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Decoupled thermal and electric response to external excitations in graphene
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Thermal and electrical conductivity are the two most critical material properties in the design of miniaturized
modern devices and the cooling of integrated circuits. In principle, thermal and electrical energy transport are
two independent physical processes because they are associated with different energy carriers, i.e., phonons that
carry heat and electric charges that carry current. However, it is still unknown how the two kinds of energy
would spread in a material, such as graphene, with both high thermal conductivity and high electric conductivity
at the same time in response to an external excitation. In this paper, we show that the thermal energy and
electric potential energy of a graphene nanosheet exhibit quite different decoupled transport behaviors subject
to an external flexural or planar excitation by using large-scale ab initio nonequilibrium molecular dynamics
simulations up to thousands of atoms. It is found that the thermal energy has a higher transport velocity
than the electric potential energy in response to a flexural excitation, while the electric potential energy has
a higher transport velocity in response to a planar excitation. The dependence of transport behavior on the
excitation strength is investigated. We find that, induced by the different responses to the excitation strength,
the thermal energy and electric potential energy possess similar variations subject to the flexural excitations and
opposite variations subject to the planar excitations. Anomalous diffusion of the thermal and electric potential
energy in this nonequilibrium excitation process is also studied to understand the decoupled carrier mobilities.
Furthermore, the cross-correlation function between the thermal energy and the electric potential energy is
calculated to numerically demonstrate the decoupled variation. After an initial sharp drop, the cross-correlation
function exhibits an exponential decay subject to both flexural and planar excitations. Our findings provide
insight into the complex transport behavior of thermal and electric potential energy in crystalline solids and a
promising method for designing adjustable thermal and thermoelectric devices.

DOI: 10.1103/PhysRevB.108.144301

I. INTRODUCTION

Thermal and electrical properties of a material play a cen-
tral role in designing thermoelectric devices, thermal devices,
microelectric devices, etc. [1–4]. It is well known that the two
physical processes are related to different energy carriers, i.e.,
phonons that carry heat and electric charges that carry current
[5–9]. As a result, thermal and electrical conductivities are op-
timized in different ways. From the standpoint of microscopic
physics and the practical applications of a material with both
high thermal conductivity and high electric conductivity, it is
essential to understand how thermal energy and electric po-
tential energy would spread in a crystalline solid in response
to an external excitation.

Graphene [10,11], a novel two-dimensional material with
carbon atoms bonded in a honeycomb lattice, possesses both
remarkably high thermal conductivity and remarkably high
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electronic conductivity [12,13]. Heat flow between in-plane
and out-of-plane directions exhibits a strong anisotropy in
graphene [12], where the high in-plane thermal conductivity
ranging from 2000 and 4000 W m−1 K−1 [14–17] is caused
by covalent sp2 bonds between carbon atoms and the low
cross-plane thermal conductivity is related to van der Waals
coupling between different layers. Different phonon excitation
modes [18] and scattering of phonons by substrates, edges,
and defects [19–30] are the usual methods to manipulate the
thermal properties of graphene. Meanwhile, graphene exhibits
intriguing electrical characteristics such as Dirac fermions
[31], the quantum Hall effect (QHE) [11], and an ambipolar
electric field effect [32]. Electronic excitations in graphene
in the range 1—50 eV were demonstrated by Nelson et al.
[33]. According to Bliokh et al., some of the exotic prop-
erties of charge transport in graphene can be reproduced in
the propagation of light through layered dielectric samples
[34]. Therefore graphene is a perfect candidate to study the
transport behavior of thermal and electric potential energy
subject to external excitations.
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It is noteworthy that the electric properties of graphene
cannot be described by the conventional molecular dynamics
[35–38], which is thus typically used to investigate the thermal
properties of graphene [39–41]. Although density functional
calculations can accurately explain the electric properties of
graphene, their modeling capability is usually constrained to
a very small scale [25,34,42]. Therefore it is a long-standing
challenge to study the dynamics process that is related to
thermal and electric properties at the same time. Large-scale
ab initio molecular dynamics based on density functional
theory seems to be the indispensable solution if one intends
to study the transport behavior of the two forms of energy in a
material with both high thermal conductivity and high electric
conductivity [43,44].

In this paper, we investigate the transport behavior of ther-
mal and electric potential energy in a graphene nanosheet in
response to external flexural and planar excitations by us-
ing large-scale ab initio nonequilibrium molecular dynamics
simulations up to thousands of atoms. Thermal energy and
electric potential energy exhibit decoupled transport behavior
subject to the same excitations, where a higher transport ve-
locity is observed in thermal energy under flexural excitations
and a higher transport velocity is observed in electric potential
energy under planar excitations. The dependence of transport
velocity (the slope of the first moment of the transport func-
tion) and mean-square distance (the second moment of the
transport function) of thermal and electric potential energy on
the excitation strength is studied. To measure the decoupled
variation, the cross-correlation function between thermal en-
ergy and electric potential energy is further calculated. The
decoupled transport thus provides a promising strategy to
manipulate thermoelectric properties and carrier mobilities
through external excitations.

II. METHODS

The simulation system contains 1500 carbon atoms in a
periodic box with dimensions 64.959 × 62.511 × 20.000 Å3,
with the armchair direction along the x axis and the zigzag
direction along the y axis, as illustrated in Fig. 1(a). Periodic
boundary conditions are applied to all three dimensions in
the simulation. This simulation system approaches the maxi-
mum computation limit of ab initio molecular dynamics (MD)
simulation systems, which is limited to hundreds of atoms
with dynamics time of the order of picoseconds [42,45,46].
The ab initio calculations are based on density functional
theory (DFT) as implemented in the SIESTA (Spanish Initia-
tive for Electronic Simulations with Thousands of Atoms)
package [47]. For the exchange-correlation functional, we
employed the van der Waals (vdW) functional vdW-DF2 [48].
The atomic core electrons are modeled with Troullier-Matrins
norm-conserving pseudopotentials [49] with separable non-
local operators [50]. For all elements, we used basis sets of
double-ζ (DZ) orbitals [47,51]. An energy cutoff of 100 Ry
is applicable to the real-space mesh with a single k point. To
yield to the classic force coefficient from the ab initio quantum
calculation, the dependence of the potential energy on the
lattice constant is calculated to be ∼16.62 eV/Å2. This gives
a direct understanding of the harmonic behavior of the carbon

atoms (please see details in Sec. PS1 of the Supplemental
Material [52]).

The simulation includes three steps. (1) The conjugate
gradient method is used to optimize the graphene’ s geometry
[53]. The calculation continues until no atom’ s remaining
Hellmann-Feynman force exceeds 0.05 eV/Å. The converged
energy is 1 × 10−4 eV. (2) The nonequilibrium simulation is
performed by adding the kinetic velocity υz = χz × 1 km/s
or υr = χr × 1 km/s for a flexural excitation or a planar
excitation to create a heat pulse in the fully relaxed graphene
(χz and χr are thus unitless parameters). Another system
with the same relaxed configuration but excluding the initial
excitation is also simulated. It is later used to characterize
the spread of the initial excitation. (3) Two independent MD
simulations of the perturbed and nonperturbed graphene are
carried out with a time step of 1 fs in the microcanonical
ensemble (NV E ), and the energy level reaches 1 × 10−4 eV.
The nonequilibrium excitation process for each system is
performed for a time of 300 fs.

III. RESULTS AND DISCUSSION

A schematic of the nonequilibrium MD simulation of
graphene subject to flexural and planar excitations is shown
in Fig. 1(a). Thermal energy, electric potential energy, and
structural perturbation spread in graphene from the excited
center region to the outermost edge. They can be characterized
by their relative transport functions as follows. Thermal en-
ergy is characterized by its transport function �Ek as follows
[7–9,54,55]:

�Ek (x, y, t ) = Ek (x, y, t ) − Ek0(x, y, t ), (1)

where Ek represents the kinetic energy of each carbon atom
in the excited graphene sheet and Ek0 represents the kinetic
energy of each carbon atom in the same graphene sheet with
exactly the same relaxed configuration but excluding the exci-
tation. Similarly, the electric potential energy is characterized
by its transport function �ρc as

�ρc(x, y, t ) = ρc(x, y, t ) − ρc0(x, y, t ), (2)

where ρc represents the charge density of the excited graphene
sheet and ρc0 represents the charge density of the nonexcited
graphene sheet. Meanwhile, a flexural structural perturbation
is characterized by its transport function �z(x, y, t ) as

�z(x, y, t ) = z(x, y, t ) − z0(x, y, t ), (3)

where z(x, y, t ) and z0(x, y, t ) represent the z coordinates of
carbon atoms in the excited and the nonexcited graphene
sheets, respectively. A planar structural perturbation is char-
acterized by its transport function �r(x, y, t ) as

�r(x, y, t ) =
√

x2(t ) + y2(t ) −
√

x2
0 (t ) + y2

0(t ), (4)

where x(t ), y(t ) and x0(t ), y0(t ) represent the x and y coordi-
nates of the carbon atoms in the excited and the nonexcited
graphene sheets, respectively.

As shown in Fig. 1(b), the typical spreading patterns of the
thermal energy �Ek , electric potential energy �ρc, and flex-
ural structural perturbation �z subject to a flexural excitation
exhibit a similar hexagonal shape with time. Wave packets of
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FIG. 1. (a) Schematic of graphene subject to flexural and planar excitations. The purple arrow denotes a flexural excitation, and the green
arrows denote a planar excitation. The red ball represents the center carbon atom subject to the initial excitation. The black arrow and the
symbol r show the direction of the propagation of thermal energy, electric potential energy, and structural perturbation. (b) Thermal energy
�Ek , electric potential energy �ρc, and flexural structural perturbation �z as functions of x and y subject to a flexural excitation with strength
χz = 12 at 10, 70, 130, 190, and 250 fs. The yellow cloud with the isosurface of 5 × 10−3 e/Å3 denotes a region gaining charge (�ρc > 0), and
the green cloud with the isosurface of −5 × 10−3 e/Å3 denotes a region losing charge (�ρc < 0). Here, 5 me/Å3, 5 × 10−3 e/Å3. (c) Thermal
energy �Ek , electric potential energy �ρc, and planar structural perturbation �r as functions of x and y subject to a planar excitation with
strength χr = 12 at 10, 35, 60, 85, and 110 fs. (d) Average transport distance of thermal energy dk (t ), electric potential energy dc(t ), and
flexural structural perturbation dz(t ) as functions of simulation time t subject to a flexural excitation with strength χz = 12. (e) Average
transport distance of thermal energy dk (t ), electric potential energy dc(t ), and planar structural perturbation dr (t ) as functions of simulation
time t subject to planar excitation with strength χr = 12. The purple dashed line denotes the fitted line for thermal energy.

thermal energy �Ek are always positive from a point shape to
the snowflakelike hexagonal shape with the armchair direction
along the x axis and the zigzag direction along the y axis.
The hexagonal pattern relates to the anisotropic sound speeds
and thus the anisotropic thermal conductivities along different
chirality directions in graphene [15,17]. Similar anisotropic
hexagonal patterns are observed by adding excitation to other

honeycomb lattices, such as black phosphorus and molybde-
num disulfide, with chirality-dependent sound speeds [9,54].
Later, the high anisotropy relates to a stronger fluctuation
in calculating the first moment of the transport function of
thermal energy. On the other hand, as for the electric potential
energy �ρc, it spreads out in several hexagonal rings with
their zigzag direction along the x axis and armchair direction
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along the y axis; while one ring loses its charges (the green
region), the neighboring ring gains the charges (the yellow
region). The flexural structural perturbation �z exhibits the
same hexagonal rings as �ρc, where one ring will appear
negatively deformed (the red region) while the neighboring
ring will appear positively deformed (the blue region) along
the z direction. The different spreading patterns of the thermal
energy and electric potential energy imply that their transport
is decoupled subject to an external flexural excitation.

The typical spreading patterns of the thermal energy �Ek ,
electric potential energy �ρc, and planar structural pertur-
bation �r subject to a planar excitation are illustrated in
Fig. 1(c). Wave packets of thermal energy show strong prefer-
ential transport along the six vertices of a hexagonal pattern,
with the armchair direction along the x axis and the zigzag
direction along the y axis. On the other hand, wave packets
of electric potential energy and structural perturbation spread
in several hexagonal rings with the zigzag direction along the
x axis and the armchair direction along the y axis. One ring
loses charges and is contracted, and its neighboring ring gains
charges and is expanded. The spreading patterns of the ther-
mal energy and electric potential energy give direct evidence
again that their transport is decoupled subject to an external
planar excitation.

In order to numerically measure the transport behavior of
the thermal energy, electric potential energy, and structural
perturbations, we calculate the first moment of the transport
function, i.e., the average transport distances, dk (t ), dc(t ),
dz(t ), and dr (t ), for thermal energy, electric potential energy,
flexural structural perturbation, and planar structural perturba-
tion as follows [7,8,26]:

dk (t ) =
∫∫

r�Ekdxdy∫∫
�Ekdxdy

, (5)

dc(t ) =
∫∫

r|�ρc|dxdy∫∫ |�ρc|dxdy
, (6)

dz(t ) =
∫∫

r|�z|dxdy∫∫ |�z|dxdy
, (7)

dr (t ) =
∫∫

r|�r|dxdy∫∫ |�r|dxdy
, (8)

where r =
√

x2 + y2 relates to the radial distance away from
the excitation center. The typical transport distances of ther-
mal energy dk (t ), electric potential energy dc(t ), and flexural
structural perturbation dz(t ) subject to a flexural excitation
with strength χz = 12 are illustrated in Fig. 1(d). Similarly,
the typical transport distances of thermal energy dk (t ), elec-
tric potential energy dc(t ), and planar structural perturbation
dr (t ) subject to a planar excitation with strength χr = 12 are
illustrated in Fig. 1(e). An approximately linear relationship
is observed for the transport distances, and thus the slope can
be used to calculate the average transport velocity. It is note-
worthy that the time variation of the instantaneous transport
velocity is convergent when time t > 70 fs in the flexural
excitation and t > 35 fs in the planar excitation. Therefore the
average velocity is calculated by fitting the slope when the in-
stantaneous transport velocity becomes convergent (please see
the time variation of the instantaneous velocities in Sec. PS2

of the Supplemental Material). Subject to a flexural excitation,
the transport distance of the thermal energy dk (t ) possesses
a higher slope than the electric potential energy dc(t ). In
contrast, subject to a planar excitation, the transport distance
of the thermal energy dk (t ) possesses a smaller slope than
the electric potential energy dc(t ). This leads to an important
result: The thermal energy has a higher transport velocity
than the electric potential energy in response to a flexural
excitation, while the electric potential energy has a higher
transport velocity than the thermal energy in response to a
planar excitation. The decoupled transport behavior of thermal
and electric potential energy is dependent on external excita-
tions. Furthermore, this shows that the structural perturbation
dz(t ) exhibits almost identical variation to that of dc(t ) subject
to the flexural excitation, while the structural perturbation
dr (t ) exhibits almost identical variation to that of dc(t ) subject
to the planar excitation. This implies that the relative structural
perturbation determines the distribution of the electric charges
and thus the electric potential energy.

Now, we study the dependence of transport velocity on
excitation strength. As shown in Figs. 2(a) and 2(b), the
average transport velocities of thermal energy u = ∂dk (t )/∂t
and electric potential energy U = ∂dc(t )/∂t are calculated as
functions of the flexural excitation strength χz and the planar
excitation strength χr . Subject to the flexural excitation, the
transport velocity of the thermal energy u is always greater
than the transport velocity of the electric potential energy U
with an increased flexural excitation strength χz ranging from
2 to 14. In contrast, subject to the planar excitation, thermal
and electric potential energies exhibit opposite dependence on
the excitation strength. The transport velocity of the thermal
energy u first increases (with χr from 2 to 9) and then de-
creases (with χr from 9 to 14) as the planar excitation strength
increases, while the transport velocity of the electric poten-
tial energy U continues to increase as the planar excitation
strength χr increases from 2 to 14. The difference between the
transport velocity of the electric potential energy and that of
the thermal energy increases as the planar excitation strength
is increased. To characterize the velocity difference variation
with increasing excitation strength, the transport velocity ra-
tio u/U and difference u − U are considered. As shown in
Fig. 2(c), subject to the flexural excitation, the ratio u/U is
kept at a constant value around 1.35, and thus the velocity
difference linearly increases from 1.32 to 1.71 km/s with the
flexural excitation strength. On the other hand, subject to the
planar excitation, as the planar excitation strength increases,
the ratio u/U falls from 0.72 to 0.55, and thus the velocity
difference dramatically increases from −3.87 to −7.29 km/s
(almost doubled).

To further understand why the thermal energy and electric
potential energy possess similar variations subject to flexural
excitations and opposite variations subject to planar excita-
tions, we study the dependence of transport velocity variation
on the excitation strength. The derivatives of the transport
velocity with respect to the flexural excitation strength λ =
∂u/∂χz and Λ = ∂U/∂χz are shown in Fig. 2(e). The deriva-
tives of the transport velocity with respect to the planar
excitation strength λ = ∂u/∂χr and Λ = ∂U/∂χr are shown
in Fig. 2(f). Subject to the flexural excitation, variations of
thermal energy λ and electric potential energy Λ behave with
a similar pattern, i.e., two valley points and a center peak
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FIG. 2. (a) and (b) The transport velocities u = ∂dk (t )/∂t and U = ∂dc(t )/∂t for thermal energy and electric potential energy as functions
of the flexural excitation strength χz (a) and the planar excitation strength χr (b). (c) and (d) The transport velocity ratio u/U and difference
u − U as functions of the flexural excitation strength χz (c) and the planar excitation strength χr (d). (e) The derivatives λ = ∂u/∂χz and
Λ = ∂U/∂χz of the transport velocity of the thermal energy and electric potential energy with respect to the flexural excitation strength χz. (f)
The derivatives λ = ∂u/∂χr and Λ = ∂U/∂χr of the thermal energy and electric potential energy with respect to the planar excitation strength
χr .

value. It is observed that λ reaches its valley points at χz = 6
and 11 and the center peak is at χz = 9, whereas Λ reaches
its valley points at χz = 6 and 10 and the center peak is
at χz = 8. The synchronized tendency of λ and Λ to be up
and down leads to the constant ratio of transport velocity in
Fig. 2(c). On the other hand, subject to the planar excitation,
the variation patterns of λ and Λ are totally different. λ first
increases gradually with χr ranging from 2 to 4 and then
quickly decreases a lot with χr ranging from 5 to 14. Λ keeps
a decreasing pattern with all the excitation strengths. Their
variations do not occur at the same pace, and thus this leads to
the decreasing transport velocity ratio of thermal and electric
potential energy in Fig. 2(d).

It should be noted that the complex dependence of u
and U on the excitation strength implies the contribution
of nonlinearity from the covalent bond interactions between
the carbon atoms. Our previous work and other literature
suggest that strong nonlinearity is common in covalently

bonded low-dimensional lattices such as those of graphene,
carbon nanotubes, black phosphorus, molybdenum disulfide
[7,9,20,35,36,39], etc. Meanwhile, the excitation strength is
limited to χz < 18 and χr < 18 since an extremely large ex-
citation would exceed the elastic limit of the covalent bonds
of carbon atoms and break down the whole lattice structure.
Here, the excitation strengths χz and χr are chosen to be
smaller than 14. This is to guarantee that the results are far
from the elastic limits of the carbon atoms. The results of
excitation strengths greater than 14 are discussed in Sec. PS3
of the Supplemental Material.

Now, let us consider the carrier mobility in the nonequi-
librium procedure by calculating the second moments of the
transport function, Dk (t ) and Dc(t ), for thermal energy and
electric potential energy as

Dk (t ) =
∫∫

[r − dk (t )]2�Ekdxdy∫∫
�Ekdxdy

, (9)
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FIG. 3. (a) and (b) Log-log plots of the second moment for thermal energy Dk (t ) and electric potential energy Dc(t ) as functions of
simulation time t subject to the flexural excitation with χz = 12 (a) and the planar excitation with χr = 12 (b). The black dashed lines represent
the power-law fit of Dc and Dk . The power-law exponent α is obtained from the linear fitting of the log-log plots. (c) and (d) The power-law
exponents αk and αc for thermal energy and electric potential energy as functions of the flexural excitation strength χz (c) and the planar
excitation strength χr (d). (e) and (f) The exponent ratio αk/αc and difference αk − αc as functions of the flexural excitation strength χz (e) and
the planar excitation strength χr (f).

Dc(t ) =
∫∫

[r − dc(t )]2|�ρc|dxdy∫∫ |�ρc|dxdy
, (10)

where �Ek and �ρc represent the thermal energy and elec-
tric potential energy functions and dk (t ) and dc(t ) represent
their relative net transport distance from Eqs. (5) and (6).
As shown in Figs. 3(a) and 3(b), typical power-law behav-
iors are observed for Dk (t ) ∼ tαk and Dc(t ) ∼ tαc under an
excitation strength of 12. Both αk and αc are greater than 1,
which indicates a superdiffusion behavior subject to either
flexural or planar excitations. The power-law exponents αk

and αc from the second moment for thermal energy Dk (t ) and
electric potential energy Dc(t ) are thus calculated as functions
of the flexural excitation strength χz and planar excitation
strength χr in Figs. 3(c) and 3(d). For the flexural excitation,
αk (of the thermal energy) first decreases from 1.87 and then
remains at a constant value around 1.79, while αc (of the elec-
tric potential energy) increases from 1.76 to almost 2 as the

excitation strength increases. This indicates that the superdif-
fusion behavior is strengthened for electric potential energy
and weakened for thermal energy by increasing the flexu-
ral excitations. For the planar excitation, αk (of the thermal
energy) decreases from 1.79 to 1.68, and αc (of the electric
potential energy) increases from 1.43 to 1.69 as the excitation
strength increases. In Fig. 3(e) and 3(f), to explicitly reveal the
difference between the power-law exponents between thermal
and electric potential energy, the ratio αk/αc and the differ-
ence αk − αc are calculated. Both αk/αc and αk − αc exhibit
a similar decreasing tendency with the excitation strength
subject to the flexural or planar excitations. Interestingly, it is
observed that αk − αc is greater than zero when the excitation
strength χz or χr is smaller than a value of around 7. This
implies the possibility of manually adjusting carrier mobilities
by varying the excitation strengths and methods.

Let us turn to the cross-correlation function between ther-
mal energy �Ek and electric potential energy �ρc. This is
aimed at numerically demonstrating the decoupled variation.
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FIG. 4. (a) and (b) The cross-correlation function g(t ) between
thermal energy �Ek and electric potential energy �ρc as functions of
simulation time t subject to flexural excitation with χz = 12 (a) and
planar excitation with χr = 12 (b). The black dashed lines represent
the exponential fit of the cross-correlation function covered in the
gray-shaded area.

The cross-correlation function g(t ) can be calculated as

g(t ) =
∫∫

[�Ek (x, y, t )�ρc(x, y, t )]2dxdy∫∫
[�Ek (x, y, t )]2dxdy

∫∫
[�ρc(x, y, t )]2dxdy

, (11)

where it is normalized by the square of norms of �Ek and
�ρc. g(t ) = 1 relates to a full coupling, and g(t ) = 0 re-
lates to a complete decoupling. As shown in Figs. 4(a) and
4(b), g(t ) reveals an initial sharp drop from 1 to 0.001 when
the simulation time t > 70 fs in the flexural excitation and
t > 35 fs in the planar excitation. This implies that thermal
and electric potential energy would rapidly become decou-
pled during the nonequilibrium excitation process. It is also
related to the simulation timescale when the transport ve-
locity becomes convergent. After the initial sharp drop, g(t )
exhibits an exponential decay as g(t ) ∼ exp(−0.004t ) in the
flexural excitation and g(t ) ∼ exp(−0.012t ) in the planar
excitation. Since the transport velocity of the energy is con-
vergent, it further indicates a similar exponential decay of the

cross-correlation function and thus a strong decoupling with
lattice size. Therefore, although the wavelengths in the cur-
rent simulations are limited to within 10 nm, the decoupled
behavior between thermal energy and electric potential energy
would be expected in a large system with wavelengths com-
parable to the mean free path of energy carriers (hundreds of
micrometers).

It should be noted that fluctuations at a finite temperature
are not considered in studying the dynamics of wave packets.
The response of energy carriers would be adjusted by their
density of states, i.e., the power spectra, at a finite temperature.
The evolution of the energy diffusion profile in an equilibrium
system is usually used to investigate the transport behavior
of wave packets at a given temperature [8,9,55,56]. However,
this requires computation of the spatiotemporal correlation of
fluctuation for hundreds of nanoseconds to microseconds. The
computation heavily exceeds the capacity of ab initio quantum
calculations. As a result, this paper is limited by excluding the
contribution of temperature effects.

IV. CONCLUSION

In summary, we have studied thermal and electric potential
energy transport in a graphene nanosheet subject to flexural
and planar excitations by using large-scale ab initio nonequi-
librium molecular dynamics. The time-dependent transport
functions, the first and second moments of transport functions,
and the cross-correlation functions between the two forms
of energy are calculated, which reveals a strong decoupling
between them. The dependence of decoupled variation on the
excitation strength reveals a complex behavior that implies the
contribution of nonlinearity between the carbon atoms. Our
work sheds light on the decoupled transport of different forms
of energy in response to external excitations in crystalline
solids.
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