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Quantum squeezing is an essential asset in the field of quantum science and technology. In this paper, we
investigate the impact of temperature and anisotropy on squeezing of quantum fluctuations in two-mode magnon
states within uniaxial antiferromagnetic materials. Through our analysis, we discover that the inherent nonlin-
earity in these bipartite magnon systems gives rise to a conjugate magnon squeezing effect across all energy
eigenbasis states, driven by temperature and anisotropy. We show that temperature induces amplitude squeezing,
whereas anisotropy leads to phase squeezing. In addition, we observe that the two-mode squeezing characteristic
of magnon eigenenergy states is associated with amplitude squeezing. This highlights the constructive impact of
temperature and the destructive impact of anisotropy on two-mode magnon squeezing. Nonetheless, our analysis
shows that the destructive effect of anisotropy is bounded. We demonstrate this by showing that, at a given
temperature, the squeezing of the momentum (phase) quadrature [or equivalently, the stretching of the position
(amplitude) quadrature] approaches a constant function of anisotropy after a finite value of anisotropy. Moreover,
our paper demonstrates that higher magnon squeeze factors can be achieved at higher temperatures, smaller levels
of anisotropy, and closer to the Brillouin zone center. All these characteristics are specific to low-energy magnons
in the uniaxial antiferromagnetic materials that we examine here.
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I. INTRODUCTION

Quantum noise and fluctuations are inherent to a physical
system due to the quantum uncertainty principle. Despite the
limitation imposed by the Heisenberg uncertainty principle
on simultaneous measurements of noncommuting quantum
observables with arbitrary precision, the noise of a sin-
gle quantum observable can be reduced without limitation
through quantum squeezing [1].

Quantum squeezing has been realized in a variety of sys-
tems such as the electromagnetic field [2–4], the vibrational
mode in solids and molecules [5–8], trapped ions [9], and
magnetic and spin systems [10–20]. It plays an important
role in many applications; for example, it can be used to
improve the sensitivity of laser interferometers [18], increase
the accuracy of gravitational wave detection [19], and atomic
clocks [20–22]. Squeezed states are used to enhance quantum
metrology [23] and quantum imaging [24] tasks. Quan-
tum squeezing is an essential resource to realize continuous
variable quantum information processing [25,26], including
protocols for quantum communication [27–30], unconditional
quantum teleportation [31] and one-way quantum computing
[32]. Among different classes of Gaussian states, two-mode
squeezed states are of particular importance in these appli-
cations. Indeed, two-mode squeezed states are commonly
produced in the laboratory and are strongly related to quantum
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entanglement and Einstein-Podolsky-Rosen nonlocal quan-
tum correlations [33].

Although the squeezed states were originally discussed in
the context of photons, they arise naturally in any bosonic sys-
tem, including phonons and magnons. Quantum squeezing in
magnonic systems has recently received special attention [34].
This is related to the fact that magnons allow robust squeezed
states in equilibrium, which result from energy minimization,
unlike the other bosonic counterparts, where the squeezed
states are nonequilibrium in nature and are produced through
external forces [35].

In this paper, we study the effect of temperature and
anisotropy on two-mode magnon squeezing in antiferro-
magnetic materials. In a nonlinear treatment, we analyze
variations of quantum fluctuations as a function of tem-
perature and anisotropy for antiferromagnetic materials
subjected to uniaxial anisotropy. We find a conjugate magnon-
squeezing behavior, where temperature-induced squeezing
and anisotropy-induced squeezing compete with each other.
We demonstrate that temperature plays a constructive role
in two-mode magnon squeezing, while anisotropy induces
destructive contributions. However, our analysis shows that
for a finite value of anisotropy, it is possible to achieve high
temperature and low energy stabilized magnon squeezing at
the proximity of the Brillouin zone center.

The paper is structured as follows. In Sec. II, we introduce
the antiferromagnetic spin system, perform bosonization up to
certain nonlinear terms, and apply mean-field approximation
to describe the two-mode magnon system in a quadratic form.
In Sec. III, magnon dispersion and two-mode magnon states
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are obtained. Temperature-anisotropy conjugate magnon
squeezing effect is discussed in Sec. IV. The paper ends with
a conclusion in Sec. V.

II. PHYSICAL SYSTEM

A. Two-mode magnon system

The antiferromagnetic Heisenberg Hamiltonian with an
easy-axis on-site anisotropy can be expressed by [36]

H = J
∑
〈i, j〉

Si · S j −
∑

i

Kz
(
Sz

i

)2
, (1)

where J > 0 is the antiferromagnetic Heisenberg exchange
coupling and Kz > 0 is the uniaxial anisotropy, which dis-
tinguishes the z as the easy axis. Through the bosonization
procedure, one can apply the Holstein-Primakoff transforma-
tion on antiferromagnets (AFMs) [37],

Sz
i = S − a†

i ai, S−
i = a†

i

√
2S − a†

i ai,

Sz
j = −S + b†

jb j, S−
j =

√
2S − b†

jb j b j, (2)

followed by Taylor expansion in the powers of 1/S to derive
the effective Hamiltonian of elementary excitations with an
arbitrary order of interactions:

H = Ec
0 + H (2) + H (4) + · · · . (3)

The first term is the classical ground-state energy given by

Ec
0 = −N (ZJ/2 + Kz )S2, (4)

with Z being the coordination number, i.e., the number of
nearest neighbors. Below we consider up to fourth-order
magnon interactions and focus on

H = H (2) + H (4), (5)

where the classical energy contribution Ec
0 is neglected with-

out loss of generality. In real space, we obtain the quadratic
and quartic terms of the Hamiltonian as

H (2) = JS
∑
〈i, j〉

[(a†
i ai + b†

jb j + aib j + a†
i b†

j )]

+ 2S
N/2∑
i∈A

Kza
†
i ai + 2S

N/2∑
j∈B

Kzb
†
jb j (6)

and [38]

H (4) = −J

4

∑
〈i, j〉

[a†
i aib

†
jb j + aib

†
jb jb j + (a ↔ b)]

− Kz

2

∑
i

[a†
i a†

i aiai + (a ↔ b)] + (H.c.). (7)

By using the Fourier transformations

ai =
√

2

N

∑
q

ei q·ri aq, i ∈ A,

b j =
√

2

N

∑
q

ei q·r j bq, j ∈ B, (8)

the quadratic and quartic Hamiltonians in the crystal momen-
tum space are obtained as

H (2) = S
∑

q

[(ZJ + 2Kz )(a†
qaq + b†

qbq)

+ ZJγ−qaqb−q + ZJγqb†
−qa†

q] (9)

and

H (4) = −1

N

∑
q1,q2,q3,q4

δq1+q2,q3+q4

[
2 J a†

q1
aq3 b†

q4
bq2

+ J
(
aq1 b†

q2
bq3 bq4 + a†

q2
aq3 aq4 bq1

)
+ Kz

(
a†

q1
aq3 a†

q2
aq4 + b†

q1
bq3 b†

q2
bq4

)] + (H.c.), (10)

with the lattice structure factor γq = Z−1 ∑z
i=1 eiq·δi , in which

δi denotes the nearest-neighbor vectors, Note that although
in the fourth-order, the antiferromagnetic coupling J only
introduces an interaction between the two excitation modes
a and b on the opposite sublattices, a uniaxial anisotropy Kz

induces interaction between excitations within each sublattice.

B. Mean-field Hamiltonian

The Hamiltonian can be simplified by applying Bo-
goliubov transformation and mean-field approximation. The
Bogolioubov transformation [39,40],(

aq

b†
−q

)
=

(
ūq −v̄q

−vq uq

)(
αq

β
†
−q

)
, (11)

where |uq|2 − |vq|2 = 1, diagonalizes the quadratic term of
the Hamiltonian as

H (2) =
∑

q

εq(α†
qαq + β

†
−qβ−q). (12)

By inserting Eq. (11) into the quadratic Hamiltonian in Eq. (9)
with the aim of diagonalization, we obtain the following Bo-
goliubov coefficients:

uq = cosh θq =
√
ZJS + 2KzS + εq

2 εq
, (13a)

vq = sinh θq =
√
ZJS + 2KzS − εq

2 εq
, (13b)

and the dispersion relation

εq = S
√

(ZJ + 2Kz )2 − (ZJ|γq|)2. (14)

As far as the quadratic Hamiltonian is concerned,
the bosonic eigenmodes α and β represent two po-
larized magnon modes with opposite chiralities [40,41],
which are separable up to linear approximation in the
Holstein-Primakof transformation [42,43]. The structure fac-
tors for 2D square (Z = 4) and hexagonal (Z = 3) lattices
are γq = 2(cos(acqx ) + cos(acqy))/Z and γq = eiacqx (1 +
2e−i3acqx/2 cos(

√
3acqy/2))/Z , respectively, where ac is the

lattice constant. In the long-wavelength limit |q| → 0, the
structure factors of both hexagonal and square lattices reduce
to γq � 1 − a2

c |q|2/4, which results in the dispersion relation
εq = S

√
4Kz(ZJ + Kz ) + (ac|q|ZJ )2/2.
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The Hartree-Fock approximation of the quartic Hamilto-
nian is associated with dominant terms in magnon-magnon
interactions as q1 = q3 = q, q2 = q4 = q′ and q1 = q4 =
q, q2 = q3 = q′ [44–46], which imply [38]

H (4) = −2

N

∑
q,q′

igg[J a†
qaqb†

q′bq′ + J a†
qaq′b†

qbq′

+ J (aqb†
q′bq′bq + a†

q′aq′aqbq)

+ K
2

(a†
qaqa†

q′aq′ + a†
qaq′ a†

q′aq

× b†
qbqb†

q′bq′ + b†
qbq′ b†

q′bq)igg] + (H.c.). (15)

To reduce this quartic Hamiltonian into a mean-field
quadratic Hamiltonian, we approximate c†

qc′
q′ for cq, c′

q′ ∈
{aq, bq′ , a†

q′ , b†
q}, with its thermal average plus small deviations

as 〈c†
qc′

q′ 〉th + �cc′ , where 〈. . .〉th refers to the thermal average
[45,47,48]. The finite mean-field contributions are given by
the following terms:

χ = 2

NS

∑
q

〈a†
qaq〉 = 2

NS

∑
q

〈b†
qbq〉,

χ ′ = 2

NS

∑
q

γ−q〈aqb−q〉 (16)

in k space. χ represents the number of bosonic excitations
on each sublattice A and B, while χ ′ denotes the interac-
tion between them. By using the Bogoliubov transformation
given in Eq. (11), Eq. (16) can be written in the (α, β )
magnon modes. Replacing the thermal expectation value in
the (α, β ) magnon modes with the Bose-Einstein distribution
function, i.e., 〈α†

qαq′ 〉th = 〈β†
qβq′ 〉th = δqq′nq [49,50], where

nq = (eεq/kBT − 1)−1, the mean-field parameters can be ob-
tained as

χ = 2

NS

∑
q

(|uq|2 + |vq|2) nq + |vq|2,

χ ′ = − 2

NS

∑
q

γquqvq (2nq + 1). (17)

Note that in the Hartree-Fock approximation, we only retain
the diagonal terms and assume that in thermal equilibrium the
chemical potential of a magnon is zero. Here kB and T are the
Boltzmann constant and temperature, respectively.

Therefore, by using the Bogoliubov transformation in
Eq. (11) together with the mean-field parameters in Eqs. (16)
and (17), the quartic Hamiltonian in Eq. (15) reduces into the
following effective quadratic Hamiltonian:

H (4) =
∑

q

ε̃q(α†
qαq + β

†
−qβ−q) + gqαqβ−q + ḡqβ

†
−qα

†
q

(18)

in (α, β ) magnon modes with

ε̃q = [
(|uq|2 + |vq|2) − (
̄′
q ūqv̄q + 
′

q uqvq)],

gq = −2
ūqvq + 
′
q(vq)2 + 
̄′

q(ūq)2, (19)

where


q = −(ZJ + 4Kz )Sχ − ZJS Re[χ ′],


′
q = −ZJS(χ + χ̄ ′)γq. (20)

Therefore, the resulting total magnon Hamiltonian of a
uniaxial AFM system in the mean-field approximation is

H = H (2) + H (4)

=
∑

q

(εq + ε̃q)(α†
qαq + β

†
−qβ−q) + gqαqβ−q + ḡqβ

†
−qα

†
q.

The mean-field contribution ε̃q renormalizes noninteracting
magnon modes described by the linear spin-wave Hamiltonian
H (2) in Eq. (12). Even at zero temperature, these coefficients
are finite. Therefore, in general, there is always a finite non-
linear quantum correction to the bare magnon dispersion in
AFM systems [38].

III. TWO-MODE MAGNON DISPERSION AND STATES

A. Magnon dispersion

Due to the presence of interband interaction, gq, the Hamil-
tonian H in Eq. (21) is no longer diagonal in the (α, β )
modes. To diagonalize H , we use the following Bogolioubov
transformation:(

αq

β
†
−q

)
=

(
ũq −e−iφq ṽq

−eiφq ṽq ũq

)(
ηq

ζ
†
−q

)
, (21)

with the parameters [43]

ũq = cosh θ̃q =
√

εq + ε̃q + Eq

2 Eq
,

ṽq = sinh θ̃q =
√

εq + ε̃q − Eq

2 Eq
,

φq = arg[gq], Eq =
√

(εq + ε̃q)2 − |gq|2. (22)

In the hybridized bosonic modes (η, ζ ), the Hamiltonian
takes the following diagonal form:

H =
∑

q

Eq(η†
qηq + ζ

†
−qζ−q), (23)

with dispersion relation

Eq =
√

(εq + ε̃q)2 − |gq|2. (24)

This dispersion is valid for any uniaxial AFMs with arbitrary
dimensions and lattice structures at finite temperatures. The
evaluation of the dispersion Eq, which involves mean-field
coefficients through the calculation of 
 and 
′

q in Eq. (20),
is done self-consistently for various temperatures. Figures 1
and 2 illustrate the dispersion along a high-symmetric path in
the Brillouin zone, respectively, in terms of different values of
temperature and uniaxial anisotropy for an AFM on a square
lattice. Our analysis shows that while the magnon energy dis-
persion is lower at higher temperatures, a uniaxial anisotropy
increases the magnon energy dispersion. In other words, the
lower anisotropy is favorable to low-energy magnons at high
temperatures.
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(a)

FIG. 1. Magnon dispersion of a bipartite antiferromagnet as a
function of temperature and wave vector. We consider a square
lattice with an easy-axis anisotropy Kz = 0.01 meV. Different cross
sections in (a) and hence different lines in (b) correspond to different
values of temperatures. The energy decreases with temperature and
the system is more stable against thermal fluctuations at the center of
the Brillouin zone.

From a practical point of view, the low-energy and high-
temperature magnon regime is promising for sustainable
quantum development. To confirm this, below we investigate
how the magnon squeezing behaves in this regime.

B. Two-mode magnon states

From Eq. (23), we obtain the magnon energy eigenbasis
states to be the the following magnon occupation number
basis:

∣∣ψq
nm

〉 = |n; ηq〉|m; ζ−q〉 = (η†
q)n(ζ †

q )m|0; ηq〉|0; ζ−q〉 (25)

in the hybridized (η, ζ ) magnon modes, where |ψq
00〉 =

|0; αq〉|0; β−q〉 is the magnon vacuum ground state. From now
on, we focus on single q vector as different qs are decoupled
in the Hamiltonian of Eq. (23).

Here, we are interested in the Kittel magnon modes (a, b),
which naturally describe identifiable elementary excitation
modes being associated with each sublattice of the AFM
through the Holstein-Primakoff transformation in Eq. (2). The
Kittel magnon modes are related to the hybridized modes

(a)

FIG. 2. Magnon dispersion of a bipartite antiferromagnet as a
function of easy-axis anisotropy and wave vector. We consider a
square lattice at temperature kBT = 1 meV. Different cross sec-
tions in (a) and hence different lines in (b) correspond to different
values of anisotropy. The energy increases with anisotropy and
the change is relatively more pronounced around the center of the
Brillouin zone.

(η, ζ ) through the transformation(
aq

b†
−q

)
=

(
wq νq

ν̄q w̄q

)(
ηq

ζ
†
−q

)
, (26)

where(
wq νq

ν̄q w̄q

)
=

(
ūq −v̄q

−vq uq

)(
ũq −e−iφq ṽq

−eiφq ṽq ũq

)
.

(27)

This follows from the Bogolioubov transformations given in
Eqs. (11) and (21). By using this relation, the magnon energy
eigenbasis states of the total Hamiltonian in the Kittel modes
(a, b) take the following coherent form:∣∣ψq

nm

〉 = |n; ηq〉|m; ζ−q〉

≡
⎧⎨
⎩

∑∞
l=0 p(n,m)

l;q |l + δ; aq〉|l; b−q〉 n � m∑∞
l=0 p(n,m)

l;q |l; aq〉|l + δ; b−q〉 n � m,
(28)

where δ = |n − m|. By induction, we obtain the probability
amplitudes

p(n,m)
l;q = 1√

n!m!

(
1

w̄q

)δ( 1

w̄qνq

)μ

f (μ,δ)
l;q p(0,0)

l;q , (29)

where μ = min{n, m} and

p(0,0)
l;q = eilϕq

cosh rq
tanhl rq, (30)

with

eiϕq tanh rq = νq

wq
(31)

being the expansion coefficient of the ground state |ψq
00〉 of

the total Hamiltonian in the Kittel modes. The f (μ,δ)
l;q satisfies

the following recursive relations:

f (μ,δ>0)
l;q = √

l + δ cosh2 rq f (μ,δ−1)
l;q

−√
l + 1 sinh2 rq f (μ,δ−1)

l+1;q ,

f (μ>0,0)
l;q = l cosh4 rq f (μ−1,0)

l−1;q − (2l + 1)

2
sinh2 2rq f (μ−1,0)

l;q

+ (l + 1) sinh2 rq f (μ−1,0)
l+1;q , (32)

with initial value condition f (0,0)
l;q = 1 for each l . Figure 3

shows the behavior of probability amplitude with respect to
the occupation number l for a few energy eigenbasis states.
Equations (28)–(32) follow from the diagonal form of the total
Hamiltonian in Eq. (23) and the Bogolioubov transformation
in Eq. (26).

We note that the ground state

∣∣ψq
00

〉 = 1

cosh rq

∞∑
l=0

eilφq tanhl rq.|l; aq〉|l; b−q〉 (33)

is indeed the two-mode squeezed state, which plays an impor-
tant role in quantum information [33].

144302-4



TEMPERATURE-ANISOTROPY CONJUGATE MAGNON … PHYSICAL REVIEW B 108, 144302 (2023)

FIG. 3. The probability amplitudes of the coherent expansions
of energy eigenbasis states in the Kittel modes (a, b) as a function
of the occupation number l at the zone center q = 0. We consider
a square lattice with an easy-axis anisotropy Kz = 0.01 meV. The
probability amplitudes are shown for vacuum state in (a) and for a
few excited states in (b)–(d). In general, the probability amplitudes
tend to diminish for large occupation numbers.

IV. TEMPERATURE-ANISOTROPY CONJUGATE
MAGNON SQUEEZING

In this section, we aim to explore the two-mode magnon
squeezing induced by the temperature, T , and the uniaxial
anisotropy, Kz, in the AFM system described above. Explic-
itly, for the two-mode magnon states obtained in Sec. III B,
we analyze how the parameters T and Kz contribute to the
reduction of quantum noise in an observable. An interesting
nontrivial finding is that temperature and uniaxial anisotropy
result conjugate two-mode magnon squeezing effect. That
means T and Kz induce squeezing (antisqueezing) of quan-
tum noise in two distinct conjugate observables. Moreover, as
schematically illustrated in Fig. 4, if the temperature induces
squeezing for one observable then the anisotropy shows anti-
squeezing for the same observable, and the reverse occurs for
the associate conjugate observable.

To clarify T/Kz features of two-mode magnon squeezing,
we consider the quadrature operator

Qν
q = 1√

2
[e−iν�q + eiν�†

q] = cos(ν)Xq + sin(ν)Pq (34)

at polar angle ν ∈ [0, π ]. Qnπ
q ≡ Xq and Q(2n+1)π/2

q ≡ Pq
are the normalized dimensionless position and momentum

quadratures, respectively, which are given by Xq = �q+�†
q√

2

and Pq = �q−�†
q

i
√

2
in terms of the normalized total annihi-

lation, �q = aq+b−q√
2

, and creation, �†
q = a†

q+b†
−q√

2
, operators.

These quadratures are conjugate observables, which satisfy
the canonical commutation relation [Xq, Pq] = i and thus the
following uncertainty relation:

�2Xq�
2Pq � 1

4 (35)

FIG. 4. Schematic illustration of temperature-anisotropy induced
conjugate magnon squeezing. Red (blue) color in the right panel
indicates higher (lower) temperature for a fixed value of anisotropy.
This shows that increasing temperature induces squeezing (anti-
squeezing) in the quadrature, Q0

q (the conjugate quadrature, Qπ/2
q ).

Dashed (solid) ellipse in the left panel corresponds to higher (lower)
uniaxial anisotropy at a fixed temperature. This exhibits squeezing
(antisqueezing) in the conjugate quadrature, Qπ/2

q , (the quadrature,
Q0

q,) as a result of increasing the anisotropy at a fixed temperature.

for quantum fluctuations evaluated by the variance �2O =
〈O2〉 − 〈O〉2, O = Xq, Pq for each quantum state. In quantum
optics, Xq and Pq are conventionally known as amplitude
and phase quadratures, respectively. Note that the uncertainty
relation in Eq. (35), indicates that quantum fluctuations in two
conjugate observables Xq and Pq cannot be reduced simul-
taneously below 1/2. In other words, amplitude squeezing
and phase squeezing are not simultaneously possible [1]. In
fact, amplitude squeezing causes antisqueezing in the phase
quadrature and vice versa.

For each magnon energy eigenbasis state given in Eq. (28),
the variance of the quadrature operator in Eq. (34) reads

�2Qν
q = cos2(ν)�2Xq + sin2(ν)�2Pq, (36)

where we obtain

4�2Xq(n, m) = ∣∣p(n,m)
0;q

√
δ
∣∣2

+
∞∑

l=0

∣∣p(n,m)
l+1;q

√
l + δ + 1 + p(n,m)

l;q

√
l + 1

∣∣2

+
∞∑

l=0

∣∣p(n,m)
l+1;q

√
l + 1 + p(n,m)

l;q

√
l + δ + 1

∣∣2
,

4�2Pq(n, m) = ∣∣p(n,m)
0;q

√
δ
∣∣2

+
∞∑

l=0

∣∣p(n,m)
l+1;q

√
l + δ + 1 − p(n,m)

l;q

√
l + 1

∣∣2

+
∞∑

l=0

∣∣p(n,m)
l+1;q

√
l + 1 − p(n,m)

l;q

√
l + δ + 1

∣∣2
.

(37)
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FIG. 5. Upper panels: �2Qν
q in terms of ν for different easy-

axis anisotropies and kBT = 1. Lower panels: �2Qν
q in terms of

ν for different temperatures and Kz = 0.01 meV. The focus is the
� point, which corresponds to q = 0. Temperature and anisotropy
induce quantum squeezings at conjugate polar angles, namely, in-
teger and half-integer multiples of π , respectively. In each of the
conjugate angles, if temperature leads to squeezing, anisotropy
gives rise to antisqueezing of quantum fluctuations and vice
versa.

To pursue, we first focus on the zone center, where the
low-energy magnons are available (see Figs. 1 and 2), and
the system allows stronger quantum correlation between the
two magnons in the Kittel modes (a, b) [42,43]. Moreover,
we continue the main discussion with the vacuum ground
state |ψq

00〉 and then extend it to excited magnon states in
the Appendix. Thus, we drop n and m in what follows for
simplicity. For the vacuum ground state |ψq

00〉, Fig. 5 depicts
the quantum fluctuation of the quadrature operator, �2Qν

q, at
the zone center, q = 0, as a function of the polar angle ν,
considering different values of temperature and anisotropy.
The impact of temperature and anisotropy on quantum fluc-
tuations is particularly notable when ν takes on the values
of integer multiples of π and half-integer multiples of π .
These specific values correspond to fluctuations in position
(amplitude), denoted as Xq, and momentum (phase), denoted
as Pq, which are conjugate observables. The narrow fluctu-
ation �2Qπ

q = �2Xq < 1/2, regardless of temperature and
anisotropy values, confirms the vacuum ground state |ψq

00〉 as
a squeezed magnon state. The squeezed nature of the vacuum
ground state is, in fact, linked to the squeezing of quan-
tum fluctuations in the position quadrature observable. Note
that the inequality relation for the variance of the position
quadrature saturates, i.e., �2Xq = 1/2, if rq = 0. In this case,
the vacuum state |ψq

00〉 of the (η, ζ ) modes coincides with
the vacuum state |0; aq〉|0; b−q〉 of the Kittel modes (a, b).
For the Kittel vacuum state |0; aq〉|0; b−q〉, we also find that
�2Pq = 1/2. Moreover, Fig. 5 demonstrates that tempera-
ture enhances the squeezed property of the vacuum ground
state |ψq

00〉 by further squeezing quantum fluctuations in the

FIG. 6. The squeeze factor OXq as a function of temperature and
anisotropy at � point.

position quadrature observable. Conversely, Fig. 5 reveals
that anisotropy weakens the squeezed property of the vacuum
ground state by stretching quantum fluctuations in the position
quadrature observable. This becomes more clear in evaluation
of the squeeze factor

OXq = −10 ln

[
�2Xq(Kz, T )

�2Xq(rq = 0)

]

= −10 ln[2�2Xq(Kz, T )] (38)

as a function of temperature and anisotropy in Fig. 6. The
squeeze factor OXq measures a logarithmic growth of the
variance of the position quadrature with respect to the vacuum
state in (η, ζ ) modes, �2Xq(Kz, T ), relative to �2Xq(rq = 0),
which is the variance of the position quadrature with respect
to the vacuum state in the Kittel modes (a, b). Figure 6
shows that the squeeze factor is an increasing function with
respect to temperature and a decreasing function with respect
to anisotropy.

In Fig. 5, we also notice a nontrivial conjugate two-
mode magnon squeezing effect concerning the quadrature
phases ν = π/2, π . Explicitly, we find that while increasing
temperature squeezes (stretches) fluctuations in the position
(momentum) observable, the anisotropy does the opposite,
namely, increasing anisotropy induces squeezing (stretching)
of fluctuations in the momentum (position) observable. In
other words, while temperature causes amplitude squeez-
ing, anisotropy causes phase squeezing. This temperature-
anisotropy conjugate squeezing is observed in a broader range
of parameter space in Fig. 7. As shown in Fig. 7, the vari-
ance of position quadrature, �2Xq(Kz, T ), decreases with
T and increases with Kz, while the variance of momentum
quadrature, �2Pq(Kz, T ), increases with T and decreases
with Kz.

To further analyze the temperature-anisotropy
conjugate two-mode magnon squeezing effect, we
introduce the following squeeze factors to quantify the
squeezing power induced exclusively by temperature and
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FIG. 7. Quantum fluctuations in the conjugate observables (a) �2Xq and (b) �2Pq in terms of temperature and uniaxial anisotropy at �

point. While �2Xq is a decreasing function of T and an increasing function of Kz, �2Pq is an increasing function of T and a decreasing
function of Kz.

anisotropy:

OT Xq = −10 ln

[
�2Xq(Kz, T )

limT →0 �2Xq(Kz, T )

]
,

OKz Pq = −10 ln

[
�2Pq(Kz, T )

limKz→0 �2Pq(Kz, T )

]
(39)

for given Kz and T . For a given value of anisotropy Kz, OT Xq
quantifies logarithmic growth of the variance of the position
quadrature at a finite temperature relative to zero temperature.
Similarly, at a given temperature T , OKz Pq quantifies logarith-
mic growth of the variance of the momentum quadrature for
a finite value of anisotropy relative to isotropic case Kz → 0.
Comparing to the total squeeze factor in Eq. (38), which takes
into account contributions from all Hamiltonian parameters
including the antiferromagnetic Heisenberg exchange cou-
pling J , the individual squeeze factors in Eq. (39) evaluates
the contribution of only one parameter, either T or Kz, to the
squeezing property of the vacuum ground state |ψq

00〉. Figure 8
illustrates the squeeze factors in Eq. (39) corresponding to
two conjugate observables. The plots in Fig. 8 clearly con-
firm the temperature-anisotropy conjugate two-mode magnon
squeezing effect. Moreover, it is evident from the plots that
the contribution of anisotropy to the squeezing properties of
the system is relatively larger compared to the contribution
of temperature. However, it is important to consider that the
squeezed nature of the vacuum ground state is associated with

FIG. 8. The squeeze factors (a) OT Xq as a function of tempera-
tures for different values of anisotropies, (b) OKz Pq as a function of
anisotropy for different temperatures at � point.

the squeezing of quantum fluctuations in the position quadra-
ture. Thus, temperature makes a constructive contribution to
the magnon squeezing, while anisotropy has a destructive
contribution. This behavior arises due to the conjugate rela-
tionship between the position and momentum quadratures.

We analyze the rates of anisotropy- and temperature-
induced two-mode magnon squeezing by examining the
falling slope of quantum fluctuations with respect to tem-
perature and anisotropy in Fig. 9. Negative slopes indicate
decreasing quantum fluctuations and, consequently, quan-
tum squeezing. It is observed that the rate of squeezing
(the negativity of the slope) always increases with temper-
ature. However, the rate for anisotropy-induced squeezing
decreases and tends to vanish within a narrow range of uniax-
ial anisotropy. This indicates that, for a given temperature, the
variance �2Pq and thus the anisotropy-induced squeeze factor
OKzPq quickly approach constant values after a finite value
of anisotropy. In other words, after an initial sharp squeezing
effect induced by anisotropy, increasing anisotropy does not
contribute further squeezing at any temperature. This is indeed
promising, taking into account the competition between tem-
perature and anisotropy in two-mode magnon squeezing and
the destructive effect of anisotropy on the squeezing proper-
ties of the system.

We end our discussion with a few remarks. First,
temperature-anisotropy conjugate magnon squeezing, which
was observed above at the Brillouin zone center, occurs for
any point in the Brillouin zone. To confirm this point, the
corresponding squeezings along the high-symmetric path in

FIG. 9. The rate of change of (a) �2Xq in terms of temperature
and (b) �2Pq in terms of uniaxial anisotropy at � point.
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FIG. 10. Quantum fluctuations and their rate of changes at differ-
ent q points along the high-symmetric path in the Brillouin zone of
a square lattice. (a), (c) Kz = 0.01 meV. (b), (d) kBT = 1 meV. The
most pronounced squeezing effects occur at the zone center.

the Brillouin zone associated with a square lattice are illus-
trated in Fig. 10. As show in this figure, for each point in
the Brillouin zone, temperature induces squeezing of quantum
fluctuations in the position quadrature (amplitude squeezing)
while anisotropy induces squeezing of quantum fluctuations
in the conjugate momentum quadrature (phase squeezing).
Despite the fact that magnon squeezing occurs everywhere
in the Brillouin zone, the strongest temperature-anisotropy
squeezing effects are at the center of the Brillouin zone. This
squeezing property, combined with other characteristics of the
zone center magnons, such as low-energy magnons (Fig. 1),
stability at higher anisotropy (Fig. 2), and strong two-mode
quantum correlation [42,43], renders zone center magnons in
antiferromagnetic materials particularly intriguing for quan-
tum magnonics and its potential applications in sustainable
quantum technologies.

Second, as shown in Figs. 1 and 2, temperature and
anisotropy affect the energy of the system in a similar man-
ner that they effect two-mode magnon squeezing. While
temperature decreases the energy of the system, anisotropy in-
creases the energy. To compare the effects of temperature and
anisotropy on energy and squeezing, we introduce the factors
of changes in energy induced by temperature and anisotropy,

OT Eq = −10 ln

[ Eq(Kz, T )

limT →0 Eq(Kz, T )

]
,

OKz Eq = −10 ln

[ Eq(Kz, T )

limKz→0 Eq(Kz, T )

]
, (40)

equivalent to the squeeze factors defined in Eq. (39). For a
given value of anisotropy Kz, OT Eq quantifies logarithmic
growth of the desperation energy at a finite temperature rel-
ative to zero temperature. Similarly, at a given temperature
T , OKz Eq quantifies logarithmic growth of the desperation
energy for a finite value of anisotropy relative to isotropic case
Kz → 0. We examine the correlation between squeeze factors
and the factor of changes in energy caused by temperature

FIG. 11. The correlation between squeezing and the variation of
energy with respect to (a) temperature and (b) uniaxial anisotropy,
respectively, for discrete values of anisotropy and temperature at �

point. In both cases, there is a linear correlation between the factors
of squeezing and change of energy except for very small anisotropies.
The positive correlation in (a) indicates that the energy Eq and the
quantum fluctuation �2Xq are both decreasing functions of T . The
negative correlation in (b) shows that although increasing Kz reduces
the quantum fluctuation �2Pq the energy Eq is an increasing function
of Kz.

and anisotropy in Fig. 11. In both cases, we observe a linear
correlation, except for very small anisotropy, where antiferro-
magnetic structures are, in general, not stable.

Third, our analysis in the present paper, particularly the
values of squeeze factors shown in Figs. 6 and 8 and their
relation to desperation energies mentioned in the previous re-
marks, indicates that magnons in antiferromagnetic materials
provide a promising resource for low-energy stabilized con-
tinuous variable bosonic modes, which exhibit an intrinsic and
significantly strong two-mode squeezing property compared
to photons in quantum optics.

Last but not least, although in the above analysis we only
focus on magnon squeezing in the vacuum ground state, we
notice that a similar scenario holds for all the energy eigen-
basis states |ψq

nm〉 given in Eq. (28). We provide some details
about squeezing in excited states in the Appendix.

V. CONCLUSION

In summary, we have considered easy-axis antiferromag-
netic materials beyond the linear spin-wave theory. We
examined the effects of temperature and anisotropy on two-
mode magnon squeezing in such materials. As a result of the
nonlinearity, we observed a conjugate squeezing effect driven
by temperature or anisotropy. Specifically, we demonstrated
that temperature gives rise to magnon amplitude squeezing,
which refers to the squeezing of quantum fluctuations in the
magnon position quadrature. On the other hand, anisotropy
leads to magnon phase squeezing, which corresponds to the
squeezing of quantum fluctuations in the magnon momen-
tum quadrature. Furthermore, we found that the squeezing
nature of the two-mode magnon eigenenergy states is associ-
ated with amplitude squeezing rather than phase squeezing.
These findings indicate a competition between temperature
and anisotropy in a sense that temperature has a construc-
tive impact, while anisotropy has a destructive impact on the
squeezing nature of the two-mode magnon eigenenergy states.
However, the destructive effect of anisotropy on two-mode
magnon squeezing is shown to be bounded by demonstrating
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FIG. 12. The squeeze (stretch) factors as a function of anisotropy
and temperature for excited states |ψq

10〉 and |ψq
01〉 at � point. The

positive valued factors in (a) and (d) indicate squeezing, and the
negative valued factors in (c) and (b) show stretching. Anisotropy and
temperature induce squeezing associated with conjugate observables.

that the rate of phase squeezing with respect to anisotropy
tends to vanish after a finite value of anisotropy. In addi-
tion, we explored the correlations between temperature- and
anisotropy-induced magnon squeezings and the variations of
energy caused by temperature and anisotropy. We observed
linear correlations, except for cases of very small anisotropy,
where antiferromagnetic systems are known to display some
instability especially in lower dimensions.

Although our analysis and results emerge at any point in
the Brillouin zone, enhanced magnon squeezing is predom-
inantly observed at the Brillouin zone center. Our findings
highlight the influential factors that determine higher magnon
squeeze factors in uniaxial antiferromagnetic materials. No-
tably, elevated temperatures, reduced anisotropy levels, and
proximity to the center of the Brillouin zone are identified
as key contributors to the augmentation of magnon squeez-
ing. These characteristics specifically determine low-energy
magnons in the mentioned materials.
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FIG. 13. The squeeze (stretch) factors as a function of anisotropy
and temperature for excited states |ψq

11〉 at � point. The positive
valued factors in (a) and (d) indicate squeezing and the nega-
tive valued factors in (c) and (b) show stretching. Anisotropy
and temperature induce squeezing associated with conjugate
observables.

APPENDIX

The temperature-anisotropy conjugate magnon squeezing
effect discussed above is valid for all excited states |ψq

nm〉. To
see this, we plot temperature- and anisotropy-induced squeeze
factors for a few excited states including |ψq

10〉 and |ψq
01〉 in

Fig. 12, and |ψq
11〉 in Fig. 13. In addition to the squeeze factors,

we also plot the following complementary factors:

OKz Xq = −10 ln

[
�2Xq(Kz, T )

limKz→0 �2Xq(Kz, T )

]
,

OT Pq = −10 ln

[
�2Pq(Kz, T )

limT →0 �2Pq(Kz, T )

]
, (A1)

which are defined similar to the squeeze factors given in
Eq. (39). While positive values for the factors in Eq. (39) are
an indication of squeezing, the negative values for the factors
in Eq. (A1) in the following plots indicate a stretch of quan-
tum fluctuation with respect to temperature and anisotropy.
These four factors in Eqs. (39) and (A1) clearly capture the
temperature-anisotropy conjugate magnon squeezing effect in
the following plots.
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