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Dynamic melting and condensation of topological dislocation modes
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Bulk dislocation lattice defects are instrumental in identifying translationally active topological insulators
(TATIs), featuring band inversion at a finite momentum Kinv. As such, TATIs host robust gapless modes around
the dislocation core, when the associated Burgers vector b satisfies Kinv · b = π (modulo 2π ). From the time
evolution of appropriate density matrices, we show that when a TATI via a real time ramp enters into a trivial
or translationally inert topological insulating phase, devoid of gapless dislocation modes, the signatures of the
preramp defect modes survive for a long time. More intriguingly, as the system ramps into a TATI phase from any
translationally inert insulator, the signature of the dislocation mode dynamically builds up near its core, which is
prominent for slow ramps. We exemplify these generic outcomes for two-dimensional time-reversal symmetry
breaking insulators. Proposed dynamic responses at the dislocation core can be experimentally observed in
quantum crystals, optical lattices, and metamaterials with a time tunable band gap.
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I. INTRODUCTION AND BACKGROUND

Interfaces of quantum materials serve as a powerful tool
to identify topological crystals in nature. They feature robust
gapless modes at the edges and surfaces, for example, en-
coding the topological invariant of the bulk electronic wave
functions, manifesting a bulk boundary correspondence [1,2].
Here we solely focus on topological insulators (TIs). The
hallmark band inversion in TIs, however, can take place at the
center (� point) or at finite time-reversal invariant momen-
tum points of the Brillouin zone (BZ) [3–9]. Consequently,
the landscape of TIs fragments according to the underlying
band inversion momentum Kinv. However, boundary modes
cannot distinguish them as they always exist at the interfaces
of topological crystals, irrespective of Kinv.

Bulk topological lattice defects, such as dislocations, being
sensitive to Kinv, are instrumental in distinguishing TIs. As
dislocations are characterized by the nontrivial Burgers vector
b, electrons encircling the defect core pick up a hopping
phase �dis = Kinv · b [10–24]. Evidently, �dis = 0 in the �

phase, as Kinv = 0 therein. If, on the other hand, b and Kinv

are such that �dis = π (modulo 2π ), a nontrivial π hopping
phase threading the defect core binds localized gapless topo-
logical electronic modes therein (Fig. 1) [12,15], which have
also been observed in experiments [25,26]. As dislocations
are associated with the breaking of the local translational
symmetry in the bulk of crystals, TIs harboring such defect
modes are named translationally active topological insula-
tors (TATIs). This general principle is applicable to two- and
three-dimensional static and Floquet TIs and superconduc-
tors [10–26].

II. BROAD QUESTIONS AND KEY RESULTS

Although unexplored thus far, with the recent progress at
the frontier of dynamic topological phases, such as the ones
realized in periodically driven Floquet materials [27–40], for

example, the role of topological lattice defects in the dynamic
realm arises as a timely issue of fundamental importance. In
this context, we provide affirmative answers to the following
questions. (a) Does the signature of topological dislocation
modes survive in translationally inert insulators, reached from
a TATI via a real time ramp? (b) Even more intriguingly, can
topological dislocation modes be dynamically generated via a

FIG. 1. (a) Energy spectra of the static Hamiltonian [Eq. (2)]
for t = t0 = −m0 = 1, yielding a TATI with the band inversion at
the M point (M phase), in the presence of an edge dislocation-
antidislocation pair with the periodic boundary condition in the x and
y directions. The system then supports a pair of zero energy modes
(inset). (b) The local density of states (LDOS) of these two modes
are highly localized near the defect cores. (c) Phase diagram of the
static Hamiltonian. Ramps out of (into) the M phase to (from) trans-
lationally inert insulators are shown by solid (dashed) arrows labeled
by Roman numerals. The corresponding melting and condensation of
dislocation modes are shown in Figs. 2–4. Here, TI (NI) corresponds
to topological (normal) insulator.
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FIG. 2. Time evolution of the probability P(t ) [Eq. (4)] of finding
the dislocation mode in the presence of a real time ramp [Eq. (3)] that
takes the system from the M phase (with mi = −1) to a translation-
ally inert TI with band inversion at the � point [(a) and (d)] or normal
insulator close to the M phase [(b) and (e)] or � phase [(c) and (f)].
At t = 0 the state is pure [(a)–(c)], composed of a single dislocation
mode or mixed [(d)–(f)] with N + 1 occupied single-particle states
(two dislocation modes and N − 1 bulk states) of H [Eq. (2)], named
the HF′ state, for various choices of the ramp speed α. Here, N is
the total number of sites in a square lattice system in the presence of
a dislocation-antidislocation pair. Therefore signatures of the dislo-
cation modes survive for a long time. The Roman numeral in each
panel corresponds to the arrow out of the M phase shown in Fig. 1.

ramp, taking the system into a TATI phase from translationally
inert insulators?

To answer these questions, we subscribe to a paradigmatic
lattice model for two-dimensional time-reversal symmetry
breaking insulators. Besides featuring the translationally ac-
tive M phase with the band inversion at the M = (π, π )/a
point of the BZ, it also accommodates translationally inert
normal or trivial insulators (with no band inversion) as well as
a TI with the band inversion at the � = (0, 0) point [Fig. 1(c)].
Here, a is the lattice constant of an underlying square lattice.
Then from the time t evolution of the appropriate density
matrix ρ(t ), governed by the von Neumann equation

dρ(t )

dt
= − i

h̄
[H (t ), ρ(t )], (1)

where the Hamiltonian H (t ) captures the real time ramp, we
make the following key observations. When the system is
initially prepared in a TATI phase with a pair of dislocation
modes and the ramp takes it into one of the translationally in-
ert phases, gradually decaying signatures of the defect modes
survive for a long time. This outcome is qualitatively insen-
sitive to the nature of the final state. See Figs. 2 and 3. By
contrast, when the ramp takes a reverse course, taking the
system into the M phase from one of the translationally inert
insulators, topological dislocation modes dynamically con-
dense near the defect cores. The probability of such dynamic
generation of the topological defect modes increases with
decreasing ramp speed, resembling the adiabatic theorem.
However, dynamic nucleation of the defect modes is most
prominent when the ramp begins from a normal insulator,
residing close to the TATI or M phase. These findings are
showcased in Fig. 4. Throughout this paper we set h̄ = 1.

FIG. 3. Time evolution of the site-resolved LDOS [Eq. (5)], com-
puted from the density matrix ρ(t ) at various time instants for a fixed
ramp speed α = 1 [Eq. (3)]. Here, ρ(0) is constructed from a single
isolated dislocation mode for t = t0 = −mi = 1 (pure state). The
final phase is a TI with the band inversion at the � point [(a)–(d)],
a normal insulator residing close to the M phase [(e)–(h)] or the �

phase [(i)–(l)]. The value of mf is quoted in each panel. Each row
demonstrates dynamic melting of the localized dislocation mode due
to the ramp. Compare with Fig. 1(b) and the color scale therein. Such
time evolutions lead to valleys (peaks) in the probability of finding
the initial dislocation modes when the LDOS appears prominently
away from (near) the core of the lattice defect, as shown in the first
and third (second and fourth) columns of each row. See Figs. 2(a)–
2(c) for the complete time evolution of these modes. We implement
the lattice geometry shown in Fig. 1(b). Results are identical in
the mixed HF′ state once the uniform background LDOS for the
half-filled system is subtracted. The Roman numeral in each panel
corresponds to the arrow out of the M phase shown in Fig. 1.

III. MODEL

The Hamiltonian for the lattice model is [41]

H = t1
∑
j=x,y

sin(k ja)τ j +
⎛
⎝t0

∑
j=x,y

cos(k ja) − m0

⎞
⎠τz. (2)

The vector Pauli matrix τ = (τx, τy, τz ) operates on the or-
bital indices. Translationally active M and inert � topological
phases are realized for −2 < m/t0 < 0 and 0 < m/t0 < 2,
respectively. Otherwise the system is a normal insulator. See
Supplemental Material [42]. Only the M phase supports a
pair of near-zero energy dislocation modes that are highly
localized around the defect cores, when b = aex, for example
(Fig. 1). We denote them as |�dis

i 〉 with i = 1, 2. They are
related via an antiunitary particle-hole symmetry |�dis

1,2〉 =
	|�dis

2,1〉 up to an overall unimportant phase, where 	 = τxK
and K is the complex conjugation, as {H,	} = 0 [43].

The real time ramp under which m0 → m(t ), where

m(t ) = mi + (m f − mi ) [1 − exp(−αt )], (3)

is characterized by the ramp speed α. This ramp profile with
m(0) = mi and m(t → ∞) = m f , where the subscript i ( f )
stands for initial (final), allows the system to interpolate be-
tween any two insulators appearing in the phase diagram of H
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FIG. 4. (a)–(c) Probability P(t ) of dynamic condensation of dislocation modes. (a) Variation of P(t ) when the initial phase is a normal
insulator residing close to the M phase for various ramp speeds α. (b) Variation of P(t ) for two different band gaps (set by mi) of the initial
phase [same as in (a)] for two specific choices of α. (c) Same as (a) but for a specific α and when the initial state features band minima (inverted
for mi = 0.10 or noninverted for mi = 2.10) near the � point. The dashed line corresponds to the maximal probability of finding dislocation
modes in the mixed state, denoted by HF′. (d)–(g) Difference between the initial and final site-resolved LDOSs for various α, confirming
prominent dynamic generation of the dislocation modes, comparable to those in the M phase in the static system [Fig. 1(b)], for a sufficiently
slow ramp. The Roman numeral in each panel corresponds to the arrow into the M phase shown in Fig. 1.

through band gap closing with tunable ramp speed [44]. This
ramp does not break any lattice symmetry. When m0 → m(t )
in Eq. (2), we denote the time-dependent Hamiltonian by H (t )
[Eq. (1)].

IV. RESULTS

We set the stage with the discussion of a simple situation.
Consider an isolated pure state |�dis

1 〉, for which the density
matrix ρ(0) = |�dis

1 〉〈�dis
1 |. Under the time evolution this state

always remains pure. Once the ramp [Eq. (3)] is switched
on, at any given instant of time the probability of finding the
dislocation mode is

P(t ) = 〈�|ρ(t )|�〉, (4)

also known as the fidelity, but only when ρ(0) and thus
ρ(t ) represents a pure state, where |�〉 = |�dis

1 〉, and ρ(t )
is obtained by numerically solving Eq. (1). The results are
shown in Figs. 2(a)–2(c). Irrespective of the nature of the
final translationally inert insulator (topological or normal), we
find that P(t ) remains appreciably finite for a long time over
a wide range of α. For small α, P(t ) decays slowly, as the
system then takes a longer time to escape the M phase. For a
faster ramp, P(t ) initially falls rapidly. However, it then shows
oscillatory behavior for a long time. These characteristics of
P(t ) for sufficiently large α are (almost) identical to those for
the survival probability of a single dislocation mode across a

sudden quench [42,45,46]. The time evolution of P(t ) reflects
on the time dependence of the site-resolved LDOS, computed
from the density matrix as

Di(t ) =
∑
τ=1,2

〈i, τ |ρ(t )|i, τ 〉, (5)

where i (τ ) is the site (orbital) index and |i, τ 〉 is the single-
particle state vector at site i with orbital τ . The results are
shown in Fig. 3. Irrespective of the nature of the final insu-
lator, we find that the LDOS spreads over the entire system
with increasing time causing the overall decay of P(t ) with t .
Nonetheless, the LDOS displays periodic peaks and valleys at
the dislocation core, where the initial defect mode |�dis

1 〉 was
prominently localized, resulting in an oscillatory behavior of
P(t ), shown in Figs. 2(a)–2(c).

However, in quantum materials, midgap dislocation modes
can only be occupied upon filling all the negative-energy
bulk states. Therefore, to experimentally observe the dynamic
melting of defect modes, one needs to consider an appropriate
many-body ground state. Due to the particle-hole symmetry,
a half-filled system displays a uniform average electronic
density equal to one in the entire system irrespective of the
presence or absence of dislocation modes at any time for any
α [42]. To capture the time evolution of the dislocation modes,
we therefore need to add one fermion to the half-filled sea, a
state denoted by HF′. The density matrix for this mixed state
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in a system containing N number of sites reads

ρ(0) = 1

N + 1

N+1∑
i=1

|�i〉〈�i|, (6)

where |�i〉 is an eigenstate of H (0) with energy Ei. Evidently,
ρ(0) cannot be expressed as |�〉〈�| in terms of some state
vector |�〉 as it is a mixed state [47]. In HF′, two dislocation
modes are occupied, besides N − 1 number of bulk states.
Then the LDOS shows a sharp peak at the dislocation core
in the M phase once the average background LDOS for the
half-filled system is subtracted.

The time evolution of this density matrix is obtained by
numerically solving Eq. (1), from which we compute the prob-
ability of finding the dislocation mode at t � 0 from Eq. (4)
with |�〉 = (|�dis

1 〉 + |�dis
2 〉)/

√
2. The results are shown in

Figs. 2(d)–2(f), which are identical to the ones we obtained
for the pure state [Figs. 2(a)–2(c)], except that P(0) = (N +
1)−1 since all the (N + 1) filled states in HF′ are equally
probable to be occupied initially. Also, min{P(t )} = 1/(2N ),
which corresponds to a maximally disordered state (all 2N
single-particle states are equally probable to be occupied) with
maximal von Neumann entropy [42]. The site-resolved LDOS
shows identical behavior to that in Fig. 3 for the pure state
once the background of the uniform LDOS for the half-filled
state is subtracted.

Finally, we showcase the dynamic buildup of dislocation
modes when the real time ramp brings the system, initially
prepared in one of the translationally inert insulating phases,
to the translationally active M phase. Following the discus-
sion from the last paragraph, we immediately recognize that
the initial system must be prepared in the HF′ state, which
is now devoid of any defect mode, with the density matrix
ρ(0) [Eq. (6)]. From ρ(t ), we then compute the probability
of finding the dislocation modes [Eq. (4)] and site-resolved
LDOS [Eq. (5)] at any instant of time. Results are shown
in Fig. 4. Notice that the initial system is devoid of any
defect modes and all the filled states therein contribute in the
dynamic condensation of dislocation modes via the real time
evolution. Hence no pure state can capture this phenomenon,
and we always have to work with the mixed states.

Dynamic condensation of dislocation modes is most
prominent when the initial state is a normal insulator, residing
close to the M phase, with the noninverted band minima near
the M point. Recall that dislocation modes originate from the
band inversion at the M point (K · b rule), which is easier to
achieve dynamically when the minima of noninverted bands
is near the M point initially, as this process requires a small
momentum transfer. Otherwise, with slower ramp speed the
probability of dynamic generation of the dislocation modes
increases [Fig. 4(a)], which is insensitive to the magnitude of
the initial band gap [Fig. 4(b)]. These observations can be rec-
onciled with the adiabatic theorem: For an adiabatically slow
ramp, the system should always find itself in the instantaneous
ground state. As a consequence, for a sufficiently slow ramp,
the hallmark dislocation modes of the translationally active
M phase develop more prominently as t → ∞. These con-
clusions are further substantiated from the difference between
initial and final LDOS at each site for various α, shown in
Figs. 4(d)–4(g). Remarkably, the LDOS near the dislocation

cores recovers more than 95% of the weight of the original
dislocation modes in the M phase of the static system for a suf-
ficiently slow ramp (α = 0.01). Such recovery of dislocation
modes, however, gets weaker with increasing ramp speed. By
contrast, when the system is initially prepared in an insulating
phase, featuring minima of inverted or noninverted bands near
the � point, the probability of dynamic generation of the dislo-
cation modes remains negligibly small even for a sufficiently
slow ramp [Fig. 4(c)], as the requisite dynamic band inversion
at the M point now demands a large momentum transfer.

All the results presented here are expected to mimic the
outcomes in the thermodynamic limit, as for sufficiently large
number of lattice sites (N) in the system, with N = 1176 in
our setup, the exact numerical diagonalization produces (a)
the same band gap predicted from the Bloch Hamiltonian
[Eq. (2)] and (b) topological defect modes in the M phase
at energy equal to zero within the numerical accuracy. See
Fig. 1(a).

V. DISCUSSION AND OUTLOOK

Defects are ubiquitous in crystals. Here we outline a
theoretical framework to capture dynamic melting and con-
densation of topological dislocation modes when a real time
ramp takes the system out of and into a TATI, respectively.
The proposed formalism based on the time dynamic of an
appropriate density matrix governed by the von Neumann
equation is sufficiently general that it can be extended to any
topological system, including topological superconductors, in
arbitrary dimension and belonging to an arbitrary symmetry
class to capture similar dynamic phenomena for boundary
(such as edge, surface, hinge, and corner) as well as defect
(line dislocation and grain boundaries, for example) modes.
Our model Hamiltonian also describes a px + ipy supercon-
ductor with amplitude t1, and the band inversion near the �

and M points manifests Fermi surfaces near them. Then a
weak coupling topological BCS pairing sets in, and dislo-
cation cores host localized Majorana modes. Tunable time
dynamics of localized Majorana modes can in principle be
useful in quantum computation and information technologies,
facilitating information storage over a desired time. These
fascinating avenues will be explored in future. Meanwhile,
it will be worthwhile to investigate the impact of dephasing
in these open quantum systems, which may boost the revival
probability of dislocation modes when its dynamic generation
requires a large momentum transfer. Results reported in this
paper suggest a dynamic approach to distinguish two normal
insulators, residing close to the TIs with band inversion at the
� and M points, from the revival probability of the defect
modes when time-ramped into the M phase, thus complement-
ing a recent proposal to distinguish such normal or atomic
insulators by inducing superconductivity therein [48].

The requisite time-modulated band gap in quantum crystals
and cold atomic lattices can, for example, be accom-
plished by time-dependent hydrostatic pressure and on-site
staggered-orbital potential, respectively, allowing a smooth
interpolation between topologically distinct insulators. The
predicted dynamic melting and more intriguing condensation
of dislocation modes can be detected from the time-dependent
LDOS, measured near the defect cores by scanning tunneling
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spectroscopy. In metamaterials, the time-dependent band gap
can be engineered by (a) coupling electric nodes containing
capacitors and/or inductors with resistors in active topolectric
circuits to minimize gain and loss, such that the circuit decay
constant provides the desired profile of m(t ) [49], or (b) a
time-dependent ratio of the distance between intra-unit-cell
magnetomechanical resonators (optical waveguides) to the
effective lattice constant of mechanical (photonic) lattices. In
these metacrystals, such ratios have been tuned to trigger tran-
sitions between topological and normal insulators, and lattice
defects as well have been engineered, featuring robust defect
modes [50–54]. The proposed dynamic responses of defects
can be measured from the time-dependent impedance (in
topolectric circuits), mechanical susceptibility (in mechanical

systems), and two-point pump probe (in photonic lattices), all
of which mimic the LDOS. With the recent progress in realiz-
ing Floquet topological phases in quantum materials [32–34]
and metamaterials [35–40], the ramp dynamics and dynamic
buildup of topological defect modes should be within the
reach of current experimental facilities.
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