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Disorder is ubiquitous in solid-state systems and its crucial influence on transport properties was revealed by
the discovery of Anderson localization. Generally speaking, all bulk states will be exponentially localized in the
strong disorder limit, but whether an Anderson transition takes place depends on the dimension and symmetries
of the system. The scaling theory and symmetry classes are at the heart of the study of the Anderson transition,
and the critical exponent ν characterizing the power-law divergence of localization length is of particular interest.
In contrast with the well-established lower critical dimension dl = 2 of the Anderson transition, the upper critical
dimension du, above which the disordered system can be described by mean-field theory, remains uncertain and
precise numerical evaluations of the critical exponent in higher dimensions are needed. In this study, we apply the
Borel-Padé resummation method to the known perturbative results of the nonlinear sigma model to estimate the
critical exponents of the Bogoliubov–de Gennes classes. We also report numerical simulations of class DIII in
three dimensions, and classes C and CI in four dimensions, and compare the results of the resummation method
with these and previously published work. Our results may be experimentally tested in realizations of quantum
kicked rotor models in atomic-optic systems, where the critical behavior of dynamical localization in higher
dimensions can be measured.
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I. INTRODUCTION

Since the discovery of Anderson localization [1], the ef-
fects of disorder in various media have been a constant focus
of the physics community. The disorder-driven Anderson
transition (AT) is a second-order quantum phase transition,
around which physical observables show universal power-law
behaviors. The universality class of the AT depends on the
dimensionality and fundamental symmetries of the system:
time-reversal symmetry, particle-hole symmetry, and chiral
symmetry [2–4]. Based on these symmetries, Altland and
Zirnbauer (AZ) completed the symmetry classification of non-
interacting disordered Hamiltonians known as the “10-fold
way” [5]. The classification is comprised of the three Wigner-
Dyson classes (A, AI, and AII), the three chiral classes (AIII,
BDI, and CII), and the four Bogoliubov–de Gennes (BdG)
classes (D, C, DIII, and CI). The AZ classification is reve-
latory not only to the study of localization phenomena, but to
the study of topological materials [6–8].

The critical exponent ν of the AT characterizes the power-
law divergence of the correlation length ξ on approaching the
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critical point,

ξ ∼ |x − xc|−ν, (1)

where x is the tuning parameter and xc is the critical point.
Constrained by computational capacity, relatively few nu-
merical studies have gone beyond three dimensions (3D)
[9–13] into higher dimensions, where a stronger strength of
disorder is required to drive the system into localization. A
strong-disorder renormalization group (RG) approach is in
development to provide theoretical insights [14,15]. Recently,
the potentials of such efforts are revealed by the proposed
superuniversality of ATs in Hermitian and non-Hermitian sys-
tems [16], and the mapping between certain disorder-free
interacting systems and disordered noninteracting systems
with extra dimension [17,18]. On the other hand, the quantum
kicked rotor model had been related to the Anderson localiza-
tion problem [19–22], with the incommensurate frequencies
of periodical kicks substituting the role of spatial dimensions
[20,23–27]. Experimental proposals and realizations of the the
quantum kicked rotor model in cold-atom systems point to
a promising test bed for theoretical and numerical results of
Anderson localization in higher dimensions [28].

While the lower critical dimension dl = 2 of the AT is well
established by the one-parameter scaling theory [3], the upper
critical dimension du, above which a mean-field description is
accurate, remains debatable. The self-consistent theory of AT
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by Vollhardt and Wölfle [29,30] gives the critical exponent of
the Anderson model (class AI) as

ν =

⎧⎪⎪⎨
⎪⎪⎩

1

d − 2
, 2 < d < 4

1

2
, d � 4.

(2)

The results of du = 4 and the mean-field critical exponent ν =
1/2 are reminiscent of the φ4 theory. A modified version of
this theory that considers the renormalization of the diffusion
coefficient [9] gives

ν = 1

2
+ 1

d − 2
, (3)

and du = ∞. The prediction of the limiting value

lim
d→∞

ν = 1
2 , (4)

by both theories, agree with the value from the Ander-
son model on an infinite-dimensional Bethe lattice [31–37].
However, Eq. (3) is in better agreement with the numerical
results [11,38–40] of the orthogonal symmetry class for d =
3, 4, 5, 6 than Eq. (2).

On the other hand, the nonlinear sigma model (NLσM),
an effective field theory of Anderson localization, has been
studied extensively in d = 2 + ε dimensions [41–44]. The β

function, which describes the renormalization of the conduc-
tance with system size, can be calculated analytically using
perturbation techniques [45–48]. From the β function, one
can derive relevant physical quantities including a series in
powers of ε for the critical exponent ν. This method, which is
referred to as the ε expansion, is rigorous only when ε � 1.
In this limit, the ε expansion gives ν = 1/ε, in agreement
with Eq. (2), but not Eq. (3), and with numerical simulations
on fractals with spectral dimensions close to 2 [38,49]. To
obtain results for higher dimensions, resummation methods
are needed. However, a straightforward resummation [44] of
the power series for the critical exponent yields ν → 0 in the
limit d → ∞, in disagreement with both Eqs. (2) and (3). For
the Wigner-Dyson classes, resummations that incorporate the
correct asymptotic behavior of the critical exponent for d →
∞ have been performed [11,50], giving better agreement
with numerical simulations [11,12,39,40] and experimental
results [26,27]. However, a comprehensive understanding of
the dimensional dependence of the AT in different symmetry
classes is still lacking.

In this paper, we focus on the BdG symmetry classes in
3D and 4D. The four BdG classes appear naturally in the
topological superconductors (SCs) [4,5]. The underlying BdG
Hamiltonian H is invariant under the antiunitary transform of
particle-hole symmetry (PHS) C = UCK ,

C : H → −U †
C HT UC, (5)

where UC is a unitary matrix and K denotes the operation
of complex conjugation [8]. The BdG universality classes
are realized at the particle-hole symmetric point, E = 0. The
particle-hole symmetry can be classified into two kinds: even
(C2 = +1) or odd (C2 = −1). SCs with these two kinds of
particle-hole symmetry can be further classified according to
time-reversal symmetry (TRS) T . There are four BdG classes

corresponding to different types of SCs: singlet/triplet SC
(class D), singlet SC (class C), singlet/triplet SC with TRS
(class DIII), and singlet SC with TRS (class CI). Class D
and class C describe BdG systems with even or odd PHS
and broken TRS. Classes DIII and CI are characterized by
a time-reversal operator T : H → UT HT U −1

T , where the uni-
tary matrix UT satisfies U 2

T = ±1. For classes DIII, one has
PHS C2 = +1 and TRS T 2 = −1. For class CI, one has PHS
C2 = −1 and TRS T 2 = +1. The symmetries of the BdG
classes are summarized in Table I. Due to the absence of
spin-rotation invariance, class D and class DIII exhibit weak
antilocalization.

Below we apply the resummation method previously em-
ployed [11,50] for the Wigner-Dyson symmetry classes to the
BdG classes. We also report simulations using the transfer ma-
trix method for class DIII in 3D, and classes C and CI in four
dimensions (4D). We compare estimates of the critical expo-
nent ν obtained by finite-size scaling analysis of the numerical
simulations with the results of the resummation method. Our
results show the ability of this Borel-Padé analysis to give
quantitative predictions of critical exponents ν for the BdG
classes beyond 2D.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the Borel-Padé resummation. In Sec. III,
we apply the Borel-Padé method to the ε series of the critical
exponent ν for the BdG classes. In Sec. IV, we apply the
Borel-Padé method to the ε series of the β functions. In
Sec. V, we report our numerical simulations. In Sec. VI, we
compare the Borel-Padé predictions with numerical results
(both those reported here and previously published work). A
summary is given in Table V. In Sec. VII, we discuss and
conclude our findings.

II. BOREL-PADÉ RESUMMATIONS

In the scaling theory of Anderson transition [3], the β

function is defined as

β(g) = d ln g

d ln L
, (6)

where g is the dimensionless conductance measured in units
of e2/h and summed over the spins, and L is the length of
a d-dimensional cubic system. For the NLσM description, it
is more convenient to work with the inverse conductance t =
1/(πg) and

β(t ) = − dt

d ln L
= β(g)

πg
. (7)

The critical point tc > 0 of the AT is a zero-crossing point of
β(t ),

β(tc) = 0, (8)

and the critical conductance is given by gc = 1/(πtc). The
critical exponent ν is related to the derivative of the β function
at the critical point,

dβ(t )

dt

∣∣∣
t=tc

= −dβ(g)

d ln g

∣∣∣
g=gc

= −1

ν
. (9)

The β functions of the BdG classes up to the 4-loop order
[4,45,51] are listed in Table I. Note that the coefficient of t5
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TABLE I. List of the BdG symmetry classes and their transformation behavior under time-reversal, particle-hole, chiral (sublattice)
(SLS) symmetries, and the presence (�) or absence (×) of SU(2) spin-rotation symmetry. The penultimate column shows the corresponding
noncompact fermionic replica nonlinear sigma-model (NLσM) manifolds. The last column shows the β function [4,45,51] of the four BdG
symmetry classes. Here, ζ is the Riemann zeta function.

Class TRS PHS SLS SU(2) NLσM manifold β(t ) function

D 0 +1 0 × Sp(2N )/U(N ) εt + t2 − 2t3 + 7

2
t4 − 47

6
t5 + O(t6)

C 0 −1 0 � O(2N )/U(N ) εt − 2t2 − 8t3 − 28t4 − 376

3
t5 + O(t6)

DIII −1 +1 1 × Sp(2N ) εt + t2 − 1

2
t3 + 3

8
t4 − 1

8

[
19

6
+ 6ζ (3)

]
t5 + O(t6)

CI +1 −1 1 � O(N ) εt − 2t2 − 2t3 − 3t4 − 2

[
19

6
+ 6ζ (3)

]
t5 + O(t6)

for class C in Table I differs from that given in Table III of
Ref. [4].1 We also note in passing that the β functions of the
chiral symmetry classes were found to be strictly zero in all
orders in perturbation theory [52,53].

The Borel-Padé resummation method is a technique for
dealing with truncated and possibly divergent series. Given
an infinite series f ,

f (x) =
∑

k

fkxk, (10)

its Borel sum is defined as

f̃ (x) =
∑

k

fk

k!
xk . (11)

The original series in Eq. (10) can be recovered by calculating
the Borel transform,

f (x) = 1

x

∫ ∞

0
e−y/x f̃ (y)dy. (12)

Suppose the coefficients fk are known for the order of k � l .
We approximate f̃ on the right-hand side by a rational func-
tion,

f̃ (x) ≈ r(x) = p(x)

q(x)
, (13)

where p(x), q(x) are polynomials of order m and n, respec-
tively,

p(x) =
m∑

k=0

pkxk, q(x) =
n∑

k=0

qkxk, q0 ≡ 1. (14)

For choices of [m, n] that satisfy m + n = l , the coefficients
of the polynomials p and q are uniquely determined. In some

1We use the value −376/3 for the coefficient of t5 for class C,
whereas in Table III of Ref. [4] it is −376/48. We believe the
latter is a typo and that the coefficient c3(−2N ) should be replaced
by 16c3(−2N ) so that the β-functions of classes D and C satisfy
the duality relation βSp(t ) = −2βO(−t/2) of the underlying NLσM
manifolds. The β-function of class D, which corresponds to the
NLσM manifold Sp(2N )/U(N ), is given in Eq. (3.7) of Ref. [51].
We thank Alexander D. Mirlin for private communication.

cases, we require m < n so that the Padé approximant satisfies

lim
x→∞ r(x) = 0. (15)

Then, the rational function r can be decomposed into a sum
of partial fractions,

r(x) =
n∑

j=1

a j

x − λ j
, (16)

where λ j are the roots of the polynomial q(x). In general,
the λ j and a j are complex numbers. Substituting the above
equation into Eq. (12) and performing the integration, we
obtain the Borel-Padé approximation F of the series for f ,

F (x) = 1

x

n∑
j=1

a jB

(
λ j

x

)
. (17)

Here, the function B is defined by

B(s) =
{− exp(−s)Ei(s), s ∈ R, s 
= 0,

exp(−s)E1(−s), s ∈ C, arg s 
= π,
(18)

where

Ei(x) = −
∫ ∞

−x

e−t

t
dt =

∫ +x

−∞

et

t
dt,

E1(z) =
∫ ∞

z

e−t

t
dt, | arg z| < π. (19)

III. RESUMMATION OF THE SERIES FOR ν(ε)

Series in powers of ε for the critical exponent ν can be
derived starting from the series for the β function in powers
of t as follows. We take symmetry class C as an example. We
first find an approximation for tc(ε) by solving Eq. (8) using
the available terms in the power series for β(t ). For class C,
we find

tc(ε) = 1

2
ε − ε2 + 9

4
ε3 − 77

12
ε4 + O(ε5). (20)

Here we have chosen the root for which

lim
ε→0

tc = 0. (21)
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TABLE II. Comparison of the critical exponents ν for classes
C and CI in 3D and 4D obtained from Borel-Padé resummations
of the series for ν(ε) when imposing different limiting conditions,
i.e., Eq. (26) compared with Eq. (4). Numbers in the square brackets
indicate the orders of polynomials, m and n [Eq. (14)].

(a) 3D lim
d→∞

ν = 0 lim
d→∞

ν = 1

2
class [0,3] [1,2] [0, 3] [1,2]

C 0.357 0.227 0.773 0.360
CI 0.555 0.776 0.924 1.226

(b) 4D lim
d→∞

ν = 0 lim
d→∞

ν = 1

2
class [0,3] [1,2] [0, 3] [1,2]
C 0.111 −0.050 0.580 0.527
CI 0.185 0.329 0.633 0.876

If we then substitute the series for tc into Eq. (9), we obtain
the following series in powers of ε for the inverse of ν:

ν−1(ε) = ε + 2ε2 − ε3 + 15

2
ε4 + O(ε5). (22)

Taking the reciprocal of this series, we obtain

ν(ε) = 1

ε
− 2 + 5ε − 39

2
ε2 + O(ε3). (23)

Similarly, for symmetry class CI, we find

tc(ε) = 1

2
ε − 1

4
ε2 + 1

16
ε3 − 1 + 9ζ (3)

24
ε4 + O(ε5),

ν−1(ε) = ε + 1

2
ε2 + 1

4
ε3 + 5 + 36ζ (3)

16
ε4 + O(ε5),

ν(ε) = 1

ε
− 1

2
− 3 + 36ζ (3)

16
ε2 + O(ε3). (24)

This approach works for symmetry classes C and CI because
the coefficient of the t2 term in β(t ) is negative and the lower
critical dimensions for these classes is dl = 2. However, for
symmetry classes D and DIII, the coefficient of the t2 term
in β(t ) is positive, so that when we follow the procedure
explained above, we find

lim
ε→0

tc 
= 0, (25)

and we are unable to obtain a useful series in powers of ε for ν.
This reflects the possibility that the lower critical dimensions
for these two classes is below 2D (dl < 2), as thought to be
the case for the symplectic class AII.

Now we apply the Borel-Padé resummation introduced in
the previous section. A naive resummation tacitly assumes the

TABLE III. Lower critical dimension of the BdG symmetry
classes D and DIII obtained from the β function without resumma-
tion and with order [m, n] Borel-Padé resummation.

Class No resummation Borel-Padé
[0,4] [1,3]

D 1.85 1.88 1.76
DIII 1.66 1.70 1.21

limiting behavior

lim
d→∞

ν = 0, (26)

which disagrees with self-consistent theories of the AT and
the results for the AT on the Bethe lattice, i.e., with Eq. (4).
Instead, we rewrite

ν(ε) = 1

2
+ 1

ε
f (ε), (27)

and perform the resummation of f (ε) with the requirement
m < n. Such a treatment guarantees the limiting behavior
given in Eq. (4). Of course, the application of this restraint
to the BdG symmetry classes needs to be justified. For later
reference, in Table II, we compare the results given by impos-
ing Eq. (4) and Eq. (26) for the classes C and CI in 3D and
4D.

IV. RESUMMATION OF THE SERIES FOR β(t )

An alternative to the approach above is to apply the Borel-
Padé method directly to the series for the β function.[11]. All
the series take the form

β(t ) = εt − t f (t ), (28)

where f is a power series in t . In terms of f (t ), the critical
exponent is

1

ν
= t

df (t )

dt

∣∣∣
t=tc

. (29)

We need to impose the limiting behavior at infinite dimension
given in Eq. (4). We first note that in high dimensions, the An-
derson transition takes place at strong disorder and, moreover,
that

lim
d→∞

tc = ∞. (30)

This means that we can obtain the correct limiting behavior
by arranging that

lim
t→∞ t

df

dt
= A, (31)

with A = 2. To do so, we define h, a polynomial in t , by

h(t ) = t
df (t )

dt
− A. (32)

Applying the Borel-Padé method to h, we obtain an approxi-
mation H for h that satisfies

lim
t→∞ H (t ) = 0, (33)

so that Eq. (31) is satisfied. To obtain the corresponding ap-
proximation F for f , a further integration is needed,

f (t ) ≈ F (t ) =
∫ t

0

A + H (t )

t
dt . (34)

The result can be expressed in the form [11]

F (t ) =
n∑

j=1

c jB(λ j/t ), c j = a j

λ j
. (35)
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FIG. 1. Comparison of the approximations for the β(g) function
before and after Borel-Padé resummation of the series for class C in
3D. Numbers in the square brackets indicate the orders of polynomi-
als, m and n [Eq. (14)].

Finally, the β function is approximated as

β(t ) ≈ εt − tF (t ). (36)

We show the resulting Borel-Padé approximations for β(g)
in 3D for classes C and CI in Figs. 1 and 2, respectively,
together with the series without resummation. We omit the
[m, n] = [1, 3] resummation for class C because the resulting
β function is not monotonic and has two unphysical fixed
points. The limiting behavior β(g) ∼ 2 ln g at g � 1 guaran-
teed by the constraint A = 2 in Eq. (31) is observed only at
ln g, much smaller than the range plotted in Fig. 1.

We show the resulting Borel-Padé approximations for β(g)
in 2D for classes D and DIII in Figs. 3 and 4, respectively,
together with the series without resummation. In classes D
and DIII, for d < 2, two fixed points appear: a critical fixed
point and a stable fixed point. At the lower critical dimension

FIG. 2. Comparison of the approximations for the β(g) function
before and after Borel-Padé resummation of the series for class CI in
3D.

FIG. 3. Comparison of the approximations for the β(g) function
before and after Borel-Padé resummation of the series for class D
in 2D. The [1,3] Bore-Padé resummation of the β(g) function at the
corresponding estimate dl = 1.76 of the lower critical dimension is
plotted with a dashed line.

dl , these two fixed points annihilate, e.g., the dashed curve in
Figs. 3 and 4, and the value of the β function at its maximum
is zero,

max
d=dl

β(g) = 0. (37)

This leads directly to an estimate for dl ,

dl ≈ 2 − max β(g, ε = 0). (38)

Estimates of the lower critical dimension obtained from the
Borel-Padé resummations are summarized in Table III.

V. NUMERICAL SIMULATIONS

To evaluate the effectiveness of the Borel-Padé resumma-
tion in estimating the critical exponents of the BdG symmetry

FIG. 4. Comparison of the approximations for the β(g) function
before and after Borel-Padé resummation of the series for class DIII
in 2D. The [1,3] Bore-Padé resummation of the β(g) function at the
corresponding estimate dl = 1.21 of the lower critical dimension is
plotted with a dashed line.
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classes, especially in high spatial dimensions d � 3, we per-
form simulations for 3D class DIII, 4D class C, and 4D class
CI. We set the energy E to the particle-hole symmetric point,
E = 0, and vary the disorder strength W .

A. 3D class DIII

This symmetry class describes time-reversal symmetric
superconductors with broken spin-rotational symmetry. We
study a four-band tight-binding model on a cubic lattice
[54,55],

HDIII =
∑
r,r′

c†
r [HDIII]rr′cr′

=
∑

r

3∑
μ=1

[
it

2
c†

r+eμ
αμcr − m2

2
c†

r+eμ
βcr + H.c.

]

+
∑

r

(m0 + 3m2 + vr )c†
rβcr, (39)

where c†
r (cr ) is the four-component creation (annihilation)

operator on a cubic-lattice site r. For convenience, we set the
lattice constant a to be unity. The eμ=1,2,3 are the primitive
lattice vectors along the x, y, z directions, respectively. The
matrices αμ and β are defined as

αμ = (σu ⊗ τ1), β = (σ0 ⊗ τ3), (40)

where σμ and τμ are Pauli matrices acting on different degrees
of freedom (e.g., spin and orbital). Parameter m0 is a mass, and
parameters m2 and t are hopping amplitudes. This Hamilto-
nian has time-reversal symmetry U †

T H∗
DIII UT = HDIII, where

UT = δrr′ (σ2 ⊗ τ0), U T
T = −UT , (41)

and a particle-hole symmetry U †
S HDIII US = −HDIII, where

US = δrr′ (σ0 ⊗ τ2). (42)

This model depicts a 3D Z topological superconductor (TSC)
when m0 < 0 and a trivial insulator when m0 > 0.

For numerical calculations, we specify the parameters t =
2, m2 = 1, m0 = −2.5, and use independent uniform distribu-
tions for the random on-site potential,

vr ∈ [−W/2,W/2], 〈vrvr′ 〉 = δrr′W 2/12. (43)

Here, 〈·〉 indicates a disorder average. We use the transfer
matrix method to calculate the localization length of the model
[40] and impose periodic boundary conditions in the trans-
verse direction. We simulate a semi-infinite bar with a cross
section of size L × L and estimate the quasi-one-dimensional
(Q1D) localization length λ at disorder strength W and linear
size L. A dimensionless ratio � is defined as

�(W, L) = λ(W, L)/L. (44)

The results are shown in Fig. 5, where � is plotted versus
W for various L. Curves for different L have an approximate
common crossing point. This point indicates the Anderson
transition between the TSC (localized) phase and the metallic
(extended) phase.

FIG. 5. The dimensionless Q1D localization length � near the
Anderson transition for the 3D class DIII model. The expansion order
is (n1, n2) = (3, 1), (m1, m2) = (2, 0), as defined in Eqs. (47) and
(48). The solid lines are the fitting functions and the black dots with
error bars are simulation data points. Inset: the lowest order of the
scaling function extracted from the fitting results.

To estimate the critical exponent, we fit the data to the
following scaling form that includes corrections to single-
parameter scaling due to an irrelevant scaling variable [40,56]:

� = F (φ1, φ2) = F [u1(w)L1/ν, u2(w)L−y], (45)

where

ω = (W − Wc)/Wc, (46)

and φ1 = u1L1/ν is the relevant scaling variable that encodes
the power-law divergence of correlation length ξ ∼ |u1(w)|−ν

around the critical point. The second scaling variable φ2 =
u2L−y with exponent −y < 0 is the leading irrelevant correc-
tion and vanishes in the limit L → ∞. We approximate the
scaling function F using a truncated Taylor series near the
critical point (|w| � 1),

F (φ1, φ2) =
n2∑

j=0

Fj (φ1)φ j
2 =

n1∑
i=0

n2∑
j=0

fi jφ
i
1φ

j
2 (47)

and

u1 =
m1∑

k=1

bkw
k, u2 =

m2∑
k=0

ckw
k . (48)

We set b1 = c0 = 1 to remove the arbitrariness of the expan-
sion coefficients. The numerical data are fitted to the scaling
function by minimizing the χ -squared statistic,

χ2 =
ND∑

n=1

(�n − Fn)2

σ 2
n

. (49)

Here, ND is the number of data points, �n is the value of �

for nth data point, σn its standard error, and Fn the value of the
scaling function for the nth data point. To assess whether or
not the fit is acceptable, we use the goodness of fit probability.
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TABLE IV. Fitting results for class DIII in 3D, and classes C and CI in 4D. The orders of the expansion of the scaling function are fixed at
n1 = 3 and n2 = 1. Here, m1 and m2 and the orders, respectively, of the expansions of u1 and u2 [see Eqs. (47) and (48)]. The values enclosed
in square brackets are 95% confidence intervals determined from 1000 Monte Carlo samples.

(a) 3D class DIII

L m1 m2 GoF Wc ν y �c

4–16 2 0 0.19 32.909 [32.882, 32.935] 0.972 [0.958, 0.986] 2.09 [1.94, 2.25] 0.349 [0.347, 0.351]
3 0 0.42 32.903 [32.877, 32.933] 0.981 [0.966, 0.994] 2.14 [1.95, 2.30] 0.350 [0.347, 0.352]

6–16 2 0 0.50 32.917 [22.642, 22.727] 0.952 [0.928, 0.974] 1.98 [1.62, 2.50] 0.349 [0.345, 0.352]
3 0 0.60 32.898 [32.854, 32.965] 0.963 [0.917, 0.979] 2.23 [1.50, 2.94] 0.351 [0.343, 0.354]

(b) 4D class C

L m1 m2 GoF Wc ν y gc

4–12 2 0 0.40 22.65 [22.62, 22.69] 0.724 [0.698, 0.750] 1.45 [1.26, 1.69] 0.83 [0.78, 0.89]
3 0 0.49 22.66 [22.62, 22.70] 0.724 [0.699, 0.751] 1.45 [1.27, 1.71] 0.83 [0.78, 0.89]

6–12 2 0 0.44 22.68 [22.64, 22.73] 0.698 [0.649, 0.734] 1.66 [1.22, 2.46] 0.80 [0.74, 0.85]
3 0 0.48 22.68 [22.64, 22.72] 0.703 [0.652, 0.742] 1.61 [1.18, 2.29] 0.80 [0.75, 0.86]

(c) 4D class CI

L m1 m2 GoF Wc ν y gc

4–12 2 1 0.97 22.53 [22.50, 22.55] 0.820 [0.710, 0.936] 1.57 [1.48, 1.66] 0.90 [0.88, 0.91]
3 1 0.98 22.53 [22.51, 22.56] 0.817 [0.722, 0.900] 1.59 [1.50, 1.70] 0.89 [0.88, 0.91]

6–12 3 0 0.93 22.62 [22.58, 22.66] 0.818 [0.713, 0.877] 1.81 [1.55, 2.23] 0.83 [0.81, 0.85]

Here, this is well approximated by [40]

GoF ≈ 1 − 1

�(NF/2)

∫ χ2
min/2

0
dt e−t tχ2

min/2−1, (50)

where NF = ND − NP is the degrees of freedom (with NP the
number of fitting parameters), χ2

min is the minimum value of
the χ -squared statistic, and � is the Gamma function. The
fitting results are shown in Table IV(a). Our estimate of the
critical exponent for 3D class DIII is

ν = 0.96 ± 0.01. (51)

B. 4D class C

Symmetry class C describes disordered superconduc-
tors with spin-rotational symmetry, but broken time-reversal
symmetry. For this symmetry class, the spin quantum Hall
effect occurs in two dimensions [57]. We extend the 3D tight-
binding model for class C of Ref. [58] to 4D,

HC =
∑
r,r′

c†
r [HC]rr′cr′

=
∑

r

⎡
⎣ 3∑

μ=1

tc†
r+eμ

cr + t‖c†
r+e4

cr

+ it⊥

(
c†

r+e1
σ1cr +

∑
μ=2,3

c†
r+eμ

σ2cr

)
+ H.c.

⎤
⎦

+
∑

r

(vr + �)c†
rσ3cr. (52)

Here, c†
r is the creation operator on lattice site r =

(x1, x2, x3, x4) where the two components act on spin, orbital,
or Nambu space, depending on the nature of the system. The
Hamiltonian has a particle-hole symmetry U †

P H∗
CUP = −HC,

with

UP = δrr′eiπ
∑4

μ=1 r·eμσ2, U T
P = −UP. (53)

In the clean limit, the Fourier transformation of the Hamilto-
nian is

hC(k) = 2t‖ cos k4 + 2t
3∑

μ=1

cos kμ + �σ3

− 2t⊥[sin k1σ1 + (sin k2 + sin k3)σ2]. (54)

For numerical simulations, we set � = 0.5, t⊥ = t = 1, and
t‖ = 0.8 so that the clean system has a finite Fermi surface at
EF = 0. We calculate the two-terminal Landauer conductance
G using the transfer matrix method [59],

G = e2

h
g, g = Tr[t̃†t̃], (55)

where t̃ is the transmission matrix of the hypercubic samples
of size L4 along the w axis. We impose periodic boundary con-
ditions in directions that are transverse to the current. While
the dimensionless conductance g exhibits fluctuations, various
disorder averages are well described by a scaling function
like Eq. (45) [60,61]. We calculate ln〈g〉 and use the same
nonlinear fitting procedures as described through Eqs. (45)–
(50). The numerical data and fitting results are shown in the
left panel of Fig. 6. Each data point 〈g〉 is averaged over
5000–20 000 samples to ensure a relative error smaller than
1%. The results for the critical exponent ν and other quantities
are shown in Table IV(b). The fitting results are stable against
change of expansion order m1, m2 and the range of system
size. Our estimate of the critical exponent for 4D class C is

ν = 0.72 ± 0.02. (56)

Note that the critical disorder Wc and critical conductance gc

are model dependent, i.e., not universal.
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FIG. 6. Dimensionless Landauer conductance as a function of disorder W around the Anderson transition. The expansion order is
(n1, n2, m1, m2) = (3, 1, 2, 0). Left panel: 4D symmetry class C. Right panel: 4D symmetry class CI. The colored solid lines are fitting
functions and black dots with error bars are the numerical data. Insets: the lowest order of the scaling function extracted from the fitting
results.

C. 4D class CI

Symmetry class CI describes disordered superconductors
with both time-reversal symmetry and spin-rotational symme-
try. Again, we extended the 3D class CI model of Ref. [58] to
4D,

HCI =
∑
r,r′

c†
r [HCI]rr′cr′

=
∑

r

[ 3∑
μ=1

t⊥c†
r+eμ

cr + t‖c†
r+e4

σ3cr

+ t ′
‖c†

r+e4
σ1cr + H.c.

]
+

∑
r

(vr + �)c†
rσ1cr. (57)

The Hamiltonian is time-reversal symmetric since H∗
CI = HCI,

and has particle-hole symmetry U †
P H∗

CIUP = −HCI given by

UP = δrr′eiπ
∑3

μ=1 r·eμσ2, U T
P = −UP. (58)

In the clean limit, the Fourier transformation of the Hamilto-
nian is

hCI(k) = 2t⊥
3∑

μ=1

cos kμ + 2t‖ cos k4σ3

+ (� + 2t ′
‖ cos k4)σ1. (59)

In numerical simulations of the two-terminal Landauer con-
ductance, we chose � = 1.2, t⊥ = 1, and t‖ = t ′

‖ = 0.5.
Following the same procedures as described in the previous
section, we estimate the critical exponent ν and other quan-
tities. The results are shown in the right panel of Fig. 6 and
in Table IV(b). Our estimate of the critical exponent ν for 4D
class CI is

ν = 0.83 ± 0.04. (60)

VI. COMPARISON OF BOREL-PADÉ PREDICTIONS
WITH NUMERICAL RESULTS

Referring to Table V, we see that for classes C and CI
in both 3D and 4D, the estimates of the critical exponent
obtained with the [0,4] Borel-Padé resummations are in good
agreement with the numerical estimates. For 3D class D, the
discrepancy is relatively large, and even larger for 3D class
DIII. These are also the two symmetry classes where dl < 2
(see Table III). In addition, we notice an inconsistency be-
tween our estimation of the critical exponent for 3D class
DIII, ν = 0.96 ± 0.01, and that in Ref. [62], ν = 0.85 ± 0.05.
The model used in Ref. [62] is essentially the same as here,
but the data set of Ref. [62] is of smaller size and lower

TABLE V. Critical exponents ν of the BdG symmetry classes
in 3D and 4D obtained from order [m, n] Borel-Padé resummation
of the β function with A = 2, and numerical simulations. Here, ∗
indicates the numerical estimates in this paper, whereas − indicates
that the value is yet to be determined. We omit the [1,3] resummation
with A = 2 for class C because the resummed β function is not
monotonic and has two unphysical fixed points. This is also the case
for A = 1.

(a) 3D
Borel-Padé with A = 2 Numerical

Class [0,4] [1,3] ν Ref.

C 1.056 0.996 ± 0.012 [58,64]
CI 1.107 1.822 1.17 ± 0.02 [58]
D 0.823 0.858 0.87 ± 0.03 [58]
DIII 0.751 0.674 0.85 ± 0.05 [62]

0.96 ± 0.01 *
(b) 4D

Borel-Padé with A = 2 Numerical
Class [0,4] [1,3] ν Ref.

C 0.714 0.70 ± 0.02 *
CI 0.729 1.103 0.83 ± 0.04 *
D 0.640 0.666
DIII 0.616 0.589
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TABLE VI. Critical exponents ν of the BdG symmetry classes
in 3D and 4D obtained from β-function series without resummation
and order [m, n] Borel-Padé resummation with A = 1.

(a) 3D
No resummation Borel-Padé with A = 1

Class [0,4] [1,3]

C 0.471 1.446
CI 0.555 1.478 2.131
D 0.187 1.254 1.249
DIII 0.151 1.202 1.088
(b) 4D

No resummation Borel-Padé with A = 1
Class [0,4] [1,3]

C 0.200 1.122
CI 0.217 1.129 1.602
D 0.103 1.075 1.079
DIII 0.091 1.062 1.026

numerical precision. However, we note the possibility that the
weak topological indices may change the critical behavior of
the Anderson transition [63].

We have resummed the series for the β function in such
a way that Eq. (31) is satisfied. This resummation means
that in the localized regime, the β function will behave like
A ln g up to a constant. It would then seem more natural
to set A = 1 rather than A = 2. However, the former choice
does not yield the correct limiting behavior given by Eq. (4).
For reference, we also tabulate the estimates of the critical
exponents calculated from the truncated β-function series
without resummation and from the Borel-Padé analysis with
A = 1 in Table VI. Without resummation, we obtain estimates
that violate the Chayes inequality ν � 2/d [65]. With A = 1,
the estimates satisfy the Chayes inequality, but are in poorer
agreement with the numerical estimates compared with A =
2.

VII. SUMMARY AND DISCUSSION

In this paper, we have studied the Anderson transition in
the BdG symmetry classes both analytically and numerically.
We applied the Borel-Padé resummation method to the known
perturbative results for the NLσM to estimate the critical ex-
ponents in 3D and 4D. We also reported numerical simulations

of class DIII in 3D, and classes C and CI in 4D, and compared
the results of the resummation method with the results of the
resummations and previously published work. We find that the
results of the Borel-Padé analysis provide estimates of the crit-
ical exponent, with the numerical estimates provided by the
limiting behavior limd→∞ ν(d ) = 1/2 is imposed during the
resummation. This condition is inspired by the self-consistent
theory of the Anderson model and exact results on the Bethe
lattice, but the theoretical justification of it in the nonstan-
dard BdG classes awaits future exploration. In principal, the
NLσM theory of Anderson localization and its renormaliza-
tion analysis in d = 2 + ε dimensions are valid only when
ε is small, i.e., the Anderson transition occurs under weak
disorder. Nonetheless, our results show that the perturbative β

functions can provide useful information concerning critical
properties in 3D and 4D.

The estimations of the critical exponents in BdG symmetry
classes based on the Borel-Padé resummation methods with
the assumption of infinite upper critical dimension match the
numerical results better. This suggests that the upper critical
critical dimension du may be infinite for the Anderson local-
ization in BdG symmetry classes. Previous theoretical works
have argued that in noncompact NLσM, the upper critical
dimension is infinite [66,67], which seems to be consistent
with the numerical results and estimation of the Borel-Padé
resummation method in this work. Further theoretical efforts
are needed to confirm these observations.

Recently, it has been pointed out that the NLσM model
characterizes the measurement-induced phase transition in
quantum circuits [68]. This scenario involves a replica number
N equal to 1. The resummation method discussed in this paper
is also applicable to that case, allowing for the prediction of
critical exponents in quantum circuit systems.
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