they have
different unit-cell size. By further decreasing the spin value,
the chiral region increases and all phases turn towards gapped
solutions.

We compute the spin-structure factor for ansatz 19 and
20 (Fig. 11) for values of the parameters J2, J3, S where
they appear as gapped SL, for comparison. For ansatz 20
at J2 = J3 = 0 and S = (

√
3 − 1)/2, the structure factor is

more smeared out with the peaks remaining at the positions
of the LRO ones [see Fig. 10(e)]. More interesting is
the case of ansatz 19, where the structure factor shows a
smeared pattern with peaks around the position expected
for Q = 0, as reported in Fig. 10(a). This is not surprising

since the value of φ′
A1

of ansatz 19 is around 0.3, and
this ansatz coincides with 15 when φ′

A1
= 0 as shown

in Table I.

D. Finite DM angle

We finally study the case with a finite offset of the DM
value from the SU (2) invariant point. In particular, we con-
sider a small phase φ = 0.05 since we have seen how even a
small value can strongly affect the phase diagram. We again
take into account ansätze 15 to 20 in Table I and find a self-
consistent solution, similar to the SU (2)-invariant case. The
results are shown in Fig. 12.

The solutions at finite DM angle belong to the same
phases, which were found above without DM interaction. In
principle, the system is free to converge towards more gen-
eral solutions since there are fewer symmetries (and in turn
constraints). Nevertheless, we find that all solutions, which
converge to a saddle point in the energy are more symmetric
than their original Hamiltonian. In particular, we notice that
there are no solutions with |A2| �= |A′

2| or |B2| �= |B′
2|. This

behavior can actually be expected from the choice of DM
interaction Eq. (2). In fact, with the second-nearest-neighbor
phase being equal to zero, we could have considered the
R6 symmetry in the PSG construction to be valid at the
second-nearest-neighbor level, yielding a constraint for these
amplitudes.

We notice that the J2 = J3 = 0 point remains
√

3 × √
3

ordered up to much lower spin values with the introduction
of the DM interaction. Also, the SL region is reduced greatly
in general, as is evident from the two plots at S = (

√
3 − 1)/2.

As argued in Section IV B, this tendency to favor in-plane con-
figurations and reduce quantum fluctuations is expected in the
presence of DM interactions. The results of this section show
that the phases need to be kept close to the SU (2) invariant
points for spin-liquid ground states to appear [81]. This con-
strains the displacement fields for potential realizations of the
kagome lattice in TMD homobilayers.

V. DISCUSSION

In this paper, we explored the phase diagram of the Heisen-
berg model on the kagome lattice taking into consideration

FIG. 12. Phase diagrams of J1-J2-J3 Heisenberg antiferromagnet with uniform DM interaction φ = 0.05. The orders appearing in these
phase diagrams are the same as for the SU (2) invariant points in Fig. 9. The DM interaction favors solution 16, which becomes predominant
in the considered parameter space. Also, it reduces the quantum fluctuations resulting in a phase diagram with more LRO gapless phases with
respect to the same spin values in Fig. 9.
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further neighbor exchange and Dzyaloshinskii-Moriya inter-
actions. Through the projective symmetry group approach,
we classified all possible chiral and symmetric ansätze of
the model both with and without DM interactions. Then, we
employed Schwinger boson mean-field theory to compute the
ground state of the model across a wide range of parameters.
We first studied how uniform (as opposed to staggered in
Ref. [60]) DM interactions affect the ground states in the
nearest-neighbor kagome model. We find that the uniform
DM pattern destabilizes the cuboc-1 order and CSL at their
respective effective spin values for even smaller finite DM
angle than in the staggered case. This hints at a limited
stability of potential spin-liquid phases in TMD moiré bilay-
ers away from the SU (2) symmetric point, consistent with
a functional renormalization group study on the triangular
lattice [81].

We then investigated the model at the SU (2) symmetric
points including second- and third-neighbor interactions. The
SBMFT accurately predicts the same phase boundaries for
these points that can be related by local spin rotations in the xy
plane. Furthermore, it correctly captures the different coplanar
magnetic orders related by this gauge transformation, e.g.,
the two vector chiralities of the

√
3 × √

3 and the in-plane
ferromagnet. Regarding spin liquids, surprisingly, we found
a chiral spin liquid close to the J2 = J3 line that remains
stable up to a spin of S = 0.5, described by an ansatz that
had previously not been considered [21]. It appears around
the region in which the CSL had been detected in DMRG
simulations [52,76] and could indicate an exceptional stability
of this state. An open question is the relation of this CSL,
which had been reported in the nearest-neighbor model in
Ref. [60], to the one of the quantum disordered version of the
cuboc-1 state that emerges next to it for sufficiently small spin
values.

Finally, we added DM interactions away from the SU (2)
symmetric point also in the J1-J2-J3 model and found that the
spin liquids quickly destabilize in analogy with the nearest-
neighbor system. Additionally, the coplanar orders are favored
over the chiral cuboc-1 state. Although the symmetry of the
Hamiltonian has been reduced from SU (2) to U (1), we still
only find magnetically ordered states with a classical analog
among the regular magnetic orders of O(3) symmetric Hamil-
tonians [96,98].

Overall, we can conclude that the mean-field calculations
of the phase diagrams qualitatively agree well with numer-
ically exact DMRG results in parameter regimes where the
latter have been performed and for the phases that can be
captured by the Schwinger boson ansatz. The spin value
of S = (

√
3 − 1)/2 ≈ 0.366 that is motivated by setting the

on-site spin fluctuations equal to the quantum mechanical
value, in particular predicts comparable parameter values
for the transition lines between long-range orders and spin
liquids. We thus demonstrated that SBMFT is an excellent
approach to narrow down a large parameter space to regions
that can potentially host spin-liquid ground states on extended
kagome lattice models, without the need to immediately re-
sort to numerically more expensive methods. This might be
of great use especially in the rapidly evolving understand-
ing of the microscopic description of TMD moiré bilayers
[99,100].
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APPENDIX A: GAP SCALING

As mentioned in the main text, the difference between LRO
and SL for a given ansatz can be identified in terms of the
value of the Bogoliubov spinons’ gap in the thermodynamic
limit. If the gap closes the ground state gets a macroscopic
occupation of spinons and this condensate leads to a LRO
phase, since the global spin rotational invariance has been
broken. On the other hand, if the gap remains finite then the
system is in a Z2 spin-liquid phase. The value of the gap is
meaningful just at the thermodynamic limit, so we need to
perform finite-size scaling in order to infer its behavior.

The mean-field free energy that needs to be minimized in
order to obtain the ground state is Eq. (14) and we can see that
it contains a summation over the Brillouin zone (BZ). For each
value of k we consider in the BZ we then need to construct
the matrix Nk and diagonalize it with the Bogoliubov trans-
formation in order to get Bogoliubov spinons’ bands εμ(k).
Each value of k that we take corresponds to a new unit cell
in the real space that we are considering for the value of the
energy. In the code, we consider a grid of values over the BZ,
which contains � = Nk × Nk k points. As value of the gap is
kept the smallest energy of the lowest band on the points of
the grid.

It is clear that in order to correctly estimate the gap value
we need to consider grids where the gap closing point is very
close to one of the points of the grid. The position in the
BZ where the gap closes for different LRO can be derived
exactly. For the q = 0 order the gap closes at (0,0) point in
the BZ, so there will be two degenerate eigenvectors associ-
ated to the zero energy eigenvalue. For the

√
3 × √

3 order
the gap closes at �k = (2π/3, 2π/3) while for the cuboc-1 at
�k = (π/2,

√
3π/2). These values are all easily included in the

grid because they are dependent of the size of the unit cell of
the corresponding LRO. The Q = 0 has a three-site unit cell,
meaning that any even [101] value of Nk will contain it. The√

3 × √
3 order has nine sites in the unit cell, meaning three

kagome unit cells, so any value of Nk multiple of three will
do. Finally, the cuboc-1 has a 12 sites unit cell, corresponding
to four kagome unit cells, so Nk needs to be a multiple of four.
Following this scheme, the first value of Nk containing all the
desired k points is 12, then 24, 36 etc. By plotting the value
of the gap for increasing grid’s thickness we can see how it
scales towards the thermodynamic limit.

Here we show some examples of typical behaviors. The
gap should scale as 1/Ns with Ns the number of sites. In terms
of Nk and of the unit-cell size m this corresponds to Ns = mN2

k .
We can fit with a function a/Ns + b and check the value of
b. Finally, we will have to introduce a cutoff on the value

144406-12



SCHWINGER BOSON STUDY OF THE … PHYSICAL REVIEW B 108, 144406 (2023)

FIG. 13. Gap scaling at different spin values for ansatz 20 solutions at J2 = J3 = 0. The fit in green is performed using a function of the
type a/Ns + b where Ns is the number of sites in the system. In blue is reported the asymptotic value of the fit.

of the gap at the thermodynamic limit in order to distinguish
between the two phases.

In Fig. 13 we look at the gap scaling for ansatz 20 for
different spin values at J2 = J3 = 0. The gap values go from
being very well described by the fit at S = 0.50, indicating a
LRO, to being very far from it at lower spin values, indicating
a SL.

APPENDIX B: SPIN STRUCTURE FACTOR

1. Structure factor using the condensate

In the case of LRO we can extract the spin structure fac-
tor from the solution of the minimization by looking at the
shape of the condensate. The procedure to do so is explained
in [17,93], here we report it with some additional practical
details.

Once the gap closes, the spinons condense and form a
particular orientation of the spins. The information is encoded
in the spinon condensate, which we can write as

χ (r) =
(〈ar〉

〈br〉
)

. (B1)

The first thing to look at are points in the BZ where the gap
closes. These can be degenerate or more than one. Once these
have been identified, let us call them k̃, we need to extract
the eigenvectors corresponding to the zero-energy bands. In
particular, these will be the corresponding columns of Mk̃ as
defined in Eq. (16). Let us call them φk̃ . The presence of a
condensate is evidenced by a non-zero expectation value in
the ground state of the wavefunction, i.e.,

〈ψk̃〉 =
(

〈ak̃〉
〈b†

k̃
〉

)
= cφk̃ . (B2)

By Fourier transforming the spinons in Eq. (B1) we get

χ (r) =
(〈∑k eikrak〉

〈∑k eikrbk〉
)

=
(∑

k̃〈ak̃〉eik̃r∑
k̃〈bk̃〉eik̃r

)
, (B3)

since the expectation value of the spinons on all other k’s is
zero. The constants c in Eq. (B2) will determine the global
spin orientations while leaving the relative angles unchanged.
The final value of the spins’ directions will be given by

�S(r) = 1
2χ†(r)�σχ (r). (B4)

Once the directions of the spins have been determined, we
compute the spin structure factor in the usual way as for the
classical orders using the definition, Eq. (29).

2. Structure factor using the ground state

In the case of a SL phase in order to compute the spin
structure factor we need to rely on a slightly more involved
calculation [94]. We can use the same method as for self
consistency and write down the spin structure factor in terms
of Bogoliubov spinons. Then we evaluate it on the ground
state, which is the vacuum of spinons.

Let us start by writing the spinons a and b in terms of thew
Bogoliubov bosons α and β,

ψk =
(

ak

b†
−k

)
= Mkψ̃k =

(
Uk Xk

Vk Yk

)(
αk

β
†
−k

)
,

ψ
†
k = (a†

k b−k ) = ψ̃
†
k M†

k = (α†
k β−k )

(
U †

k V †
k

X †
k Y †

k

)
.

We need to keep in mind that there is an additional unit-
cell index ranging from 1 to m, where m is the unit-cell size
of the ansatz. Let us consider in detail how to derive the xx
component of the spin structure factor Eq. (29), i.e., just the
terms Sx

i Sx
j . In fact, for SU (2) invariant models it is enough to

compute only one of the three components.

�( �Q)xx = 1

N

〈∑
i

∑
k,k′

e−i�ri · �Q−i �xi ·(�k−�k′ )(a†
kbk′ + b†

kak′ )

×
∑

j

∑
t,t ′

ei �r j · �Q−i �xi ·(�t−�t ′ )(a†
t bt ′ + b†

t at ′ )

〉
.

Note that the position vector ri is the site position whereas
�xi in our convention is the ansatz unit-cell position. We can
decouple ri into unit-cell position plus position of site in the
unit cell, which will be denoted by sμ (μ = 1, . . . m). By
summing over the unit cells we get two delta functions of the
form δ( �Q + k − k′) and δ(− �Q + t − t ′) so that

�( �Q)xx = 1

N

〈∑
μ,γ

∑
k,t

(a†
μ,kbμ,k+Q + b†

μ,kaμ,k+Q)

× (a†
γ ,t bγ ,t−Q + b†

γ ,t aγ ,t−Q)

〉
,

where we call μ, γ the unit-cell index of sites i, j respec-
tively. Now, we can substitute Schwinger bosons a, b with
Bogoliubov bosons α, β. We know these will respect the same
commutation relations because of the construction of Mk as
detailed in Section II A. By using the fact that the ground state
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is the vacuum of Bogoliubov bosons we arrive at the final form

�( �Q)xx = 1

N
∑
k,μ,γ

ei �Q·(sγ −sμ )[X ∗
μν (k)Y ∗

μ,ν ′ (−k − Q)(Xγ ν (k)

× Yγ ν ′ (−k − Q) + Yγ ν (k)Xγ ν ′ (−k − Q))

+ Vμν (−k)Uμν ′ (k + Q)(V ∗
γ ν (−k)U ∗

γ ν ′ (k + Q)

+ U ∗
γ ν (−k)V ∗

γ ν ′ (k + Q))].

Similar expressions can be derived for �( �Q)yy

and �( �Q)zz.
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