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In this paper, we explore the localization features of wave functions in a family of mosaic quasiperiodic
chains obtained by continuously interpolating between two limits: the mosaic Aubry-André (AA) model, known
for its exact mobility edges with extended states in the band-center region, and localized ones in the band-edge
regions for a large enough modulation amplitude, and the mosaic Fibonacci chain, which exhibits its multifractal
nature for all the states except for the extended one with E = 0 for an arbitrary finite modulation amplitude. We
discover that the mosaic AA limit for the states in the band-edge regions evolves into multifractal ones through
a cascade of delocalization transitions. This cascade shows lobes of lower fractal dimension values separated by
maxima of fractal dimension. In contrast, the states in the band-center region (except for the E = 0 state) display
an anomalous cascading process, where it emerges lobes of higher fractal dimension values are separated by
the regions with lower fractal dimensions. Our findings offer insight into understanding the multifractality of

quasiperiodic chains.
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I. INTRODUCTION

Quasicrystals, as one of the essential solid structures, con-
stitute a distinctive phase between fully periodic lattices and
fully disordered media, exhibiting a structure that is long-
range ordered but not periodic. Quasiperiodic systems [1-0]
demonstrate exotic conduction features, self-similar struc-
tures, and critical behaviors. The experimental developments
in cold atoms [7-15] and photonic crystals [16,17] have
made the study of the dynamics of quasicrystals both in one-
dimensional (1D) and two-dimensional quasiperiodic systems
experimentally accessible. These impressive quasiperiodic
structures have drawn great focus, including their nontrivial
connection to topological phases [18] and a variety of local-
ization transitions between extended, localized, and critical
phases [19-25].

Many theoretical quasiperiodic models [17,19-27] have
been proposed to study their localization transitions and the
critical phenomena. Due to the simplicity and experimen-
tal realization [21,22,25-44], the Anbry-André (AA) model
[22,26-35] and the Fibonacci model [36—41] are two paradig-
matic examples of 1D quasicrystal systems that have been
widely studied. The specific properties of the AA model
with an on-site incommensurate modulation is that above a
finite critical modulation amplitude, all the eigenstates change
from extended to localized, determined by the unique self-
dual characteristic [22,27]. In contrast, the modulation of
the Fibonacci chain exhibits two discrete values that appear
interchangeably according to the Fibonacci sequence. The
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Fibonacci model always has critical wave functions for an
arbitrary value of the on-site modulation. Though two such
paradigmatic models have very different localization features,
they have many connections, such as they belong to the
same topological class and are two limits of the interpolat-
ing Aubry-André-Fibonacci (IAAF) model [18,36,42], which
is proposed to discuss the topological relationship and how
criticality develops during a smooth interpolation between the
AA model and the Fibonacci chain. Recently, Goblot et al.
[44] theoretically and experimentally demonstrated the occur-
rence of a cascade of delocalization transition as the model
is tuned from the AA to the Fibonacci limit. Moreover, one
finds that the nonreciprocal hopping can drastically change
the cascade behavior in the non-Hermitian IAAF model [45].
Some quasiperiodic models with long-range hopping also dis-
play such cascading phenomena [46,47].

On the other hand, the mobility edge as a crucial concept
in disordered systems, which separates extended and localized
single-particle states in the energy spectra, may lead to some
fundamental physics [48], such as the metal-insulator tran-
sition and the thermoelectric response [49-51].Great efforts
have been made in exploring quasiperiodic systems with mo-
bility edges. By introducing an energy-dependent self-duality,
one can obtain some generalized AA models with exact
mobility edges, such as 1D quasicrystals with long-range hop-
ping [52-58] or a unique form of the on-site incommensurate
modulation [59-62]. Recently, by using mathematical tools,
a class of more generic models with mobility edges, which
can be exactly solved beyond the dual transformation, has
been introduced. It is highly significant to explore the rich
mobility edge physics further. Specially, through computing
the Lyapunov exponents [63,64] from Avila’s global theory
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[65-67], Wang et al. exhibited a 1D quasiperiodic mosaic
chain with exact mobility edges [68,69], which can be realized
for ultracold atoms based on an optical Raman lattice [7].

Here we study the fate of the cascadelike transitions in dif-
ferent band regions for a mosaic IAAF model. The extended
states emerge in the band-center region in the mosaic AA limit
for an arbitrary quasiperiodic modulation amplitude X, and in
the strong disorder regime, the states in the band-edges re-
gions are localized. The numerical and analytical results show
that the system exhibits exact mobility edges. In contrast, all
the eigenstates in the mosaic Fibonacci limit are multifractal
except for the state with E = 0. Unlike the former IAAF case,
the mosaic IAAF model displays two different ways to enter
the multifractal phase along the continuous deformation from
the mosaic AA limit to the mosaic Fibonacci limit; that is,
the cascadelike transitions display different behaviors for the
states in different band regions. In the band-edge regions, the
cascade of the fractal dimension is found, similar to that found
in the standard IAAF model. However, with the increase of
the knob parameter in the band-center region, we exhibit an
anomalous cascaded process with the emergence of the lower
fractal dimension values between the regions with higher frac-
tal dimension values.

The plan of this paper is as follows. In Sec. II, the mosaic
IAAF model is presented and the order parameters to char-
acterize three different types of states are listed. In Sec. III,
we discuss the localization features and critical behavior of
the mosaic AA and Fibonacci limits. We continuously control
the knob parameter and present the cascadelike transitions
for the states in different band regions shown in Sec. IV. A
conclusion and the experimental possibilities of the detection
of the cascading transitions are given in Sec. V.

II. MOSAIC IAAF MODEL AND METHODS

We consider a mosaic IAAF model is a 1D tight-binding
chain with a quasiperiodic mosaic on-site modulation, which
can be described by

A=1) (e +He)+aY_ViBeie;, ()
J J

where ¢; is the annihilation operators at site j; ¢ is the nearest-
neighbor hopping amplitude, which is set as an energy unit,
i.e., t = 1; and A is the strength of the on-site quasiperiodic
modulation. The on-site potential V;(8) is defined as

__tanh[B(cos 2mam)—cos (ra))]

Vi) = { ] o =

2
0, j=2m—1, @

with the tunable parameter 8, m being the index of quasicells,
and the spatial modulation frequency set as the inverse of the
golden mean, a = (+/5 — 1)/2. Since the quasiperiodic po-
tential periodically occurs at the even sites and the modulation
amplitude of the odd sites is set to zero, we can introduce
a quasicell with the nearest two lattice sites. If the number
of the quasicell is N, i.e., m=1,2,..., N, the size of the
system will be L = 2N. The tunable parameter S provides
a knob by which we can interpolate between two limiting
cases: (1) For the 8 — 0O limit, the system is described by a

1D quasiperiodic mosaic lattice with the potential at the even
sites V;(B) = cos (2ram) — cos (o), and the odd sites’ am-
plitude is zero. (2) For the 8 — oo limit, V;(8) corresponds to
a step potential switching between =1 values according to the
Fibonacci sequence at the even sites [25,37], and the potential
amplitude of the odd sites is equal to zero. Supposing that
the eigenstate of the mosaic IAAF chain is given by [y;) =
> v j6;|0), the eigenvalues of the system can be obtained
from the characteristic equations:

Yoms1 + Yom—1 + AVou o = Evroy,
Yoo + Yom = EYromy,

where 1/ is the amplitude of the eigenstate at jth site and E is
the eigenvalue. One can easily obtain the reduced eigenvalue
equation for E # 0 as follows:

2
IpvaLZ + 1502m72 + AEVZm¢2m = E(E - E)WZm- (3)

For the £ =0 case, one can apply the transfer matrix
of the Schrodinger operator in one quasicell 7,,(E = 0)
to obtain the corresponding Lyapunov exponent L£(0) =
limy_o In||7T(0)||/(2N), where ||A]| denotes the norm
of the matrix A, and the total transfer matrix 7(0) =
Tnv(0)Ty_1(0)---T;(0). When the Lyapunov exponent
L — 0, the corresponding state is a delocalized one, and for a
finite Lyapunov exponent, it is a localized state. The transfer
matrix for one quasicell with £ = 0 is an upper triangular

matrix 7,,(0) = (_01

T0) = (=N " Fr ) and the norm of the
total transfer matrix ||7°(0)|| = 1, which corresponds to an
extended state with £(0) = 0 independent of 8 and A.

To characterize the localization property of the wave

function, one can calculate the inverse participation ratio
(IPR) [48],

XXZI”‘). Hence, the total transfer matrix

IPR™ = " |y, “)
J

for the nth eigenstate with the eigenvalue E,. In the region
where the eigenstate 1, is extended, the IPR is equal to the
inverse of the chain length and tends to zero in the thermo-
dynamic limit. For a localized state, the IPR remains a finite
value with the increase of the system size. For a multifractal
state, IPR™ oc L= with 5, € (0, 1). Hence, one can define
the fractal dimension of the nth eigenstate wj(.") as follows:

_ iy | IRIPRT s
=T T |

According to the above discussion, it is known that ,, — 1 for
an extended state; n,, — 0 for a localized state; and when 0 <
N, < 1, the state corresponds to a multifractal one. To avoid
the fluctuation of a fixed state at different sizes, it is convenient
to study the mean IPR (MIPR) MIPR = (1/L)Y", IPR™.
The detection of three different types of states also can be
achieved by contrasting the distribution of the states in real
and momentum spaces. The distribution of the states in the
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FIG. 1. (a) Fractal dimension 7, of different eigenstates as a
function of the eigenvalues E, and the quasiperiodic potential am-
plitude A with L = 2N = 1220. The blue dashed lines represent
the mobility edges given by E. = +2/A. The scaling of IPRs for
different eigenstates with (b) A = 0.5 and (c) A = 3, respectively.
The inset in (c) shows the enlarge view of the scaling of IPRs for the
eigenstates with £ = 0 and 0.3959 for A = 3, respectively.(d) The
scaling of MIPRs with different 1. The inset in (d) shows the enlarge
view of the A = 0.5 case. Here, 8 — 0.

momentum space [70] is given by
e = (W& &), 6)

where & = (1/vL)Y f ¢*i¢;. In the momentum space, the
extended (localized) state displays the localized (extended)
distribution [see Figs. 2(a)-2(d)]. For a multifractal state, the
distribution exhibits a delocalized and nonergodic behavior
in both spaces [see Figs. 4(a)-4(d)]. Similar to the fractal
dimension the real space, we define the fractal dimension in
the momentum space,

InIPR\™
k) _ _ 15 Yk
L ngr;o |: InL :|’ 7

where the IPR in the momentum space IPR,({”) =), n,%[ with
ki=2rl/L (I=0,1,...,L—1). For extended (localized)
states in the real space, ﬂ,(,k) extrapolate to 0 (1), while the
values of n®) are far from 0 and 1 in the multifractal zone.

In this paper, the parameter of the modulation o can
be approximately obtained by considering a Fibonacci se-
quence [25,37], F,+1 = F, + F,—1, with Fy = F; = 1. We take
the system size L = 2N = 2F, and the rational approxima-
tion « = F,_; /F,. We apply exact diagonalization method to
numerically study the mosaic IAAF model Eq. (1) under peri-
odic boundary conditions (PBCs). Moreover, the eigenvalues
are ordered in ascending order.
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FIG. 2. (a), (b) Distribution of the first with E ~ —4.5457
eigenstate in the real and momentum spaces, respectively. (c),
(d) Distribution of the 843th with E ~ 0.3959 eigenstate in the
real and momentum, respectively. (e), (f) Fractal dimensions in the
real and momentum spaces for different sizes, respectively. Here,
L =2N = 1220 for [(a)-(d)],» =3 and § — O.

III. LOCALIZATION FEATURES IN MOSAIC
AA AND FIBONACCI LIMITS

A. The mosaic AA limit

The B — O limit corresponds to the mosaic AA model
for Eq. (1). The reduced characteristic equation Eq. (3) is
similar to the AA model in this limit. For an AA model, the
metal-insulator transition emerges at the modulation ampli-
tude above two times the hopping amplitude. Thus, we can
analytically obtain the mobility edges of the quasiperiodic
mosaic lattice E, = £2/A [26,68]. A fundamental feature of
such a model is that for an arbitrarily strong quasiperiodic
potential, the mobility edges always take place [see Fig. 1(a)],
which is the energy separating the extended and the localized
states of the system. Figure 1(a) shows the fractal dimension
n, of different eigenstates in the real space as a function of
the corresponding energies and the modulation amplitude A
for the mosaic IAAF model in the 8 — 0 limit. As shown
in Fig. 1(a), the analytical results of the mobility edges are
marked by the blue dashed lines, and the energies of the
extended states always emerge in the band-center region of
the spectrum, in which the fractal dimensions approach unit.
When A < A, & 0.86, all the states of the system are extended
and, for A > A, the mobility edges emerge. In Figs. 1(b) and
1(c), we show the scaling of IPRs in the 8 = 0 limit for differ-
ent eigenstates with A = 0.5 and 3, respectively. For . = 0.5
(< A.), when L — oo, the IPRs of different states approach 0
with 1, — 1. For A = 3, the £ =0 and E ~ 0.3959 eigen-
states localized in [—2/X, 2/A] correspond to the extended
state with 1, — 1 [see the inset of Fig. 1(c)], and when the
eigenvalues of the states below (above) —2/A (2/1), the IPRs

144207-3



QI DAI, ZHANPENG LU, AND ZHIHAO XU

PHYSICAL REVIEW B 108, 144207 (2023)

si@ ' ' ‘ ' ' ' !
0.8
Hgsseee
it 0.6
0 “ (T
= |||l ..... i y
0.2
5t ‘ ‘ | | | | | ‘ |

A
0.06 (b) © E~—3.8053
% E~ —35833
AE~0 0.05
- 1 E ~0.4431 » -
= 5 '
= =
0.02 0.02
0.01 f¥
0 0
0 1 2
/L %102

FIG. 3. (a) Fractal dimension 7, of different eigenstates as a
function of the eigenvalues E, and the quasiperiodic potential am-
plitude A with L = 2N = 1220. (b) The scaling of IPRs for different
eigenstates with A = 3. (c) The scaling of MIPRs for different A.
Here, 8 — oc.

of such states are independent of the system size, with n, — 0
corresponding to the localized states. As shown in Fig. 1(c)
for A = 3, the band-edge states with £ &~ —4.5457 and E =~
—3.1508, both which are below —2/X, exhibit localization
properties. Figure 1(d) shows the MIPR as a function of 1/L
for different A. In the fully extended regime (A = 0.5), the
MIPR approaches 1/L with the increase of system size and
drops to O in the infinite size limit. When the system enters
the regime with mobility edges, MIPR tends to a finite value
in the thermodynamic limit. As seen in Fig. 1(d), the stronger
the quasiperiodic modulation amplitude A, the larger the value
of MIPR in the thermodynamic limit.

Figures 2(a)-2(d) show the distributions of different eigen-
states in the real and momentum spaces, respectively. The
distribution n; = |;]? of the first with E &~ —4.5457 (843th
with E ~ 0.3959) eigenstate for A = 3, L = 2N = 1220, and
B = 0 in the real space exhibits localized (extended) features
shown in Fig. 2(a) [Fig. 2(c)], while in the momentum space,
the corresponding distribution is extended (localized), which
is shown in Fig. 2(b) [Fig. 2(d)]. By contrasting the fractal
dimensions for each eigenstate at different system sizes in real
and momentum spaces, one can obtain clear information on
the localization properties of the system in the mosaic AA
limit, shown in Figs. 2(e) and 2(f) with A =3, and 8 =0,
respectively. In the finite-size case, the fractal dimension of
the states in the localized regions extrapolates to 0 and 1 in real
and momentum spaces, respectively. In contrast, the extended
states’ fractal dimensions tend to be 1 and 0 with increased
system size in both spaces.

The analytical and numerical results indicate that the sys-
tem has exact mobility edges in the mosaic AA limit, and
the extended states emerge in the band-center region for an

(a) (b)

0.01 0.1
= 0.005 = 0.05
0 0 )
0 500 1000 0 1 2
(c) (d)
0.01 0.1
=~ e
= 0.005 = 0.05
0 o Lo 1 L
0 500 1000 0 1 2

0 0.5 1 0 0.5 1
n(E)/L n(E)/L

FIG. 4. (a), (b) Distribution of the first with E ~ —3.8053
eigenstate in the real and momentum spaces, respectively. (c),
(d) Distribution of the 843th with E & 0.4431 eigenstate in the real
and momentum spaces, respectively. (e), (f) Fractal dimensions in
the real and momentum spaces for different sizes, respectively. Here,
L = 2N = 1220 for [(a)—(d)], > = 3, and § — oo.

arbitrary modulation amplitude. In a large X case, the localized
states emerge in the band-edge region. With the increase of
X, the extended regime localized in the band-center region
shrinks.

B. The mosaic Fibonacci limit

For a standard Fibonacci chain, it is known that all the
eigenstates are multifractal for any values of A # 0, which
exhibit a self-similar structure. For the Hamiltonian Eq. (1),
when B — o0, the on-site potentials for the even sites reduce
to two discrete values according to a Fibonacci sequence,
and the amplitude of the odd sites is zero. One can easily
find that in the 8 — oo limit, the corresponding reduced
characteristic Eq. (3) becomes a standard Fibonacci Hamil-
tonian for E # 0, which means that except the state with
E =0, all the eigenstates of the mosaic Fibonacci model are
multifractal. In this subsection, we perform the numerical
calculation by taking the on-site potentials of the even sites
as Vo, = —sgn[cos (2mram) — cos ()] in the B — oo limit,
where sgn is the sign function. We show the fractal dimension
N, in the real space as a function of E, and A for § — oo
in Fig. 3(a). Except for the £ = 0 state, which corresponds
to the N + 1th eigenstate, the values of fractal dimensions
of all the states exhibit a multifractal characteristic. Due to
the finite-size effect, one can find the red region in the small
A shown in Fig. 3(a). We believe that with the increase of
system size, the red region would shrink to a point that is the
state with E = 0. Figure 3(b) shows the scaling of the IPRs
for different eigenstates with A = 3 in the 8 — oo limit. The
IPR of the zero-energy state (the N + Ith state) decreases as
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FIG. 5. (a) Fractal dimension of the ground state as a function
of the disorder strength A and the parameter S. The green line A,
marks the analytically obtained transition line for the ground state.
(b) The IPR of the ground state as a function of B for A = 3. Here,
L =2N = 1220.

1/L to 0 with the increase of system size. For the other states
n#N+1), IPR™ o L= with a € (0, 1). One can find that
the fractal dimensions of the states in the band-center region
are larger than that in the band-edge regions. The MIPRs for
different A as the function of 1/L are shown in Fig. 3(c). The
numerical results imply that the systems with different A are
always in the critical regime.

To further confirm the multifractal states, we contrast the
wave function’s distributions in real and momentum spaces
with A = 3 and L = 2N = 1220 in Figs. 4(a)-4(d). We choose
the ground state in the band-edge region and the 843th state
in the band-center region to discuss. Both states display mul-
tifractal behavior in real and momentum spaces. Figures 4(e)
and 4(f), respectively, show the 7, and n,(lk) with different L
and A = 3. The values are away from O and 1, except for the
E = 0 case. Our results indicate that for the 8 — oo limit, the
mosaic Fibonacci model exhibits similar localization features
as the standard Fibonacci model, except for the state with
E =0.

IV. CASCADELIKE TRANSITIONS BY CONTINUOUSLY
CONTROLLING THE KNOB PARAMETER

For a standard IAAF model, one displays the cascade of
delocalization transitions from the AA limit to the Fibonacci
limit with the increase of 8. The phenomenon’s emergence
is independent of the choice of states. In the above discus-
sions, the mosaic IAAF model of both limits exhibits distinct
localization properties in the band-edge and band-center re-
gions. The following discusses the cascadelike transitions for
different states localized in different band regions with the
increase of the knob parameter 8 from the mosaic AA limit
to the mosaic Fibonacci limit.

First, we show the delocalization transition of the fractal
dimension for the ground state. Figure 5(a) shows the fractal
dimension of the ground state as a function of the disorder

strength A and the parameter 8 with L = 1220. According to
the mosaic AA limit results, the ground state’s extended-to-
localized transition point is at A, & 0.86 for 8 — 0. As seen
in Fig. 5(a), one can see that the extended regime gradually
decreases with the increase of S. In large g limit, the system
becomes a mosaic Fibonacci model, which shows a multifrac-
tal feature for an arbitrary finite A except for the state with
E = 0. One can apply the generalized Avila’s global theory
argument in the small 8 limit (see Appendix) to obtain a
mobility edge E.-dependent analytical result,

2
Ae = , 8
E.[1 — { cos 2ma)B?] ®

which corresponds to the green line A, shown in Fig. 5(a) with
E. ~ —2.3027 for the ground state. In the low S case, this
green line separates extended states from localized ones. With
the increase of f§, the analytical result deviates. The states
in the region of the left side of the green line are extended
as our numerical calculation. For large 8, since the extended
region is suppressed by the multifractal phase hosted by the
mosaic Fibonacci limit for the ground state, the extended
region greatly shrinks.

As seen in Fig. 5(a), for an intermediate A, the fractal
dimension does not evolve monotonously as the function of
B, which displays a cascade of lobes with the lower fractal
dimension values separated by the states with the maxima 7,
values. Taking A = 3 as an example, as shown in Fig. 5(b),
the IPR with the increase of B displays a series of plateaux
whose heights decrease in a stepwise manner, and an ap-
parent dip emerges between two contiguous plateaux. Until
the mosaic Fibonacci limit, the ground state finally evolves
into a multifractal one. The phenomenon for the ground state
realized by tuning the knob parameter 8 from the mosaic
AA limit to the mosaic Fibonacci limit corresponds to a
delocalization process. The mechanism of the cascade of de-
localization behaviors for the ground state is similar to that
in the standard IAAF case. To better understand the mech-
anism of the emergence of the cascading phenomenon, we
plot the on-site potentials for different 8 in Figs. 6(a)-6(d)
and the corresponding ground state’s density distributions in
Figs. 6(e)-6(h). Here, we take A =3, L = 1220, and from
top to bottom B = 0.01, 5, 20, and 70, respectively. The
black circles in Figs. 6(a)-6(d) denote the minimum of on-site
potentials. Moreover, the peaks of the ground state distribu-
tions are localized at the corresponding positions shown in
Figs. 6(e)-6(h). In the mosaic AA limit, the minimum of
on-site potentials emerges at a single site [Fig. 6(a)], and the
corresponding ground state localized at a single site is a solid
localized mode for a large X [Fig. 6(e)], of which the IPR tends
to be 1. With the increase of the knob parameter, since a paired
site potential goes down to the minimum of the potential
shown in Fig. 6(b), a two-site localized state turns to a new
ground state [Fig. 6(f)]. The region between the single-site
localization and two-site localization is an extended phase
corresponding to a sudden dip in the IPR. The potential values
of higher-site groups sequentially become the lowest ones
with 8 further increasing, as seen in Figs. 6(c) and 6(d), which
leads to the corresponding localized states’ emergence shown
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FIG. 6. [(a)—(d)] Evolution of the spatial on-site potentials for
different values of 8. The black circles represent the minimum of
on-site potentials. [(e)—(h)] Typical spatial distributions of the single-
site, two-site, four-site, and eight-site localization states, respectively.
Here, we choose A =3, L = 2N = 1220, and from top to bottom
with 8 = 0.01, 5, 20, and 70, respectively.

in Figs. 6(g) and 6(h). Thus, similar cascade structures emerge
with the increase of S.

We also choose certain states in the band-edge regions for
further discussion. As shown in Figs. 7(a)-7(d), we show

IPR™

IPR™

IPR™

IPR™

FIG. 7. [(a)—(d)] The IPRs of different states localized in the
band-edge regions as a function of g for L =2N = 1220and > =3
with the 89th, 165th, 283th, and 301th eigenstates, respectively.

0.035

(b)

0.005 J

0 2 4 10° 10°
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FIG. 8. (a) Fractal dimension of the 843th state as a function
of the disorder strength A and the parameter 8. (b) The IPR of the
843th eigenstate as a function of 8 for A =3 under PBC. Here,
L =2N = 1220.

the IPRs of different states localized in the band-edge re-
gions as the function of 8 for L = 1220 and A = 3 with the
89th, 165th, 283th, and 301th eigenstates, respectively. With
the increase of the eigenvalues, the emergence of the first
delocalization transition for the corresponding eigenstates is
postponed. Moreover, the number of the emergence of the cas-
cade regions is much smaller than in the ground state case. We
can see the evolution of the fractal dimension of band-edge
regions as the function of 8 shown in Fig. 9 with A = 3. We
observe that the lowest set of eigenenergies is squeezed into a
narrow spectral window and the delocalization is at 8 =~ 2. By
further increasing the knob parameter, the states are localized
once more. And this process repeats at the emergence of the

FIG. 9. Fractal dimension of all eigenstates of Eq. (1) as a func-

tion of the eigenenergy and the knob parameter 8. Here, L = 2N =

1220 and A = 3.
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maximum of the fractal dimension. Different bands show sim-
ilar cascades at different 8 for band-edge regions. It implies
that the cascading transitions in the band-edge regions to the
multifractal states do not happen uniformly.

For the band-center region in the mosaic AA limit, the sys-
tem’s eigenstates are extended, while in the mosaic Fibonacci
limit, all the eigenstates are multifractal except for the £ = 0
case. We expect that by tuning the knob parameter f, the
states of the fractal dimension in the band-center region could
exhibit a nontrivial increase. For a zero-energy state in the
band-center region, according to Eq. (3), the fractal dimension
always keeps a unit during the increase of . Nevertheless,
as long as this zero-energy state deviates, this situation will
change. We choose the 843th state in the band-center region
as an example to study its change of the fractal dimension
from 8 — 0 to B — oo as a function of A, which is shown
in Fig. 8(a) with L = 1220. The fractal dimension displays a
trivial increase with § in the small A limit. However, for a large
A case, the fractal dimension evolves nonmonotonously with
B but exhibits an anomalous cascade of lobes of higher fractal
dimension values separated by the regions with lower fractal
dimensions. Such behavior is different from that emerges in
the band-edge regions. The IPR of the 843th state as a function
of B for the system with A =3 and L = 1220 is shown in
Fig. 8(b). In the small 8, the IPR value of the 843th state keeps
small, corresponding to an extended one. With the increase of
B, the value of the IPR undergoes a series of sudden increasing
and decreasing processes. When S is large enough, the IPR
holds stable. As seen in Fig. 9, the transition in the band-
center region displays an anomalous cascade feature with the
emergence of the lower fractal dimension values between the
regions with higher fractal dimension values.

The spectral distribution of the mosaic IAAF model shows
interesting properties. To obtain the spectral distribution di-
rectly, we calculate a dimensionless quantity r,, [71,72], which
is defined as

ry = w 9)

max(s,, Spi1)

where s, = E,, — E,_; is the spacing between the consecu-
tive energy levels. The mean gap ratio (r) is calculated by
averaging r, over different energy level regions. The mosaic
AA limit has verified that most energy levels are twofold
degenerate, related to the parent twofold degeneracy for k and
—k states in the clean chain. Though the inlaid quasiperiodic
potential breaks the lattice’s translational symmetry, the two
degeneracy is inherited in the mosaic AA limit [68]. Due to
the twofold degeneracy in the mosaic limit, the mean gap ratio
(r) tends to zero in the small 8 limit. Figure 10(a) shows the
mean gap ratio (r) of the band-edge region as the function
of B with L = 2N = 1220 and X = 3. Here, we consider the
lowest set of eigenenergies shown in Fig. 9 to get (r). As
shown in Fig. 10(a), (r) approaches zero, corresponding to the
twofold degeneracy feature in the band-edge region’s small g
limit. Increasing B, the first peak of (r) emerges at 8 =~ 2. It
corresponds to the emergence of the squeezed narrow spectral
window in the lowest set of eigenenergies seen in Fig. 9,
where all the eigenstates are delocalized, and the cascading
phenomena happen. Since the cascading behaviors are not
uniform for different states in the band-edge regions, which

0.25

02r

0.1r

0.05F

0.3

02r

0.1r

4

10° 10
J&i

-2

10 10

FIG. 10. (a) The mean gap ratio (r) of the band-edge region as
a function of B. The lowest set of eigenenergies shown in Fig. 9 is
considered to get (r). (b) The mean gap ratio (r) of the band-center
region as a function of B. We take the energy level statistics for
the center of the energy band around E = 0 with energy indexes
n € [611,843]. Here, L = 2N = 1220 and A = 3.

has been shown in Figs. 7 and 9, the mean gap ratio (r)
displays a complex increase as the function of f, and the
twofold degeneracy breaks in this region. When the system
immerses into the multifractal regime in the large B limit,
one can see that the values of (r) keep stable. Figure 10(b)
shows (r) of the band-center region as a function of g with
L =2N = 1220 and X = 3. Here, we take the energy level
statistics for the center of the energy band around E = 0 with
energy indexes n € [611, 843] for L = 1220. In the mosaic
AA limit, the twofold degeneracy leads to the values of the
mean gap ratio tending to zero. When g goes beyond ~10°,
the band-center region that we calculate begins to emerge cas-
cading phenomena, and the degeneracy will be broken. When
all the states in the band-center region shown in Fig. 10(b)
become multifractal in the large § limit, the mean gap ratio (r)
reaches saturation. It implies that the mosaic IAAF model’s
spectral distribution can help us distinguish the regimes where
the cascading phenomena happen.

In Ref. [46], the cascadelike transition displays a spatial
modulation frequency-dependent behavior. However, are the
cascading processes a-dependent for our mosaic IAAF chain?
To answer this question, we study the cascading behavior
by choosing different irrational Diophantine numbers for the
spatial modulation frequency o shown in the Appendix. For
the mosaic IAAF model, the emergence of the cascadelike
transitions from the mosaic AA limit to the mosaic Fibonacci
limit is universal both in the band-edge and band-center re-
gions, except for the E = 0 case. However, the  values where
the cascading happens are the spatial modulation frequency
a-dependent.
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V. CONCLUSION

In this paper, we study the cascade of the delocalization
transitions and the emergence of the multifractal processes in
a mosaic IAAF chain. In the masaic AA limit, the numerical
and analytical calculations show that exact mobility edges
exist and the extended states always emerge in the band-center
region for an arbitrary modulation amplitude. In the mosaic
Fibonacci limit, all the eigenstates of the mosaic Fibonacci
model are multifractal, except for the extended state with
E = 0. Hence, there are two different ways to enter the
multifractal phase, which is different from the IAAF case.
By tuning S continuously from the mosaic AA limit to the
mosaic Fibonacci limit, the cascade of delocalization transi-
tion is found in the band-edge regions. With the increase of
eigenvalues, the emergence of the delocalization transition for
the corresponding eigenstates is postponed, and the number
of the emergence of the cascade regions is much smaller
than in the ground-state case. Different from the cases in the
band-edge regions, an anomalous cascade feature are detected
with the emergence of the lower fractal dimension values
between the regions with higher fractal dimension values in
the band-center region with the increase of the knob parameter
B. We conclude that the cascadelike transitions of the mosaic
IAAF model does not happen uniformly in different band
regions.

Finally, we discuss the experimental possibilities of the
detection of the cascading transitions in our mosaic IAAF
model. On the one hand, the IAAF model has been experimen-
tally realized in a photonic platform. By using electron-beam
lithography and dry etching to process cavity samples into
quasi-1D microstructures, the cascade of delocalization tran-
sition has been observed in Ref. [44]. On the other hand,
the mosaic models’ experimental scheme has been proposed
using ultracold atom technology [68]. For our mosaic IAAF
lattices, it can be realized easily based on an integrated SizNy
photonics platform by a scanning electron microscope image
of the nanophotonic device, which recently has been real-
ized experimentally [73,74]. One can control the width of
each waveguide according to the numerical vectorial mode
solver to design the desired on-site potential of each mod-
ulated site for the given knob parameter 8 and modulation
amplitude A in our mosaic IAAF system. The waveguide
separation is carefully designed to keep the amplitude of
the hopping term uniform. By choosing different sites of
inputs and then adiabatically expanding the output array by
a fan-out structure, one can realize the spatial intensity mea-
surement of different regimes in the energy diagram. Hence,
the cascadelike processes of different band regions can be
detected.
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APPENDIX

1. Derivation of Eq. (8)

In the subsection, we apply Avila’s global theory for the
mosaic JAAF model by taking a small 8 expansion. Avila’s
global theory [65—67] is a theoretical framework proposed by
Avila during his study on the classification of transfer matri-
ces for Schrodinger operators. This theory has given rise to
numerous mathematical conjectures and has found significant
practical applications. One such application of this theory is
the precise calculation of Lyapunov exponents for specific
transfer matrices. For instance, the Lyapunov exponents of
the AA model [63] and the mosaic AA model [68,69] can
be accurately computed using this theory. Using this theory,
we can obtain the critical line A., which bounds the extended
phase.

First, we follow the processes of Ref. [44] to deal with the
on-site potentials at the even sites in the small 8 limit. We use
Taylor unfolding to expand the potential modulation in the
small B limit and obtain the modulation potential at the even
sites,

V. p)=—x =3B x(0 = x)+oB).  (AD
where x = cos (2w ax) — cos (wa). Note that we use the con-
tinuous version of the on-site potential Eq. (2) at the even
sites defined in the main text. To return to the discrete ver-
sion, we restrict the position x to be a set of even numbers,
i.e., x = 2m. After expanding the potentials of the even
sites, one can approximate the quadratic 8 term at the even
sites as

VZm(ﬂ) ~ _[X + %:Bsz]s

where U is the spatial average over a single period of the
potential modulation V (x, B) at the even sites

(A2)

a—l
U:a/[l—xz]dx
0

a!

o / [1 — (cos 2max) — cos (ra))*]1dx
0

—% cos Qma). (A3)
In this approximation, the effective potentials at the even sites
remain a cosine function incommensurate with the underlying
lattice, but its amplitude is altered with 8. Hence, the effective
Hamiltonian keeps the same shape as the mosaic AA model,
but with a S-dependent modulation amplitude, i.e., . — A g =
Al — { cos Qma)B?].

Next, we apply Avila’s global theory to calculate the Lya-
punov exponents of the effective Hamiltonian, which has the
same form as the mosaic AA model [68]. The Lyapunov
exponent £ can be computed as

. 1
L(E) = Jim —o In{|T(E)II. (A4)
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where N is the number of the quasicell, ||T(E)|| denotes the
norm of the total transfer matrix 7 (E) for a given E, and
T(E)=TyE)Ty_1(E)---Ti(E) with T,,(E) being the local
transfer matrix in one quasicell. The local transfer matrix is
given by

_(E+dgx -1 E -1

Tm(E)_< ) O>><<1 0 ) (AS)

According to Avila’s global theory, we introduce a complex

phase i€ into cos(2wram). The complexification of the phase

is important for us since our computation relies on Avila’s

global theory of one-frequency analytical SL(2, R) cocycle
[65]. That is,

2w ,—€ —i2mam ,€
cosram + i) = = J;e . (6

Let € — +o00, then direct computation yields

is _
Tu(E + ie) = {e"”’“’"ef (g 01> +o(l). (A7)

The total transfer matrix of the whole chain is

T(E,G) = TN(E,G)TN_I(E,G)---Tl(E,G)

N —i2mram

N
BT Se(5 o) @

m=1

Thus, the norm of the total transfer matrix is
~ N
IT(E, el = |3hseE]". (A9)
Combining Egs. (A4) and (A9), we can obtain

L(E) = 5(In|u| +e), (A10)
with p = X,gE /2. Avila’s global theory [65-67] shows that,
as a function of €, 2L, (E) is a convex, piecewise linear func-
tion and their slopes are integers, which implies 2L.(E) =
max {In || + €, 2Lo(E)}. Moreover, Avila’s global theory
tells us that £ does not belong to the spectrum of the Hamil-
tonian, if and only if Lo(E) > 0, and L.(E) is an affine
function in the neighborhood of € = 0. Consequently, when
E is localized in the spectrum, we have

2Lo(E) = max{In ||, 0}. (A11)

For a given eigenvalue E, when |u| > 1, the localization
length

C(E)= 2
T Lo(E)  In|ul

(A12)

is a finite value, which denotes that the corresponding state is
localized. When || < 1, £ — oo corresponds to a delocal-
ized one. Thus, by || = 1, one can obtain the critical line

2

Ae = .
E.(1 — § cos(2ma) B2)

(A13)

Note that this result is suited for the small 8 limit. For a large
B, the result deviates.

0.6
(a) 0.06/(b)
< 04 0.04
=
&
02 0.02 ML{
0 0
10° 10 10° 10
0.6 0.15
(c) (d)
_ 04 0.1
=
[a
=02 0.05
0 0
10° 10 10° 10?
B B

FIG. 11. (a), (b) The IPRs of the ground state and the 1155th
state as a function of B for A = 2 and L = 1970 with o, respectively.
(c), (d) The IPRs of the ground state and the 829th state as a function
of B for . =2 and L = 2378 with o, respectively.

2. Effects of the spatial modulation frequency
on cascading transitions

To study the effects of the spatial modulation frequency
o on cascading transitions, we choose other irrational Dio-
phantine numbers for our discussion, which are different from
the choice in the main text, with o being the inverse of
the golden mean 35— 1)/2. To obtain the metallic mean
family of the irrational Diophantine number, we consider a
generalized «-Fibonacci sequence, F,.| = «F, + F,_, with
Fy =0 and F; = 1. The irrational number o controlling the
spatial modulation frequency can be obtained by the limit
a =lim, , F,—1/F, with k = 1,2,3, .-, which can yield
the metallic mean family. For k = 1, we can obtain the golden
mean o, = (+/5 — 1)/2, which is studied in the main text.

When « = 2 and 3, one can get the silver mean oy = V2 -1
and the bronze mean o, = (/13 — 3)/2, respectively. We
take the system size L = 2F, and the rational approximation
a = F,_|/F, under PBCs. In this part, we consider the cas-
cading features for different choices of « in the band-edge
and band-center regions, respectively.

As a concrete example, in the band-edge region, we choose
the ground state IPRs as a function of 8 with A = 2 shown in
Fig. 11(a) for s and Fig. 11(c) for «y, respectively. Compared
with the a;,s results in the main text, we can see the emergence
of the cascading phenomena is universal, but the values of
B where the cascading happens depend on the choice of «.
In the band-center region, we choose the 1155th eigenstate’s
IPR for oy and L = 1970 and the 829th eigenstate’s IPR for
ap and L = 2378 as a function of B with A =2 shown in
Figs. 11(b) and 11(d), respectively. In the band-center region,
the cascading processes from the mosaic AA limit to the
mosaic Fibonacci limit also display a «-dependent behavior.
According to our numerical results, for the mosaic IAAF

144207-9



QI DAI, ZHANPENG LU, AND ZHIHAO XU

PHYSICAL REVIEW B 108, 144207 (2023)

model, the emergence of the cascadelike transitions from the
mosaic AA limit to the mosaic Fibonacci limit is universal

both in the band-edge and band-center regions. However, the
B values where the cascading happens are «-dependent.
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