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The geometric phase plays a key role both in the rotation of the Foucault pendulum and in the anomalous Hall
effect (AHE), where an accelerated wave packet shows a transverse motion induced by the Berry curvature. Here,
we show that the motion of quantum particles described by a spin-orbit-coupling Hamiltonian showing nonzero
Berry curvature and placed in a two-dimensional harmonic-oscillator potential in real space exhibits Foucault
precession. The plane of the oscillations rotates with time. The rotating pendulum configuration enhances
the spatial deviation with respect to the AHE case, simplifying its observation and allowing high-precision
measurements of the Berry curvature. We show how the nonadiabaticity and anharmonicity determine the
maximal rotation angle and find the optimal conditions for the observations.
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I. INTRODUCTION

The Foucault pendulum was suggested and implemented
by Léon Foucault in 1851 to demonstrate Earth’s rotation
[1]. It is one of the most widely known experiments [2],
demonstrated in many science museums around the world
[3]. However, it is much less known that it was also Léon
Foucault who, inspired by his pendulum’s working principle,
created the first gyroscope [4,5]. Contrary to the Foucault pen-
dulum, which mostly remains a brilliant demonstration, the
gyroscopes, based on the same basic property, have become
extremely widespread. Now they are used for the orientation
at all scales, from smartphones [6] to the International Space
Station [7]. Moreover, some of the most efficient microscopic
implementations of the gyroscopes [8] use oscillations instead
of rotation [9], thus coming back to the Foucault pendulum
(on a chip) [10]. Recently, an implementation of the Foucault
pendulum based on a Bose-Einstein condensate in a synthetic
rotational field has been suggested [11].

Geometric phases are quite widespread in physics [12].
Such phase plays a key role in the Foucault pendulum by
determining its rotation versus latitude [3,13–17]. The geo-
metric phase is accumulated during the transport around Earth
at a given latitude. The associated rotation angle can be linked
with an integral of Earth’s curvature. The Foucault pendulum
can also be used to measure Earth’s gravitomagnetic field
[18] or the Lense-Thirring effect [19]. From an even broader
perspective, since any motion due to noninertial pseudoforces
can be viewed as a space-time curvature in general relativity
according to the Einstein’s equivalence principle [20], any
rotation of the Foucault pendulum is always due to a certain
curvature (Earth’s curvature, space-time curvature, or some
other), and thus the Foucault pendulum can be seen as a
device for the measurement of curvatures and of the associated
geometric phases.

The Berry (Pancharatnam) phase is another well-known
example of a geometric phase, studied in quantum [21–23]

and classical systems [14]: it stems from the curvature of
the eigenstates over the parameter space of the Hamiltonian
(e.g., reciprocal space). This phase and the associated Berry
curvature are key concepts in modern topological physics,
being involved in the optical spin Hall effect [24–27], topo-
logical insulators [28–30], lasers [31], and optical isolators
[32,33]. The Berry curvature can be seen as a gauge field
[22,34], an equivalent of a magnetic field in the reciprocal
space. As such, it affects the spatial trajectories of accelerated
particles via the anomalous Hall Effect (AHE) [35], recently
directly measured in a photonic system [36]. Two general two-
dimensional (2D) Hamiltonians characterized by a nonzero
Berry curvature for the eigenstates of their bands are the
Dirac Hamiltonian (winding 1) and the TE-TM Hamiltonian
(winding 2). The former is the most well-known Hamiltonian
exhibiting Berry curvature and representing a reference case.
Its implementations include 2D electron gas with Rashba
spin-orbit coupling (SOC) [37] and Zeeman splitting [38,39],
2D transition-metal dichalcogenides (TMDs) [40,41], biased
bilayer graphene [42], and photonic quantum valley Hall
effect [43]. The TE-TM Hamiltonian describes the inher-
ent topology of the photonic modes associated with their
vectorial nature [44]. It describes the propagation of light
beams in any inhomogeneous system, for example, for parax-
ial beams of light [44–46] and in microcavities [26,47].
In recent studies it appears combined with non-Hermiticity
[48–50]. Photonic systems allow direct access to the dis-
persion of modes, their Berry curvature distribution, and
real-space dynamics of wave packets in various potentials,
such as 2D harmonic traps [51,52]. With linear birefrin-
gence, they also allow implementing the 2D massive Dirac
Hamiltonian [36,53,54].

In this work, we study 2D particles described by a SOC
Hamiltonian with nonzero Berry curvature and placed in a 2D
parabolic potential, where they oscillate. The accumulation
of the associated geometric (Berry) phase during the particle
acceleration by the potential leads to the rotation of the
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FIG. 1. (a) Three-dimensional sketch of a parabolic potential and
the wave packet trajectory (red curve) over half oscillation period
with a deviation �y corresponding to an angular shift of φ (blue
line). (d) Trajectory of a Berry-Foucault pendulum in the case of a
Dirac Hamiltonian (1), completely equivalent to a Foucault pendu-
lum (reduced units). Energy spectrum (black) and Berry curvature
(red) profile for the (b) Dirac Hamiltonian (1) and the (c) TE-TM
(2) Hamiltonian. Black solid lines are the branches of interest. Com-
parison between the AHE �yAHE (black) and the Berry-Foucault
deviation �y (red) for (e) Dirac and (f) TE-TM.

plane of the oscillations, as in the Foucault pendulum,
but without any noninertiality. We call this system the
Berry-Foucault pendulum. We consider two above-mentioned
SOC Hamiltonians (Dirac and TE-TM) in two dimensions,
showing how the AHE can be amplified in the Foucault
pendulum configuration, allowing to measure the Berry
curvature with a high precision and even in systems, where
the eigenstates are not directly accessible. We also study
the limits of the Berry-Foucault pendulum operation set by
the nonadiabaticity and the anharmonicity, determining the
optimal configuration for measurements.

II. THE MODEL

We consider a spinor particle described by a Hamiltonian
HSOC including a SOC term inducing a nonzero Berry curva-
ture. We study the oscillations of a wave packet launched at
x = x0 in a 2D parabolic potential Uho(x, y) = ξ (x2 + y2)I2/2
[Fig. 1(a)], where I2 is the identity matrix. The full Hamil-
tonian reads H = HSOC + U . The usual AHE configuration
corresponds to U being a one-dimensional (1D) potential with
a constant gradient, with the Berry curvature leading to lateral
deviation [35]. In our case, the interplay between the devia-
tion induced by the Berry curvature and the effect of the 2D

potential leads to a complex trajectory [see Fig. 1(a), red line],
characterized by the rotation angle φ of the oscillation plane
(blue line).

We consider two different cases for HSOC. The first one is
the massive Dirac Hamiltonian (with its two bands originally
introduced for particles and antiparticles, which implies a
nonzero Berry curvature for an ordinary electron [55] and the
corresponding anomalous Hall effect [56], but also describing
the electron spin in spintronics [38,39] or the sublattice pseu-
dospin in topological valleys [40–43]).

The Dirac Hamiltonian written in reciprocal space reads

ĤDirac =
( +�D αke−iϕ

αkeiϕ −�D

)
, (1)

where k is the 2D wave vector modulus, ϕ its polar angle, α

is related to Rashba SOC [38] or the Fermi velocity [40,42],
and �D is the time-reversal symmetry-breaking term (Zeeman
splitting) or “staggering” term in 2D materials. In the original
Dirac equation, �D = mec2, α = h̄c, where me is the electron
mass and c is the speed of light, which is why the anomalous
Hall effect of a free electron is so small (of the order of the
Compton wavelength, ≈2.4 × 10−12 m). The Berry curva-
ture of the lower band of the Dirac Hamiltonian reads [57]:
BD

z (k) = α2�D/2(α2k2 + �2
D)3/2.

The second case we take for HSOC is the TE-TM Hamilto-
nian with a Faraday (Zeeman) term describing the transverse
dynamics of massive photons (mass m). Here the two
bands describe the photon polarization either in the parax-
ial configuration [44–46] or in microcavities [26,47,48]. It
reads

ĤTE-TM =
(

h̄2k2

2m + � βk2e−2iϕ

βk2e2iϕ h̄2k2

2m − �

)
, (2)

with TE-TM splitting magnitude β and a time-reversal
symmetry-breaking term � (Faraday effect). The Berry
curvature of the lower band reads [58]: BTE-TM

z (k) =
2�β2k2/(�2 + β2k4)3/2.

Figures 1(b) and 1(c) show the two band dispersions and
the lower band Berry curvature for the two Hamiltonians. The
Dirac Hamiltonian is well described by a parabolic dispersion
at k ≈ 0 and exhibits the maximum of the Berry curvature at
the same point, while the TE-TM Hamiltonian has the max-
imum of the Berry curvature at k = (�/

√
2β )1/2 �= 0, where

the dispersion is nonparabolic.
The full problem contains HSOC and a spatially varying

potential. The Hamiltonians (1) and (2) are converted to real
space using k = −i∇. Combined with the harmonic potential
Uho(x, y), they give the complete Hamiltonians HD,HO and
HTETM,HO. We also use a 1D potential U1 = ζx with a constant
gradient ζ as a reference for usual AHE configuration, giving
complete Hamiltonians HD,1 and HTETM,1. We start by using
a semiclassical description of the wave packet motion, which
allows us to treat the problem analytically.

III. SEMICLASSICAL DESCRIPTION

In the adiabatic limit, the semiclassical motion of a wave
packet in presence of potential U (r) and of Berry curvature
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B(p) was derived by Sundaram and Niu [35]:

ṗ = −∇U, (3)

ṙ = ∇pE + h̄−1 ṗ × B(p), (4)

where r is the coordinate of the wave packet center of mass, p
is the momentum of the wave packet center of mass (p = h̄k),
and the Berry curvature B(p) appears as a “reciprocal-space
magnetic field.” These equations assume the wave packet to
be in a single band [solid line in Figs. 1(b) and 1(c)]. The
analogy between the Berry magnetic force and the magnetic
Lorentz force is not full in the general case. However, for
a 2D harmonic oscillator and a constant Berry curvature
(Dirac Hamiltonian, k ≈ 0), it is possible to obtain a com-
plete reciprocity between the two effects described by terms
proportional to p × Bmagn and r × B in the equations for ṗ
and ṙ, respectively (see Appendix A for details). There is
also a complete analogy between the magnetic Lorentz force
≈v × Bmagn and the Coriolis force ≈v × �rot acting on the
Foucault pendulum. From this analysis, we can already con-
clude that, with the Dirac Hamiltonian, the trajectory of a
wave packet in the 2D parabolic potential is equivalent to
the one of a Foucault pendulum (Appendix A). The corre-
sponding trajectories, identical in both cases (Foucault and
Berry-Foucault), are shown in Fig. 1(d). The TE-TM case
with a variable Berry curvature shows, of course, a different
behavior.

The next step is to quantitatively compare the wave packet
deviation in the usual AHE, where U = ζx, with the one
occurring during one period in the 2D harmonic-oscillator
case. We take the initial condition x0 > 0, y0 = 0, p0 = 0. In
the AHE case with acceleration along x, the deviation along y
reads:

�yAHE =
∫ kmax

0
B(kx )dkx, (5)

where kmax is the maximal wave vector achieved during the
acceleration. In the Dirac case with HD,1 it reads �yD

AHE =
α2kmax/2�D(α2k2

max + �2
D)1/2. The deviation grows with kmax

up to the maximal deviation α/2�D. For small kmax it can be
rewritten as �yD

AHE = B(0)kmax, where B(0) = α2/2�2
D is the

Berry curvature at k = 0. For the TE-TM case with HTETM,1,
the AHE drift is expressed via the hypergeometric function.
For small kmax it reads �yTE-TM

AHE ≈ 2β2k3
max/3�2.

We then consider the 2D harmonic-oscillator case with
HD,HO and HTETM,HO for one half-oscillation along x assum-
ing �y � x0, which allows us to decouple x and y. In that
case, Eqs. (4) for y(t ) and py(t ) become equivalent to a
driven harmonic oscillator with an external force defined by
ṗxBz(px ). Using the Green’s function approach (Appendix A),
we find the ratios of the deviations �yD/�yD

AHE = −π/2
and �yTE-TM/�yTE-TM

AHE = −3π/8. In both cases, the deviation
for a half-period is comparable in magnitude to the AHE
deviation, but has an opposite direction. The AHE and a
half-period Berry-Foucault pendulum trajectories are shown
in Figs. 1(e) and 1(f). At early time both coincide, but then the
2D parabolic potential provides its own lateral acceleration,
bringing a lateral deviation opposite to the initial one of the
AHE, as in the original Foucault pendulum [59] (accounting
for the real-reciprocal space mapping, see Appendix A).
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FIG. 2. Amplification of the Berry curvature effect. (a) Refer-
ence: AHE (HTETM,1); (b) Amplification: Berry-Foucault pendulum
(HTETM,HO). False color—particle density n = |ψ |2, white line—
center-of-mass trajectory.

For small wave vectors, kmax in the harmonic-oscillator
case can be obtained from x0 (the oscillation amplitude) as
kD

max ≈ x0
√

�Dξ/α and kTE-TM
max ≈ x0

√
ξm/h̄. Thus, the angles

of rotation of the oscillation plane for HD,HO and HTETM,HO for
a half-period are

φD = arctan
�D

y

x0
≈ πα

√
ξ

4�
3/2
D

, (6)

which in this limit does not depend on x0, and

φTE-TM ≈ πβ2ξ 3/2m3/2x2
0

4h̄3�2
, (7)

which grows quadratically with x0. The comparison of the
Dirac case with the Foucault phase due to Earth’s curvature is
provided in Appendix B. The similarity of the two expressions
is due to the geometric origin of the effect (anholonomy).

IV. NUMERICAL SIMULATIONS

The next step is to go beyond the semiclassical picture
considering that we are dealing with spatially extended wave
packets and not classical particles. For this, we perform
numerical simulations with a time-dependent Schrödinger
equation ih̄∂ψ/∂t = Ĥψ for different full Hamiltonians Ĥ ,
starting with an initial Gaussian wave packet characterized by
a root-mean-square width σ . Figure 2 shows these simulations
for the TE-TM Hamiltonian for the usual AHE [HTETM,1,
Fig. 2(a)] and the Berry-Foucault pendulum [HTETM,HO,
Fig. 2(b)]. The parameters used [60] are typical for GaAs-
based microcavities [61]. The AHE, resulting from a constant
potential gradient ζ , requires working with a large wave
packet: the scale of the effect is much smaller than the wave
packet size:

�y � σ. (8)

Even if a smaller wave packet is taken initially, it necessarily
expands over time, linearly for large t [62]. For realistic pa-
rameters the AHE appears as a slight drift with respect to the
straight trajectory (white line).

In the Berry-Foucault pendulum defined by HTETM,HO

[Fig. 2(b)], the parameter of the harmonic potential ξ
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determines the size of the Gaussian wave packet:

σ =
√

h̄/mω =
√

h̄/
√

ξm. (9)

The wave packet does not expand or shrink over time [63].
This allows us to operate with wave packets much smaller than
for the AHE, as immediately visible in Fig. 2(b). Moreover, if
the Berry-Foucault pendulum carries out Q oscillations, the
anomalous Hall deviation is amplified accordingly, allowing
the final deviation to exceed the wave packet size:

Q�y > σ. (10)

It is possible to have an accumulation of the AHE deviation
in the constant potential gradient case, if the wave packet
crosses the edges of the Brillouin zone in a periodic lattice.
This corresponds to the well-known phenomenon of Bloch
oscillations [64]. However, in this case both the AHE devi-
ation and the wave packet size increase linearly with time, so
that the AHE drift remains smaller than the wave packet size
(see Appendix C for details). Moreover, Bloch oscillations
are impossible in natural electronic bands (due to their large
energy size) and limited by approximately 10 oscillations in
artificial electronic [64], atomic [65,66], and photonic [67]
systems, due to disorder and Landau-Zener tunneling to upper
bands. This limits the possibilities of the AHE amplification
due to the Bloch oscillations. The Bloch oscillation approach
cannot be used at all for the studies of the Berry curvature via
AHE in continuous systems [36] (without Brillouin zones), or
for systems with opposite Berry curvature in two valleys; that
is, trivial band topology (e.g., TMDs).

We then compare the analytical results for the half-
period rotation angle (6) and (7) with those of Schrödinger
equation with HD,HO and HTETM,HO (see Ref. [68] for param-
eters). Figures 3(a) and 3(b) shows the x0 dependence. The
Schrödinger equation reproduces the limit of φD for x0 → 0.
The quadratic dependence of φTE-TM is well reproduced at low
x0 as well.

V. LIMITATIONS

The maximal number of oscillations Q is determined by
the Q factor of the oscillator. This limitation is determined
by the nonadiabaticity and by the anharmonicity. Nonadi-
abaticity is represented by the transfer of the wave packet
from the initial band to the other band because of the
finite acceleration. Anharmonicity is induced by the non-
parabolic character of the dispersion. Similar limitations exist
also for the classical Foucault pendulum, which deviates
from perfectly planar oscillations [69], unless suppression
devices are used [5]. Experimentally, the simplest tunable
variable is x0.

A convenient tool [70] to estimate the nonadiabaticity
is the quantum metric [71] gi j , determining the over-
laps between the eigenstates |〈ψ (k)|ψ (k + dk)〉|2 =
1 − ∑

i, j gi jdkidk j . For the Dirac Hamiltonian at
k ≈ 0, gkk = α2/4�2

D (radial component) and the
nonadiabatic fraction [70] can be estimated as

√
fNA ≈√

gkkkmax (see Appendix D). Using the expression for kmax, we
obtain f D

NA ≈ ξx2
0/4�D. At each half period, the nonadiabatic

fraction escapes the confinement due to the opposite sign of

(a) (d)

(b) (e)

(c) (f)

FIG. 3. Berry-Foucault pendulum for the Dirac HD,HO and TE-
TM HTETM,HO Hamiltonians respectively: (a), (d) half-period rotation
angle φ; (b), (e) Q factor; (c), (f) maximal rotation angle φ, all as
a function of initial position x0. Black lines and points—numerical
experiment, red dashed lines—analytics.

the mass of the second band. The nonadiabaticity thus directly
determines the losses of the wave packet (see Appendix D for
anharmonicity). This allows us to determine the Q factor of
the oscillator and the maximal rotation angle φmax as

QD = 4�D

ξx2
0

, φD
max = πα√

ξ�Dx2
0

. (11)

For the TE-TM Hamiltonian, gkk = β2k2/�2. The nona-
diabatic fraction turns out to be negligible with respect to
the anharmonicity (Appendix D). The nonparabolicity of
dispersions makes the states of the harmonic potential un-
equally spaced in frequency. The oscillating wave packet
is a linear superposition of these eigenstates. For small
x0, anharmonicity simply provokes a decay of the wave
packet, allowing to write perturbatively: Q = ω/�ω, where
ω = √

ξ/m̄ is the mean frequency of the harmonic oscilla-
tor and �ω is due to the mass difference between k = 0
and k = kmax. Beyond a critical x0, the deviation from the
ideal harmonic oscillator quickly destroys the wave packet
(Appendix E).

These analytical results are compared with the results of
numerical experiments in Figs. 3(b) and 3(c), with all pan-
els demonstrating a good agreement. The Q factor Q(x0) is
plotted in Fig. 3(b) on a double log scale, demonstrating
the power-law decay up to critical x0, as predicted by (11).
Accordingly, the maximal rotation angle also decays with x0

[Fig. 3(c)].
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For the TE-TM Hamiltonian, m(k) ≈ m(1 + 6β2k2m/h̄2

�), which gives

QTE-TM ≈ h̄4�

6β2m2ξx2
0

, φTE-TM
max ≈ π

12

h̄ω

�
. (12)

The maximal rotation angle therefore does not depend on the
initial position x0, contrary to the Dirac case, where it was
decaying with x0. Moreover, it does not depend on the TE-TM
splitting value β.

The Q factor QTE-TM versus x0 is plotted in Fig. 3(e)
and compared with Schrödinger simulations. It shows an
excellent agreement up to a critical x0 value. With realistic
parameters [60], Q can reach values as high as 102. The
total rotation angle φTE-TM

max is plotted in Fig. 3(f) versus
x0, showing a good agreement with the analytical estimate
for small x0 up to the same critical cutoff x0 value (see
Appendix E).

Another important parameter for experiments in systems
with finite lifetime τ is the frequency of the Berry-Foucault
precession, which can be found as � = 2φω. Within the same
limit as before, it gives � ∼ πβ2ξ 2mx2

0/2h̄3�2. One could
expect τ 
 �−1 for the experiment to be carried out. How-
ever, the polaritonic wave packets can be re-amplified from
excitonic reservoir [72], similar to the classical Foucault pen-
dulums accelerated electromagnetically in museums [5]. We
therefore consider the condition τ 
 �−1 to be less stringent
than the other limitations discussed above.

VI. DISCUSSION AND CONCLUSIONS

Parabolic potential traps are available in many systems,
where the Berry curvature and topological effects are stud-
ies: in electronics (2D quantum dots [73]), cold atoms
[74], and photonics [51,52]. Moreover, the center-of-mass
oscillations in harmonic traps (dipole mode) were exper-
imentally shown to be very robust, showing no signs of
decay after more than ≈250 oscillations [75] (without
spin-orbit coupling). This makes the Berry-Foucault config-
uration favorable for Berry curvature measurements in many
systems.

The Berry-Foucault pendulum allows us to improve the
precision of the transport measurements [76–78] of the Berry
curvature by the factor Q (see Appendix G). This would
mean reducing the 10% uncertainty on the Berry curvature
in Ref. [36] down to 0.1% with Q = 100 from Fig. 3, a
significant improvement. Its limit is set by � > β/σ 2 =
4π2β

√
ξm/h̄ (wave packet size should be smaller than the

Berry curvature variation scale).
To conclude, we have demonstrated that the Berry curva-

ture leads to Foucault precession for a harmonic oscillator
with spin-orbit coupling. We have studied two most well-
known Hamiltonians with SOC and determined the Q factor
and the maximal rotation angle. The Berry-Foucault pendu-
lum can be used for high-precision curvature measurements
close to the band extrema.
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APPENDIX A: THE ANOMALOUS HALL EFFECT
IN THE BERRY-FOUCAULT PENDULUM

CONFIGURATION

The goal of this section is first to establish the analogy
between the motion of quantum particles described by a spin-
orbit-coupling Hamiltonian showing nonzero Berry curvature,
and placed in a real space 2D harmonic-oscillator potential
with the trajectories of the Foucault pendulum.

We then find analytical expressions for the deviations of
the center of mass trajectory due to the combined effect of
the anomalous velocity induced by the Berry curvature and
the acceleration of the 2D potential for one (half period)
oscillation.

1. Equivalence

First, we note that there is a complete analogy between the
noninertial Coriolis force FCor = 2m(v × �) and the mag-
netic part of the Lorentz force FLor = q(v × B): both are
proportional to a vector product of the velocity v and a con-
stant pseudovector (rotation angular frequency � or magnetic
field B). This allows us to state that a Foucault pendulum tra-
jectory is similar to the motion of a charged classical particle
in a parabolic potential in presence of a constant magnetic
field.

In contrast, the analogy between the transverse veloc-
ity of the anomalous Hall effect and the Lorentz force is
not full in the general case: the two contributions appear
differently in the equations of motion. Indeed, a mag-
netic field can be incorporated into the Hamiltonian as
a vector potential A: Hmag = (p − eA)2/2m containing the
term p · A, whose reciprocal term should be r · A, whereas
the Berry curvature would correspond to a term ṗ · A in-
stead. This shows up in the fundamental difference of
trajectories between the ordinary Hall effect (circular cy-
clotron orbits in 2D) and the AHE (finite deviation of the
curve).

Nevertheless, if we take a harmonic oscillator with a con-
stant Berry curvature (Dirac Hamiltonian, k ≈ 0) that can be
considered as a correction, it is possible to obtain complete
reciprocity between the two effects. The equations of motion
for this system write:

ṗ = −ξr, (A1)

ṙ = p
m

+ h̄−1 ṗ × B. (A2)

We use the first of the two equations, ṗ = −ξr, and insert it
into the second one:

ṗ = −ξr, (A3)

ṙ = p
m

− h̄−1ξr × B. (A4)
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Then the symmetry of Hamilton’s equations of motion

ṗi = −∂H

∂ri
, (A5)

ṙi = ∂H

∂ pi
, (A6)

with respect to a substitution r ←→ −p (in our partic-
ular case, r′ = −p/m, p′ = ξr) allows establishing a full
analogy between the ordinary Foucault pendulum and the
Berry-Foucault pendulum in the Dirac case. Indeed, with this
substitution the equations write:

ṙ′ = p′

m
, (A7)

ṗ′ = −ξr′ − h̄−1ξ p′ × B, (A8)

which, since the Berry curvature is approximately constant,
corresponds to the equations of motion for a charged har-
monic oscillator in a constant magnetic field or for a harmonic
oscillator in a noninertial system rotating with a frequency
� = −ξB/2h̄.

We have therefore established a full mathematical equiv-
alence between the semiclassical equations of motion for a
wave packet in a quantum harmonic oscillator with a constant
Berry curvature and the classical equations of motion of the
Foucault pendulum (harmonic oscillator in a noninertial sys-
tem of coordinates).

2. Analytical solution for a single oscillation

Our goal is to find an analytical expression for the anoma-
lous Hall drift for a single half-period oscillation in a 2D
harmonic-oscillator potential. We assume that the first oscilla-
tion takes place along the x axis, and the deviation �y occurs
therefore along the y axis. We assume �y � x0 (x0 is the
amplitude of the oscillations), which allows us to decouple x
and y, considering x(t ) = x0 cos ωt and px(t ) = −pmax sin ωt
as known. This allows us to write a system of equations for
y(t ) and py(t ) from (A2):

ṗy = −ξy, (A9)

ẏ = py/m − h̄−1 ṗxBz(px ). (A10)

Again, thanks to the symmetry of the Hamilton’s equations of
motion with respect to r′ = −p/m, p′ = ξr, this system of
equations is equivalent to a driven harmonic oscillator with an
external force defined by ṗxBz(px ). This is what allows to use
the Green’s function formalism to find the solution of these
equations of motion. This solution is given by

�y = −pmaxω
2
∫ T/2

0
cos2 ωt ′B(pmax sin ωt ′)dt ′, (A11)

with T = 2π/ω. The integration gives the coefficients −π/2
and −3π/8 given in the main text.

APPENDIX B: THE PRECESSION ANGLE AND THE
CURVATURE

Our goal here is to compare the expressions for the angles
of rotation of the Berry-Foucault pendulum and the classical
Foucault pendulum. For the latter, it is well known that Earth’s

curvature and the associated geometric phase are important
for the calculation of the rotation angle, together with the
main contribution coming from the noninertial nature of the
reference frame (Earth’s rotation). For the Berry-Foucault
pendulum, it is the Berry curvature which totally determines
the rotation angle. It is therefore instructive to compare both.

In the main text, we have obtained the angle of rotation of
the Berry-Foucault pendulum with the Dirac Hamiltonian (for
one half period):

φD ≈ πα
√

ξ

4�
3/2
D

. (B1)

This result can be directly compared with the rotation angle
of the classical Foucault pendulum, which reads for 1 day

φday = 2π −
∫

κdS = 2π

(
1 − R2

∫ θ

0
κ (θ ′) sin θ ′dθ ′

)
,

(B2)

where θ = π/2 − ϕ is the polar angle corresponding to the
latitude ϕ. The first term is due to the noninertial nature of the
system (the rotation of Earth), whereas the second one is due
to the curvature κ of Earth’s surface. The importance of the
Foucault pendulum in popular education is therefore doubled:
it allows demonstrating Earth’s rotation and Earth’s curvature,
providing two important arguments against the modern “Flat
Earth” trend [79].

This last term is also called the phase of the Foucault
pendulum (we remind that it is not the total rotation angle, but
only a negative contribution to it, due to Earth’s curvature):

φF =
∫

κdS. (B3)

For a constant curvature of a sphere κ = 1/R2, one recovers
the famous formula appearing in the total angle of the Fou-
cault’s pendulum rotation:

φday = 2π [1 − (1 − cos θ )] = 2π sin ϕ. (B4)

However, if we imagine that the curvature is not constant, but
only approximately constant around θ = 0 (which is indeed
the case for Earth), we can write κ (θ ) ≈ κ (0). Then we obtain
an expression similar to the one of the anomalous Hall drift:

φday = 2π − 2πR2κ (0)(1 − cos θ ). (B5)

Using the series expansion for cos(θ ) and knowing that the ro-
tation angle for 1 half oscillation is proportional to the rotation
angle for 1 day, we obtain the curvature-induced correction
(the Foucault phase)

φ1 ∼ κ (0)(Rθ )2. (B6)

This compares directly with the rotation angle of the Berry-
Foucault pendulum in the Dirac case,

φD ∼ B(0)k2
max, (B7)

where B(0) is the Berry curvature maximum.
Naturally, the curvature-induced contributions write sim-

ilarly in both cases: as a product of the curvature and a
surface in the parameter space. We note, however, that for the
Berry-Foucault pendulum the curvature is the only source of
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precession, whereas for the original Foucault pendulum it is
a negative correction, reducing the rotation angle with respect
to the one expected in a noninertial system, 2π in 24 hours.

APPENDIX C: ANOMALOUS HALL EFFECT IN BLOCH
OSCILLATIONS: WAVE-PACKET GROWTH

In this section, we analyze the limitations of the amplifi-
cation of the anomalous Hall deviation in Bloch oscillations
due to the wave-packet expansion and show that the AHE
deviation �yAHE,D(t ) always remains smaller than the wave
packet size σ (t ). We consider the Dirac Hamiltonian, suppos-
ing that it describes now a single valley in a periodic system.
Usually, the Brillouin zone contains a small number of such
valleys (for example, two). Moreover, the Berry curvature,
determining the AHE deviation, and the mass, determining the
wave-packet growth speed, are generally not independent: the
flatter is the band (higher mass), the broader is the distribution
of the Berry curvature. In other words, if the Berry curvature
is strongly localized (narrow valley), the mass in this valley
is necessarily smaller with respect to the case when the Berry
curvature is not localized. For the particular case of the Dirac
Hamiltonian, the corresponding relations can be written as
B(0) = α2/2�2 and m = h̄2�/α2.

The broadening of a Gaussian wave packet is determined
by the mass and by the initial size of this wave packet
a = 2σ (0):

σ (t ) = a

2

√
1 + 4h̄2t2

m2a4
. (C1)

For small t , it behaves as a constant plus a small correction:

σ (t ) ≈ a/2 + h̄2t2/a3m2, (C2)

while for large t it behaves as

σ (t ) ≈ h̄t

ma
+ a3m

8h̄t
, (C3)

which means that its asymptote is a straight line σ (t ) ≈ h̄t/ma
starting from the origin of the coordinates due to the vanishing
vertical shift ≈t−1. The boundary between the two limits is
determined by t1 = ma2/2h̄.

We consider the usual AHE configuration: a constant po-
tential gradient ξ along x (U = −ξx), which gives a linear
increase of the wave vector kx(t ) = ξ t/h̄. In a periodic system,
this linear increase leads to Bloch oscillations in real space.
The period of these oscillations T can be found from the
Brillouin zone size, which cannot be smaller than the Berry
curvature localization scale wB determined by the fact that
the integral of the Berry curvature (the Chern number) needs
to be an integer (usually of the order of one): B(0)w2

B ≈ 1.
Therefore, wB ∼ 1/

√
B(0) ∼ �/α.

When the wave packet crosses the Brillouin zone once, it
gains an AHE deviation of �yAHE ∼ α/�. Over a certain time
t , the total AHE deviation is therefore

�yAHE ∼ α

�

t

T
, (C4)

where t/T is the number of Brillouin zones crossed by the
wave packet during the time t . This is a straight line starting
from the origin of the coordinates. If we wish to have an AHE

deviation larger than the wave packet size, this straight line
needs to cross the curve for σ (t ) [Eq. (C1)]. This can occur
either in the flat part of σ (t ) (t < t1), or in the linearly growing
part of σ (t ), provided that the slope of �yAHE is higher than
that of σ (t ): α/�T > h̄/ma. Both of these inequalities lead
to the same condition for the potential gradient:

ξ >
�

a
, (C5)

which qualitatively means that the potential gradient needs to
be so large, that the potential difference between the two edges
of the wave packet is equal to the size of the gap between
the bands. This is clearly incompatible with the adiabaticity
and even with the semiclassical description, which requires
the changes to be small at the scale of the wave packet. We
therefore conclude that it is impossible to obtain an AHE
deviation exceeding the wave packet size using the AHE am-
plification provided by the Bloch oscillations, contrary to the
2D harmonic trap case considered in the main text, where the
wave packet size remains fixed thanks to the properties of the
harmonic oscillator.

APPENDIX D: NONADIABATICITY
AND ANHARMONICITY

The quantum metric was introduced in the 1980 as an
effort to find a meaningful metric tensor for quantum states,
allowing to determine distances between them independently
of the gauge [71]. The distance between quantum states is
linked with their overlap as ds2 = 1 − |〈ψ (k)|ψ (k + dk)〉|2
and it can be expressed via the quantum metric as ds2 =∑

i j gi jdkidk j , where k is a vector of parameters determining
the eigenstates of a Hamiltonian (for example, a wave vector).
The quantum metric can be found from the following expres-
sion:

gi j = Re

[〈
∂ψ

∂ki

∣∣∣∣ ∂ψ

∂k j

〉
−

〈
ψ

∣∣∣∣ ∂ψ

∂ki

〉〈
∂ψ

∂k j

∣∣∣∣ ψ

〉]
. (D1)

Qualitatively, the metric allows us to find the variation of the
eigenstate as a function of the variation of parameters [80]. If
the separation in the parameter (wave vector) space is finite,
the overlap between the eigenstates ψ1 and ψ2 can be found
by integration of the metric:

I = 1 −
⎛
⎝∫ |ψ2〉

|ψ1〉

√∑
i j

gi jdkidk j

⎞
⎠

2

, (D2)

where the integral should be taken along a geodesic. This
overlap shows up in many dynamical effects, such as inter-
band transitions and oscillations due to excitation of several
bands [36]. In our case, this integral of the quantum metric
appears in the expression for the nonadiabatic fraction appear-
ing due to interband transitions caused by finite velocity in the
parameter (reciprocal) space [70,81,82]:

fNA =
⎛
⎝∫ k2

k1

√∑
i j

gi jdkidk j

⎞
⎠

2

. (D3)

It gives an upper bound on the nonadiabatic fraction, since
it provides an overlap between the eigenstate of one band at
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wave vector k1 (for example, k = 0) with the eigenstate of
another band at wave vector k2 (for example, k = kmax).

First, we provide the expression for the quantum metric
in the Dirac Hamiltonian, obtained from its eigenstates using
Eq. (D1):

gkk = α2

4(�2 + α2k2)
. (D4)

The low-wave-vector limit of this expression is used for the
calculation of nonadiabatic fraction in the main text. Indeed,
the quantum metric of the Dirac Hamiltonian is constant in
this approximation, and the integral (D3) becomes simply a
product:

√
fNA =

∫ kmax

0

√∑
i j

gi jdkidk j ≈
√

gkk (0)kmax. (D5)

This expression is used in the main text.
We also note that the calculation of anharmonicity for the

Dirac case gives exactly the same result for Q as the cal-
culation of nonadiabaticity, because there is no independent
mass in the Dirac equation: everything is determined by the
interplay of � and αk.

We now compare the contributions of nonadiabaticity and
anharmonicity for the TE-TM case, where both can potentially
be important. The calculation of anharmonicity is presented in
the main text. The calculation of nonadiabaticity follows the
same lines as the one presented in the main text for the Dirac
case.

The quantum metric for the TE-TM Hamiltonian, obtained
from its eigenstates using Eq. (D1), reads

gkk = �2β2k2

(�2 + β2k4)2 , (D6)

which for small wave vectors can be approximated as

gkk ≈ β2k2

�2
. (D7)

The approximation based on Eq. (D3) for the nonadiabatic
fraction reads√

fNA ≈
∫ kmax

0

√
gkkdk ≈ βk2

max

2�
. (D8)

The corresponding Q factor (the inverse of the nonadiabatic
fraction) reads

Q1 = 4�2h̄4

β2ξ 2m2x4
0

, (D9)

whereas the Q factor due to anharmonicity, found in the main
text, reads

Q2 ≈ h̄4�

6β2m2ξx2
0

. (D10)

Their ratio is

Q1

Q2
= 12�

ξx2
0/2

. (D11)

As we see, it depends on the ratio between the Zeeman split-
ting and the initial potential energy of the wave packet in the

harmonic oscillator, with an extra factor 12. The smaller is the
initial deviation x0, the larger is Q1 with respect to Q2. For the
parameters presented in the main text, the ratio Q1/Q2 
 1,
which is why we neglect the losses due to the nonadiabaticity
in the main text. For larger x0, everything becomes more
complicated, but the most important role is played by the
critical value of x0 beyond which Q drops very quickly.

APPENDIX E: LIMITATIONS OF
THE PERTURBATIVE TREATMENT

The condition for the application of the perturbation theory
is that the scale of the corrections should be much smaller
than the distance between the levels of the 2D harmonic-
oscillator potential. The rapid decrease of QD for large x0

is due to the resonant effect of the perturbation, exceeding
this limit. In the main text, we wrote the full system Hamil-
tonian as H = U + HSOC where the kinetic-energy term was
included in HSOC = Hkin + VSOC. This decomposition of HSOC

is straightforward in the TE-TM case, and less easy for the
Dirac Hamiltonian. It can nevertheless be done, and we are
now going to assume that VSOC is a perturbation whose scale
is determined by the maximal wave vector kmax. This per-
turbation leads to a resonant transfer between the states if
its energy scale becomes equal to the splitting between the
harmonic-oscillator states h̄ω, which can be written as the
following condition:√

α2k2
max + �2

D −
(

�D + α2k2
max

2�D

)
= h̄ω, (E1)

where the mass of the particle is m = h̄2�/α2, which gives
h̄ω = α

√
ξ/�. Solving this equation for kmax and converting

it to x0 gives xcrit ≈ 64 μm (the analytical expressions are
quite cumbersome), which is exactly what we see in numerical
simulations.

For TE-TM, similar to the case of the Dirac Hamiltonian,
a cutoff for Q is with a very high precision determined by
the resonant anharmonicity condition E (kmax) − Eh.o.(kmax) =
h̄ω, which reads √

�2 + β2k4 − � = h̄ω. (E2)

This constraint leads to the strong decrease of the rotation
angles φ1/2 and φ for large x0.

We conclude that one should reduce � to maximize the
maximal rotation angle, whereas x0 can be kept as large as
possible below the critical value in order to improve the ob-
servability of the oscillations.

APPENDIX F: UNCERTAINTY

The finesse of the oscillator Q is also the measure of the
improvement of the precision of the measurement of the Berry
curvature B. Indeed, the relative uncertainty of the anomalous
Hall deviation δ(�y)/�y determines the uncertainty on the
Berry curvature δB/B. The amplification of the deviation in
the Foucault pendulum configuration increases the denomi-
nator of the first fraction by a factor Q, thus reducing the
uncertainty on the Berry curvature by the same factor. This
would mean reducing the 10% uncertainty on the Berry cur-
vature in Ref. [36] down to 0.1% with Q = 100 from Fig. 3 of
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the main text, a significant improvement. However, Q should
be maximized not by reducing x0, but rather by reducing
�. The limit to this improvement is set by � > β/σ 2 =
4π2β

√
ξm/h̄ (wave packet size should be smaller than the

Berry curvature variation scale), around 1 µeV.

APPENDIX G: DETERMINATION OF BERRY
CURVATURE PROFILE

In the main text, we show that the Berry-Foucault pendu-
lum allows finding with high precision the Berry curvature
at low wave vectors. In this section, we demonstrate that the
knowledge of the Berry curvature at low wave vectors gives
a full description of the profile of the Berry curvature for a
known Hamiltonian type.

In the Dirac Hamiltonian, the Berry curvature is given by

BD
z (k) = α2�D

2(α2k2 + �2
D)3/2

, (G1)

and the Berry curvature at low wave vector is given by B0 =
α2/2�2. It is easy to show that the Berry curvature B(k) can
be written as a single-parameter function of k, with this single
parameter being precisely B0:

B(k) = B0

(1 + B0k2/2)3/2 , (G2)

because its integral is normalized (the Chern number). It
means that measuring B0 with a high precision allows one
to find the whole distribution of the Berry curvature with the
same precision.

In the TE-TM Hamiltonian, the Berry curvature is given by

BTE-TM
z (k) = 2�β2k2

(�2 + β2k4)3/2 , (G3)

and its low-wave-vector approximation is B0(k) = ηk2, η =
2β2/�2 being the quantity we determine with high precision
with the Berry-Foucault pendulum. It is again straightforward
to show that the Berry curvature in this case can also be

written as a single-parameter function of k, with the single
parameter η:

B(k) = ηk2

(1 + ηk4/2)3/2 . (G4)

Thus, the Berry-Foucault pendulum allows determining
the whole Berry curvature distribution in the case of TE-TM
as well.

APPENDIX H: LARGE-AMPLITUDE OSCILLATIONS

Here, we discuss the case of kmax → ∞. This regime is
subject to strong nonadiabaticity due to the possibility of
resonant transitions between the harmonic-oscillator states.
Nevertheless, one can imagine that the maximal value of the
AHE drift is achieved for k below this critical condition.
Indeed, the maximal AHE drift is

�ymax =
√

β

�

�2(3/4)√
π

. (H1)

It is achieved when kmax 
 k∗ = √
�/β, which is the

wave vector of maximal Berry curvature, which gives x0 

h̄
√

�/
√

βξm. For large h̄ω, this wave vector could be acces-
sible. The maximal angle of rotation before desynchronization
in this limit is

φ∞
max = ymax

AHE

x0
� β

�

√
ξm

h̄

�2(3/4)√
π

. (H2)

However, the width of the wave packet in the harmonic oscil-
lator is l2 = h̄/

√
ξm. Requiring the expression on the right to

be much larger than unity, we obtain l � 2π/k∗, and consid-
ering that l determines the size of the wave packet in the recip-
rocal space, �k 
 k∗, which means that the wave packet has
to be so small in real space and so large in reciprocal space,
that the semiclassical theory is inapplicable. The limit kmax →
∞ is therefore impossible to combine with large rotation an-
gles in a harmonic oscillator in the adiabatic regime, and thus
the low-k limit considered in the main text is the most relevant.
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