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Nonmonotonic buildup of spin-singlet correlations in a double quantum dot
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Dynamical buildup of spin-singlet correlations between the two quantum dots is investigated by means of
the time-dependent numerical renormalization group method. By calculating the time evolution of the spin-spin
expectation value upon a quench in the hopping between the quantum dots, we examine the timescales associated
with the development of an entangled spin-singlet state in the system. Interestingly, we predict a nonmonotonic
buildup of entanglement between the two dots. In particular, we find that in short timescales the effective
exchange interaction between the quantum dots is of ferromagnetic type, favoring spin-triplet correlations, as
opposed to the long-time limit, when strong antiferromagnetic correlations develop and eventually an entangled
spin-singlet state is formed between the dots. We also numerically determine the relevant timescales and show
that the physics is generally governed by the interplay between the Kondo correlations on each dot and exchange
interaction between the spins of both quantum dots.
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I. INTRODUCTION

Double quantum dot systems coupled by a tunable tun-
nel barrier are important, prototypical structures allowing for
convenient control and manipulation of the electronic occu-
pation and spin degrees of freedom [1–14]. Such systems
have more complex electronic structure than single quantum
dots [15–17] and therefore reveal further interesting proper-
ties, phases, and dynamics resulting from strong correlations
[18–24]. Moreover, the ability to trap and control electron
spins in quantum dots opens up new possibilities for promis-
ing applications in the field of quantum computing [25–32].
In fact, the generation and manipulation of quantum states
of individual electrons in the dots enabled the creation of
qubits with high fidelity and long coherence times [33–44].
Coupled double quantum dot systems are in particular widely
considered as hosts for exchange qubits, since they grant an
overall tunability and increased stability due to noise and
decoherence suppression. Additionally, such systems provide
several schemes for fast manipulation and also the possibility
to form three-electron qubits [45–53].

Nevertheless, for efficient exploitation of quantum dots in
solid-state quantum information, it is of importance to fully
understand the relevant dynamical behavior, when also cor-
relation effects may play an important role. In this regard,
the dynamics and transient behavior of double quantum dot
systems remains still a quite unexplored problem, demanding
very precise theoretical and experimental studies [54–67]. In
this work we therefore focus on theoretical study of quench
dynamics of a half-filled double quantum dot following an
abrupt switching on of the coupling between the two quantum
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dots, that were initially coupled to external electronic reser-
voirs, but isolated from each other. The dynamical buildup
of spin-singlet correlations between the two quantum dots
is investigated by means of the time-dependent numerical
renormalization group (tdNRG) method [68–73]. By calcu-
lating the time-evolution of the spin-spin expectation value
upon a quench, we examine the timescales associated with the
development of an entangled spin-singlet state in the system.
We analyze the development of the spin correlations in the
double quantum dot mediated by a direct hopping between
the dots. We show that the spin-singlet correlations start to
compete with Kondo correlations formed in the initial state,
and for considerable values of exchange interaction lead to a
singlet state formed between two dots. Interestingly, when the
dynamics is driven by exchange coupling values significantly
exceeding the Kondo temperature TK , there is a development
of ferromagnetic order at short timescales, which precedes the
formation of an entangled spin-singlet state in the long-time
limit.

The following is an outline of how this paper is organized.
In Sec. II we describe the model and briefly introduce the
method used in numerical calculations. In Sec. III the relevant
static properties of the system are presented and discussed,
while the main results and discussion of spin dynamics are in
Sec. IV. The paper is concluded in Sec. V.

II. MODEL AND METHOD

The considered system is presented in Fig. 1(a). It consists
of two quantum dots, each attached to its own metallic reser-
voir, and coupled to each other through the hopping matrix
element v(t ). The Hamiltonian of such a device can be written
as

H = Hr + HDD + HT , (1)
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FIG. 1. (a) The schematic of the considered double quantum
dot system. Each quantum dot is coupled to its metallic lead with
coupling strength �α , with α = L (α = R) for the left (right) lead.
εL and εR denote the orbital level energies in the corresponding dots,
while U stands for the Coulomb correlations. The quantum dots are
coupled through the hopping matrix element v(t ). We study the evo-
lution of the system following the quench in v(t ), as schematically
presented in (b) and (c). (b) In the initial state, t < 0, v = 0 and the
Kondo state develops separately on each quantum dot. (c) In the final
state, t → ∞, a spin singlet state forms between the two quantum
dots, provided that the antiferromagnetic exchange interaction be-
tween the dots is larger than the corresponding Kondo temperature.

where the first term describes the electrodes in the free quasi-
particle approximation,

Hr =
∑

α=L,R

∑

kσ

εαkσ c†
αkσ

cαkσ . (2)

Here, c†
αkσ

(cαkσ ) creates (annihilates) an electron of momen-
tum k and spin σ in the left (α = L) or right (α = R) lead with
the corresponding energy εαkσ . The second term HDD models
the double quantum dot system and is given by

HDD =
∑

α=L,R

∑

σ

εαd†
ασ dασ +

∑

α=L,R

Ud†
α↑dα↑d†

α↓dα↓

+ v
∑

σ

(d†
Lσ dRσ + d†

Rσ dLσ ), (3)

with d†
ασ (dασ ) being the creation (annihilation) operator on

the left (α = L) or right (α = R) quantum dot for an electron
of spin σ , εα denotes the corresponding orbital level energy,
and U stands for the Coulomb correlations assumed to be
equal for both dots. The hopping amplitude between the two
dots is given by v. Without loss of generality, we assume that
each dot is at half filling, εα = −U/2, and that the system
is symmetric, �L = �R = �. We also note that generally in
double quantum dot systems, depending on particular mate-
rial realization, there might be a finite spin-orbit interaction

[74–76]; however, in our analysis we assume that the effects
associated with this interaction are negligible, i.e., the strength
of spin-orbit coupling is the smaller than any other relevant
energy scale.

We are interested in the development of spin correlations
between the two quantum dots when turning on the hopping
v; see Figs. 1(b) and 1(c). In particular, we determine the time
dependence of the spin-spin expectation value,

SLR(t ) ≡ 〈�(t )|�SL · �SR|�(t )〉, (4)

which quantifies the formation of the singlet state between
the quantum dots. Here, �Sα = 1

2

∑
σσ ′ d†

ασ �σσσ ′dασ ′ is the spin
operator of the dot α, with �σ denoting the vector of Pauli spin
matrices. The many-body state of the system |�(t )〉 evolves
according to the full Hamiltonian H ,

|�(t )〉 = e−iHt |�(0)〉, (5)

where |�(0)〉 is the initial state that we prepare assuming
v = 0. To be able to resolve the system’s dynamics in the
presence of strong electronic correlations in the most accu-
rate manner, we employ here the time-dependent numerical
renormalization group method [68–73].

The general form of the considered time-dependent Hamil-
tonian is given by

H (t ) = �(−t )H0 + �(t )H. (6)

Here, the Hamiltonian H0 describes the system before quan-
tum quench in initial equilibrium for t < 0. Then, the final
Hamiltonian H models the system for t � 0, when a sudden
change in H is performed with respect to H0. In the considered
case, it is switching on the hopping between the quantum dots
in a steplike fashion at time t = 0. In tdNRG both Hamilto-
nians are diagonalized in the Wilson chain geometry by using
the numerical renormalization group method [69,77–80]. The
discarded states determined in this iterative procedure, includ-
ing all states found in the last iteration, are used to build a full
many-body eigenbases of the Hamiltonians. In the next step,
we determine the dynamical quantities. In order to obtain the
relevant time dependencies, the discrete data in form of Dirac
delta peaks is collected and then Fourier transformed into the
time domain [73,79]. It is important to mention that tdNRG is
a fully nonperturbative method, and, as such, it allows us to
obtain high quality data where all correlations, also the ones
driving the Kondo effect, are taken into account on an equal
footing.

III. STATIC PROPERTIES

To begin our discussion, in Fig. 2 we present the static ex-
pectation value of SLR calculated as a function of the hopping
between the dots for different values of the coupling to exter-
nal contacts. One can see that SLR depends in a nonmonotonic
manner on v. To understand this behavior, one needs to realize
that there are two competing energy scales in the system.
The first one is associated with the Kondo effect, which, in
the absence of hopping between the dots, develops in each
quantum dot separately. The Kondo temperature depends in
an exponential way on the ratio of U/� as predicted by Hal-
dane’s formula [81], TK = √

U�/2 exp(−πU/8�). On the
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FIG. 2. The static expectation value of SLR calculated as a func-
tion of the hopping between the quantum dots v for different values
of the coupling to the contacts �, as indicated. The inset presents the
dependence of SLR on the exchange interaction J , where the dashed
lines indicate the Kondo temperature TK for corresponding values of
�, as estimated from Haldane’s formula [81]. Note the logarithmic
x-axis scale in the inset. The parameters are εL = εR = −U/2 and
U = 0.1 in units of band half-width.

other hand, the hopping v generates an antiferromagnetic ex-
change interaction between the dots, which can be estimated
from the singlet-triplet splitting

J = 1
2 [

√
16v2 + U 2 − U ]. (7)

For small values of v it can be approximated by J ≈ 4v2/U .
When each quantum dot is singly occupied, as assumed in our
considerations, the physics is governed by the ratio of J/TK , as
can be seen in the inset of Fig. 2, which presents SLR plotted as
a function of J on a logarithmic scale, while the vertical dotted
lines indicate the corresponding Kondo temperatures. Clearly,
the correlations SLR become considerable when J � TK . Then,
at some even larger value of J , SLR exhibits a local minimum,
with SLR → −3/4 for � 
 U , to rise again with further in-
crease of J . This further increase (decrease in magnitude) can
be explained by considering all the double quantum dot states,
the energies of which strongly depend on v, such that for
larger v, other states become populated and SLR increases; see
Fig. 2.

IV. BUILDUP OF SPIN-SINGLET CORRELATIONS

Let us now analyze the dynamical behavior of the spin-spin
expectation value SLR(t ), following the quench in the hopping
between the dots. In the initial state the system consists of
two identical, disconnected copies of a quantum dot attached
to a metallic electrode, each displaying the Kondo effect; see
Fig. 1(b). Then, we turn on the hopping between the dots and
study how the entanglement builds up in the system, quanti-
fied by the spin-spin expectation value. The time evolution of
SLR(t ) for different values of the hopping between the dots is
shown in Fig. 3. First of all, one can note that a finite value
of SLR(t ) develops only when the hopping v is sufficiently

FIG. 3. The expectation value SLR(t ) calculated as a function of
time t and the hopping between the dots v. The system is prepared
in the initial state with v = 0 and then time evolved according to the
full Hamiltonian with a finite value of v. The dotted line presents the
value of v for which J ≈ TK ; see the main text for details. In short
timescales the two spins on the dots exhibit temporary ferromagnetic
(FM) order, SLR(t ) > 0, while for longer times the system shows
considerable spin-singlet correlations, i.e., antiferromagnetic (AFM)
order with SLR(t ) < 0. The dotted-dashed (dashed) line presents the
timescale associated with excitation to the triplet (doublet) state. The
other parameters are the same as in Fig. 2 and �/U = 0.1.

large. The dotted line in the figure indicates the value of v

for which the effective exchange interaction J becomes of
the order of the Kondo temperature, J ≈ TK . For assumed
parameters, this happens when v/U ≈ 0.033. Indeed, when
J < TK , the Kondo singlet state formed on each dot dominates
and the entangled singlet state between the two dots hardly
develops. However, once J � TK (see v/U � 0.033 in the
figure), SLR(t ) exhibits considerable values in the long-time
limit, indicating spin-singlet (antiferromagnetic) correlations
between the quantum dots. This is schematically displayed in
Fig. 1(c). For intermediate values of v, the timescale at which
the AFM correlations develop can be related to the singlet-
triplet excitation energy, t ∼ 1/J; see the dotted-dashed line
in Fig. 3.

Interestingly, in the intermediate time regime, t ≈ 1/U ,
we observe a region when the spin-spin expectation value is
positive. This implies ferromagnetic correlations between the
quantum dots. In other words, before the singlet state forms in
the double dot system, the calculated system dynamics reveals
that in short timescales the effective exchange interaction
changes sign, favoring triplet alignment of quantum dot spins.
The boundary of this dynamical regime, indicated by the red
dashed lines in Fig. 3, is established by the two timescales
corresponding to the excitations to the doublet states. Note
that the energy of doublet states splits with increasing v,
encompassing the region where SLR(t ) > 0; see Fig. 3. If one
considers realistic, semiconducting quantum dot parameters,
e.g., U ∼ 1 meV, this would result in a timescale on the order
of t ∼ 0.01–0.1 ns [1,21,24]. As far as the mechanism of
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FIG. 4. The time-evolution of the expectation value SLR(t ) cal-
culated as a function of time for selected values of the hopping
between the dots. The other parameters are the same as in Fig. 2
and �/U = 0.1.

this sign change is concerned, by comparing with the corre-
sponding calculations for the two-impurity Kondo model (not
shown), we can infer that it is due to the charge fluctuations to
the doublet states (such sign change is absent in the Kondo
model). As the system evolves toward the long-time limit,
the timescale associated with the excitation to the triplet state
(indicated by the blue dotted-dashed line) is surpassed and
followed by the buildup of spin-singlet correlations.

The detailed behavior of SLR(t ) is shown in Fig. 4, which
presents the cross-sections of Fig. 3 for selected values of
the hopping v, as indicated. One can now explicitly see that
for small hoppings, such that J � TK , SLR(t ) is generally
suppressed with a relatively low value in the long-time limit.
However, when J � TK (see the case of v/U � 0.05 in Fig. 4),
the absolute value in the long-time limit increases. Moreover,

the timescale when considerable antiferromagnetic correla-
tions develop decreases as v rises. As already mentioned,
in the short timescale, temporary ferromagnetic correlations
develop between the quantum dots. These are present when
v � �; see Fig. 4.

V. CONCLUSIONS

In this work we have studied the buildup of entanglement
between the two quantum dots quantified by the spin-spin
expectation value SLR(t ). By employing the numerical renor-
malization group in time domain, we were able to include
all correlations effects in a fully nonperturbative manner. In
particular, we have examined the time evolution of SLR(t )
upon turning on the hopping between the two quantum dots. It
was found that, at small timescales, t ∼ 1/U , SLR(t ) becomes
first positive, indicating ferromagnetic exchange interactions,
while only for larger times does the effective exchange in-
teraction become antiferromagnetic and an entangled spin
singlet state is formed between the dots. The formation of such
a singlet state is conditioned by the value of hopping between
the quantum dots; it develops for such v that the effective
exchange interaction J ≈ 4v2/U becomes larger than the cor-
responding Kondo temperature for each quantum dot. Then, in
the course of time evolution, the singlet state forms between
the dots, winning over the two separate Kondo singlet states.
The timescale when this happens is approximately given by
t ∼ 1/J , i.e., the inverse of the strength of the exchange inter-
action between the quantum dots.
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