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We study the far-from-equilibrium dynamics of isolated two-dimensional Heisenberg antiferromagnets. We
consider spin-spiral initial conditions which imprint a position-dependent staggered magnetization (or Neel
order) in the two-dimensional lattice. Remarkably, we find a long-lived prethermal regime characterized by
self-similar behavior of staggered magnetization fluctuations, although the system has no long-range order at
finite energy and the staggered magnetization does not couple to conserved charges. By exploiting the separation
of length scales introduced by the initial conditions, we derive an analytical model that allows us to compute
the spatial-temporal scaling exponents and power-law distribution of the staggered magnetization fluctuations,
and find excellent agreement with numerical simulations using phase-space methods. The scaling exponents
are insensitive to details of the initial condition, in particular, no fine tuning of energy is required to trigger the
self-similar scaling regime. Compared with recent results on far-from-equilibrium universality on the Heisenberg
ferromagnet, we find quantitatively distinct spatial-temporal scaling exponents, therefore suggesting that the
Heisenberg model can host different universal regimes depending on the initial conditions. Our predictions are
relevant to ultracold-atom simulators of Heisenberg magnets and driven antiferromagnetic insulators.
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I. INTRODUCTION

Many-body systems out of thermodynamic equilibrium
can exhibit universal phenomena beyond conventional equi-
librium paradigms. Prominent examples include turbulence
[1–3], aging [4], coarsening [5], surface growth [6], break-
down of transport [7], and percolation [8]. One common
theme in the study of equilibrium and out-of-equilibrium
universality is the emergence of self-similar behavior: micro-
scopically distinct models can be classified into universality
classes sharing the same scaling exponents. Unlike systems
at thermodynamic equilibrium, far-from-equilibrium systems
break a symmetry associated to detailed balance [9–11] and
can therefore exhibit richer behaviors than their equilibrium
counterparts. Such rich behaviors have been observed in
driven-dissipative systems [12–16] where an external drive
pushes the system to a nonthermal steady state while dissi-
pation maintains energy balance, and in quenches of isolated
systems where the system acts as its own bath [17–30]. These
universal nonequilibrium regimes are now routinely probed in
cold-atom experiments [31–35].

Conserved charges and order parameters, both of which are
determined by symmetries and dimensionality of the system,
play an important role in determining the nature of the scaling
behavior. In some cases, nonconventional scaling behavior
arises from the nonlinear dynamics of conserved charges in
phase space. Examples include turbulent phenomena in fluids
and nonthermal fixed points of bosonic theories where the
self-similar scaling is governed by the cascade of conserved
charges in momentum space [2,26–29], one-dimensional in-
tegrable systems where Kardar-Parisi-Zhang (KPZ) scaling
arises due to the extensive number of conserved charges
[36–39], and thermalizing systems in low dimensions which

display a breakdown of local hydrodynamics [7,40,41] (see
Ref. [42] for an example in kinematically constrained sys-
tems). In other cases, nonconventional scaling is induced
by the dynamics of the order parameter. Examples include
coarsening dynamics where self-similar scaling arises due to
the growth of ordered domains [5,43,44], or aging dynamics
where self-similar scaling arises due to quasi-long-range cor-
relations close to criticality [30,45–47]. In general, quantities
which are neither conserved nor couple with an order param-
eter are expected to relax in microscopic times and exhibit
featureless dynamics.

Here we study the prethermal dynamics of isolated Heisen-
berg antiferromagnets and show that quantities which are
neither conserved nor exhibit ordering at finite temperature
can still exhibit slow relaxation and universal prethermal
dynamics when initialized from certain excited states. In par-
ticular, using spin-spiral excited states with inhomogeneous
Neel order (see Fig. 1), we find that large and slowly re-
laxing staggered magnetization fluctuations persist during a
long-lived prethermal regime although the system exhibits no
symmetry-breaking phase transition at finite temperature. In
this prethermal regime, the staggered magnetization rapidly
relaxes to zero but staggered magnetization fluctuations ex-
hibit universal scaling governed by

Ck(t ) = 〈M−k(t )Mk(t )〉 = tα f (tβ |k|), (1)

with β ≈ 0.5 and α ≈ 1. In Eq. (1), the universal func-
tion f also exhibits scaling f (x) ∼ 1/|x|ν for a broad range
of momenta, with ν ≈ 2.3, and takes O(1) values at the
lowest momenta. The scaling exponents (α, β, ν) are uni-
versal in the sense that they are insensitive to details of the
Hamiltonian or the initial condition. In particular, we em-
phasize that no fine tuning of energy is needed. Using a
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FIG. 1. (a) Schematics of the staggered spin-spiral initial state
[see Eq. (3)]. The wave vector q = (qx, 0) of the initial condition
imprints a length scale ξ (0) = 2π/qx in the system at time t = 0.
(b) We compute the scaling behavior of ξ (t ) ∼ tβ using a continuous
nonlinear (CNL) theory describing staggered magnetization fluctua-
tions at small wave vectors k � 1/ξ , and we compute the power-law
distribution 〈M−kMk〉 ∼ 1/kν of the function f in Eq. (1) using a ki-
netic theory (KT) of magnons valid for wave vectors 1/ξ � k � 1/�.

continuous nonlinear model describing long-wavelength spin
modes combined with a kinetic theory of interacting quasipar-
ticles at shorter wavelengths, we are able to derive analytically
the three scaling exponents (α, β, ν). These analytic values
are shown to agree remarkably well with numerical simula-
tions using phase-space methods.

We find that the origin of the prethermal scaling is re-
lated to the existence of spin modes whose gapless nature
is protected by the global SU(2) symmetry. We show this
by computing the unequal-time spin-spin correlation function
[48], which exhibits linearly dispersing gapless modes even
though the prethermal state is an intermediate-energy state far
from the staggered ground state. A central insight in under-
standing the prethermal scaling in two-dimensional systems
with SU(2) symmetry was discussed in recent works by one
of us in the context of Heisenberg ferromagnets [49,50]. In
the ferromagnetic case, the two-dimensional nature of the
system bestows magnetization fluctuations a quasi-long-range
character. In addition, the combination of magnetization being
a conserved quantity and the constrained interactions resulting
from the SU(2) symmetry gives rise to a universality class dis-
tinct from previously studied instances of scaling. Similarly
to the ferromagnetic case, the two-dimensional nature of the
antiferromagnet leads to quasi-long-range fluctuations of the
staggered magnetization. However, unlike the ferromagnet,
the staggered magnetization is not a conserved quantity. In
spite of its nonconserved nature, we still find a parametrically
long time window (controlled by nonuniversal parameters that
depend on Hamiltonian details and the initial conditions) in
which the system exhibits universal prethermal scaling.

We find that the Heisenberg antiferromagnet belongs
to a different nonequilibrium universality class than previ-
ously studied models with similar features. Compared to the
Heisenberg ferromagnet [50], we find clearly distinct scal-
ing exponents, indicating that the same Hamiltonian with
ferromagnetic and antiferromagnetic initial conditions lead
to quantitatively distinct universal dynamics. We attribute
such differences to the dispersion of emergent gapless modes
and the effective interactions between them (see Sec. III).
We also emphasize that the scaling regime discussed in this
work is intrinsically different from the predictions of model
G in the Halperin-Hohenberg classification [51]: while the

latter describes universal behavior close to thermodynamic
equilibrium, here we consider a dynamical regime where equi-
librium properties, such as the fluctuation-dissipation relation,
are violated. In comparison with O(n) theories in d = 2, we
note that these models also exhibit linearly dispersing quasi-
particles and long-range order at T = 0 [52]. We find that
both O(n) theories and Heisenberg antiferromagnets exhibit
similar (within numerical uncertainty) nonequilibrium spatial-
temporal scaling exponents β ≈ 0.5 and α ≈ 1, but they have
clearly distinct values of the universal scaling exponent ν.
The same conclusion applies when comparing nonrelativistic
bosonic theories and antiferromagnets [we note that relativis-
tic O(n) theories and nonrelativistic U(1) theories were shown
to exhibit the same α = dβ and β ≈ 1

2 exponents [53]]. We
find that a different exponent ν arises because interactions be-
tween spin modes are soft due to the global SU(2) symmetry,
whereas interactions between bosonic modes are hard-core in
O(n) and U(n) theories.

Our predictions are relevant in a variety of experimental
scenarios, both in condensed-matter and cold-atomic plat-
forms. First, in recent years there have been remarkable
advances in our experimental capabilities to probe the dy-
namics of isolated spin systems in low dimensions [54–56].
Current experiments are now able to prepare simple product
states of excited spin spirals and tune the dimensionality and
exchange interactions to probe the dynamics under different
symmetries. Such experiments are now able to coherently
evolve the system over unprecedentedly long timescales on
the order of t ∼ 50h̄/J [55] and, therefore, access the long-
lived prethermal regime discussed in this work. On a different
front, experiments in solid-state systems are now able to
drive low-dimensional ferromagnetic and antiferromagnetic
insulators and probe magnetization fluctuations with energy
resolution using local probes [57–61], such as nitrogen-
vacancy centers in diamond. Such experiments are capable
of directly measuring the power-law distribution in Eq. (1) as
well as the relaxation dynamics of highly excited states.

The outline of the paper is as follows: In Sec. II, we
describe the Heisenberg model and the initial conditions. In
Sec. III, we present a simple statistical mechanics model used
to derive the scaling exponents analytically. In Sec. IV, we
use phase-space methods to numerically evaluate the scaling
exponents. In Sec. V, we discuss the connections between our
work and previously studied instances of scaling in related
models, and also present the conclusions. In the Appendixes
we provide additional details about asymptotic functions used
in Sec. III (Appendix A) and details about the statistical anal-
ysis used to analyze the numerical data (Appendix B).

II. MICROSCOPIC MODEL

We consider the Heisenberg antiferromagnet on a two-
dimensional square lattice with linear size L, lattice constant
�, and with nearest-neighbor interactions:

H = J
∑
〈i j〉

Sx
i Sx

j + Sy
i Sy

j + Sz
i Sz

j . (2)

Here Si = (Sx
i , Sy

i , Sz
i ) are spin S operators, 〈i j〉 denotes sum-

mation over nearest-neighbor spins i and j, and J is a positive
constant. For the purposes of our work, including additional
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next-nearest-neighbor exchange has no effect on the universal
aspects of dynamics, so long as the next-nearest-neighbor
exchange does not induce frustration. As such, we restrict
our discussion to nearest-neighbor coupling only in order to
keep the model as simple as possible. However, we emphasize
that the SU(2) symmetry is essential to our discussion and
breaking it will lead to qualitatively distinct exponents, as we
discuss in more detail below.

As initial condition, we use an antiferromagnetic spin-
spiral product state:

〈S±
i 〉 = S(−1)rx

i +ry
i sin θe±iq·ri ,〈

Sz
i

〉 = S(−1)rx
i +ry

i cos θ, (3)

where S±
i = Sx

i ± Sy
i . The initial condition (3) imprints a

length scale ξ = 2π/|q| in which spins have Neel order (al-
though there is no order globally) while restricting dynamics
in the zero magnetization sector Stot = 0. Dynamics of spin
systems under this type of initial conditions are now routinely
accessed in cold-atomic platforms [54,55,62,63].

Insights about the nonequilibrium behavior of the Heisen-
berg antiferromagnet can be gained by first analyzing the
low-energy properties of the system. At zero temperature, the
two-dimensional Heisenberg antiferromagent on the square
lattice exhibits a broken-symmetry ground state with a
nonzero staggered magnetization (or Neel order). In this
broken-symmetry state, the staggered magnetization Ma =∑

i(−1)rx
i +ry

i Sa
i has finite expectation value, with ri = (rx

i , ry
i )

the lattice coordinate of spin i (expressed in units of lattice
constant, thus, rx,y

i are integer numbers). Unlike the ferromag-
netic case (J < 0), the antiferromagnetic ground state is not
classical and has zero-point motion due to quantum fluctua-
tions, i.e., 〈Ma〉T =0 < NS. Importantly, the broken-symmetry
ground state persists for all values of S, even in the quantum
limit S = 1

2 [64,65].
For finite-energy states, the system does not exhibit

long-range order. However, fluctuations of the staggered mag-
netization are relevant for finite energies as these have a
quasi-long-range character, a feature coming from the system
being at the critical dimension d = 2. As a result, it takes a
parametrically long time for the system to erase the initial
length scale ξ imprinted by the initial condition. In a loose
sense, the “large-N” parameter governing the relaxation dy-
namics of the Heisenberg antiferromagnet is S(ξ/�)2, which
is roughly the total (staggered) magnetization of an island of
radius ξ (this parameter also governs the energy density of
the initial condition). For these reasons, we expect that the
universal prethermal dynamics discussed in this work will be
independent of the spin number S, so long as the condition
S(ξ/�)2 � 1 is met by the initial state (3).

III. ANALYTICAL DERIVATION OF THE
NONEQUILIBRIUM SCALING EXPONENTS

A. Phenomenology

In this section, we construct a simple nonequilibrium sta-
tistical mechanics model that captures the universal aspects of
prethermalization in Heisenberg antiferromagnet (2), namely,
the asymptotic form of the function f (x) ∼ 1/xν and the
numerical values of (α, β ) in Eq. (1). The essence of the

approach follows closely that used in Refs. [50,66] and relies
on exploiting the length-scale separation of spin modes in-
troduced by the initial condition, i.e., � � ξ � L. The value
of ξ is time dependent: it is initially imprinted by the initial
conditions and, as time evolves, it defines the typical corre-
lation length of staggered magnetization fluctuations. There
are two types of excitations that need to be incorporated
simultaneously into our description. First, the initial state
will trigger spatial fluctuations of Neel order which govern
the dynamics of the staggered magnetization at wave vectors
|k| � 1/ξ . Such fluctuations are large in two-dimensional sys-
tems. Second, large-wave-vector 1/ξ � |k| � 1/� excitations
will mediate the transfer of energy and magnetization towards
UV degrees of freedom. Whereas the former is described
with a classical continuum theory, the latter are described
using a kinetic theory of magnons within the wave turbulence
formalism. The key difference between our approach and the
conventional approach at low temperature and thermal equi-
librium, where one describes response function in terms of a
dilute number of magnons, is that fluctuations of the staggered
magnetization are large and need to be incorporated into the
dynamics.

We proceed in two steps. For wave vectors 1/ξ � |k| �
1/�, we study the dynamics of magnetization fluctuations
by assuming that the staggered magnetization is uniform
in space: in a loose sense, magnons with wave vectors
1/ξ � |k| � 1/� effectively see a uniform magnetization
background within the typical timescale of magnon-magnon
collisions. As such, in Sec. III B we pin the antiferromagnetic
order parameter and derive the effective kinetic theory for
magnons. Using the wave turbulence formalism, we derive the
power-law exponent ν in Sec. III C. In Sec. III D, we study
dynamics of the order parameter within a continuum theory
and determine the relevant nonlinearities that govern the re-
sulting spatial-temporal scaling of magnetization fluctuations
for wave vectors |k| � 1/ξ . From a simple scaling analysis
that employs the equations of motion and spin conservation
laws we derive the scaling exponents (α, β ) that govern the
growth of ξ ∼ tβ .

B. Dynamics of short wavelengths

In the presence of a uniform staggered magnetization, it
is convenient to write the spin operators in terms of bosonic
operators. Here we employ the Dyson-Maleev transformation
[67]. Because of the antiferromagnetic nature of the ground
state, we use two flavors of bosons to describe spins in the A
and B sublattices (see Fig. 1):

Sz
i = S − a†

i ai, (4a)

S+
i =

√
2S

(
ai − 1

2S
a†

i aiai

)
, (4b)

S−
i =

√
2Sa†

i , (4c)

Sz
j = −S + b†

jb j, (4d)

S+
j =

√
2S

(
b j − 1

2S
b†

jb jb j

)
, (4e)

S−
j =

√
2Sb†

j . (4f)
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Here S±
i denotes S±

i = Sx
i ± iSy

i , ai and b j are bosonic an-
nihilation operators, and we use i ( j) to label sites in the A
(B) sublattice. We note that the Dyson-Maleev transformation
produces the correct spin commutation relations but violates
the property (S−

i )† = S+
i . In this case, the spin Hamiltonian

becomes non-Hermitian. In contrast, the Holstein-Primakoff
transformation, another commonly used transformation for
spin systems [68], retains Hermiticity but generates an infinite
series of interaction vertices. In spite of the non-Hermiticity
property, the Dyson-Maleev transformation has proven to
be more convenient for studying spin-wave interaction in
ferromagnets and antiferromagnets: it reproduces all the
perturbative results obtained with the Holstein-Primakoff
transformation in a much faster and compact way [67,69,70].

Inserting Eqs. (4a)–(4f) into Eq. (2) and separating terms
order by order, we find H = −NJS2 + H0 + Hint, with

H0 = JS
∑
〈i j〉

(a†
i ai + b†

jb j + aib j + b†
ja

†
i ), (5a)

Hint = −J

2

∑
〈i j〉

(a†
i aiaib j + a†

i b†
jb

†
jb j + 2a†

i aib
†
jb j ). (5b)

Note that interactions are O(1/S) at small boson densities and
vanish in the classical limit S → ∞. Going into Fourier space
and defining ak = 1√

N

∑
i e−ik·ri ai, bk = 1√

N

∑
i e−ik·r j b j , the

quadratic component of the Hamiltonian is given by

H0 = JzS
∑

k

(a†
kak + b†

kbk + γka†
kb†

−k + γkakb−k). (6)

Here γk denotes the phase factor γk = 1
z

∑
� eik·�,

where � denotes the nearest-neighbor lattice vectors

� = {(±�, 0), (0,±�)}, and z is the coordination number
of each spin (z = 4 in a two-dimensional square lattice). The
quartic component of the Hamiltonian is given by

Hint = − Jz

2N

∑
k1k2k3k4

δ(ki − kf )(γk4 a†
k1

a−k2 ak3 bk4

+ γk1 a†
k1

b†
k2

b†
−k3

bk4 + 2γk3−k2 a†
k1

b†
k2

bk3 ak4 ),

with ki = k1 + k2 and kf = k3 + k4.
We now proceed to diagonalize H0 using the Bogoliubov

transformation

ak = ukαk − vkβ
†
−k, (7a)

b†
−k = −vkαk + ukβ

†
−k, (7b)

where αk and βk are bosonic annihilation operators (bosonic
commutation requires u2

k − v2
k = 1). Replacing Eq. (7) into

(6) leads to

H0 =
∑

k

εk(α†
kαk + β

†
kβk), εk = zJS

√
1 − γk, (8)

and the factors uk and vk are given by

uk =
√

1 + εk

2εk
, vk =

√
1 − εk

2εk
. (9)

Using the Bogoliubov transformation on the quartic compo-
nents of H results in

Hint = − Jz

2N

∑
k1k2k3k4

δ(ki − kf )uk1 uk2 uk3 uk4

(
�

(1)
k1k2k3k4

α
†
k1

α
†
k2

αk3αk4 + 2�
(2)
k1k2k3k4

α
†
k1

β−k2αk3αk4 + 2�
(3)
k1k2k3k4

α
†
k1

α
†
k2

αk3β
†
−k4

+ 4�
(4)
k1k2k3k4

α
†
k1

β−k2αk3β
†
−k4

+ 2�
(5)
k1k2k3k4

β−k1β−k2αk3β
†
−k4

+ 2�
(6)
k1k2k3k4

α
†
k1

β−k2β
†
−k3

β
†
−k4

+ �
(7)
k1k2k3k4

α
†
k1

α
†
k2

β
†
−k3

β
†
−k4

+ �
(8)
k1k2k3k4

β−k1β−k2αk3αk4 + �
(9)
k1k2k3k4

β−k1β−k2β
†
−k3

β
†
−k4

)
, (10)

where the phase factors �
(n)
k1k2k3k4

are explicitly written in
Appendix A.

We now analyze Eqs. (6) and (10) in the limit k � 1/� in
order to determine the power laws characterizing the quasi-
particle dispersion and their interactions. From Eq. (6) one
finds the well-known dispersion of small-momenta magnons
given by εk ∝ |k|. A second useful relation that results from
the linearized analysis is the ratio between the amplitude of
the staggered magnetization and the total magnetization. This
relation can be obtained directly from the Bogoliubov eigen-
vectors (uk, vk) in Eq. (9). Focusing on the staggered and total
magnetization produced by the αk mode, we find that the stag-
gered magnetization scales as mk ≈ ak − bk ≈ (uk + vk)αk,
whereas the total magnetization scales as sk = (ak + bk) ≈
(uk − vk)αk. Using the small wave-vector expansion |k| �
1/� of Eq. (9), uk ± vk ≈ 1√

2εk
(1 ± 1 + εk∓εk

2 ), combined with
εk ∝ |k|, we find sk ≈ |k|mk � mk, thus the total magne-

tization fluctuations are O(|k|ξ ) smaller than the staggered
magnetization fluctuations and vanish in the |k| → 0 limit, as
expected for an antiferromagnet.

We now analyze the scaling of the interaction vertex Hint in
Eq. (10) in the small wave-vector limit |k| � 1/�. A detailed
analysis of magnon relaxation in different energy ranges was
done in Ref. [67]. Of primary interest in this work are on-shell
processes describing particle-conserving collision between
magnons. Off-resonant processes and processes which do not
preserve particle number, both of which we will neglect, were
shown to give subleading effects in the relaxation dynamics at
small wave vectors |k| � 1/� [67]. Thus, the relevant terms
in Eq. (10) are those containing the phase factors �(1), �(4),
and �(9), with �(1) = �(9), which are associated to particle-
conserving processes. For small wave vectors, the product
uk1 uk2 uk3 uk4 scales as uk1 uk2 uk3 uk4 ∼ 1√

εk1 εk2 εk3 εk4
∼ 1/k2. In

addition, the asymptotic form of �(1,9) is given by �
(1,9)
k1k2k3k4

=
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2εk3εk4 (k̂3 · k̂4 − 1) and the asymptotic form of �(4) is given
by �

(4)
k1k2k3k4

= 2εk3εk4 (k̂3 · k̂4 + 1) (see Appendix A), and

they all scale as �
(n)
k1k2k3k4

∼ k2. As such, the matrix element
for the two-body interaction (k1, k2) → (k3, k4) scales as
V (λk1, λk2, λk3, λk4) = λ0V (k1, k2, k3, k4).

As a side remark, we note that if SU(2) symmetry is
broken, for example by adding anisotropic exchange, then
the scaling with momentum of the interactions changes al-
together. In particular, the phase factors �

(n)
k1k2k3k4

become
wave-vector independent and this would change the dynam-
ical scaling laws characterizing the prethermal regime. In
contrast, adding next-nearest-neighbor exchange terms which
preserve SU(2) symmetry will not alter the scaling behavior
described below.

C. Scaling of the envelope function f

We now calculate the power-law scaling of the function
f (x) ∼ 1/xν using the wave turbulence formalism. Wave tur-
bulence [2,3] provides a framework for computing the scaling
of two-point correlation functions in far-from-equilibrium
regimes when the system exhibits a weak coupling limit. In
our case, the weak coupling limit is controlled by the pa-
rameter 1

S ( �
ξ

)2. The starting point in wave turbulence theory
is to assume incoherent dynamics of the bosonic degrees of
freedom αk and βk, i.e., 〈αk〉 = 〈βk〉 = 0, which is equivalent
to assuming that transverse magnetization fluctuations (rela-
tive to the direction of the Neel order) are incoherent. This
approximation is only valid for excitations with wave vectors
1/ξ � |k| � 1/�. In the regime |k| � 1/ξ , instead, there will
be finite expectation value for 〈αk〉 and 〈βk〉 signaling quasi-
long-range order (this regime will be analyzed in the next
section). Under this approximation, each flavor of magnons
is characterized by its occupation number 〈α†

kαk〉 = nα,k and
〈β†

kβk〉 = nβ,k. The standard procedure in wave turbulence
consists of (i) deriving a kinetic equation from Eqs. (6) and
(10) describing the time evolution of nk, (ii) proposing a
solution of the form nk ∝ |k|−ν , and (iii) finding ν that gives
rise to a steady-state solution. Here we also assume that nk,α =
nk,β = nk.

Following the discussion in Sec. III B, we employ an effec-
tive theory describing magnon excitations that only includes
on-shell terms which preserve both particle number and en-
ergy. The exponent ν can only depend on the power γ of
the quasiparticle dispersion εk ∝ |k|γ , the power δ of the
interaction V (λk1, λk2, λk3, λk4) = λδV (k1, k2, k3, k4), and
the system’s dimension d . Based on the results of the previous
section, we have γ = 2 and δ = 0. As shown in Refs. [2,3],
there are two nonthermal solutions with scaling exponents

νN = d + 2δ − γ

3
, νE = d + 2δ

3
. (11)

The solution with scaling exponent νN is associated to a flux
of quasiparticles cascading towards small momenta (inverse
cascade), whereas the solution with scaling exponent νE = 2
is associated to a flux of energy cascading towards large mo-
menta (direct cascade). The wave-vector range where particle
number is concentrated, kN = 1

N

∫
dk

(2π )2 |k|nk, is where the
quasiparticle cascade occurs, whereas the wave-vector range

where energy is concentrated, kE = 1
E

∫
dk

(2π )2 |k|nkεk, is where
the energy cascade occurs. Because kN < kE , the inverse cas-
cade occurs at smaller wave vectors than the energy cascade.
Using the values d, δ, γ specific to our system, we find νN = 4

3
and νE = 2.

Finally, we note that the scaling exponents νN and νE

characterize the distribution of the occupation numbers nα,k

and nβ,k of the bosonic degrees of freedom rather than the
spin degrees of freedom. Thus, the last step in our calculation
is to transform back from bosonic operators into spin oper-
ators. We note that the spin operators are related to (αk, βk )
through a Bogoliubov transformation [see Eq. (7)]. As such,
the scaling with momentum of the spin-spin correlation func-
tion 〈Ma

−kMa
k 〉 is given by 〈Ma

−kMa
k 〉 ∼ nk/k ∼ 1/kνN,E +1, thus

ν = νN,E + 1.
We comment on the validity of the exponents νN and νE . In

particular, we need to question the validity of using a kinetic
theory involving only on-resonant and particle-conserving
terms while neglecting all other processes. The validity of
these approximations will be confirmed numerically in the
next section. Reference [67] does a detailed analysis of all
the terms in Eq. (10), and finds that on-resonant and particle-
conserving processes dominate in the k → 0 limit, whereas
other processes become incrementally more relevant at larger
wave vectors. Because the inverse particle cascade occurs at
smaller wave vectors than the direct energy cascade, kN � kE ,
we expect that the scaling exponent νN is more robust to
relaxation mechanisms such as particle-nonconserving and
off-resonant processes than the scaling exponent νE . Indeed,
in our numerics below we find that the scaling exponent of
f (x) ∼ 1/xν matches remarkably well with ν = νN + 1 but
we do not observe a second wave-vector range with exponent
ν = νE + 1, which is consistent with the picture presented in
Ref. [67].

D. Spatiotemporal scaling exponents

In this section, we focus on the dynamics of magnetization
fluctuations with wave vectors |k| � 1/ξ . We use the micro-
scopic equations of motion in the continuum limit and analyze
the role of leading-order nonlinearities to phenomenologi-
cally predict the exponents α and β governing the growth
of ξ (t ) in Eq. (1). We define two spin fields a = 〈Si∈A〉 and
b = 〈S j∈B〉 that characterize the average orientation of the spin
S in sublattice A and B, respectively. We also define the stag-
gered magnetization m = a − b and the total magnetization
s = a + b. Assuming that the fields a and b vary smoothly in
space, we can expand the microscopic equations of motion for
spins ∂t Si = ∑

j Si × S j to leading order in gradients:

∂t a = a × (zb + ∇2b), (12)

∂t b = b × (za + ∇2a), (13)

where time is expressed in units of 1/J , and we approximated
the sum over neighboring spins with the Laplacian

∑
� bx+� ≈

zbx + ∇2bx and
∑

� ax+� ≈ zax + ∇2ax. In terms of m and s,
we find

∂t s = 1

2
s × ∇2s − 1

2
m × ∇2m, (14a)

∂t m = z

2
m × s − 1

2
s × ∇2m + 1

2
m × ∇2s. (14b)
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To find the values of (α, β ) in Eq. (1) we look at Eq. (14b) and
balance the time derivative of m with the leading nonlinearity,
which is given by the first term on the right-hand side:

∂t m
a
k ≈ z

2
εabc

∑
p

mb
p−ksc

p, (15)

with εabc the Levi-Civita symbol. The second approximation
that we use is sa

k ∼ |k|ma
k, which is justified from the lin-

earized analysis of spin waves discussed above which showed
that the total magnetization is O(k) smaller than the stag-
gered magnetization. The third approximation that we use
is assuming that all modes with wave vector |k| � 1/ξ are
macroscopic and democratically occupied for all spin orien-
tations. As such, if we identify ξ ∼ tβ in Eq. (1) and take
f ∼ O(1) at small wave vectors, then ma

k scales as ma
k ∼ ξα/2β

and sa
k scales as sa

k ∼ ξα/2β−1. Using this scaling form in the
left-hand side of Eq. (15), we find ∂t ma

k ∼ ξ (α−2)/2β , where
we used ξ̇ = ξ 1−1/β . The right-hand side of Eq. (15), instead,
gives

∑
k mb

p−ksc
p ∼ ξα/β−d−1, where we approximated

∑
k =

A
∫

dd k
(2π )d ∝ ξ−d and A is the total area of the system. Equating

both sides of Eq. (15) such that they both yield the same
temporal scaling for ξ (t ) results in

2(d + 1)β = α + 2. (16)

The second relation between α and β comes from
the conservation of spin length, 1

4

∫
dx(m + s)2 + (m −

s)2 = constant. Using the scaling ma
k ∼ ξα/2β and neglecting

the contribution of the total magnetization |s| � m, we find
the second condition

α = dβ. (17)

Combining Eq. (16) with (17) in d = 2 yields

α = 1, β = 1/2. (18)

We note that a similar analysis in the ferromagnetic case re-
sulted in quantitatively different exponents α = 2

3 and β = 1
3

[50], indicating that the Heisenberg ferromagnet and anti-
ferromagnet belong to different nonequilibrium universality
classes. In particular, the analog of Eq. (16) in the ferromag-
netic case is 2(d + 2)β = α + 2. The key difference between
the ferromagnetic and antiferromagnetic case is coming from
the different dispersion of quasi-long-range modes (quadratic
versus linear) and the different nature of the scaling field
(conserved versus nonconserved).

IV. NUMERICAL SIMULATIONS THROUGH
PHASE-SPACE METHODS

We compute the real-time dynamics of quantum spins us-
ing the truncated Wigner approximation (TWA) [71–74]. This
method incorporates quantum fluctuations by adding quantum
noise in the initial conditions and evolving the classical trajec-
tories using the classical equations of motion for spins ∂t Si =
J

∑
j Si × S j . To sample the initial conditions in Eq. (3), we

use a Gaussian approximation for the Wigner function given
by

W
(
S⊥

i , Sz
i

) = 2

πS
e

−(S⊥
i )2

S δ
(
Sz

i − S
)
, (19)

FIG. 2. (a) Evolution of the spin-spin correlation function for the
staggered magnetization Ck(t ) = ∑

a〈Ma
k Ma

−k〉. Shown with dotted
lines is the correlation function for the initial state, with dashed-
dotted lines is the correlation function prior to the self-similar
regime, and with solid lines is the correlation function in the self-
similar scaling regime. Lighter shade of color indicates increasing
times. (b) Rescaled spin-spin correlation function using Eq. (1), with
α = 1 and β = 0.5. The dashed line indicates the power-law scaling
∼x−7/3. (c) Unequal time spin-spin correlation function exhibiting
a linearly dispersing gapless mode at small momenta. Simulation
parameters: L = 500, qx = 0.5, θ = π

2 , S = 10.

which reproduces the correct first and second moments of the
Wigner distribution [71]. In Eq. (19), we assumed without
loss of generality that the initial spin is pointing in the +z
direction.

Figure 2 shows the time evolution of the equal-time spin-
spin correlation function for the staggered magnetization
Ck(t ) = ∑

a=x,y,z 〈Ma
k (t )Ma

−k(t )〉 for a system of linear size
L = 500, and initial conditions with wave vector qx = 0.5,
qy = 0, and θ = π/2. At t = 0, only a single mode with
wave vector k = (qx, 0) is macroscopically occupied. Within
a timescale on the order of the inverse energy (per spin), the
macroscopic state is depleted and a power-law distribution of
the two-point correlation function develops. In this prethermal
regime, we find that the values

α = 1.0 ± 0.1, β = 0.48 ± 0.05 (20)

best fit the numerical data in a sufficiently long time window
(see details in Appendix B). These values agree with the
analytical predictions of the previous section using scaling
arguments.
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We now analyze the power-law scaling of the function f
in Eq. (1) [see dashed lines in Fig. 2(b)]. Interestingly, we
observe only one power law characterizing the tails of the
magnetization fluctuation distribution, contrary to the predic-
tions of wave turbulence found in Sec. III C which suggested
the existence of two exponents νN and νE . In fitting the power-
law exponent of the distribution we find that

ν = 2.4 ± 0.1, (21)

which agrees with the exponent ν = νN + 1 = 7
3 ≈ 2.33 as-

sociated to the inverse particle cascade. This result is in
agreement with the conclusions of Ref. [67] which argues
that off-resonant processes and particle nonconserving can be
neglected at small momenta, thus the effective theory (6)–(10)
considering only particle–conserving processes is a good ap-
proximation. For larger wave vectors (or energies), however,
it is likely that off-resonant processes play a more prominent
role and, therefore, the energy cascade exponent νE is not
present.

We tested the robustness of our results using initial condi-
tions with different values of θ , ranging from π

6 < θ < π
2 and

different values of the wave vectors qx, and we consistently
see the same scaling exponents within numerical uncertainty.
Similarly to the Heisenberg ferromagnet, this suggests that
the far-from-equilibrium dynamics of the isotropic Heisen-
berg antiferromagnet is governed by a single nonthermal fixed
point with the exponents in (20) and (21). This is unlike
U(1) theories which exhibit multiple nonthermal fixed points,
each of which can be activated by different initial conditions
[48,53,75,76].

Whereas the ground state of the Heisenberg antiferro-
magnet exhibits gapless low-energy excitations, it is unclear
whether the highly excited initial condition in Eq. (3) leads
to a dynamically generated gap, such as those observed in
O(n) and U(n) theories, or whether the spin modes in the
self-similar region remain gapless. In a recent work [50], it
was shown that the global SU(2) symmetry of the Heisenberg
ferromagnet precludes the opening of a dynamical gap during
evolution, leading to a long-lived prethermal regime governed
by gapless modes with dispersion ωk ∼ |k|2. We numerically
checked the nature of the excitations at the lowest wave vec-
tors using the unequal-time correlation function Fxx(k, ω) =∫

dt eiωt 〈 1
2 {Mx

−k(t0 + t )Mx
k (t0)}〉 for the staggered magneti-

zation ({A, B} = AB + BA) [see Fig. 2(c)]. Interestingly, we
observe that the self-similar regime is governed by gapless
modes at all times, even when the intermediate-time prether-
mal state is far from the ground state with uniform Neel
order. The dispersion of the gapless mode is consistent with
ωk ∼ k, different from the ωk ∼ k2 dispersion observed in the
Heisenberg ferromagnet.

V. DISCUSSION AND SUMMARY

The scaling regime discussed in this work is intrinsically
different from previously studied instances of scaling in sev-
eral important ways. Compared to the universal prethermal
dynamics of Heisenberg ferromagnets [50], we find clearly
distinct exponents originating from the existence of gapless
modes with linear dispersion rather than modes with quadratic
dispersion. In addition, unlike the ferromagnetic case, anti-

ferromagnetic fluctuations are not coupled to any conserved
charge. As a result, the long-lived prethermal regime dis-
cussed here is cut off by some parametrically long timescale
controlled by nonuniversal processes that result in magnetiza-
tion decay [e.g., particle-nonconserving terms in Eq. (10)].

Heisenberg antiferromagnets and O(n) theories share many
similarities at thermodynamic equilibrium and low tem-
peratures, such as linearly dispersing quasiparticles and a
symmetry-breaking phase transition at T = 0 (T > 0) in di-
mension d = 2 (d > 2). We also find that they share some
similarities in far-from-equilibrium regimes. For example,
several works found similar scaling exponents as those we
found above, α = dβ and β ≈ 1

2 , in O(n) theories regardless
of the value of n [48,53]. However, in O(n) theories quenched
to (or across) a critical point [21,24,30] self-similarity occurs
only if parameters and initial conditions are fine tuned so as
to guarantee a vanishing late-time effective gap, unlike the
antiferromagnetic case where we observe scaling without any
fine tuning of the initial conditions. In addition, we observe
quantitative differences in the universal scaling function f in
Eq. (1) between both theories, reinforcing the idea that both
models do not belong to the same nonequilibrium universality
class.

Compared to nonthermal fixed points in bosonic U(1)
theories, the key difference is that U(1) models can host
topological defects (vortices) which can qualitatively alter
the far-from-equilibrium behavior and give rise to different
self-similar scaling regimes [75,76]. Even in the absence of
vortices, the effective theory for the antiferromagnet differs
from the U(1) bosonic theory both at the level of quasiparti-
cle dispersion and their effective interactions, suggesting that
both cannot belong to the same universality class. In certain
cases, an effective gap has been observed to be dynamically
generated by fluctuations [48,53]. This effective gap has been
shown to lead to a modified nonrelativistic effective theory
at low momenta and with scaling exponents α = dβ and
β ≈ 1

2 , similar to those found in O(n) theories and Heisen-
berg antiferromagnets. However, at the level of the universal
scaling function f in Eq. (1), we find a clearly distinct
exponent ν which sets antiferromagnets and U(1) theories
apart.

In summary, we studied the universal far-from-equilibrium
dynamics of two-dimensional Heisenberg antiferromagnets.
We showed that, if initialized in a state with inhomogeneous
Neel order, magnetization fluctuations will exhibit a long-
lived prethermal regime with universal behavior. Our results
show that quantities which are neither conserved nor exhibit
long-range order can still exhibit self-similiar behavior in
a parametrically long time window. The scaling exponents
are shown to be remarkably robust to details of the initial
conditions: in particular, no fine tuning of the energy is nec-
essary. Our work also highlights the important role played
by dimensionality and symmetry in giving rise to gapless
spin modes with quasi-long-range character. Combined with
a recent work by one of us on Heisenberg ferromagnets [50],
we have now fully characterized the nonthermal fixed points
of the Heisenberg model both for ferromagnetic and antifer-
romagnetic exchanges. The scaling regime discussed in this
work is readily accessible in ongoing experiments in cold-
atomic gases which can probe these regimes in fully tunable
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spin systems [55,77,78], including tunable symmetries and
spatial dimension.

ACKNOWLEDGMENTS

We are grateful to J. Marino and A. Piñeiro-Orioli for
insightful comments and previous collaborations. J.F.R.-N.
acknowledges the Gordon and Betty Moore Foundation’s
EPiQS Initiative through Grants No. GBMF4302 and No.
GBMF8686, the 2021 KITP program Nonequilibrium uni-
versality: from classical to quantum and back, and the
National Science Foundation under Grant No. NSF PHY-
1748958. P.G. is supported by the Alfred P. Sloan Foundation
through Grant No. FG-2020-13615, the Department of Energy
through Award No. DE-SC0019380, and the Simons Founda-
tion through Award No. 620869.

APPENDIX A: INTERACTION COEFFICIENTS WITHIN
THE DYSON-MALEEV FORMALISM

Here we reproduce the phase-factor coefficients of the in-
teractions in the Heisenberg Hamiltonian [Eq. (10)] within the
Dyson-Maleev transformation [Eq. (4a)] using the notation in
Ref. [67]. In particular, the phase factors �(n) appearing in the
interactions of the effective Hamiltonian (10) are given by

�
(1,9)
k1k2k3k4

= (
γk1−k4 xk1 xk4 + γk1−k3 xk1 xk3

+ γk2−k4 xk2 xk4 + γk2−k3 xk2 xk3 − γk1 xk2 xk3 xk4

− γk2 xk1 xk3 xk4 − γk2 xk2 − γk1 xk1

)
, (A1a)

�
(2,4)
k1k2k3k4

= ( − γk2−k4 xk4 − γk2−k3 xk3

− γk1−k4 xk1 xk2 xk4 − γk1−k3 xk1 xk2 xk3 + γk1 xk3 xk4

+ γk2 xk1 xk2 xk3 xk4 + γk2 + γk1 xk1 xk2

)
, (A1b)

�
(3,5)
k1k2k3k4

= ( − γk2−k4 xk2 − γk1−k4 xk1

− γk2−k4 xk1 xk3 xk4 − γk2−k3 xk2 xk3 xk4 + γk1 xk2 xk3

+ γk2 xk1 xk3 + γk2 xk2 xk4 + γk1 xk1 xk4

)
, (A1c)

�
(4)
k1k2k3k4

= (
γk2−k4 + γk1−k4 xk1 xk2 + γk1−k4 xk3 xk4

+ γk1−k3 xk1 xk2 xk3 xk4 − γk1 xk3 − γk2 xk1 xk2 xk3

)
− γk2 xk4 − γk1 xk1 xk2 xk4 , (A1d)

�
(7,8)
k1k2k3k4

= (
γk2−k4 xk2 xk3 + γk2−k3 xk2 xk4

+ γk2−k3 xk1 xk3 + γk2−k3 xk1 xk3 + γk2−k4 xk1 xk4

− γk1 xk1 xk3 xk4 − γk2 xk2 xk3 xk4 − γk1 xk2 − γk2 xk1

)
.

(A1e)

In these expressions, the parameter γk is given by γk =
1
z

∑
� eik·� defined in the main text, where � is the nearest-

neighbor lattice vector in two dimensions. The parameter
xk is the ratio xk = uk/vk = √

(1 − εk)/(1 + εk), with εk =√
1 − γ 2

k .
Of primary interest are the expressions in Eq. (A1) in the

long-wavelength limit |k| → 0, particularly for the factors
�(1) = �(9), and �(4) which contribute to particle-conserving

FIG. 3. Error function in Eq. (B1) plotted as a function of the
fitting parameters α and β. Darker color indicates higher error values.
The minimum of E occurs at around β ≈ 0.5 and alpha α ≈ 1.

scattering processes in the kinetic theory. We first note the fol-
lowing identities which hold in the asymptotic limit |k| → 0:

εk ≈ 1
2 |k|, (A2a)

γk ≈ 1 − 1
2ε2

k, (A2b)

xk ≈ 1 − εk. (A2c)

Replacing these asymptotic expressions into Eq. (A1) and tak-
ing k1 + k2 = k3 + k4 due to momentum conservation leads
to

�
(1,9)
k1k2k3k4

= 1
2 k3 · k4 − 2εk3εk4 , (A3a)

�
(4)
k1k2k3k4

= 1
2 k3 · k4 + 2εk3εk4 , (A3b)

to leading order in momentum k. These relations can also be
written as

1
2�

(1,9)
k1k2k3k4

= εk3εk4 (k̂3 · k̂4 − 1),

1
2�

(4)
k1k2k3k4

= εk3εk4 (k̂3 · k̂4 + 1). (A4a)

Importantly, these phase factors accounting for particle-
conserving processes scale as � ∼ k2, which is used in the
derivation of ν in Eq. (21) of the main text.

APPENDIX B: STATISTICAL ANALYSIS
OF NUMERICAL DATA

We obtain the scaling exponents α and β that best fit
the numerical data by minimizing the error function E (α, β )
that quantifies the collapse of the data points through the
scaling in Eq. (1). First, we take discrete values of |k| = ki

compatible with the inverse lattice spacing and evaluate the
distribution C(k, tm) at different time steps tm within the self-
similar regime (tm+1 − tm ∼ τ is roughly the inverse energy of
the system). Second, we define the rescaled variables yi,m =
tα
mC(ki, tm) and xi,m = tβ

mki. By interpolating these variables,
we are able to obtain an explicit function ym(x), where x is
assumed to be a continuum variable. Third, we compute the
error function as

E (α, β ) =
∑
m,m′

∫
dx|ym(x) − ym′ (x)|. (B1)

The contour plot of E (α, β ) for the self-similar regime studied
in Fig. 2 is shown in Fig. 3. We find that the best fitting with
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minimum error is centered around the point (α, β ) ≈ (1, 0.5),
which is consistent with our theoretical prediction. The error

bars are obtained from the sensitivity of the parameter (α, β )
for different initial conditions.
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